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Abstract

Dynamic Programming provides a convenient and unified
framework for studying many state models used in AI but no
algorithms for handling large spaces. Heuristic-search meth-
ods, on the other hand, can handle large spaces but lack a
common foundation. In this work, we combine the bene-
fits of a general dynamic programming formulation with the
power of heuristic-search techniques for developing an algo-
rithmic framework, that we call Learning Depth-First Search,
that aims to be both general and effective. LDFS is a sim-
ple piece of code that performs iterated depth-first searches
enhanced with learning. For deterministic actions and mono-
tone value functions, LDFS reduces to IDA* with transposi-
tion tables, while for Game Trees, to the state-of-the-art iter-
ated Alpha-Beta search algorithm with Null Windows known
as MTD. For other models, like AND/OR graphs and MDPs,
LDFS yields new, simple, and competitive algorithms. We
show this here for MDPs.

Introduction
Dynamic Programming provides a convenient and unified
framework for studying many state models used in AI (Bell-
man 1957; Bertsekas 1995) but no algorithms for handling
large spaces. Heuristic-search methods, on the other hand,
can handle large spaces effectively, but lack a common foun-
dation: algorithms likeIDA * aim at deterministic models
(Korf 1985),AO* at AND/OR graphs (Martelli & Montanari
1973), Alpha-Beta at Game Trees (Newell, Shaw, & Simon
1963), and so on (Nilsson 1980; Pearl 1983). In this work,
we aim to combine the benefits of a general dynamic pro-
gramming formulation with the effectiveness of heuristic-
search techniques for developing an algorithmic framework,
that we callLearning Depth-First Search(LDFS) that aims
to be both general and effective. For some models,LDFS re-
duces to well-known algorithms, likeIDA * with transposi-
tion tables for Deterministic Models (Reinefeld & Marsland
1994) andMTD for Game Trees (Plaatet al. 1996), while
for other models, like AND/OR Graphs and Markov Deci-
sion Processes, it yields new and competitive algorithms.

The LDFS framework is built around two simple notions:
depth-first search andlearning in the sense of (Korf 1990)
and (Barto, Bradtke, & Singh 1995), where state values are
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updated to make them consistent with the values of their suc-
cessors.LDFS shows that the key idea underlying several ex-
isting heuristic-search algorithms over various settings isthe
use of iterated depth-first searches with memory for improv-
ing the heuristics over certain relevant states until they be-
come optimal.Also, by generalizing these algorithms,LDFS
carries this idea to other settings where it results in a novel
and effective approach.

LDFS grows from recent work on MDPs that combines
DP updates with the use of lower bounds and knowledge of
the initial state for computingpartial optimal policies over
the relevant states efficiently (Barto, Bradtke, & Singh 1995;
Hansen & Zilberstein 2001; Bonet & Geffner 2003b; 2003a;
McMahan, Likhachev, & Gordon 2005). However, rather
than focusing on the development of another heuristic-
search MDP algorithm, we make use of these notions to lay
out a general framework covering a wide range of models
which we intend to be general, transparent, and useful. This
generality pays off in a number of ways; for example, by
showing that a given MDP algorithm reduces to IDA* when
all probabilities are0 or 1, it becomes clear that the MDP al-
gorithm is doing certain things right and is not missing key
features. This is important as heuristic-search algorithms for
MDPs are not as well established and mature as heuristic-
search algorithms for deterministic problems. Similarly, we
will be able to explain the weaknesses of some MDP al-
gorithms in terms of well-known weaknesses of IDA*; for
example, the potential blow up in the number of iterations
when action costs are real numbers rather than integers (Wah
& Shang 1994).

While Hansen and Zilberstein offer a generalization of
AO* to MDPs based on the general notion ofbest-first search
(Hansen & Zilberstein 2001),LDFS provides a generaliza-
tion of IDA * based on the notions ofdepth-first search
andlearning, that covers deterministic problems, AND/OR
graphs (cyclic or not), MDPs, and that at the same time ex-
tends to Game Trees where it provides a clear and explicit
correspondence betweenIDA * and the state-of-the-artMTD
algorithm (Plaatet al. 1996).

The paper is organized as follows. We deal first with a
common formulation of the various models and a simple
common algorithmic schema, Find-and-Revise, that solves
them all. We then introduceLDFS as an efficient instance of
this schema for models that have acyclic solutions. We then
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move to MDPs, where theLDFS algorithm is extended and
evaluated.

Models
All the state models that we consider can be defined in terms
of the following elements:

1. a discrete and finite state spaceS,
2. an initial states0 ∈ S,
3. a non-empty set of terminal statesST ⊆ S,
4. actionsA(s) ⊆ A applicable in each non-terminal state,
5. a function mapping non-terminal statess and actionsa ∈

A(s) into setsof statesF (a, s) ⊆ S,
6. action costsc(a, s) for non-terminal statess, and
7. terminal costscT (s) for terminal states.

We assume that bothA(s) andF (a, s) are non-empty. The
various models correspond to:

• Deterministic Models (DET):|F (a, s)| = 1,
• Non-Deterministic Models (NON-DET):|F (a, s)| ≥ 1,
• Markov Decision Processes (MDPs): with probabilities

Pa(s′|s) for s′ ∈ F (a, s) s.t.
∑

s′∈F (a,s) Pa(s′|s) = 1.

In addition, for DET, NON-DET, and MDPs

• action costsc(a, s) are all positive, and
• terminal costscT (s) are non-negative.

When terminal costs are all zero, terminal states are
called goals. AND/OR graphs can be modeled as non-
deterministic state models, while Game Trees (GT) corre-
spond to non-deterministic state models with zero action
costs and arbitrary terminal costs.

