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Abstract

Learning description logic (DL) concepts from pos-
itive and negative examples given in the form of la-
beled data items in a KB has received significant
attention in the literature. We study the fundamen-
tal question of when a separating DL concept ex-
ists and provide useful model-theoretic characteri-
zations as well as complexity results for the asso-
ciated decision problem. For expressive DLs such
as ALC and ALCQI , our characterizations show
a surprising link to the evaluation of ontology-
mediated conjunctive queries. We exploit this to
determine the combined complexity (between EX-
PTIME and NEXPTIME) and data complexity (sec-
ond level of the polynomial hierarchy) of separabil-
ity. For the Horn DL EL, separability is EXPTIME-
complete both in combined and in data complexity
while for its modest extension ELI it is even unde-
cidable. Separability is also undecidable when the
KB is formulated in ALC and the separating con-
cept is required to be in EL or ELI .

1 Introduction

An important challenge for adopting ontologies in practical
applications is the knowledge acquisition bottleneck, that is,
the significant time and effort it takes to build the required
ontologies. As a promising approach to help overcoming
this difficulty, the varied field of ontology learning has re-
ceived a lot of attention in the last two decades, see [Lehmann
and Völker, 2014] for a recent overview. A prominent line
of research within ontology learning is concept learning,
also called concept induction, where the aim is to learn a
structured class description (a concept) formulated in a rele-
vant ontology language from positive and negative examples,
given an already available ontology that contains background
knowledge [Lehmann et al., 2014]. Applications of concept
learning include the support of ontology development and
the construction of concept based classifiers [Bühmann et al.,
2016; Sarker et al., 2017].

Since description logics (DLs) form the basis for the OWL
family of ontology languages, DL concept learning has re-
ceived particularly much attention [Lehmann and Hitzler,
2010; Lisi, 2012; Tran et al., 2014; Fanizzi et al., 2018]. The

precise formulation is as follows. Given a knowledge base
(KB) K = (T ,A) where T is a TBox that is formulated in
a DL LT and serves as an ontology providing background
knowledge and A is an ABox in which individuals from des-
ignated sets P and N serve as positive and negative exam-
ples, respectively, find a concept C formulated in a DL LS

that separates the positive from the negative examples, that is,
K |= C(a) for all a ∈ P and K 6|= C(a) for all a ∈ N . In ad-
dition to separation, one also wants to achieve that the learned
concept C generalizes the positive examples in a meaningful
way, classifying new examples accordingly.

As a prominent system for DL concept learning, we men-
tion DL LEARNER. It encompasses several learning algo-
rithms that support a range of DLs, including expressive ones
such as ALC and ALCQ, Horn DLs such as EL, and even
full OWL 2 [Bühmann et al., 2018; Bühmann et al., 2016].
Like competing systems such as DL-FOIL, YINYANG, and
PFOIL-DL [Fanizzi et al., 2018; Iannone et al., 2007;
Straccia and Mucci, 2015], DL LEARNER uses a carefully
crafted refinement operator along with various heuristics to
learn concepts that provide an as good as possible generaliza-
tion of the given examples, avoiding overfitting. The study
of such operators originated in [Badea and Nienhuys-Cheng,
2000], see also [Lehmann and Haase, 2009; Lehmann and
Hitzler, 2010]. If possible, refinement operators are designed
so that the resulting algorithm terminates on any input and
is complete in the sense that whenever there is a concept that
separates the positive and negative examples in the input, then
such a concept is indeed learned.

The aim of this paper is to investigate the fundamental
question of when a separating concept exists for a learn-
ing instance (K, P,N), considering the most popular choices
of DLs for the TBox language LT and the separation lan-
guage LS . Our main contributions are model-theoretic char-
acterizations that give important insight into when this is the
case and a precise analysis of the computational complexity
of separability viewed as a decision problem, which we refer
to as (LT ,LS) concept separability and as L concept sep-
arability when LT = LS = L. We also consider concept
definability, the special case of concept separability in which
P ∪N comprises all individuals from A. In fact, all our com-
plexity results hold for both separability and definability.

