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Abstract

This paper proposes a method for learning joint embed-

dings of images and text using a two-branch neural net-

work with multiple layers of linear projections followed

by nonlinearities. The network is trained using a large-

margin objective that combines cross-view ranking con-

straints with within-view neighborhood structure preserva-

tion constraints inspired by metric learning literature. Ex-

tensive experiments show that our approach gains signifi-

cant improvements in accuracy for image-to-text and text-

to-image retrieval. Our method achieves new state-of-the-

art results on the Flickr30K and MSCOCO image-sentence

datasets and shows promise on the new task of phrase lo-

calization on the Flickr30K Entities dataset.

1. Introduction

Computer vision is moving from predicting discrete, cat-

egorical labels to generating rich descriptions of visual data,

for example, in the form of natural language. There is a

surge of interest in image-text tasks such as image caption-

ing [10, 22, 23, 25, 31, 43, 46, 50] and visual question an-

swering [2, 12, 52]. A core problem for these applications is

how to measure the semantic similarity between visual data

(e.g., an input image or region) and text data (a sentence

or phrase). A common solution is to learn a joint embed-

ding for images and text into a shared latent space where

vectors from the two different modalities can be compared

directly. This space is usually of low dimension and is very

convenient for cross-view tasks such as image-to-text and

text-to-image retrieval.

Several recent embedding methods [14, 15, 26] are based

on Canonical Correlation Analysis (CCA) [17], which finds

linear projections that maximize the correlation between

projected vectors from the two views. Kernel CCA [17]

is an extension of CCA in which maximally correlated non-

linear projections, restricted to reproducing kernel Hilbert

spaces with corresponding kernels, are found. Extensions

of CCA to a deep learning framework have also been pro-

posed [1, 33]. However, as pointed out in [30], CCA is hard

to scale to large amounts of data. In particular, stochas-

tic gradient descent (SGD) techniques cannot guarantee a

good solution to the original generalized eigenvalue prob-

lem, since covariance estimated in each small batch (due to

the GPU memory limit) is extremely unstable.

An alternative to CCA is to learn a joint embedding

space using SGD with a ranking loss. WSABIE [49] and

DeVISE [11] learn linear transformations of visual and tex-

tual features to the shared space using a single-directional

ranking loss that applies a margin-based penalty to incor-

rect annotations that get ranked higher than correct ones

for each training image. Compared to CCA-based meth-

ods, this ranking loss easily scales to large amounts of data

with stochastic optimization in training. As a more power-

ful objective function, a few other works have proposed a

bi-directional ranking loss that, in addition to ensuring that

correct sentences for each training image get ranked above

incorrect ones, also ensures that for each sentence, the im-

age described by that sentence gets ranked above images

described by other sentences [22, 23, 25, 43]. However, to

date, it has proven frustratingly difficult to beat CCA with

an SGD-trained embedding: Klein et al. [26] have shown

that properly normalized CCA [14] on top of state-of-the-art

image and text features can outperform considerably more

complex models.

Another strand of research on multi-modal embeddings

is based on deep learning [3, 24, 25, 31, 35, 44], uti-

lizing such techniques as deep Boltzmann machines [44],

autoencoders [35], LSTMs [8], and recurrent neural net-

works [31, 45]. By making it possible learn nonlinear map-

pings, deep methods can in principle provide greater rep-

resentational power than methods based on linear projec-

tions [11, 15, 26, 49].

In this work, we propose to learn an image-text embed-

ding using a two-view neural network with two layers of

nonlinearities on top of any representations of the image and

text views (Figure 1). These representations can be given by

the outputs of two pre-trained networks, off-the-shelf fea-

ture extractors, or trained jointly end-to-end with the em-

bedding. To train this network, we use a bi-directional loss

function similar to [22, 23, 25, 43], combined with con-
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Figure 1. Our model structure: there are two branches in the net-

work, one for images (X) and the other for text (Y ). Each branch

consists of fully connected layers with ReLU nonlinearities be-

tween them, followed by L2 normalization at the end.

straints that preserve neighborhood structure within each

individual view. Specifically, in the learned latent space,

we want images (resp. sentences) with similar meaning to

be close to each other. Such within-view structure preserva-

tion constraints have been extensively explored in the met-

ric learning literature [19, 32, 40, 41, 48, 53]. In particular,

the Large Margin Nearest Neighbor (LMNN) approach [48]

tries to ensure that for each image its target neighbors from

the same class are closer than samples from other classes.