For distinguishing models with and without cycles, let a
paths0, a0, s1, a1, . . . , an−1, sn be a sequence of states and
actions starting in the initial states0, such that each action
ai is applicable insi, ai ∈ A(si), and each statesi+1 is a
possible successor ofsi given actionai, si+1 ∈ F (ai, si).
Then a model iscyclic if it can give rise tocyclic paths;
namely, pathss0, a0, s1, a1, . . . , an−1, sn with si = sj for
i 6= j. Otherwise, a model isacyclic. We write aNON-DET
and aMDPs to refer to the subclass of acyclic NON-DET
and MDPs models. For example, the type of problems in the
scope of theAO* algorithm corresponds to those in aNON-
DET. It is useful to note that only MDPs can have cyclic
solutions; all the other models, whether cyclic or not, can
only have solutions without cycles. More about this below.

Solutions
The solutions to the various models can be expressed in
terms of the so-called Bellman equation that characterizes
the optimal cost function (Bellman 1957; Bertsekas 1995):

V (s) def=
{

cT (s) if s terminal
mina∈A(s) QV (a, s) otherwise (1)

where theQV (a, s) values express the cost-to-go and are
short-handfor:

c(a, s) + V (s′), s′ ∈ F (a, s) for DET,
c(a, s) + maxs′∈F (a,s) V (s′) for NON-DET-Max,

c(a, s) +
∑

s′∈F (a,s) V (s′) for NON-DET-Add,
c(a, s) +

∑
s′∈F (a,s) Pa(s′|s)V (s′) for MDPs, and

maxs′∈F (a,s) V (s′) for Game Trees.
We will refer to the models (NON-DET-Max and GT) whose
Q-values are defined with Max as Max models, and to the
rest of the models, defined with Sums, as Additive models.

Under some conditions, there is a unique value function
V ∗(s), the optimal cost function, that solves the Bellman
equation, and the optimal solutions to all the models can
be expressed in terms of the policiesπ that aregreedywith
respect toV ∗(s). A policy π is a function mapping states
s ∈ S into actionsa ∈ A(s), and a policyπV is greedy with
respect to a value functionV (s), or simply greedy inV , iff
πV is the best policy assuming that the cost-to-go is given
by V (s); i.e.

πV (s) = argmin
a∈A(s)

QV (a, s) . (2)

Often, however, these conditions are not met, and the set
of |S| Bellman equations have no solution. This happens
for example in the presence ofdead-ends, whether or not
such dead-end states can be avoided on the way to the goal.
The absence of dead-ends is a common requirement in DP
methods and algorithms like LRTA* (Korf 1990) and RTDP
(Barto, Bradtke, & Singh 1995) that demand the goal to be
reachable (with some positive probability) from every state.
Here, we drop this requirement by focusing onpartial poli-
ciesthat map a subcollection of states into actions. We say
that a partial policyπ is closed(relative tos0) if π prescribes
the action to be done in all the (non-terminal)states reach-
able byπ from s0. In particular, closed policies for deter-
ministic models correspond to action sequences, for game
trees, to actual trees, and so on.

Any closed policyπ relative to a states has a costV π(s)
that expresses the cost of solving the problem followingπ
starting froms. The costsV π(s) are given by the solu-
tion of (1) but with the operatormina∈A(s) removed and
the actiona replaced byπ(s). These costs are well-defined
when the resulting equations have a solutionover the subset
of states reachable byπ from s0. Moreover, for all mod-
els above, except MDPs, it can be shown that (closed) poli-
ciesπ have a well-defined finite costV π(s0) when they are
acyclic, and for MDPs, when they areproper. Otherwise
V π(s0) = ∞. A (closed) policyπ is cyclic if it gives rise to
cyclic pathss0, a0, s1, a1, . . . , an−1, sn whereai = π(si),
and it isproper if a terminal state is reachable with some
probability from every states reachable byπ from s0 (Bert-
sekas 1995).

For all models except for MDPs, since solutionsπ are
acyclic, the costsV π(s0) can be defined also recursively,
starting with the terminal statess′ for which V π(s′) =
cT (s′), and up to the non-terminal statess for which
V π(s) = QV π (π(s), s). In all cases, we are interested in
computing a solutionπ that minimizesV π(s0). The result-
ing value is the optimal problem costV ∗(s0).

Computing Solutions
We assume throughout the paper that we have an initial value
function (or heuristic)V that is amonotone lower bound,
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i.e.,V (s) ≤ V ∗(s) andV (s) ≤ mina∈A(s) QV (a, s). Also
for simplicity, we assumeV (s) = cT (s) for all terminal
states. We summarize these conditions by simply saying that
V is admissible. This value function is then modified by
learning in the sense of (Korf 1990) and (Barto, Bradtke, &
Singh 1995), where the values of selected states are made
consistent with the values of successor states; an operation
that takes the form of a Bellmanupdate:

V (s) := min
a∈A(s)

QV (a, s) . (3)

If the initial value function is admissible, it remains so after
one or more updates. Methods likevalue iterationperform
the iterationV (s) := mina∈A(s) QV (a, s) over all states
until the difference between right and left does not exceed
someε ≥ 0. The differencemina∈A(s) QV (a, s) − V (s),
which is non-negative for monotone value functions, is
called theresidualof V overs, denotedResV (s). Clearly,
a value functionV is a solution to Bellman equation and is
thus equal toV ∗ if it has zero residuals over all states. Given
a fixed initial states0, however, it is not actually necessary
to eliminate all residuals for ensuring optimality:

Proposition 1 Let V be an admissible value function and
let π be a policy greedy inV . Thenπ minimizesV π(s0)
and hence is optimal ifResV (s) = 0 over all the statess
reachable froms0 andπ.