We believe that these problems are relevant both from a
practical and from a theoretical perspective. In fact, complex-
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ity lower bounds for concept separability point to an inherent
complexity that no practical system that aims for complete-
ness can avoid. Undecidability results even mean that there
can be no practical learning system that is both terminating
and complete. From the viewpoint of machine learning the-
ory, a separating concept corresponds to a consistent hypoth-
esis and understanding the existence of such a hypothesis is
considered the most fundamental problem for exploring the
version space which in our setup is the space of all separating
concepts [Hirsh et al., 2004]. The associated decision prob-
lem is often called the consistency problem, and it is known to
be closely related to PAC learnability [Pitt and Valiant, 1988;
Kietz, 1993].

We cover the expressive DLs ALC, ALCI , ALCQ, and
ALCQI as well as the Horn DLs EL and ELI . For the
former, overfitting is a risk because the disjunction operator
available in such DLs enables the construction of separating
concepts that do not provide the desired generalization of the
positive examples. Nevertheless, most practical systems such
as DL LEARNER work with expressive DLs and avoid over-
fitting by using appropriate refinement operators. Horn DLs
do not admit disjunction and therefore are not prone to over-
fitting. On the other hand, they provide less separating power
and, as we show, tend to incur higher computational (worst-
case) cost for learning.

For expressive DLs, we start with initial characteriza-
tions in terms of (some form of) bisimulations and then im-
prove them to more refined characterizations based on ho-
momorphisms. Interestingly and unexpectedly to us, these
establish a tight link between concept separability and the
evaluation of ontology-mediated queries (OMQs) based on
unions of rooted conjunctive queries [Calvanese et al., 2013;
Bienvenu et al., 2014]. Here, ‘rooted’ means that queries
have at least one answer variable and are connected. We
use the OMQ connection to obtain complexity upper and
lower bounds. In fact, L concept separability is NEXPTIME-
complete for L ∈ {ALC,ALCI,ALCQ} while ALCQI
concept separability is only EXPTIME-complete. This refers
to combined complexity where all components of the learning
instance are part of the input. We also study data complexity
where the ABox is the only input while the TBox is fixed and
thus of constant size. In all expressive DLs mentioned above,
concept separability is Σp

2
-complete in data complexity.

The connection to OMQ evaluation does not extend to
Horn DLs, for which we use characterizations based on prod-
ucts of universal models and simulations. Based on these,
we show that (LT , EL) concept separability is EXPTIME-
complete for LT ∈ {EL, ELI}, both in combined complexity
and in data complexity. Rather surpsiringly, we also prove
that ELI concept separability is undecidable, thus ruling out
terminating and complete learning systems. The proof is by
a subtle reduction of a tiling problem. We finally consider
(LT ,LS) concept separability where LT is any of the ex-
pressive DLs mentioned above and LS is EL or ELI . These
problems also turn out to be undecidable.

A stronger version of concept separability that is also con-
sidered in the literature requires that K |= ¬C(a) for all
a ∈ N , rather than only K 6|= C(a). Clearly, this is a mean-
ingful notion only for DLs with negation. We present some

first results also for this version of concept separability, giving
model-theoretic characterizations for expressive DLs based
on bisimulations and proving that for L ∈ {ALC,ALCI},
L concept separability is EXPTIME-complete in combined
complexity and CONP-complete in data complexity.

The long version with appendix is available at http://www.
informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries

We introduce the basics of DLs as required for this paper,
for full details see [Baader et al., 2017]. Let NC be a set of
concept names and NR a set of role names, both countably
infinite. A role is either a role name or an inverse role r−,
r a role name. For uniformity, we identify (r−)− with r. An
ALCQI concept is formed according to the syntax rule

C,D ::= ⊤ | A | ¬C | C ⊓D | (> n r C)

where A ranges over concept names, r over roles, and n
over N. We use ∃r.C as an abbreviation for (> 1 r C),
C ⊔D for ¬(¬C ⊓ ¬D), ∀r.C for ¬∃r.¬C, and (6 n r C)
for ¬(> n+ 1 r C).

There are several fragments of ALCQI that are relevant
for this paper. An EL concept admits as constructors only the
top concept ‘⊤’, conjunction ‘⊓’, and existential restriction
‘∃r.C’ with r a role name (but not an inverse role). ALC
concepts additionally admit negation ‘¬’. Further construc-
tors are indicated by concatenation of a corresponding letter
where Q stands for at least restrictions ‘(> n r C)’ and I
for inverse roles. This explains the name ALCQI and allows
us to refer to fragments such as ELI and ALCI . We refer to
ALC and extensions thereof as expressive DLs and to EL and
ELI as Horn DLs.