As our work will show, these constraints can also provide a

useful regularization term for the cross-view matching task.

From the viewpoint of architecture, our method is sim-

ilar to the two-branch Deep CCA models [1, 33], though

it avoids Deep CCA’s training-time difficulties associated

with covariance matrix estimation. Our network also gains

in accuracy by performing feature normalization (L2 and

batch normalization) before the embedding loss layer. Fi-

nally, our work is related to deep similarity learning [4, 6,

7, 16, 18, 39, 47], though we are solving a cross-view, not

a within-view, matching problem. Siamese networks for

similarity learning (e.g., [39]) can be considered as special

cases of our framework where the two views come from the

same modality and the two branches share weights.

Our proposed approach substantially improves the state

of the art for image-to-sentence and sentence-to-image re-

trieval on the Flickr30K [51] and MSCOCO [28] datasets.

We are also able to obtain convincing improvements over

CCA on phrase localization for the Flickr30K Entities

dataset [37].

2. Deep Structure-Preserving Embedding

Let X and Y denote the collections of training images

and sentences, each encoded according to their own fea-

ture vector representation. We want to map the image and

sentence vectors (which may have different dimensions ini-

tially) to a joint space of common dimension. We use the

inner product over the embedding space to measure similar-

ity, which is equivalent to the Euclidean distance since the

outputs of the two embeddings are L2-normalized. In the

following, d(x, y) will denote the Euclidean distance be-

tween image and sentence vectors in the embedded space.

2.1. Network Structure

We propose to learn a nonlinear embedding in a deep

neural network framework. As shown in Figure 1, our deep

model has two branches, each composed of fully connected

layers with weight matrices Wl and Vl. Successive layers

are separated by Rectified Linear Unit (ReLU) nonlineari-

ties. We apply batch normalization [20] right after the last

linear layer. And at the end of each branch, we add L2 nor-

malization.

In general, each branch can have a different number of

layers, and if the inputs of the two branches X and Y are

produced by their own networks, the parameters of those

networks can be trained (or fine-tuned) together with the

parameters of the embedding layers. However, in this pa-

per, we have obtained very satisfactory results by using two

embedding layers per branch on top of pre-computed image

and text features (see Section 3.1 for details).

2.2. Training Objective

Our training objective is a stochastic margin-based loss

that includes bidirectional cross-view ranking constraints,

together with within-view structure-preserving constraints.

Bi-directional ranking constraints. Given a training im-

age xi, let Y +

i and Y −

i denote its sets of matching (pos-

itive) and non-matching (negative) sentences, respectively.

We want the distance between xi and each positive sentence

yj to be smaller than the distance between xi and each neg-

ative sentence yk by some enforced margin m:

d(xi, yj) +m < d(xi, yk) ∀yj ∈ Y +

i , ∀yk ∈ Y −

i . (1)

Similarly, given a sentence yi′ , we have

d(xj′ , yi′) +m < d(xk′ , yi′) ∀xj′ ∈ X+

i′ , ∀xk′ ∈ X−

i′ ,

(2)
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Figure 2. Illustration of the proposed structure-preserving con-

straints for joint embedding learning (see text). Rectangles repre-

sent images and circles represent sentences. Same color indicates

matching images and sentences.

where X+

i′ and X−

i′ denote the sets of matching (positive)

and non-matching (negative) images for yi′ .