This suggests a simple and general schema for solving all
the models, that avoids the strong assumptions required by
standard DP methods and yields partial optimal policies. It
is actually sufficient to search for a states reachable from
s0 andπV with residualResV (s) > ε and update the state,
keeping this loop until there are no such states left. Ifε = 0
and the initial value functionV is admissible, then the re-
sulting (closed) greedy policyπV is optimal. ThisFIND-and-
REVISEschema, shown in Fig. 1 and introduced in (Bonet &
Geffner 2003a) for solving MDPs, can be used to solve all
the models without having to compute complete policies:1

Proposition 2 Starting with an admissible value function
V , the FIND-and-REVISE schema forε = 0, solves all the
models (DET, NON-DET, GT, MDPs) provided they have so-
lution.

For the non-probabilistic models withintegeraction and ter-
minal costs, the number of iterations ofFIND-and-REVISE
with ε = 0 can actually be bounded by

∑
s∈S [V ∗(s)−V (s)]

when there are no dead-ends (states withV ∗(s) = ∞), as
the updates increase the value function by a positive integer
in some states and decrease it at none, preserving its admis-
sibility. In the presence of dead-ends, the bound can be set
to

∑
s∈S [min(V ∗(s),MaxV )−V (s)] whereMaxV stands

for any upper bound on the optimal costsV ∗(s) of the states
with finite cost, as states with values aboveMaxV will not

1We assume that the initial value functionV (which may be
the zero function) is represented intensionally and that the updated
values are stored in a hash table. Also, since there may be many
policiesπ greedy inV , we useπV to refer to the unique greedy
policy obtained by selecting in each state the action greedy inV
that is minimal according to some fixed ordering on actions.

starting with an admissibleV
repeat

FIND s reachable froms0 andπV with ResV (s) > ε
UpdateV (s) to mina∈A(s) QV (a, s)

until no such state is found
return V

Figure 1: TheFIND-and-REVISE schema

be reachable by an optimal policy froms0. Since the Find
procedure can be implemented by a simple DFS procedure
that keeps track of visited states in timeO(|S|), it follows
that the time complexity ofFIND-and-REVISE over those
models can be bounded by this expression timesO(|S|). For
MDPs, the convergence ofFIND-and-REVISE with ε = 0 is
asymptotic and cannot be bounded in this way. However, for
anyε > 0, the convergence is bounded by the same expres-
sion divided byε.

LDFS
All the models considered above admit a common formula-
tion and a common algorithm,FIND-and-REVISE. This al-
gorithm, while not practical, is useful for understanding and
proving the correctness of other, more effective approaches.
We will say that an iterative algorithm is instance ofFIND-
and-REVISE[ε], if each iteration of the algorithm terminates,
either identifying and updating a state reachable froms0 and
πV with residualResV (s) > ε, or proving that no such state
exists, and hence, that the model is solved. Such algorithms
will inherit the correctness ofFIND-and-REVISE, but by per-
forming more updates per iteration will converge faster.

We focus first on the models whosesolutionsare neces-
sarily acyclic, excluding thus MDPs but not acyclic MDPs
(aMDPs). We are not excludingmodelswith cycles though;
only models whosesolutionsmay be cyclic. Hence the re-
quirements are weaker than those of algorithms likeAO*.

We will say that a states is consistentrelative to a value
function V if the residual ofV over s is no greater than
ε. Unless mentioned otherwise, we takeε to be 0. The
first practical instance ofFIND-and-REVISE that we con-
sider, LDFS, implements the Find operation as a DFS that
starts ins0 and recursively descends into the successor states
s′ ∈ F (a, s) iff a is an applicable action ins and the value
function V is such thatQV (a, s) ≤ V (s). SinceV is as-
sumed to be monotone, and thereforeQV (a, s) ≥ V (s),
one such actiona exists if and only ifs is consistent. Thus,
if there is no such actiona at s, s is inconsistent, and the
LDFS algorithm backtracks ons, updatings and its ances-
tors.

The code forLDFS is shown in Fig. 2. The Depth-First
Search is achieved by means of two loops: one over the
actionsa ∈ A(s), and the other, nested, over the possi-
ble successorss′ ∈ F (a, s). The recursion occurs when
a is such thatQV (a, s) 6> V (s), which given thatV is as-
sumed to be a monotone function, is exactly whens is con-
sistent anda is a greedy action ins. The tip nodes in the
search are the inconsistent statess (where for all the actions
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LDFS-DRIVER(s0)
begin

repeatsolved := LDFS(s0) until solved
return (V, π)

end

LDFS(s)
begin

if s is SOLVED or terminal then
if s is terminalthen V (s) := cT (s)
Mark s as solvedreturn true

flag := false
foreacha ∈ A(s) do

if QV (a, s) > V (s) then continue
flag := true
foreachs′ ∈ F (a, s) do

flag := LDFS(s′) & flag % Recursion

if flag then break

if flag then
π(s) := a
Mark s asSOLVED % Labeling

else
V (s) := mina∈A(s) QV (a, s) % Update

return flag

end

Figure 2: Learning DFS Algorithm (LDFS)

QV (a, s) > V (s)), the terminal states, and the states that
are labeled as solved. A states is labeled as solved when the
search beneaths does not find an inconsistent state. This is
captured by the booleanflag. If s is consistent, andflag is
true after searching beneath the successorss′ ∈ F (a, s) of a
greedy actiona at states, thens is labeled as solved,π(s)
is set toa, and no more actions are tried ats. Otherwise, the
next action is tried, and if no one is left,s is updated, and
false is returned. Solved states are not explored again and
become tip nodes in the search.