For any of the DLs L introduced above, an L TBox is a fi-
nite set of concept inclusions (CIs) C ⊑ D, where C and D
are L concepts. Let NI be a countably infinite set of individ-
ual names. An ABox A is a finite set of concept assertions
A(a) and role assertions r(a, b) where A ∈ NC, r ∈ NR, and
a, b ∈ NI. We use ind(A) to denote the set of all individual
names that occur in A. An ABox is associated with a di-
rected graph GA = (ind(A), {(a, b) | r(a, b) ∈ A}). We use
graph theoretic terminology when speaking about ABoxes,
implicitly referring to the graph GA, speaking for example
about a being reachable from b for a, b ∈ ind(A). In techni-
cal constructions, we will sometimes use extended ABoxes in
which concept assertions take the more general form C(a),
C a concept of the DL under consideration. An L knowledge
base (KB) (T ,A) consists of an L TBox T and an ABox A,
and extended KBs admit extended ABoxes. We use sub(K)
to denote the set of subconcepts of concepts that occur in K.

As usual, the semantics of DLs is defined in terms of inter-
pretations I = (∆I , ·I), where ∆I is a non-empty set and
·I maps each concept name A ∈ NC to a subset AI of ∆I

and each role name r ∈ NR to a binary relation rI on ∆I .
We refer to [Baader et al., 2017] for details on how to extend
·I to compound concepts. An interpretation I satisfies a CI
C ⊑ D if CI ⊆ DI and is a model of a TBox T if it sat-
isfies all inclusions in T . An interpretation is a model of an
ABox A if it satisfies all assertions in A, that is, a ∈ AI if
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[Atom] for all (d, e) ∈ S: d ∈ AI iff e ∈ AJ

[AtomR] if (d, e) ∈ S and d ∈ AI , then e ∈ AJ

[Forth] if (d, e) ∈ S and d′ ∈ succI
r
(d), then

there is a e′ ∈ succJ
r
(e) with (d′, e′) ∈ S.

[Back] dual of [Forth]

[QForth] if (d, e) ∈ S and D ⊆ succI
r
(d) finite,

then there is a E ⊆ succJ
r
(e) such that S contains

a bijection between D and E.

[QBack] dual of [QForth]

Figure 1: Conditions on S ⊆ ∆I
×∆J .

A(a) ∈ A and (a, b) ∈ rI if r(a, b) ∈ A. We thus make
the standard names assumption. An interpretation is a model
of a KB K if it is a common model of its TBox and ABox
and K is satisfiable if it has a model. The assertion C(a) is a
consequence of the KB K, in symbols K |= C(a), if a ∈ CI

for all models I if K.
We next recall model-theoretic characterizations of when

elements in interpretations are indistinguishable by concepts
formulated in one of the DLs L introduced above. A pointed
interpretation is a pair I, d with I an interpretation and
d ∈ ∆I . For pointed interpretations I, d and J , e, we write
I, d ≡L J , e and say that I, d and J , e are L-equivalent if
d ∈ CI iff e ∈ CJ for all L concepts C.

As for the model-theoretic characterizations, we start
with ALC. A relation S ⊆ ∆I × ∆J is a bisimulation if
conditions [Atom], [Forth] and [Back] from Figure 1 hold,
where A ranges over all concept names, r over all role names,
succIr (d) = {d′ ∈ ∆I | (d, d′) ∈ rI}, and ‘dual’ refers to
swapping I, d, d′ and J , e, e′. We write I, d ∼ALC J , e
and call I, d and J , e bisimilar if there exists a bisimula-
tion S such that (d, e) ∈ S. For ALCQ, we define ∼ALCQ

by replacing bisimulations with counting bisimulations, de-
fined as bisimulations, but with [Forth] and [Back] replaced
by [QForth] and [QBack]. For ALCI and ALCQI , we de-
fine ∼ALCI and ∼ALCQI analogously, but now demanding
that in all conditions in Figure 1, r additionally ranges over
inverse roles.

For L ∈ {EL, ELI}, rather than characterizing ≡L we
consider the non-symmetric relation I, d ≤L J , e which
holds if d ∈ CI implies e ∈ CJ for all L concepts C. A
relation S ⊆ ∆I × ∆J is an EL simulation from I to J if
it satisfies [AtomR] and [Forth] from Figure 1 where again A
ranges over all concept names and r over all role names. ELI
simulations are defined in the same way, but with r ranging
also over inverse roles. We write I, d �L J , e if there exists
an L simulation S from I to J with (d, e) ∈ S.