Structure-preserving constraints. Let N(xi) denote the

neighborhood of xi containing images that share the same

meaning. In our case, this is the set of images described

by the same sentence as xi. Then we want to enforce a

margin of m between N(xi) and any point outside of the

neighborhood:

d(xi, xj) +m < d(xi, xk) ∀xj ∈ N(xi), ∀xk 6∈ N(xi),
(3)

Analogously to (3), we define the constraints for the sen-

tence side as

d(yi′ , yj′)+m < d(yi′ , yk′) ∀yj′ ∈ N(yi′), ∀yk′ 6∈ N(yi′),
(4)

where N(yi′) contains sentences describing the same im-

age.

Figure 2 gives an intuitive illustration of how within-

view structure preservation can help with cross-view match-

ing. The embedding space on the left satisfies the cross-

view matching property. That is, each square (representing

an image) is closer to all circles of the same color (repre-

senting its corresponding sentences) than to any circles of

the other color. Similarly, for any circle (sentence), the

closest square (image) has the same color. However, for

the new image query (white square), the embedding space

gives an ambiguous matching result since both red and blue

circles are very close to it. This problem is mitigated in the

embedding on the right, where within-view structure con-

straints are added, pushing semantically similar sentences

(same color circles) closer to each other.

Note that our two image-sentence datasets, Flickr30K

and MSCOCO, consist of images paired with five sentences

each. The neighborhood of each image, N(xi), generally

only contains xi itself, since it is rare for two different im-

ages to be described by an identical sentence. Thus, the

image-view constraints (eq. 3) are trivial, while the neigh-

borhood of each sentence N(yi′) has five members. How-

ever, for the region-phrase dataset of Section 3.3, many

phrases have multiple region exemplars, so we get a non-

trivial set of constraints for the image view.

Embedding Loss Function. We convert the constraints to

our training objective in the standard way using hinge loss.

The resulting loss function is given by

L(X,Y ) =
∑

i,j,k

max[0,m+ d(xi, yj)− d(xi, yk)]

+λ1

∑

i′,j′,k′

max[0,m+ d(xj′ , yi′)− d(xk′ , yi′)]

+λ2

∑

i,j,k

max[0,m+ d(xi, xj)− d(xi, xk)]

+λ3

∑

i′,j′,k′

max[0,m+ d(yi′ , yj′)− d(yi′ , yk′)] ,

(5)

where the sums are over all triplets defined as in the con-

straints (1-4). The margin m could be different for different

types of distance or even different instances. But to make

it easy to optimize, we fix m for all terms across all train-

ing samples (m = 0.1 in the experiments). The weight λ1

balances the strengths of both ranking terms. In other work

with a bi-directional ranking loss [22, 23, 25, 43], this is al-

ways set to 1, but in our case, we found λ1 = 2 produces

the best results. The weights λ2, λ3 control the importance

of the structure-preserving terms, which act as regularizers

for the bi-directional retrieval tasks. We usually set both to

small values like 0.1 or 0.2 (see Section 3 for details).

Triplet sampling. Our loss involves all triplets consist-

ing of a target instance, a positive match, and a negative

match. Optimizing over all such triplets is computationally

infeasible. Therefore, we sample triplets within each mini-

batch and optimize our loss function using SGD. Inspired

by [21, 40], instead of choosing the most violating nega-

tive match in all instance space, we select top K most vio-

lated matches in each mini-batch. This is done by comput-

ing pairwise similarities between all (xi, yj), (xi, xj) and

(yi, yj) within the mini-batch. For each positive pair (i.e., a

ground truth image-sentence pair, two neighboring images,

or two neighboring sentences), we then find at most top K

violations of each relevant constraint (we use K = 50 in the

implementation, although most pairs have many fewer vio-

lations). Theoretical guarantees of such a sampling strategy

have been discussed in [40], though not in the context of

deep learning. In our experiments, we observe convergence

within 30 epochs on average.