LDFS is called iteratively overs0 from a driver routine that
terminates whens0 is solved, returning a value functionV
and a greedy policyπ that satisfies Proposition 1, and hence
is optimal. We show this by proving thatLDFS is an instance
of FIND-and-REVISE. First, since no model other than MDPs
can accommodatea cycle of consistent states, we get that:

Proposition 3 For DET, NON-DET, GT, and aMDPs, a call
to LDFS cannot enter into a loop and thus terminates.

Then, provided with the same ordering on actions asFIND-
and-REVISE, it is simple to show that the first states that is
updated byLDFS is inconsistent and reachable froms0 and
πV , and if there is not such state,LDFS terminates with the
policy πV .

Proposition 4 Provided an initial admissible value func-
tion, LDFS is an instance ofFIND-and-REVISE[ε = 0], and
hence, it terminates with a closed partial policyπ that is
optimal for DET, NON-DET, GT, and aMDPs.

In addition, for the models that areadditive, it can be shown
that all the updates performed byLDFS areeffective, in the
sense that they are all done on states that are inconsistent,
and which as a result, strictly increase their values. More
precisely:

Proposition 5 Every recursive callLDFS(s) over thead-
ditive modelsDET, NON-DET-Add, and aMDPs either in-
creases the value ofs or labelss as solved.

An immediate consequence of this is that for DET and
NON-DET-Add models with integer action and terminal
costs, the number of iterations can be bounded byV ∗(s0)−
V (s0) as all value increases must be integer too. This bound
is tighter than the one forFIND-and-REVISEand corresponds
exactly to the maximum number of iterations inIDA * under
the same conditions. Actually, provided thatLDFS andIDA *
(with transposition tables, Reinefeld & Marsland 1994) con-
sider the actions in the same order, it can be shown that they
will both traverse the same paths, and maintain the same
value (heuristic) function in memory:

Proposition 6 (LDFS & IDA*) Provided an admissible
(and monotone) value functionV , and that actions are ap-
plied in the same order in every state,LDFS is equivalent
to IDA * with Transposition Tables (Reinefeld & Marsland
1994) over the class of deterministic models (DET).

This result may seem puzzling at first because the code for
LDFS, while more general thanIDA * with transposition ta-
bles, is also simpler. In particular, unlikeIDA *, LDFS does
not need to carry an explicit bound as argument. This simpli-
fication however follows from the assumption that the value
functionV is monotone. In such a case, and provided that
transposition tables and cost revision are used as in (Reine-
feld & Marsland 1994), the conditionf(s) = g(s)+V (s) >
Bound for pruning a node inIDA *, where g(s) is the ac-
cumulated cost andV (s) is the estimated cost to the goal,
becomes simply thats is inconsistent.

In order to get an intuition for this, notice thatLDFS tra-
verses a paths0, a0, s1, a1, . . . , sk, ak only when si+1 is
a successor ofai in si and QV (ai, si) ≤ V (si), where
QV (ai, si) for DET isc(ai, si)+V (si+1). Now, for a mono-
toneV , c(ai, si) + V (si+1) ≤ V (si) holds iff the equality
c(ai, si) + V (si+1) = V (si) holds, which if applied iter-
atively, yields that the path is traversed only ifV (s0) =
g(si) + V (si) for i = 0, . . . , k, whereg(si) is the accu-
mulated cost froms0 to si along the path. For a monotone
V , this condition is equivalent toV (s0) ≥ g(si) + V (si),
which is the exact complement of the pruning condition
g(si) + V (si) > Bound in IDA * when Bound = V (s0),
something that is true inIDA * when V is monotone and
transposition tables are used.

Actually, if we consider a binary tree where the nodes are
statess that admit two deterministic actions mappings into
its two sons respectively, we can get a simple characteriza-
tion of the workings of bothLDFS and IDA* with transposi-
tion tables. Let us assumeV (s) = 0 for all states, and that
the goals are the leaves at depthn. Then in the first trial,
LDFS finds thats0 is an inconsistent state (according toV )
and thus prunes the search beneaths0 and updatesV (s0) to
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1. This update makess0 consistent, and hence, in the sec-
ond trial, the tip nodes of the search become the states at
depth1 whose values are inconsistent, and which are made
consistent by updating them to1. At the same time, upon
backtracking, the consistency ofs0 is restored, updating its
value to2. The algorithms keeps working in this way, and by
the time the iterationi is finished, with0 ≤ i < n, the value
function V is consistent over all the states at depthj ≤ i.
Namely, at that time, nodes at depthi have value1, nodes
at depthi− 1 have value2, and so on, while the single root
nodes0 at depth0 has valueV (s0) = i. The same result
holds forIDA * with transposition tables.

LDFS generalizes the key idea underlyingIDA * to other
models, which enter into theLDFS algorithm through the
QV (a, s) term whose form depends on the model. Indeed,
for all Additive Models, the behavior ofLDFS can be char-
acterized as follows:

Proposition 7 Over the Additive Models DET, Non-DET-
Add, and aMDPs,LDFS tests whether there is a solutionπ
with costV π(s0) ≤ V (s0) for an initial admissible value
functionV . If a solution exists, one such solution is found
and reported; elseV (s0) is increased, and the test is run
again, til a solution is found. SinceV remains a lower
bound, the solution found is optimal.