The next lemma summarizes the model-theoretic charac-
terizations for all relevant DLs [Lutz et al., 2011; Goranko
and Otto, 2007]. An interpretation I has finite outdegree if
the directed graph GI = (∆I ,

⋃
r∈NR

rI) has.

Lemma 1 Let I, d and J , e be pointed interpretations and
let J have finite outdegree. Then

1. for L ∈ {ALC,ALCI,ALCQ,ALCQI}, I, d ≡L

J , e iff I, d ∼L J , e;

2. for L ∈ {EL, ELI}, I, d ≤L J , e iff I, d �L J , e.

The ‘if’ directions also hold if J is of infinite outdegree.

3 Separability and Definability

We introduce concept separability and concept definability,
the main notions studied in this paper. We also provide illus-
trating examples and give initial model-theoretic characteri-
zations in all relevant DLs.

Definition 1 Let LT ,LS be DLs. An LT learning instance is
a triple (K, P,N) with K = (T ,A) an LT KB and P,N ⊆
ind(A) non-empty sets of positive and negative examples. An
LS solution to (K, P,N) is an LS concept C such that

1. K |= C(a) for all a ∈ P and

2. K 6|= C(a) for all a ∈ N .

Any TBox language LT and separation language LS give
rise to a decision problem of concept separability.

PROBLEM : (LT ,LS) concept separability
INPUT : LT learning instance (K, P,N)
QUESTION : Does (K, P,N) have an LS solution?

We speak of L concept separability when LT = LS = L.
We also study (LT ,LS) concept definability, the special case
of (LT ,LS) concept separability in which P covers all posi-
tive examples in the KB, that is, inputs are learning instances
(K, P,N) such that N = ind(A) \ P . We now give illustrat-
ing examples. When we claim that there is no solution, this is
a direct consequence of the characterizations provided later.
In the following examples and also later in this paper, we as-
sume that K = (T ,A) unless explicitly stated otherwise.

Example 1 (1) Let (K, P,N) be defined by T = ∅,

A = {authorOf(ai, ci) | i = 1, 2, 3}∪

{IJCAIpub(c1),AIJpub(c2),GraphicNovel(c3)},

P = {a1, a2}, and N = {a3}. Then ∃authorOf.(IJCAIpub⊔
AIJpub) is an ALC solution, but there is neither an EL solu-
tion nor an ELI solution.

(2) Let (K, P,N) be as in (1), but with T replaced by the
EL TBox

T = {∃authorOf.IJCAIpub ⊑ AIResearcher,

∃authorOf.AIJpub ⊑ AIResearcher}.

Then AIResearcher is an EL solution.
(3) Let (K, P,N) be defined by T = ∅,

A = {authorOf(a, c1), authorOf(a, c2), authorOf(b, c3)},

P = {a}, and N = {b}. Due to the standard names assump-
tion, c1 and c2 are distinct objects and thus (> 2 authorOf ⊤)
is an ALCQ solution. However, there is no ALCI solution,
even when T is replaced with any ALCI TBox.

(4) Let (K, P,N) be as in (3), but with P and N swapped.
There is no ALCQI solution even when T is replaced with
any ALCQI TBox. Note that (6 1 authorOf ⊤) is not a so-
lution as the semantics does not rule out additional authorOf
successors in concrete models.

Observe that if LS is closed under conjunction, then
(LT ,LS) concept separability can be reduced in polynomial
time to the special case of (LT ,LS) concept separability
that admits only input instances (K, P,N) in which N is a
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singleton. Indeed, if C is a solution to a learning instance
(K, P,N), then it is a solution to (K, P, {a}) for all a ∈ N .
If, conversely, Ca is a solution to (K, P, {a}) for all a ∈ N ,
then

d
a∈N Ca is a solution to (K, P,N). In what follows,

we will thus mostly restrict our attention to this special case.
We study both the combined complexity of concept separa-

bility and definability and the data complexity, where only the
ABox of the KB is regarded as the input to the decision prob-
lem while the TBox is fixed and thus of constant size. Note
that the sizes of P and N are dominated by the size of the
ABox. When not making explicit which complexity measure
we speak about, we mean combined complexity.