In Section 3, we will demonstrate the performance of

our method both with and without structure-preserving con-

straints. For training the network without these constraints,



we randomly sample 1500 pairs (xi, yi) to form our mini-

batches. For the experiments with the structure-preserving

constraints, in order to get a non-empty set of constraint

triplets, we need a moderate number of positive pairs (i.e.,

at least two sentences that are matched to the same image) in

each mini-batch. However, random sampling of pairs can-

not guarantee this. Therefore, for each xi in a given mini-

batch, we add one more positive sentence distinct from the

ones that may already be included among the sampled pairs,

resulting in mini-batches of variable size.

3. Experiments

In this section, we analyze the contributions of differ-

ent components of our method and evaluate it on image-

to-sentence and sentence-to-image retrieval on popular

Flickr30K [51] and MSCOCO [28] datasets, and on phrase

localization on the new Flickr30K Entities dataset [37].

3.1. Features and Network Settings

In image-sentence retrieval experiments, to represent im-

ages, we follow the implementation details in [26, 37].

Given an image, we extract the 4096-dimensional activa-

tions from the 19-layer VGG model [42]. Following stan-

dard procedure, the original 256 × 256 image is cropped

in ten different ways into 224 × 224 images: the four cor-

ners, the center, and their x-axis mirror image. The mean

intensity is then subtracted from each color channel, the re-

sulting images are encoded by the network, and the network

outputs are averaged.

To represent sentences and phrases, we primarily use

the Fisher vector (FV) representation [36] as suggested by

Klein et al. [26]. Starting with 300-dimensional word2vec

vectors [34] of the sentence words, we apply ICA as in [26]

and construct a codebook with 30 centers using both first-

and second-order information, resulting in sentence fea-

tures of dimension 300 ∗ 30 ∗ 2 = 18000. We only use

the Hybrid Gaussian-Laplacian mixture model (HGLMM)

from [26] for our experiments rather than the combined

HGLMM+GMM model which obtained the best perfor-

mance in [26]. To save memory and training time, we per-

form PCA on these 18000-dimensional vectors to reduce

them to 6000 dimensions. PCA also makes the original fea-

tures less sparse, which is good for the numerical stability

of our training procedure.

Since FV is already a powerful hand-crafted nonlinear

transformation of the original sentences, we are also in-

terested in exploring the effectiveness of our approach on

top of simpler text representations. To this end, we include

results on 300-dimensional means of word2vec vectors of

words in each sentence/phrase, and on tf-idf-weighted bag-

of-words vectors. For tf-idf, we pre-process all the sen-

tences with WordNet’s lemmatizer [5] and remove stop

words. For the Flickr30K dataset, our dictionary size (and

descriptor dimensionality) is 3000, and for MSCOCO, it is

5600.

For our experiments using tf-idf or FV text features, we

set the embedding dimension to be 512. On the image (X)

side, when using 4096-dimensional visual features, W1 is a

4096 × 2048 matrix, and W2 is a 2048 × 512 matrix. That

is, the output dimensions of the two layers are [2048, 512].

On the text (Y ) side, the output dimensions of the V1 and

V2 layers are [2048, 512]. For the experiments using 300-

D word2vec features, we use a lower dimension (256) for

the embedding space and the intermediate layers output are

accordingly changed to [1024, 256].

We train our networks using SGD with momentum 0.9
and weight decay 0.0005. We use a small learning rate start-

ing with 0.1 and decay the learning rate by 0.1 after every

10 epochs. To accelerate the training and also make gradi-

ent updates more stable, we apply batch normalization [20]

right after the last linear layer of both network branches.

We also use a Dropout layer after ReLU with probability =

0.5. We set the mini-batch size to 1500 ground truth image-

sentence pairs and augment these pairs as necessary as de-

scribed in the previous section. Compared with CCA-based

methods, our method has much smaller memory require-

ments and is scalable to larger amounts of data.

3.2. Image­sentence retrieval

In this section, we report results on image-to-

sentence and sentence-to-image retrieval on the standard

Flickr30K [51] and MSCOCO [28] datasets. Flickr30K

[51] consists of 31783 images accompanied by five descrip-

tive sentences each. The larger MSCOCO dataset [28] con-

sists of 123000 images, also with five sentences each.