This is the key idea underlying not onlyIDA * but also the
Memory-enhanced Test Driver algorithm orMTD(−∞) for
Game Trees (Plaatet al. 1996). Both algorithms work as
‘Test and Revise’ loops; namely, lower bounds are used as
upper bounds, and if no solution is found, the lower bounds
are increased accordingly, and the loop is resumed.

Interestingly, whileLDFS solves Game Trees and Max
AND/OR Graphs, it does not exhibit this ‘Test and Revise’
pattern there: the reason is that over Max models, unsuc-
cessfulLDFS(s) calls do not necessarily result in an increase
of the value ofs. For example, ifs admits a single action
a, andV (s) = QV (a, s) = max[V (s1), V (s2)], then an in-
crease inV (s2) does not lead to an increase inV (s) if V (s2)
remains lower thanV (s1). This happens because the Max
operator, unlike the Sum operator of Additive models, is not
strictly monotone over all its arguments. A proposition anal-
ogous to Proposition 7, however, can be obtained for Max
models provided thatLDFS is extended with an extraBound
parameter, resulting in a BoundedLDFS variant that reduces
to IDA* with transposition tables even when the value func-
tion is not monotone. More interestingly, for Game Trees,
BoundedLDFS reduces to theMTD(−∞) algorithm: an iter-
ative Alpha-Beta search algorithm with Null Windows, that
iteration after iteration, moves the evaluation window from
−∞ up til the correct Game Tree value is found (Plaatet
al. 1996). This BoundedLDFS variant is formulated and
compared with AO* over Max AND/OR graphs in (Bonet
& Geffner 2005). In this paper we focus on a different ex-
tension of the basicLDFS procedure that yields the ability to
handle additive models like MDPs where solutions can be
cyclic.

0

2

5 6 7

31

4C1

C2 C3

C4

Figure 3: Labeling states in the presence of cyclic solutions
in MDPs: the graph shows a cyclic policyπ, where a linki →
j means that statesj is a possible successor of statesi when
actionπ(si) is done insi. The statess2 ands4 are terminal
states.LDFS(MDP) labels a states as solved only when all
the statess′ that are reachable froms are consistent. For this,
it uses Tarjan’s bookkeeping mechanism for identifying the
strongly-connected componentsCi of the graph: when all
the states in a componentCi are consistent, all of them are
labeled as solved.

LDFS for MDPs

The LDFS algorithm solves all the models we have consid-
ered except MDPs. The reason is that in MDPs, there may
be cyclic pathssi, ai, si+1, ai+1, . . . , si+k, ai+k, si with all
the states along the path being consistent. This cannot hap-
pen in the other models. In such a case,LDFS would enter
an infinite loop. For dealing with MDPs, however, it is not
enough to detect and avoid such loops; the labeling mecha-
nism that marks states as solved needs to be revised as well.
In problems with cyclic solutions it is not enough to label a
states as solved when for some actiona applicable ins, we
have bothQV (a, s) ≤ V (s) and all successorss′ ∈ F (a, s)
solved. This is because the states itself can be one of its
own successors or a descendant of them. Also, a practical
problem arising from the use ofLDFS for MDPs has to do
with the size of the residualsε > 0 allowed in the target
value function. A value functionV ∗ is optimal if its residu-
alsmina∈A(s) QV (a, s) − V (s), that are non-negative for a
monotoneV , are all zero. However, achieving zero residuals
is costly and not strictly necessary: the number of updates
for reducing the residuals to zero is not bounded, and non-
zero residuals, if sufficiently small, do not to hurt optimality.

In light of these issues,LDFS(MDP) adds two features to
the basicLDFS algorithm: anε > 0 bound on the size of the
residuals allowed, and a bookkeeping mechanism for avoid-
ing loops and recognizing states that are solved. To illustrate
the subtleties involved in the latter task, let us assume that
there is a single actionπ(s) applicable in each state. By per-
forming a single depth-first pass over the descendants ofs,
keeping track of visited states for not visiting them twice,
we want to know when a states can be labeled as solved.
Due to the presence of cycles, it is not correct to label a
states as solved when the variableflag indicates that all de-
scendants ofs are consistent (i.e., have residuals no greater
than ε), as there may be ancestors ofs that are reachable
from s but have not been yet explored. Even in such cases,
however, there must be statess in the DFS tree spanned
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by LDFS(MDP) (recall that no states are visited twice) such
that the states that are reachable froms andπ are all be-
neaths, and for those states, it iscorrect to label them as
solved whenflag is true. Moreover, the labeling scheme is
alsocompleteif at that point not onlys is labeled as solved
but also its descendants. The question of course is how to
recognize such ‘top’ elements in the state graph during the
depth-first search. The answer is given by Tarjan’s strongly
connected components algorithm. Tarjan’s algorithm (Tar-
jan 1972) identifies the strongly connected components of a
directed graph by means of a depth-first traversal that keeps
track of a pair of indicess.low and s.idx for each of the
states visited. The indices are equal only for to the ’top’ ele-
ments of each strongly connected component. For example,
in the graph shown in Fig. 3, where a linki → j means that
statesj is a possible successor of statesi (when actionπ(si)
is done insi), the components areC1, C2, C3, andC4. The
LDFS(MDP) algorithm labels all the statess′ in a component
C as solved, when upon leaving the component, the value
of theflag variable indicates that no inconsistency has been
found.