We now give the announced characterizations of (LS ,LT )
concept separability, starting with the case that LS is an ex-
pressive DL. The characterizations use the relations ∼L from
Lemma 1, L being the separation language. The correspond-
ing relation for the TBox language is not used.

Theorem 1 Let (K, P, {b}) be an ALCQI learning in-
stance. For LS ∈ {ALC,ALCI,ALCQ,ALCQI}, the fol-
lowing are equivalent:

1. (K, P, {b}) has an LS solution;

2. there exists a model I of K of finite outdegree such that
for all a ∈ P and all models J of K, J , a 6∼LS

I, b.

The proof of Theorem 1 is rather standard, based on Lemma 1
and compactness.

We now turn to the case where LS is a Horn DL. The main
difference to Theorem 1 is that a product construction is in-
volved. Interestingly, our characterization is rather flexible
regarding LT , which can even be ALCQI . Let Ii, di, i ∈ I ,
be a family of pointed interpretations. The (direct) product∏

i∈I Ii, d is the pointed interpretation defined by

∆
∏

Ii = {d : I →
⋃

i∈I ∆
Ii | for i ∈ I : d(i) ∈ ∆Ii}

A
∏

Ii = {d ∈ ∆
∏

Ii | for i ∈ I : d(i) ∈ AIi}, A ∈ NC

r
∏

Ii = {(d, e) | for i ∈ I : (d(i), e(i)) ∈ rIi}, r ∈ NR

and d(i) = di, for all i ∈ I . We say that a set M of models
of a KB K is L complete if for every L concept C and every
a ∈ ind(K), K |= C(a) iff a ∈ CI for all I ∈ M. If,
for example, K is an ALCQI KB, then the class of all ‘forest
models’ of K of finite outdegree is well-known to be ALCQI
complete.

Theorem 2 Let (K, P, {b}) be an ALCQI learning in-
stance. For LS ∈ {EL, ELI} and M a set of models of
K that is LS complete, the following are equivalent:

1. (K, P, {b}) has an LS solution;

2. there exists a model I of K of finite outdegree such that∏
a∈P (

∏
J∈M(J , a)) 6�LS

I, b.

The proof uses Lemma 1 and the fact that for any ELI
concept C and family of pointed interpretations (Ii, di)i∈I ,

d ∈ C
∏

i∈I
Ii if and only if di ∈ CIi for all i ∈ I .

4 Characterizations for Expressive DLs

We establish characterizations of concept separability that are
more refined than the initial one presented in Theorem 1. The

refined characterizations establish a suprising connection be-
tween concept separability and (U)CQ-evaluation on KBs.
They also provide the foundation for decision procedures for
concept separability that we develop later on. We start with
ALCI and then proceed via ALCQI to ALC and ALCQ,
for which the characterizations are slightly more technical.

A homomorphism h from an ABox A to an interpretation
I is a mapping h from ind(A) to ∆I such that A(d) ∈ A
implies h(d) ∈ AI and r(c, d) ∈ A implies (h(c), h(d)) ∈
rI . We write A, a → I, b if there exists a homomorphism h
from A to I with h(a) = b.

Theorem 3 Let (K, P, {b}) be an ALCI learning instance.
Then the following conditions are equivalent:

1. (K, P, {b}) has an ALCI solution;

2. there exists a model I of K such that for all a ∈ P ,
A, a 6→ I, b.

Theorem 3 is proved by showing the equivalence of Condi-
tion 2 in Theorems 1 and 3. One first observes that it suf-
fices to consider models I that contain no distinct d, e with
I, d ∼ALCI I, e. Then the direction from Theorem 3 to The-
orem 1 follows as the restriction of a bisimulation between
J and I to the ABox individuals in A is a homomorphism
to I. For the converse direction, one carefully constructs the
required model J of K from I using the given homomor-
phism.

To adapt Theorem 3 from ALCI to ALCQI , we use ho-
momorphisms h from A to I that are locally injective for all
roles r, that is, the restriction of h to the set succAr (a) =
{b | r(a, b) ∈ A} is injective for all a ∈ ind(A). Now
A, a →i I, b is defined like A, a → I, b, but based on ho-
momorphisms that are locally injective for all roles r.

Theorem 4 Let (K, P, {b}) be an ALCQI learning in-
stance. Then the following conditions are equivalent:

1. (K, P, {b}) has an ALCQI solution;

2. there exists a model I of K such that for all a ∈ P ,
A, a 6→i I, b.

