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Abstract

Determinantal point processes (DPPs),
which arise in random matrix theory and
quantum physics, are natural models for
subset selection problems where diversity
is preferred. Among many remarkable
properties, DPPs offer tractable algorithms
for exact inference, including computing
marginal probabilities and sampling; how-
ever, an important open question has been
how to learn a DPP from labeled training
data. In this paper we propose a natural
feature-based parameterization of condi-
tional DPPs, and show how it leads to a
convex and efficient learning formulation.
We analyze the relationship between our
model and binary Markov random fields with
repulsive potentials, which are qualitatively
similar but computationally intractable.
Finally, we apply our approach to the task
of extractive summarization, where the goal
is to choose a small subset of sentences
conveying the most important information
from a set of documents. In this task there
is a fundamental tradeoff between sentences
that are highly relevant to the collection
as a whole, and sentences that are diverse
and not repetitive. Our parameterization
allows us to naturally balance these two
characteristics. We evaluate our system
on data from the DUC 2003/04 multi-
document summarization task, achieving
state-of-the-art results.

1 INTRODUCTION

Many real-world tasks can be cast as subset selection
problems where the goal is to choose a high-quality but
diverse set of items from some base set. For example,

in extractive multi-document summarization, a system
chooses from among the sentences in a collection of
documents a subset that summarizes the most impor-
tant information. This selection problem is a balancing
act: on the one hand, each selected sentence should be
relevant, sharing significant information with the col-
lection as a whole; on the other, the selected sentences
should be diverse as a group so that the summary is
not repetitive and is as informative as possible given
its length. The modeling and learning of such prob-
lems can be challenging, as the diversity requirement
implies strong repulsive interactions between variables.
Standard models like Markov random fields often in-
volve notoriously intractable inference problems when
such negative correlations are present.

Determinantal point processes (DPPs), which arise in
quantum physics and have been studied extensively
by probabilists (Macchi, 1975; Hough et al., 2006;
Borodin, 2009), are probabilistic models that give the
likelihood of selecting a subset of items as the deter-
minant of a kernel matrix. Viewed as joint distribu-
tions over the binary variables corresponding to item
selection, DPPs can capture only negative correla-
tions. This makes them significantly less general than
Markov random fields. However, they are a natural
fit for the problems described above; furthermore, un-
like Markov random fields with negative interactions,
DPPs offer remarkably tractable inference: comput-
ing marginals, computing certain conditional proba-
bilities, and sampling can all be done exactly in poly-
nomial time.

Kulesza and Taskar (2010) recently used DPPs to se-
lect multiple poses of people in an image (where the
poses are “diverse” in that they tend not to overlap).
However, the question of learning DPPs from data
has not yet been addressed. In this work, we pro-
pose a conditional version of the DPP, and show how
it can be parameterized to allow for convex and effi-
cient maximum-likelihood learning. The computation
of feature expectations is an important step during
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Figure 1: A set of points in the plane drawn from a
DPP (left), and the same number of points sampled
independently using a Poisson process (right).

training, and we show how it can be done exactly and
efficiently. We also describe an algorithm for approxi-
mating at test time the maximum a posteriori predic-
tion. We demonstrate the utility of our model on an
extractive multi-document summarization task.

The paper proceeds as follows. In Section 2, we define
DPPs, give the intuition behind their unique charac-
teristics, and show how to compute some useful quan-
tities. In Section 3, we compare the distributions re-
alizable by DPPs and MRFs to give a sense of their
relative expressiveness. In Section 4, we describe con-
ditional DPPs suitable to feature-based parameteriza-
tion and learning. In Section 5, we derive a convex
maximum-likelihood estimation approach for learning
the parameters of our model, and we discuss inference
in Section 6. In Section 7 we show state-of-the-art per-
formance of the trained model on DUC 2004 extractive
summarization data.