The resulting algorithm for MDPs,LDFS(MDP), is shown
in Fig. 4. LDFS(MDP) is simply LDFS plus two additional
features: non-zeroε-residuals and a labeling scheme based
on Tarjan’s strongly connected components algorithm. The
correctness ofLDFS(MDP) follows directly from the Find-
and-Revise schema and the correctness of the Tarjan’s algo-
rithm:

Proposition 8 LDFS(MDP) is an instance of FIND-and-
REVISE[ε] and hence for a sufficiently smallε, solves MDPs
provided they have a solution with finite (expected) cost.

Since in every iterationFIND-and-REVISE[ε] either termi-
nates or increases the value function of a greedy state by at
leastε, the number of trials of bothFIND-and-REVISE[ε] and
LDFS(MDP) is bounded by

∑
s∈S [min(V ∗(s),MaxV ) −

V (s)]/ε, whereMaxV stands for any finite upper bound
on the optimal costs of the states that are not dead-ends.
LDFS(MDP) works even in the presence of dead-endss, pro-
vided that some policy exists that avoids such dead-ends
and reaches the goal with probability1. The ability to han-
dle spaces that contains dead-ends is rather novel and does
not extend to the standard algorithms, and algorithms like
LRTA* and RTDP that presume that the goal is reachable
from every state or, equivalently, that a proper policy exists.

The use of Tarjan’s algorithm for labeling states in MDPs
is borrowed from theHDP algorithm in (Bonet & Geffner
2003a). The two algorithms, however, are not equivalent.
In particular, for deterministic actions,LDFS(MDP) reduces
to IDA* with transposition tables, whileHDP does not. Ac-
tually in such a case,HDP performs a sequence of ’greedy’
searches where in every consistent states starting withs0

only one action a with QV (a, s) = V (s) is considered.
LDFS, on the other hand, like IDA* but unlikeRTDP, con-
siders all such actions in depth-first fashion. The result is
that in certain cases, the number of iterations ofHDP can be
exponentially larger than inLDFS(MDP).

Actually, LDFS, HDP, andRTDP can all be understood in
terms of the choice of the subgraph considered in each it-

LDFS(MDP)-DRIVER(s0)
begin

while s0 is not SOLVED do
LDFS(MDP)(s0, ε, 0, stack)
ClearACTIVE bit on all visited states

return (V, π)

end

LDFS(MDP)(s, ε, index, stack)
begin

if s is SOLVED or terminal then
if s is terminalthen V (s) := cT (s)
Mark s as solvedreturn true

if s is ACTIVE then return false % Update

Pushs into stack
s.idx := s.low := index
index := index + 1

% V (s) := mina∈A(s)QV (a, s) ?

flag := false
foreacha ∈ A(s) do

if QV (a, s)− V (s) > ε then continue
Mark s asACTIVE
flag := true
foreachs′ ∈ F (a, s) do

if s′.idx = ∞ then
flag := LDFS(s′, ε, index, stack) & flag
s.low := min{s.low, s′.low}

else ifs′ is ACTIVE then
s.low := min{s.low, s′.idx}

% flag := flag & [QV (a, s)− V (s) ≤ ε] ?
if flag then break
while stack.top.idx > s.idx do

stack.top.idx := stack.top.low := ∞

if ¬flag then
V (s) := mina∈A(s) QV (a, s) % Update
π(s) := a
s.idx := s.low := ∞
Popstack

else ifs.low = s.idx then
while stack.top.idx ≥ s.idx do

Mark s asSOLVED % Labeling
stack.top.idx := stack.top.low := ∞
Popstack

return flag

end

Figure 4: LDFS for MDPs. The commented lines marked
with ? are not part ofLDFS(MDP) but of theLDFS+ variant
discussed in the text.
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eration ofFIND-and-REVISE: namely, whether a single best
action is considered in each state or all of them, whether a
single successor state is considered after each action or all
of them, and whether inconsistent states are regarded as tip
nodes in the search or not. The choices inLDFS are moti-
vated by the goal of accounting for existing state-of-the-art
algorithms such thatIDA * and MTD. The choices inRTDP
and HDP are somehow more ad-hoc, although, as we will
see in the next section, not necessarily less effective. What
works best in one model does not necessarily work best in
other models, although having a general picture will turn out
to be useful too.

Experimental Results
We evaluate the performance ofLDFS(MDP) by comparing
it with Value Iteration and other heuristic-search algorithms
for MDPs. The heuristic-search algorithms chosen for com-
parison are LabeledRTDP (Bonet & Geffner 2003b),HDP
(Bonet & Geffner 2003a) and Improved LAO* (Hansen &
Zilberstein 2001). Value Iteration is included as a useful
baseline.

The experiments were performed on Linux machines run-
ning at 2.8GHz with 2Gb of memory with a time bound of
10 minutes per experiment. Unless otherwise said, the pa-
rameterε is set to10−4.

The first domain considered is the deterministic, stan-
dard version of the well known 8-puzzle game. We tested
the algorithms with the sum-of-manhattan-distances heuris-
tic over an instance withh(s0) = 12 and V ∗(s0) = 20.
LDFS(MDP), which is exactly IDA* with a transposition ta-
ble for this problem, takes 0.001 seconds to find an opti-
mal path. The time for the other algorithms are 0.004 for
HDP, 0.012 forILAO , 0.117 forLRTDP, and 9.235 seconds
for Value Iteration. We then tried a noisy version of the 8-
puzzle where each operator works as intended with proba-
bility p = 0.9 but has no effect with probability1− p. This
is a simpleMDP where the only loops in the optimal pol-
icy are self-loops. For the resulting problem, the times for
LDFS(MDP) degrade a lot. Indeed,LDFS(MDP) takes then
0.295 seconds, becoming almost 300 times slower than in
the deterministic case. On the other hand,LRTDP and ILAO
run 4 times slower then, andHDP 100 times slower. See
Table 1 for more details.