For evaluation, we follow the same protocols as other re-

cent work [22, 26, 37]. For Flickr30K, given a test set of

1000 images and 5000 corresponding sentences, we use the

images to retrieve sentences and vice versa, and report per-

formance as Recall@K (K = 1, 5, 10), or the percentage

of queries for which at least one correct ground truth match

was ranked among the top K matches. For MSCOCO, con-

sistent with [22, 26], we also report results on 1000 test im-

ages and their corresponding sentences.

For Flickr30K, bidirectional retrieval results are listed in

Table 1. Part (a) of the table summarizes the performance

reported by a number of competing recent methods. In Part

(b) we demonstrate the impact of different components of

our model by reporting results for the following variants.

• Linear + one-directional: In this setting, we keep only

the first layers in each branch with parameters W1, V1,

immediately followed by L2 normalization. The out-

put dimensions of W1 and V1 are changed to be the

embedding space dimension. In the objective function

(eq. 5), we set λ1 = 0, λ2 = 0, λ3 = 0, only retaining



Methods on Flickr30K Image-to-sentence Sentence-to-image

R@1 R@5 R@10 R@1 R@5 R@10

(a) State of the art Deep CCA [33] 27.9 56.9 68.2 26.8 52.9 66.9

mCNN(ensemble) [29] 33.6 64.1 74.9 26.2 56.3 69.6

m-RNN-vgg [31] 35.4 63.8 73.7 22.8 50.7 63.1

Mean vector [26] 24.8 52.5 64.3 20.5 46.3 59.3

CCA (FV HGLMM) [26] 34.4 61.0 72.3 24.4 52.1 65.6

CCA (FV GMM+HGLMM) [26] 35.0 62.0 73.8 25.0 52.7 66.0

CCA (FV HGLMM) [37] 36.5 62.2 73.3 24.7 53.4 66.8

(b) Fisher vector Linear + one-directional 33.5 61.7 73.6 21.0 47.4 60.5

Linear + bi-directional 34.6 64.3 74.9 24.2 52.0 64.2

Linear + bi-directional + structure 35.2 66.8 76.2 25.6 54.8 66.5

Nonlinear + one-directional 37.5 65.6 76.9 22.4 50.9 63.3

Nonlinear + bi-directional 39.3 68.0 78.3 28.1 59.2 71.2

Nonlinear + bi-directional + structure 40.3 68.9 79.9 29.7 60.1 72.1

(c) Mean vector Nonlinear + bi-directional 33.5 60.2 71.9 22.8 52.5 65.0

Nonlinear + bi-directional + structure 35.7 62.9 74.4 25.1 53.9 66.5

(d) tf-idf Nonlinear + bi-directional 38.7 66.6 76.9 27.6 57.0 69.0

Nonlinear + bi-directional + structure 40.1 67.6 78.2 28.1 58.5 69.8

Table 1. Bidirectional retrieval results. The numbers in (a) come from published papers, and the numbers in (b-d) are results of our approach

using different textual features. Note that the Deep CCA results in [33] were obtained with AlexNet [27]. The results of our method with

AlexNet are still about 3% higher than those of [33] for image-to-sentence retrieval and 1% higher for sentence-to-image retrieval.

the image-to-sentence ranking constraints. This results

in a model similar to WSABIE [49].

• Linear + bi-directional: The model structure is as

above, and in eq. (5), we set λ1 = 2, λ2 = 0, λ3 = 0.

This form of embedding is similar to [22, 23, 25, 43]

(though the details of the representations used by those

works are quite different).

• Linear + bi-directional + structure: same linear model,

eq. (5) with λ1 = 2, λ2 = 0, λ3 = 0.2.

• Nonlinear + one-directional: Network as in Figure 1,

eq. (5) with λ1 = 0, λ2 = 0, λ3 = 0.

• Nonlinear + bi-directional: Network as in Figure 1, eq.

(5) with λ1 = 2, λ2 = 0, λ3 = 0.

• Nonlinear + bi-directional + structure: Network as in

Figure 1, eq. (5) with λ1 = 2, λ2 = 0, λ3 = 0.2.