2 DETERMINANTAL PROCESSES

A point process P on a discrete set Y = {1, . . . , N} is
a probability measure on 2Y , the set of all subsets of
Y. P is called a determinantal point process (DPP)
if, when Y is a random set drawn according to P, we
have, for every A ⊆ Y:

P(A ⊆ Y) = det(KA) , (1)

for some positive semidefinite matrix K � I (all eigen-
values of K are less then or equal to 1) indexed by the
elements of Y. KA ≡ [Kij ]ij∈A denotes the restric-
tion of K to the entries indexed by elements of A,
and we adopt det(K∅) = 1. We will refer to K as
the marginal kernel, as it contains all the information
needed to compute the probability of any subset A be-
ing included in Y. A few simple observations follow
from Equation (1):

P(i ∈ Y) = Kii (2)

P(i, j ∈ Y) = KiiKjj −KijKji (3)

= P(i ∈ Y)P(j ∈ Y)−K2
ij .

That is, the diagonal of K gives the marginal proba-
bilities of inclusion for individual elements of Y, and
the off-diagonal elements determine the (anti-) corre-
lations between pairs of elements: large values of Kij

imply that i and j tend not to co-occur. A DPP might
therefore be used to model diverse sets of items, for ex-
ample, sentences in a summary. Note that DPPs can-
not represent distributions where elements are more
likely to co-occur than if they were independent: cor-
relations are always negative.

Figure 1 shows the difference between sampling a set
of points in the plane using a DPP (with Kij in-
versely related to the distance between points i and j),
which leads to a widely spread set with good coverage,
and sampling points independently, where the points
exhibit random clumping. Determinantal point pro-
cesses, introduced to model fermions (Macchi, 1975),
also arise in studies of non-intersecting random paths,
random spanning trees, and eigenvalues of random ma-
trices (Daley and Vere-Jones, 2003; Borodin and Sosh-
nikov, 2003; Hough et al., 2006).

For the purposes of modeling real data, however, the
most relevant construction of DPPs is not through K
but via L-ensembles (Borodin, 2009). An L-ensemble
defines a DPP via a positive semidefinite matrix L
indexed by the elements of Y:

PL(Y = Y ) =
det(LY )

det(L+ I)
, (4)

where I is the N×N identity matrix. As a shorthand,
we will write PL(Y ) instead of PL(Y = Y ) when the
meaning is clear. Note that PL is normalized due to
the identity ∑

Y⊆Y

det(LY ) = det(L+ I) . (5)

K and L offer alternative representations of DPPs,
and we can easily translate between the two; for ex-
ample, we can compute the marginal kernel K for an
L-ensemble:

K = (L+ I)−1L . (6)

Note that K can be computed from an eigendecompo-
sition of L =

∑N
n=1 λnvnv

>
n by a simple rescaling of

eigenvalues:

K =

N∑
n=1

λn
λn + 1

vnv
>
n . (7)

We can also similarly compute L = K(I − K)−1, as
long as the inverse exists.

Under both K and L representations, subsets that
have higher diversity, as measured by the correspond-
ing kernel, have higher likelihood. However, while K
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Figure 2: A geometric view of DPPs: each vector cor-
responds to an item. (a) The probability of a selected
set is the square of the volume spanned by its included
item vectors. (b) As the quality of an item increases,
so do the probabilities of sets containing that item.
(c) As the similarity between two items increases, the
probabilities of sets containing both of them decrease.

gives rise to marginal probabilities, L-ensembles di-
rectly model the probabilities of atomic events, offering
a convenient representation for optimization. Further-
more, L need only be positive semidefinite, while the
eigenvalues of K are bounded above. For these reasons
we focus our modeling efforts on DPPs represented as
L-ensembles.

Following Kulesza and Taskar (2010), we can decom-
pose the kernel L as a Gram matrix:

Lij = qiφ
>
i φjqj . (8)

We can think of qi ∈ R+ as measuring the intrinsic
“quality” of an item (e.g., sentence) i, and φi ∈ Rn,
‖φi‖2 = 1 as a normalized feature vector describing an
item so that φ>i φj ∈ [−1, 1] is a measure of “similarity”
between items i and j. We use the following shorthand
for similarity:

Sij ≡ φ>i φj =
Lij√
LiiLjj

.