Now for the adaptation of Theorems 3 and 4 to DLs with-
out inverse roles. Let K = (T ,A) be an ALCQI KB and
a ∈ ind(A). We use A↓

a to denote the set of assertions in A
that use only individual names from the set reachA(a) of in-
dividual names reachable from a in GA. Now A, a →r I, b
means that there is a homomorphism h from A↓

a to I with
h(a) = b such that the extended KB KI,h, defined as

(T ,A ∪ {C(c) | C ∈ sub(K), c ∈ reachA(a), h(c) ∈ CI}),

is satisfiable. We define A, a →i
r I, b analogously, addition-

ally requiring that h is locally injective for all role names r
(but not necessarily for inverse roles).

Theorem 5 Let (K, P, {b}) be an ALC (resp. ALCQ) learn-
ing instance. Then the following conditions are equivalent:

1. (K, P, {b}) has an ALC (resp. ALCQ) solution;

2. there exists a model I of K such that for all a ∈ P ,
A, a 6→r I, b (resp. A, a 6→i

r I, b).

The following example illustrates the reason for why the char-
acterization in Theorem 5 requires KI,h to be satisfiable.
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Example 2 Consider A = {r(c, a), A(a), A(b)}, P = {a},
N = {b}, T = {⊤ ⊑ ∀r.B}, and let K = (T ,A). Then
K |= B(a) and K 6|= B(b) and so B is an ALC solution
for (K, P,N). Observe that h : a 7→ b is a homomorphism
from A↓

a to any model I of K, but for any model I of K with
b ∈ (¬B)I the extended KB KI,h is not satisfiable.

We observe a slightly surprising consequence of the above
characterizations. Concept separability is TBox anti-
monotone in a DL L if extending the TBox cannot result in a
solution for a learning instance to become available, that is,
for all L learning instances (K1, P,N) and (K2, P,N) with
T1 ⊆ T2 and A1 = A2, (K1, P,N) has an L solution if
(K2, P,N) has an L solution.

Theorem 6 Concept separability is TBox anti-monotone in
ALCI and ALCQI , but not in EL, ELI , ALC, and ALCQ.

Note that TBox anti-monotonicity in ALCI and ALCQI fol-
lows directly from Theorems 3 and 4. To show that concept
separability is not TBox anti-monotone in ALC and ALCQ
consider (K, P,N) from Example 2 and let K′ = (∅,A).
Then (K′, P,N) has no ALCQ solution (and thus no ALC
solution), but (K, P,N) has an ALC solution. Example 1 (1)
and (2) above shows that concept separability is not TBox
anti-monotone in EL and ELI .

5 Complexity: Expressive DLs

We clarify the complexity of concept separability and con-
cept definability in expressive DLs, which turn out to be
NEXPTIME-complete in ALC, ALCI , and ALCQ, and EX-
PTIME-complete in ALCQI . In data complexity, they are
Σp

2
-complete in all four DLs. In both lower and upper bound

proofs, we exploit a connection between separability and (ap-
propriate versions of) UCQ evaluation on KBs that is sug-
gested by the characterizations in the previous section.

Theorem 7 ALCI concept separability and ALCI concept
definability are NEXPTIME-complete.

The upper bound in Theorem 7 is proved by a polynomial
time reduction to the complement of rooted UCQ evaluation
on ALCI KBs and the lower bound is proved by a polyno-
mial time reduction from the complement of rooted CQ eval-
uation on ALCI KBs. Both problems are CONEXPTIME-
complete [Lutz, 2008] and rather well known, so we refrain
from giving definitions and only mention that a CQ is rooted
if it is connected and has at least one answer variable, and that
a UCQ is rooted if every CQ in it is.

For the first reduction, let (K, P, {b}) be an ALCI learn-
ing instance with K = (T ,A). For every a ∈ P , let qa be
the maximal connected component Aa of A that contains a,
viewed as a connected CQ with only answer variable a. Fur-
ther, let q be the UCQ

∨
a∈P qa. Then (K, P, {b}) has a solu-

tion iff K 6|= q(b). In fact, K 6|= q(b) iff there is a model I of
K such that I 6|= qa(b) for all a ∈ P , that is, Aa, a 6→ I, b.
This is equivalent to A, a 6→ I, b as required by Point 2 of
Theorem 3 since for all other connected components A′ of A,
the identity is a homomorpshism to I.