Note that in all the above configurations we have λ2 = 0,

that is, the structure-preserving constraint associated with

the image space is inactive, since in the Flickr30K and

MSCOCO datasets we do not have direct supervisory infor-

mation about multiple images that can be described by the

same sentence. However, our results for the region-phrase

dataset of Section 3.3 will incorporate structure-preserving

constraints on both spaces.

From Table 1 (b), we can see that changing the em-

bedding function from linear to nonlinear improves the ac-

curacy by about 4% across the board. Going from one-

directional to bi-directional constraints improves the accu-

racy by 1-2% for image-to-sentence retrieval and by a big-

ger amount for sentence-to-image retrieval. Finally, adding

the structure-preserving constraints provides an additional

improvement of 1-2% in both linear and nonlinear cases.

The methods from Table 1 (a) most comparable to ours are

CCA (HGLMM) [26, 37], since they use the same under-

lying feature representation with linear CCA. Our linear

model with all the constraints of eq. (5) does not outper-

form linear CCA, but our nonlinear one does.

Finally, to check how much our method relies on the

power of the input features, parts (c) and (d) of Table 1

report results for our nonlinear models with and without

structure-preserving constraints applied on top of weaker

text representations, namely mean of word2vec vectors of

the sentence and tf-idf vectors, as described in Section 3.1.

Once again, we can see that structure-preserving constraints

give us an additional improvement. Our results with mean

vector are considerably better than the CCA results of [26]

on the same feature, and are in fact comparable with the

results of [26, 37] on top of the more powerful FV repre-

sentation. For tf-idf, we achieve results that are just below

our best FV results, showing that we do not require a highly

nonlinear feature as an input in order to learn a good em-

bedding. Another possible reason why tf-idf performs so

strongly may be that word2vec features are pre-trained on

an unrelated text corpus, so they may not be as well adapted

to our specific data.

For MSCOCO, results on 1000 test images are listed in

Table 2. The trends are the same as in Table 1: adding

structure-preserving constraints on the sentence space con-



Methods on MSCOCO 1000 testing set Image-to-sentence Sentence-to-image

R@1 R@5 R@10 R@1 R@5 R@10

(a) State of the art Mean vector [26] 33.2 61.8 75.1 24.2 56.4 72.4

CCA (FV HGLMM) [26] 37.7 66.6 79.1 24.9 58.8 76.5

CCA (FV GMM+HGLMM) [26] 39.4 67.9 80.9 25.1 59.8 76.6

DVSA [22] 38.4 69.9 80.5 27.4 60.2 74.8

m-RNN-vgg [31] 41.0 73.0 83.5 29.0 42.2 77.0

mCNN(ensemble) [29] 42.8 73.1 84.1 32.6 68.6 82.8

(b) Fisher Vector Nonlinear+bi-directional 47.5 77.6 88.3 36.8 72.2 85.6

Nonlinear+bi-directional+structure 50.1 79.7 89.2 39.6 75.2 86.9

(c) Mean Vector Nonlinear+bi-directional 39.6 74.0 84.8 32.0 67.3 81.6

Nonlinear+bi-directional+structure 40.7 74.2 85.3 33.5 68.7 83.2

(d) tf-idf Nonlinear+bi-directional 45.3 77.6 86.8 35.4 70.2 83.4

Nonlinear+bi-directional+structure 46.7 77.9 87.7 36.2 72.3 84.7

Table 2. Bidirectional retrieval results on MSCOCO 1000-image test set.

sistently improves performance, and our results with the

FV text feature considerably exceed the state of the art.

We have also tried fine-tuning the VGG network by back-

propagating our loss function through all the VGG layers,

and obtained about 0.5% additional improvement.

3.3. Phrase Localization on Flickr30K Entities

The recently published Flickr30K Entities dataset [37]

allows us to learn correspondences between phrases and

image regions. Specifically, the annotations in this dataset

provide links from 244K mentions of distinct entities in sen-

tences to 276K ground truth bounding boxes (some entities

consist of multiple instances, such as “group of people”).