The decomposition of L serves two purposes. First, it
implicitly enforces the constraint that L must be posi-
tive semidefinite, which simplifies learning. Second, it
allows us to independently model quality and similar-
ity, and then combine them into a unified model. In
particular, we have:

PL(Y = Y ) =

(∏
i∈Y

q2i

)
det(SY ) . (9)

The first term increases with the quality of the se-
lected items, while the second term increases with the
diversity of the selected items.

If we think of each item i as being represented by the
vector qiφi, then the determinant of LY has an intu-
itive geometric interpretation: it is the squared volume

of the parallelepiped spanned by the vectors represent-
ing the items in Y . Figure 2(a) illustrates this for Y
of cardinalities 1–3. If we increase the quality of an
item i, then it is easy to see (Figure 2(b)) that the
probability of any set containing i will also increase.
On the other hand, if i and j become more similar to
one another (Figure 2(c)), the probability of any set
containing the pair will decrease. Thus our model nat-
urally balances the two objectives of high quality and
high diversity.

In addition to computing marginals (Equation (1)) and
the normalizing constant (Equation (5)), a surprising
number of other DPP inference operations are also ef-
ficient, despite the fact that we are modeling an expo-
nential number of possible subsets Y .

For example, we can compute conditional probabili-
ties:

P(Y = A ∪B | A ⊆ Y) =
det(LA∪B)

det(L+ IY\A)
, (10)

where IY\A is the matrix with ones in the diago-
nal entries indexed by elements of Y \ A and zeros
everywhere else. Conditional marginal probabilities
P(B ⊆ Y | A ⊆ Y) as well as inclusion/exclusion
probabilities P(A ⊆ Y ∧B ∩Y = ∅) can also be com-
puted efficiently using eigendecompositions of L and
related matrices (Borodin, 2009).

3 DPPs VS. MRFs

Given the tractability of DPPs, a natural question is
how the representational power of DPPs compares to
that of MRFs with repulsive potentials, which are gen-
erally intractable. Let yi = I(i ∈ Y ) be a binary
indicator variable which is 1 if i is selected and 0 oth-
erwise. The MRF most closely resembling a DPP over
N items is a pairwise log-linear model over y1, . . . , yN
with negative interaction terms:

P (Y = Y ) ∝ exp

∑
i

wiyi +
∑
i<j

wijyiyj

 , (11)

where wij ≤ 0. This model has the same number of
parameters as the DPP, and can also capture negative
correlations between variables yi. The key represen-
tational difference is that, while wij are individually
constrained to be less than 0, the positive semi-definite
constraint on the DPP kernel L is global. In particu-
lar, similarities Sij must satisfy a kind of transitivity
(if Sij and Sjk are large, than so is Sik), which is a
consequence of the triangle inequality:√

1− S2
ij +

√
1− S2

jk ≥
√

1− S2
ik . (12)
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Figure 3: A factor graph representation of a 3-node
MRF or DPP. The ternary factor ψ123 is shown.

WhenN = 2, it is easy to show that the two models are
equivalent, in the sense that they can both represent
any distribution with negative correlations:

P (y1 = 1)P (y2 = 1) ≥ P (y1 = 1, y2 = 1) . (13)

When N = 3, the differences become apparent.
In this setting there are six parameters for both
the MRF (w1, w2, w3, w12, w13, w23) and the DPP
(q1, q2, q3, S12, S13, S23). To place the two models on
equal footing, we represent each as a factor graph with
unnormalized node potentials ψ1, ψ2, ψ3 and a single
unnormalized ternary factor ψ123 (see Figure 3). The
node potentials are ψi(yi) = ewiyi for the MRF and
ψi(yi) = q2yii for the DPP. The ternary factors are:

ψ123(y1, y2, y3) = exp

∑
i<j

wijyiyj

 (MRF)

ψ123(y1, y2, y3) = det(SY ) (DPP)

Figure 3 shows the values of the ternary factors for
all configurations. The last four entries are deter-
mined, respectively, by the three edge parameters of
the MRF and three parameters Sij of the DPP, so
the sets of realizable ternary factors form 3-D man-
ifolds. We attempt to visualize these manifolds by
showing 2-D slices for various values of the last en-
try (111) in Figure 4. To improve visibility, we have
constrained S12, S13, S23 ≥ 0 in the second and third
panels. When this constraint is removed, the DPP sur-
face is closed; the missing surface covers the triangular
hole and bulges slightly away from the origin.