For the second reduction, let K = (T ,A) be an ALCI KB,
q(x) a unary rooted CQ, and a ∈ ind(A). Let Aq be q viewed
as an ABox where now x is an individual name, and let A′ be

the disjoint union of A and Aq . Let further K′ = (T ,A′),
P = {x}, and N = {a}. Using similar arguments as above,
one can show that K 6|= q(a) iff (K′, P,N) has a solution.
Note that this establishes hardness already for learning in-
stances with a single positive example (and a single negative
example). The reduction can be modified to show hardness
of definability. In fact, the lower bound proof in [Lutz, 2008]

applies already if we restrict ABoxes to be of the simple form
{A0(a0)} and can easily be modified so that the CQ q(x)
used is such that only the individual x can be an answer to
q in Aq (by introducing a fresh concept name X , adding the
atom X(x) to q and the assertion X(a0) to the ABox). Then
we can set P = {x} as before and N is the set of all other
individuals in A′.

In the case of ALCQI , separability closely corresponds to
a version of unary rooted (U)CQ evaluation that is based on
locally injective homomorphisms from the CQ to models of
the KB. We introduce this problem in the appendix and prove
that, remarkably, it is only EXPTIME-complete. The intu-
itive reason is that the CONEXPTIME-lower bound for CQ
evaluation on ALCI KBs requires to ‘fold’ the CQ in expo-
nentially many different ways, which can only be done with
locally non-injective homomorphisms. In ALCQI , concept
separability is thus no harder than standard reasoning prob-
lems such as concept satisfiability w.r.t. a TBox—these are
EXPTIME-complete for all expressive DLs considered in this
paper [Baader et al., 2017].

Theorem 8 ALCQI concept separability and ALCQI con-
cept definability are EXPTIME-complete.

For the case without inverse roles, we also introduce cor-
responding versions of (U)CQ evaluation, based on the kinds
of homomorphism used in Theorem 5. These turn out to be
CONEXPTIME-complete. The lower bound is proved by a
reduction of a suitable version of the tiling problem and cru-
cially exploits the satisfiability condition used in the homo-
morphisms in Theorem 5. We work with a single positive
example in the case of ALC while in ALCQ the number of
positive examples is not bounded by a constant.

Theorem 9 For L ∈ {ALC,ALCQ}, L concept separabil-
ity and L concept definability are NEXPTIME-complete.

We close this section with clarifying data complexity.

Theorem 10 For L ∈ {ALC,ALCQ,ALCI,ALCQI}, L
concept separability and L concept definability are Σp

2
-

complete in data complexity.

The upper bounds are proved by a ‘guess-coguess and
check’ style procedure. The lower bounds are proved by re-
duction of the problem to decide whether for a given undi-
rected graph G and k ≥ 1, there is a 2-coloring of G that does
not generate a monochromatic k-clique [Rutenburg, 1986].
The proof requires two positive examples.

6 Complexity: Horn DLs

We study concept separability and concept definability in the
case that the separation language is one of the Horn DLs EL
and ELI . As the TBox language, we consider both Horn DLs
and expressive DLs. It turns out that these problems tend to be
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undecidable, notable exceptions being the cases that the TBox
language is EL or ELI and the separation language is EL.

We first refine the characterization from Theorem 2. For
L ∈ {EL, ELI}, a model U of a knowledge base K is L
universal if K |= C(a) iff U |= C(a), for all L concepts C
and a ∈ ind(A).

Theorem 11 Let (K, P, {b}) be an ELI learning instance,
LS ∈ {EL, ELI}, and U an LS universal model for K of
finite outdegree. Then the following are equivalent:

1. (K, P, {b}) has an LS solution,

2. Πa∈P (U , a) 6�LS
U , b.

The absence of disjunction in Horn DLs forces the product
in Point 2, which captures the commonalities of the positive
examples and achieves true generalization, avoiding overfit-
ting. It is, however, also responsible for the high complexity
and even undecidability of concept separability in Horn DLs.
This is in fact rather surprising given that standard reasoning
problems such as subsumption are only PTIME-complete in
EL and EXPTIME-complete in ELI .

We start with the separation language EL, considering both
EL and ELI as the TBox language.

Theorem 12 Let LT ∈ {EL, ELI}. Then (LT , EL) concept
separability and definability are EXPTIME-complete, both in
combined complexity and in data complexity.