The performance degradation inLDFS(MDP) when noise
is added to the problem is related to a well known short-
coming of IDA * algorithms that arises when action costs
are real numbers rather than integers (Wah & Shang 1994).
In such a case, each iteration ofIDA * may end up explor-
ing very few new nodes so that an exponential number of
iterations may be needed for convergence. Indeed, while
LDFS(MDP) requires 9 iterations and 590 updates to con-
verge in the deterministic setting, it requires13, 261 iter-
ations and117, 204 updates whenp is changed from1 to
p = 0.9. While this problem does not have an accepted
solution, we have found that much better results can be ob-
tained if two small changes are introduced inLDFS(MDP).
These changes, that do not affect the correctness of the al-
gorithm, correspond to adding the two lines of code that
are marked with a? and commented in Fig. 4. The first

line, V (s) := mina∈A(s) QV (a, s), is an update that makes
the states consistent before the recursion, so thats is al-
ways explored. A consequence of this modification is that
the conditionflag = true upon return from the recursion
no longer guarantees thats is consistentafter the recur-
sion. Revising the value offlag to reflect this condition
is the role of the second line of code added toLDFS(MDP):
flag := flag & [QV (a, s)−V (s) ≤ ε]. These two changes
make the searches deeper, partially overcoming the problem
arising in IDA* in the presence of real edge-costs, resulting
in general in a better performance. We will refer to ver-
sion of theLDFS(MDP) algorithm with these two additional
lines of code, asLDFS+. Table 1 shows the performance of
LDFS+ over the 8-puzzle. As it can be seen,LDFS+ does not
do as well asLDFS(MDP) in the deterministic case (where
it comes second right afterLDFS(MDP)), but improves over
LDFS(MDP) in the stochastic setting (where it comes second
right afterILAO ).

The second domain considered in the evaluation is the
racetrack benchmark introduced in (Barto, Bradtke, & Singh
1995) and used since then in a number of works. An in-
stance in this domain is characterized by a racetrack divided
into cells, and the task is to find the control for driving a car
from a set of initial states to a set of goal states, minimizing
the number of time steps. The states are tuples(x, y, dx, dy)
that represent the position and speed of the car in thex, y di-
mensions, and the actions are pairsa = (ax, ay) of instanta-
neous accelerations whereax, ay ∈ {−1, 0, 1}. Uncertainty
comes from assuming that the road is ’slippery’ and as a re-
sult, the car may fail to change acceleration with probability
1−p regardless of the action taken. When the car hits a wall,
its velocity is set to zero but its position is left intact (this is
different than in (Barto, Bradtke, & Singh 1995) where the
car is moved to the start position).

We tried the various algorithms over the two instances
in (Barto, Bradtke, & Singh 1995), the larger instance in
(Hansen & Zilberstein 2001), and 6 ring- and 4 square-
shaped tracks of our own. The algorithms are evaluated with
the heuristicsh = 0 andhmin-min; the latter reflecting the cost
of a relaxation where non-deterministic effects are deemed
as controllable (Bonet & Geffner 2003b).

The results for the first set of instances are shown in Ta-
ble 2. The runtimes do not include the time to compute
the heuristic values as we are interested in evaluating how
well the various algorithms exploit the heuristic information,
rather than in evaluating heuristics or their computation. As
it can be seen from Table 2,LDFS+ dominates all algorithms
on these instances with both heuristics, except forring-1
with h = 0 whereLRTDP is best. The situation is slightly
different on the square racetracks, shown in Fig. 5, where
LDFS+ is beaten closely byHDP andLRTDP.

The third domain considered for evaluation is a square
navigation grid in which some cells are wet and thus slip-
pery. The number of wet cells is controlled with a parameter
p such that each cell is chosen independently as wet with
probabilityp. The amount of water on a cell determines the
effects of the actions and their probabilities. In our setting, a
wet cell can have two levels of water which are selected with
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VI LRTDP ILAO HDP LDFS(MDP) LDFS+
8-puzzle time updates time updates time updates time updates time updates time updates
p = 1.0 9.236 3,991,680 0.117 51,395 0.012 4,146 0.004 1,985 0.001 590 0.004 1,492
p = 0.9 14.733 6,168,960 0.449 169,960 0.046 9,373 0.427 156,049 0.295 117,204 0.096 50,317

Table 1: Comparison over standard and noisy version of the 8-puzzle where each operator achieves its intended effect with
probabilityp and has no effect with probability1 − p. In both cases, the sum-of-manhattan-distances heuristic is used, while
for p < 1, the bound on residuals isε = 10−4. Forp = 1, the optimal cost and heuristics for the initial state areV ∗(s0) = 20
andh(s0) = 12.

algorithm small big bigger ring-1 ring-2 ring-3 ring-4 ring-5 ring-6

|S| 9,394 22,532 51,941 429 1,301 5,949 33,243 94,396 352,150
V ∗(s0) 14.459 26.134 50.570 7.498 10.636 13.093 18.530 24.949 31.142

hmin-min(s0) 11 18 37 6 9 11 15 20 25

VI(hmin-min) 1.080 3.824 14.761 0.022 0.105 0.611 5.198 23.168 197.964
LRTDP(hmin-min) 0.369 3.169 12.492 0.006 0.027 0.138 2.173 15.361 243.130

ILAO(hmin-min) 0.813 4.739 20.190 0.008 0.034 0.463 11.428 37.598 —
HDP(hmin-min) 0.468 5.357 30.174 0.007 0.034 0.180 2.159 11.473 153.150