When entry 111 is large, negative correlations are weak
and the two models give rise to qualitatively similar
distributions. As the value of the entry 111 shrinks
to zero, however, the surfaces become quite different.
MRFs, for example, can describe a distribution where
the first item is strongly anti-correlated with both of
the others, but the second and third are not anti-
correlated with each other. The transitive nature of
the DPP makes this impossible. The third panel shows
the MRF and DPP overlaid when the entry 111 is 0.1;
even with these relatively strong interactions, the mod-
els are fairly close. We conjecture that the story for
larger N follows a similar pattern.

4 CONDITIONAL DPPs

For the purposes of modeling real data through dis-
criminative learning, we propose a parameterized con-
ditional DPP. For concreteness, consider extractive
document summarization. In this setting, the input X
is a cluster of documents on a given topic, and the set
Y(X) is a collection of candidate sentences from those
documents. The goal is to choose a subset Y ⊆ Y(X),
usually with some constraint on the total length of the
sentences in Y , that best summarizes the input.

More generally, suppose we have an arbitrary input
X and set Y(X) of items derived from the input. A
conditional DPP P(Y = Y |X) is a conditional prob-
abilistic model which assigns a probability to every
possible subset Y ⊆ Y(X). Our model takes the form
of an L-ensemble:

P(Y = Y |X) ∝ det(LY (X)) , (14)

where L(X) is a positive semidefinite |Y(X)|× |Y(X)|
kernel matrix that depends on the input.

As discussed in Section 2, the normalization can be
computed efficiently and is given by det(I + L(X)).
Using the q/φ decomposition given in Equation (8),
we have

Lij(X) = qi(X)φi(X)>φj(X)qj(X) (15)

for suitable qi(X) ∈ R+ and φi(X) ∈ Rn, ‖φi(X)‖2 =
1. While similarity features φi(X) can consist of
any desired measurements (and can even be infinite-
dimensional, as long as the resulting similarity matrix
S is a proper kernel), we compute the quality scores
using a log-linear model:

qi(X) = exp

(
1

2
θ>f i(X)

)
, (16)

where f i(X) ∈ Rm is a feature vector for item i and
θ ∈ Rm is a parameter vector. Note that feature
vectors f i(X) are in general distinct from φi(X); the
former are used for modeling quality, while the latter
measure similarity.
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5 LEARNING

Assume now that we are given a training set consist-
ing of T pairs (X1, Y 1), . . . , (XT , Y T ), where each Xt

is an input (e.g., a document cluster) and the corre-
sponding Y t ∈ Y(Xt) is a selected subset (e.g., an
“ideal” extractive summary). To learn the parameters
θ of our model, we maximize the log-likelihood of the
training set:

L(θ) = log
∏
t

Pθ(Y t|Xt) =
∑
t

logPθ(Y t|Xt) . (17)

For ease of notation, going forward we assume that the
training set contains only a single instance and drop
the instance index t. Of course, this does not change
the generality of the results.

Proposition 1. L(θ) is concave in θ.

Proof.

logPθ(Y |X) = θ>
∑
i∈Y

f i(X) + log det(SY (X))

− log
∑
Y ′

exp

(
θ>
∑
i∈Y ′

f i(X)

)
det(SY ′(X)) . (18)

With respect to θ, the first term is linear, the second is
constant, and the third is the composition of a concave
function (negative log-sum-exp) and a non-negative
linear function, so the expression is concave.