For the lower bound, we adapt a proof used in [Harel et al.,
2002] to prove that the simulation problem between I, d and
J , e is EXPTIME-hard when I is a synchronized product of
given interpretations and J is an explicitly given interpreta-
tion. Remarkably, the lower bound holds already for empty
TBoxes. The number of positive examples is not bounded by
a constant. For the upper bound, we build on Point 2 of The-
orem 11, constructing the product of (exponential size) EL
universal models of ELI knowledge bases and then deciding
EL similarity in polynomial time. The upper bound easily
extends to the case where the learned concept can use only
symbols from a given signature.

Surprisingly, separability and definability even become un-
decidable when we extend EL with inverse roles. This implies
that no learning algorithm can be complete and terminating.

Theorem 13 ELI concept separability and definability are
undecidable.

The proof is by a rather subtle reduction of the tiling prob-
lem of rectangles of unbounded size, borrowing and extend-
ing some ideas from the proof given in [Botoeva et al., 2019]

that the CQ entailment problem between ALC KBs is unde-
cidable. It requires only two positive examples.

We remark that ELI concept separability is closely related
to the problem of learning conjunctive queries in the con-
text of ELI KBs (‘query by example’). That problem was
stated to be 2EXPTIME-complete in [Gutiérrez-Basulto et al.,
2018], but the proof of the upper bound turns out to be incor-
rect. In the appendix, we use a minor variation of our proof of
Theorem 13 to show that the problem is actually undecidable.

Another related problem is the existence of most
specific concepts (MSCs) and least common subsumers
(LCSs) [Baader, 2003; Lutz et al., 2010; Zarrieß and Turhan,

2013]. In fact, if (K, P, {b}) is a learning instance, MSCs
Ma exist of all a ∈ P , and a LCS C of the Ma exists, then
(K, P, {b}) has a solution if K 6|= C(b). We conjecture that
a variation of the proof of Theorem 13 can be used to show
that in ELI , the existence of the LCS is undecidable in the
presence of a TBox.

We now consider the case where the TBox is formulated in
an expressive DL and the separation language is a Horn DL.
For example, such a setup is natural if avoiding overfitting is a
concern. Also here, separability turns out to be undecidable.

Theorem 14 Let LT ∈ {ALC,ALCQ,ALCI,ALCQI}
and LS ∈ {EL, ELI}. Then (LT ,LS) concept separabil-
ity and (LT ,LS) concept definability are undecidable.

The proof is by reduction from the already mentioned CQ
entailment problem between ALC KBs which undecidable
already for (directed or undirected) tree-shaped CQs.

7 First Observations on Strong Separability

There is an alternative notion of concept learning that has
been proposed in the literature [Lehmann et al., 2014; Badea
and Nienhuys-Cheng, 2000; Fanizzi et al., 2018]. An L con-
cept C is a strong L solution to a learning instance (K, P,N)
if K |= C(a) for all a ∈ P and K |= ¬C(a) for all a ∈ N .
We then define strong L concept separability in the expected
way. While we leave a thorough investigation for future work,
we observe the following characterization.

Theorem 15 For LS ∈ {ALC,ALCI,ALCQ,ALCQI},
an ALCQI learning instance (K, P,N) has a strong L solu-
tion iff for all models I and J of K, all a ∈ P and all b ∈ N ,
I, a 6∼LS

J , b.

Based on this result, one can show that for ALC and ALCI
there is a tight link between strong concept separability and
KB satisfiability (rather than to UCQ-evaluation on KBs)
which can be used to prove the following.

Theorem 16 For L ∈ {ALC,ALCI}, strong L concept sep-
arability is EXPTIME-complete in combined complexity and
CONP-complete in data complexity.

Note the drop in complexity compared to the non-strong
version of concept separability, from NEXPTIME to EXP-
TIME and from Σp

2
to CONP. For ALCQ and ALCQI , the

complexity of strong L concept separability remains open.

8 Discussion

This paper provides characterizations and complexity results
for concept separability in many important DLs. It would be
interesting to further add other popular DL features such as
role hierarchies, transitive roles, and nominals, and it might
also be relevant to consider cases of (LT ,LS) concept sepa-
rability in which LT is less expressive than LS . We also plan
to investigate strong separability and in how the characteriza-
tions given in this paper can be used or extended to analyse
the version space beyond emptiness and whether they can also
be used to analyse or craft refinement operators.
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