LDFS+(hmin-min) 0.196 1.077 4.542 0.003 0.014 0.083 1.022 4.892 80.068
VI(h = 0) 1.501 5.289 21.701 0.027 0.124 0.774 7.281 34.501 354.917

LRTDP(h = 0) 0.880 6.232 29.836 0.012 0.109 0.356 6.005 171.829 —
ILAO(h = 0) 2.430 14.200 54.208 0.024 0.109 0.908 11.863 71.103 —
HDP(h = 0) 2.440 30.955 174.698 0.032 0.149 0.927 11.957 96.398 —

LDFS+(h = 0) 0.792 3.417 16.080 0.013 0.057 0.353 4.390 24.732 310.019

Table 2: Data for various racetrack instances and convergence times in seconds for the different algorithms with the heuristics
h = 0 andhmin-min. Results are forε = 10−4 andp = 0.7. Faster times are shown in bold. A dash means the algorithm didn’t
finish within the 10 minutes time bound.

uniform probability once the cell has been chosen as wet.
The cells that aren’t wet have zero level of water. There are
four operators to move along the four axis of the grid. On dry
cells, the operators have deterministic effects, while on wet
cells the level of non-determinism depends on the level of
water. In our case, we deal with non-deterministic operators
that can result in up to 4 different successor states. We tried
grids of different sizes withp = 0.4. For each size of the
grid, we tried a number of random instances with different
initial and goal positions. The curves in Fig. 6 display the
average times until convergence. Roughly, we see that for
h = 0 the algorithms can be ordered from best to worst as
ILAO , LRTDP, LDFS+, VI andHDP, while for h = hmin-min as
ILAO , LRTDP andLDFS+, HDP andVI . Interestingly,ILAO ,
that didn’t do well in the racetracks, does pretty well in this
domain. The plots shown are logscale, so small differences
in the plot may indicate a large difference on runtimes.

The last domain involves a navigation task on a complete
binary tree of depthn extended with loops. The initial state
of the problem is the root node of the tree and the goal nodes
are the2n leaves of the tree at depthn. There are two prob-
abilistic actions, ‘left’ and ‘right’, for moving to the left and
right son of a node. Such actions achieve their intended ef-
fect with a probabilityps that depends on the states and fail
with probability1−ps. Failure here means going back to the
parent node. In addition, some of the nodes in the tree are
labeled as ’noisy’ with (independent) probabilityr = 0.4.
In such nodes, the actions behave differently: both actions
’left’ and ’right’ move with probabilityps/2 to each of the
two sons, and with probability1−ps to the parent node. The

model is completed by specifying how the probabilityps de-
pends on the nodes where the actions are taken. Each node
of the tree can be represented with a binary string of 0s and
1s that trace theuniquepath from the root node up to that
node; e.g. the root node is associated with the empty string,
the leftmost leaf of the tree with the string ofn 0’s, the right-
most leaf with the string ofn 1’s, etc. If we let#s denote
the number of 1’s in the string fors, thenps is defined as
p#s wherep is a fixed parameter of the problem. Thus, as
we move towards the rightmost leaf of the tree, the operators
become less reliable at an exponential rate; e.g. an operator
at the father of the rightmost leaf will have its intended effect
with probability pn−1. We tried different tree depths with
the parametersp = 0.7 andr = 0.4 (i.e., roughly 40% of
nodes in the tree are noisy). The results are shown in Fig. 7.
As it can be seen,LDFS+ and ILAO are the best algorithms
in this domain withLDFS+ running a bit faster.

Summary and Conclusions
LDFS combines the benefits of a general dynamic program-
ming formulation with the effectiveness of heuristic-search
techniques in a simple piece of code that performs iterated
depth-first searches enhanced with learning.LDFS reduces
to well-known state-of-the-art algorithms over some models,
but yields novel and effective approaches for other models
like AND/OR graphs or MDPs.

TheLDFS framework is useful both for understanding ex-
isting heuristic-search algorithms over various settings in a
unified manner, and for devising new effective algorithms in
other settings. In this paper, we considered also the formu-
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Figure 5: Average runtimes for convergence over the square racetracks forp = 0.7, ε = 10−4 and the heuristicsh = 0 and
hmin-min.
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Figure 6: Average runtimes for convergence over the ’wet room’ instances forp = 0.4, ε = 10−4, and the heuristicsh = 0 and
hmin-min. The x-axis corresponds to the size of the room.
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lation of anLDFS algorithm for MDPs, and its evaluation
in comparison with current state-of-the-art algorithms. Con-
ceptually,LDFS shows that the key idea underlying several
existing heuristic-search algorithms over various settings
can be reduced to the use of iterated depth-first searches with
memory for improving the heuristics over certain relevant
states until they become optimal. From a practical point of
view, the empirical results show that this idea leads to new
algorithms that are competitive with current ones.

In order to improveLDFS further in the MDP setting, there
are two concrete issues that we need to understand better.
First, in (Bonet & Geffner 2005), it is mentioned thatLDFS
is much faster thanAO* over Max AND/OR graphs, but not
over Additive AND/OR graphs. Second, it is known that the
performance ofIDA * suffers when costs are real numbers
and not integers, as the number of iterations can blow up.
Both of these observations are relevant for solving MDPs
that are additive models with real costs. The simple im-
provement of theLDFS for MDPs discussed in the previ-
ous section addresses these problems, but we expect that a
deeper understanding of these issues may lead to further im-
provements. It is worth pointing out that these observations
are not about MDPs per se, yet they are rendered relevant for
MDPs thanks to the framework that connects these various
models and algorithms.
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