We can therefore apply standard convex optimization
techniques as long as we can efficiently compute the
gradient ∇L(θ). As in standard maximum entropy
modeling, the gradient of the log-likelihood can be seen
as the difference between the empirical feature counts

and the expected feature counts under the model dis-
tribution:

∇L(θ) =
∑
i∈Y

f i(X) −
∑
Y ′

Pθ(Y ′|X)
∑
i∈Y ′

f i(X) .

(19)

The sum over Y ′ is exponential in |Y(X)|; hence we
cannot compute it directly. Instead, note that we can
rewrite:∑
Y ′

Pθ(Y ′|X)
∑
i∈Y ′

f i(X) =
∑
i

f i(X)
∑

Y ′⊇{i}

Pθ(Y ′|X).

input : instance (X,Y ), parameters θ
output: gradient ∇L(θ)

1 Compute L(X) as in Equation (8);

2 Eigendecompose L(X) =
∑
k λkvkv

>
k ;

3 for i ∈ Y(X) do

4 Kii ←
∑
k

λk
1+λk

v2ki;

5 end
6 ∇L(θ)←

∑
i∈Y f i(X)−

∑
iKiif i(X);

Algorithm 1: Gradient of the log-likelihood.

That is, we can compute the expected feature counts if
we know the marginal probability of inclusion for each
sentence i. Recall that for DPPs, these probabilities
are given by the diagonal of K, the marginal kernel,
which can be computed through an eigendecomposi-
tion of the kernel L(X). Thus, we can efficiently com-
pute the gradient as described in Algorithm 1.

6 MAP INFERENCE

At test time, we need to take the learned parameters θ
and use them to predict a set Y for a previously unseen



input X. One option is to sample from the conditional
distribution, which can be done exactly for DPPs in
cubic time (Hough et al., 2006; Kulesza and Taskar,
2010). However, we found that we obtained better
performance with the maximum a posteriori (MAP)
set, conditioned on a budget constraint:

YMAP = arg max
Y

Pθ(Y |X)

s.t.
∑
i∈Y

cost(i) ≤ B , (20)

where cost(i) is some measure of the cost of item i,
and B is a limit on the total cost. Computing YMAP

exactly is NP-hard (Ko et al., 1995), but we consider
two approximations. First, we can obtain a brute-force
estimate by sampling a large number of sets Y , and
then choosing the sample that has highest probabil-
ity among all those satisfying the budget constraint.
Second, and more practically, we note that the op-
timization in Equation (20) is submodular, and so we
can approximate it through a simple greedy algorithm.

input : input X, parameters θ, budget B
output: set Y

1 U ← Y(X); Y ← ∅;
2 while U 6= ∅ do
3 Y ← Y ∪ arg maxi∈U

(
Pθ(Y ∪{i}|X)−Pθ(Y |X)

cost(i)

)
;

4 U ← U \ {i | cost(Y ) + cost(i) > B};
5 end
6 return Y ;

Algorithm 2: Approximately computing the
MAP set under a budget constraint.

This algorithm is closely related to those given in Lin
and Bilmes (2010) and Krause and Guestrin (2005).
For monotone submodular problems, algorithms of
this type have formal approximation guarantees. Our
MAP problem is not generally monotone; nonetheless,
Algorithm 2 seems to work well in practice.

7 SUMMARIZATION

We employ learning of conditional DPPs to perform
extractive summarization of text. As in Section 4, the
input X is a cluster of documents, and Y(X) is a set of
candidate sentences from those documents. In our ex-
periments Y(X) contains all sentences in the cluster,
though preprocessing can also be used to try to im-
prove the candidate set (Conroy et al., 2004). Given a
predicted set of sentences Y , we follow previous work
and construct a final summary by placing the sentences
in the same order in which they appeared in the orig-
inal documents (Lin and Bilmes, 2010). This may not

be optimal; however, it is partially justified by the
fact that modern automatic evaluation metrics, such
as ROUGE, are mostly invariant to sentence order.