We are interested in this dataset because unlike the global

image-sentence datasets, it provides many-to-many corre-

spondences, i.e., each region may be described by multiple

phrases and each phrase may have multiple region exem-

plars across multiple images. This allows us to take advan-

tage of structure-preserving constraints on both the visual

and textual spaces.

As formulated in [37], the goal of phrase localization is

to predict a bounding box in an image for each entity men-

tion (noun phrase) from a caption that goes with that image.

For a particular phrase, we perform the search by extract-

ing 100 EdgeBox [54] region proposals and scoring them

using our embedding. To get good performance, the best-

scoring box should have high overlap with the ground truth

region. This can be considered as a ranking problem, and

both CCA and our methods can be trained to match phrases

and regions. On the other hand, we should realize that this

problem is more like detection, where the algorithm should

be able to distinguish foreground objects from boxes that

contain only background or poorly localized objects. CCA

and Deep CCA are not well suited to this scenario, since

there is no way to add negative boxes into their learning

stage. However, our margin-based loss function makes it

possible.

Plummer et al. [37] reported baseline results for a region-

phrase embedding using CCA on top of ImageNet-trained

VGG features. Following Rohrbach et al. [38], who

obtained big improvements on phrase localization using

detection-based VGG features, we also use Fast R-CNN

features [13] fine-tuned on a union of the PASCAL 2007

and 2012 train-val sets [9]. Consistent with [37], we do not

average multiple crops for region features. For text, in this

section we use only the FV feature. Thus, the input dimen-

sion of X is 4096 and the input dimension of Y is 6000

as before (reduced by PCA from the original 18000-D FV).

We use the two-layer network structure with [8192, 4096]
as the intermediate layer dimensions on both the X and Y

sides (note that on the X side, the intermediate layer actu-

ally doubles the feature dimension).

For our first experiment, we train our embedding with-

out negative mining, using the same positive region-phrase

pairs as CCA. For this, we use the same training set as [37],

which is resampled with at most ten regions per phrase, for

a total of 137133 region-phrase pairs, 70759 of which are

unique. As in the previous section, we use initial mini-

batch size of 1500. But now, for the full version of our

objective (eq. 5), we augment the mini-batches by sampling

not only additional positive phrases for regions, but also ad-

ditional positive regions for phrases, to make sure that we

have as many triplets as possible for structure-preserving

constraints on the region side (eq. 3) and the phrase side

(eq. 4).

The results of training our model without negative min-

ing for 28 epochs are shown in the top part of Table 3. We

use the evaluation protocol proposed by [37]. First, we treat

phrase localization as the problem of retrieving instances

of a query phrase from a set of region proposals extracted

from test images, and report Recall@K, or the percentage

of queries for which a correct match has rank of at most K

(a region proposal is considered to be a correct match if it

has IOU of at least 0.5 with the ground-truth bounding box



Methods R@1 R@5 R@10 mAP(all)

CCA baseline 40.11 61.52 67.17 41.96

Our method without negative mining

(a) λ1 = 2, λ2 = 0, λ3 = 0 35.83 60.51 66.70 40.50

(b) λ1 = 2, λ2 = 0, λ3 = 0.1 36.59 60.44 66.92 40.85

(c) λ1 = 2, λ2 = 0.1, λ3 = 0 36.74 60.35 66.73 41.22

(d) λ1 = 2, λ2 = 0.1, λ3 = 0.1 36.72 61.14 67.21 41.13

Fine-tuned with negative mining

Fine-tuning (a) for 5 epochs 41.77 63.01 68.27 46.55

Fine-tuning (b) for 5 epochs 43.77 64.22 68.84 47.38

Fine-tuning (c) for 5 epochs 42.88 63.41 68.47 46.78

Fine-tuning (d) for 5 epochs 43.89 64.46 68.66 47.72
Table 3. Phrase localization results on Flickr30K Entities using Fast-RCNN features. We use 100 EdgeBox proposals, for which the recall

upper bound is R@100 = 76.91.

for that phrase). Second, we report average precision (AP)

of ranking bounding boxes for each phrase in the test im-

ages that contain that phrase, following nonmaximum sup-

pression. The last column of Table 3 shows mAP over all

unique phrases in the test set, with each unique phrase being

treated as its own class label.