Following previous work, we experiment with data
from the Document Understanding Conference (DUC)
2003 and 2004 multi-document summarization task
(Task 2) (Lin and Bilmes, 2010; Dang, 2005). The
task is to generate event-focused summaries of doc-
ument clusters from the NIST TDT collection. Each
cluster contains approximately 10 articles from the AP
and New York Times newswires, and covers a single
topic over a short time span. The clusters have a mean
length of approximately 250 sentences and 5800 words.
The 2003 task, which we use for training, contains 30
clusters, and the 2004 task, which is our test set, con-
tains 50 clusters. Summaries are required to be at
most 665 bytes in length, including spaces; this forms
our budget constraint. Each cluster comes with four
reference human summaries for evaluation purposes.
Figure 5 depicts a sample cluster from the test set.

To measure performance we use ROUGE, an auto-
matic evaluation metric for summarization (Lin, 2004).
ROUGE measures n-gram overlap statistics between
the human references and the summary being scored,
and combines them to produce various sub-metrics.
ROUGE-1, which is a simple unigram recall measure,
has been shown to correlate quite well with human
judgments (Lin, 2004). We therefore follow previous
work and use ROUGE’s unigram F-measure as our pri-
mary metric. We refer to this measure as ROUGE-1F.
We also report ROUGE-1P and ROUGE-1R (precision
and recall, respectively) as well as ROUGE-2F and
ROUGE-SU4F, which include bigram match statistics
and have also been shown to correlate well with human
judgments. Our implementation uses ROUGE version
1.5.5 with stemming turned on, but without stopword
removal. These settings correspond to those used for
the actual DUC competitions (Dang, 2005).

7.1 BUILDING A TRAINING SET

The human reference summaries provided with the
DUC data are high-quality, but to train our model
we need target extractive summaries. To obtain high-
quality extractive “oracle” summaries for training, we
employ a simple greedy algorithm. Intuitively, the idea
is to choose at each round the sentence that achieves
maximal mean unigram F-measure to the human ref-
erences, and add it to the summary. Since high F-
measure requires high precision as well as recall, we
then update the references by removing the words
“covered” by the newly selected sentence, and proceed
to the next round.

Applying this algorithm to the DUC 2003 training



NASA and the Russian Space Agency have agreed to set 
aside a last-minute Russian request to launch an 
international space station into an orbit closer to Mir, 
officials announced Friday. . . .

A last-minute alarm forced NASA to halt Thursday's 
launching of the space shuttle Endeavour, on a mission to 
start assembling the international space station. This was 
the first time in three years . . .

The planet's most daring construction job began Friday as 
the shuttle Endeavour carried into orbit six astronauts and 
the first U.S.-built part of an international space station 
that is expected to cost more than $100 billion. . . .

Following a series of intricate maneuvers and the skillful 
use of the space shuttle Endeavour's robot arm, 
astronauts on Sunday joined the first two of many 
segments that will form the space station . . .

document cluster

human summary

extractive summary

On Friday the shuttle Endeavor carried six astronauts into orbit to start 
building an international space station.  The launch occurred after Russia 
and U.S. officials agreed not to delay the flight in order to orbit closer to 
MIR, and after a last-minute alarm forced a postponement.  On Sunday 
astronauts joining the Russian-made Zarya control module cylinder with 
the American-made module to form a 70,000 pounds mass 77 feet 
long. . . .

...

• NASA and the Russian Space Agency have agreed to set aside . . .

• A last-minute alarm forced NASA to halt Thursday's launching . . .

• This was the first time in three years, and 19 flights . . .

• After a last-minute alarm, the launch went off flawlessly Friday . . . 

• Following a series of intricate maneuvers and the skillful . . .

• It looked to be a perfect and, hopefully, long-lasting fit. . . .

Figure 5: A sample cluster from the DUC 2004 test set, with one of the four human reference summaries and a
(manufactured) extractive summary.

Table 1: ROUGE scores for the best automatic system
from DUC 2003, our heuristically-generated oracle ex-
tractive summaries, and human summaries.

System ROUGE-1F ROUGE-2F ROUGE-SU4F

Machine 35.17 9.15 12.47
Oracle 46.59 16.18 19.52
Human 56.22 33.37 36.50

data, we achieve the ROUGE scores shown in Table 1.
We compare the scores of our oracle extractive sum-
maries to those of the best automatic system from the
DUC competition in 2003, as well as the actual human
references. Note that, in the third column, the human
summary being evaluated is also one of the four refer-
ences used to compute ROUGE; hence the scores are
probably significantly higher than could be achieved in
practice. Furthermore, it has been shown that extrac-
tive summaries, even when generated optimally, are by
nature limited in quality compared to unconstrained
summaries (Genest et al., 2010). Thus we believe that
our oracle summaries are excellent targets for training.

7.2 FEATURES

For similarity features φi(X), we use standard normal-
ized tf-idf vectors, where the idf scores are computed
across all of the documents in all of the clusters in
the training set. Thus the similarity between two sen-
tences is just their cosine distance. We do not use
stop word removal or stemming. We augment the tf-
idf vectors with an additional constant feature taking

the value ρ. This has the effect of making all sentences
more similar to one another, increasing repulsion. We
set ρ to optimize ROUGE-1F score on the training set;
in our experiments, the best choice was ρ = 0.3.

We have the following quality features f i(X). For
some of the features, we make use of cosine distances;
these are computed using the same tf-idf vectors as the
similarity features. When a feature is intrinsically real-
valued, we produce a series of binary features by bin-
ning. The bin boundaries are determined either glob-
ally or locally. Global bins are evenly spaced quantiles
of the feature values across all sentences in the training
set, while local bins are quantiles of the feature values
in the current cluster. Below, we indicate which types
of bins are used in each case.

• Constant: A constant feature allows the model
to bias towards summaries with more or fewer sen-
tences.

• Length: We bin the length of the sentence (in
bytes) into five global bins.

• Document position: We compute the position
of the sentence in its original document and gener-
ate binary features indicating positions 1–5, plus a
sixth binary feature indicating all other positions.
We expect that, for newswire text, sentences that
appear earlier in an article are more likely to be
useful for summarization.

• Mean cluster similarity: For each sentence we
compute the average cosine distance to all other



sentences in the cluster. This attempts to measure
how well the sentence reflects the salient words
occurring most frequently in the cluster. We use
the raw score, five global bins, and ten local bins.

• LexRank: We compute continuous LexRank
scores by finding the principal eigenvector of the
row-normalized cosine similarity matrix. (See
Erkan and Radev (2004) for details.) This pro-
vides an alternative measure of centrality. We use
the raw score, five global bins, and five local bins.

In total we have 39 quality features; including ρ our
model has 40 parameters.

7.3 RESULTS

We train our model with a standard L-BFGS opti-
mization algorithm. We place a zero-mean Gaussian
prior on the parameters θ, with variance set to opti-
mize ROUGE-1F on a development subset of the 2003
data. We learn parameters θ on the DUC 2003 corpus,
and test them using DUC 2004 data.

We test our model with the two MAP inference algo-
rithms described in Section 6. The first is a brute-
force estimate of the optimal summary, obtained by
taking 106 samples from the model, then choosing the
highest-probability sample with length between 660
and 680 characters. (Overlong summaries are trimmed
to the limit of 665 bytes.) This process is computation-
ally expensive, but it provides a point of comparison
for the much more efficient greedy procedure.

As a simple baseline, we compare against the first 665
bytes of the cluster text. Since the clusters consist of
news articles, this is not an unreasonable summary in
many cases. We refer to this baseline as Begin.

We test two additional baselines that rely on quality
scores trained by logistic regression, where each sen-
tence is a unique instance to be classified as included or
not included, using labels from our training oracle and
the features described above. For baseline LR+MMR,
the quality scores are used for the relevance portion of
the well-known maximum marginal relevance (MMR)
algorithm (Carbonell and Goldstein, 1998). Sentences
are chosen iteratively according to

arg max
i∈Y(X)

[
λqi(X)− (1− λ) max

j∈Y
Sij

]
, (21)

where Y is the set of sentences already selected (ini-
tially empty), qi(X) is the learned quality score, and
Sij is the cosine similarity between sentences i and j.
The tradeoff λ is optimized on a development set, and
sentences are added until the budget is full. For base-
line LR+DPP, the logistic regression quality scores are

used directly in our DPP model, with inference per-
formed using Algorithm 2; comparing to this baseline
allows us to isolate the contribution of learning the
model parameters in context.