Table 3 (a-d) shows the performance of our bi-directional

ranking objective with different combinations of structure

terms. We can see that including the structure terms gen-

erally gives better results than excluding them, though the

effects of turning on each term separately do not differ too

much. In large part, this is because of the limited number of

structure-preserving constraint triples for each view. In the

Flickr30K Entities training set, for all 130K pairs, there are

around 70K unique phrases and 80K regions described by

a single phrase. This means, that, for most phrases/regions,

there are no more than two corresponding regions/phrases.

The top line of Table 3 gives baseline CCA results. For the

pre-trained model without using negative mining, our deep

embedding has comparable results with CCA on Recall@5

and Recall@10, but lower results on Recall@1. As men-

tioned earlier, in our past experience we have found CCA

to be surprisingly hard to beat with more complex meth-

ods [15, 37].

In order to further improve the accuracy of our embed-

ding, we need to refine it using negative data from back-

ground and poorly localized regions. To do this, we take the

embedding trained without negative mining, and for each

unique phrase in the training set, calculate the distance be-

tween this phrase and the ground truth boxes as well as

all our proposal boxes. Then we record those “hard neg-

ative” boxes that are closer to the phrase than the ground

truth boxes. For efficiency, we only sample at most 50

hard negative regions for each unique phrase. Next, we

continue training our region-phrase model on a training

set augmented with these hard negative boxes, using only

the bi-directional ranking constraints (eqs. 1 and 2). We

exclude the structure-preserving constraints because they

would now be even more severely outnumbered by the bi-

directional ranking constraints.

The last four lines of Table 3 show the results of fine-

tuning the models from Table 3 (a-d) with hard negative

samples. Compared to the best model trained with only pos-

itive regions, our Recall@1 and mAP have improved by al-

most 6%, and are now considerably better than CCA. Note

that in absolute terms, Rohrbach et al. [38] get higher re-

sults, with a R@1 of over 47%, but they use a much more

complex method that includes LSTMs with a phrase recon-

struction objective.

Finally, Figure 3 shows examples of phrase localization

in four images where our model improves upon the CCA

baseline.

4. Conclusion

This paper has proposed an image-text embedding

method in which a two-branch network with multiple layers

is trained using a margin-based objective function consist-

ing of bi-directional ranking terms and structure-preserving

terms inspired by metric learning. Our architecture is sim-

ple and flexible, and can be applied to various kinds of vi-

sual and textual features. Extensive experiments demon-

strate that the components of our system are well chosen

and all the terms in our objective function are justified. To

the best of our knowledge, our retrieval results on Flickr30K

and MSCOCO datasets considerably exceed the state of

the art, and we also demonstrate convincing improvements

over CCA on the new problem of phrase localization on the

Flickr30K Entities dataset.
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CCA

Our method

An Indian woman poses in ornate 

ceremonial clothing with an elaborate 

headpiece.

CCA

Our method

A little girl in a pink jacket and hat 

is swinging in a harness attached 

to yellow ropes .

CCA

Our method

CCA

Our method

A person wearing a red and white uniform is 

racing a motorcycle with the number 58 on it .

It looks like the clown has fallen 

off the horse.

Figure 3. Example phrase localization results. For each image and reference sentence, phrases and best-scoring corresponding regions

are shown in the same color. The first row shows the output of the CCA method [37] and the second row shows the output of our best

model (fine-tuned model (d) in Table 3 with negative mining). For the first (left) example, our method gives more accurate bounding

boxes for the clothing and headpiece. For the second example, our method finds the correct bounding box for the number 58 while CCA

completely misses it; for the third column, our method gives much tighter boxes for the horse and clown; and for the last example, our

method accurately locates the hat and jacket.
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