For more sophisticated baselines, we compare against
the three highest-scoring systems from DUC 2004—
peers 65, 104, and 35—as well as the submodular
graph-based approach recently described by Lin and
Bilmes (2010), which we refer to as SubMod. Because
code was not available for the latter system, we imple-
mented it ourselves, striving to replicate their results.
Our version fails to reproduce the exact numbers given
in prior work; however, we suspect this is due to differ-
ences in the text processing pipeline, including detag-
ging, sentence splitting, and the computation of tf-idf
scores. Because the DPP model relies upon the same
tf-idf scores as SubMod, any change to the preprocess-
ing is likely to impact the performance of both systems.
We set the hyperparameters for SubMod to the values
reported by Lin et al (r = 0.3, λ = 4).

Table 2 shows the results for all methods on the DUC
2004 test corpus. Scores for the actual DUC competi-
tors differ slightly from the originally reported results
because we use an updated version of the ROUGE
package.

8 CONCLUSION

We showed how determinantal point processes can be
applied to subset selection tasks like extractive sum-
marization, where negative interactions are key and
traditional models like Markov random fields can be
computationally problematic. DPPs give rise to an
intuitive tradeoff between high-quality items, like sen-
tences that concisely represent the text to be sum-
marized, and diverse items, like sentences that reduce
redundancy and increase coverage. We showed how
to parameterize the model to allow for convex train-
ing, efficiently maximizing the likelihood of a training
set despite the exponential number of possible out-
puts. We also showed how to perform efficient approx-
imate test-time inference. Experiments on the DUC
2004 multi-document summarization task demonstrate
state-of-the-art performance.

We believe that learning DPPs has many applications
beyond summarization. For example, diversity is an
important consideration in many search applications:
we would like to return results that are not only rele-
vant to the user, but also cover multiple possible inter-
pretations of ambiguous queries. A search for “apple”,
for example, might be a request for information about
fruit, computers, record companies, etc.; if we don’t
know which one the user is after, it might be prefer-
able to return a few results on each topic, rather than a



Table 2: ROUGE scores on the DUC 2004 test set.

System ROUGE-1F ROUGE-1P ROUGE-1R ROUGE-2F ROUGE-SU4F

Begin 32.08 31.53 32.69 6.52 10.37
LR+MMR 36.01 35.36 36.73 7.46 11.87
LR+DPP 37.48 37.18 37.82 8.54 12.74
Peer 35 37.54 37.69 37.45 8.37 12.90
Peer 104 37.12 36.79 37.48 8.49 12.81
Peer 65 37.87 37.58 38.20 9.13 13.19
SubMod 37.39 36.86 37.99 8.42 12.78
DPP 38.27 37.87 38.71 9.35 13.45
DPP (greedy) 38.20 37.97 38.46 9.14 13.26

full set of results about whichever happens to be most
common.

Future work on summarization with DPPs includes
combining the extractive approach with internal sen-
tence compression to achieve more informative sum-
maries (Martins and Smith, 2009; Clarke and Lapata,
2008). This approach requires treating each sentence
as a structure rather than a simple binary in-or-out de-
cision. Recent work has shown that DPPs can be ex-
tended to efficiently deal with such structures in many
cases (Kulesza and Taskar, 2010).

More generally, an important open question regarding
DPPs is whether it might be possible to also parame-
terize the similarity matrix in a way that permits ef-
ficient learning. This would enable a wider variety of
more expressive models, analogous to the advantages
offered by kernel matrix learning for SVMs. Addi-
tionally, while we illustrated the relationship between
MRFs and DPPs for N = 3, extending these obser-
vations to larger N might lead to improved inference
algorithms for a subclass of “DPP-like” MRFs; e.g.,
using variational methods.
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