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Abstract

Learning Bayesian networks from raw data can help provide insights into the rela-
tionships between variables. While real data often contains a mixture of discrete and
continuous-valued variables, many Bayesian network structure learning algorithms assume
all random variables are discrete. Thus, continuous variables are often discretized when
learning a Bayesian network. However, the choice of discretization policy has significant
impact on the accuracy, speed, and interpretability of the resulting models. This paper in-
troduces a principled Bayesian discretization method for continuous variables in Bayesian
networks with quadratic complexity instead of the cubic complexity of other standard
techniques. Empirical demonstrations show that the proposed method is superior to the
established minimum description length algorithm. In addition, this paper shows how to
incorporate existing methods into the structure learning process to discretize all continuous
variables and simultaneously learn Bayesian network structures.

1. Introduction

Bayesian networks (Pearl, 1988; Koller & Friedman, 2009) are often used to model uncer-
tainty and causality, with applications ranging from decision-making systems (Kochenderfer,
Holland, & Chryssanthacopoulos, 2012) to medical diagnosis (Lustgarten, Visweswaran,
Gopalakrishnan, & Cooper, 2011). Learning Bayesian networks from raw data can help
users discover knowledge without field-specific experts, such as causality and probabilistic
relation between variables. It is common to assume that the random variables in a Bayesian
network are discrete, since many Bayesian network learning algorithms are unable to ef-
ficiently handle continuous variables. In addition, many of the commonly used Bayesian
network software packages, such as Netica (Norsys, 2009), SMILearn (Druzdzel, 1999), and
bnlearn (Scutari, 2010), are designed for discrete variables. However, many applications
require the use of continuous data, such as positions and velocities in dynamic systems
(Kochenderfer, Edwards, Espindle, Kuchar, & Griffith, 2010).

There are three common approaches to extending Bayesian network learning algorithms
to continuous variables. The first is to model the conditional probability density of each
continuous variable using specific families of parametric distributions, and then to redesign
Bayesian network learning algorithms based on the parameterizations. One example of
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parametric continuous distributions in Bayesian networks is the Gaussian graphical model
(Weiss & Freeman, 2001).

The second approach is to use nonparametric distributions, such as particle repre-
sentations and Gaussian processes (Ickstadt, Bornkamp, Grzegorczyk, Wieczorek, Sheriff,
Grecco, & Zamir, 2010). Unlike parametric methods, nonparametric methods can often
fit any underlying probability distribution given sufficient data. Parametric models have a
fixed number of parameters, whereas the number of parameters in a nonparametric model
grow with the amount of training data.

The third approach is discretization. Automated discretization methods have been stud-
ied in machine learning and statistics for many years (Dougherty, Kohavi, & Sahami, 1995;
Kerber, 1992; Holte, 1993; Fayyad & Irani, 1993), primarily for classification problems.
These methods learn the best discretization policy for a continuous attribute by consider-
ing its interaction with a class variable. It is common to discretize all continuous variables
before learning a Bayesian network structure to avoid having to consider variable interac-
tions, as the interactions and dependencies between variables in Bayesian networks introduce
complexity. Prior work exists for discretizing continuous variables in naive Bayesian net-
works and tree-augmented networks (Friedman, Geiger, & Goldszmidt, 1997), but only a
few discretization methods for general Bayesian networks have been proposed (Friedman &
Goldszmidt, 1996; Kozlov & Koller, 1997; Monti & Cooper, 1998; Steck & Jaakkola, 2004).

A common discretization method for Bayesian networks is to split continuous data into
uniform-width intervals or to use field-specific expertise. Several Bayesian methods exist to
discretize according to the marginal distribution (Scott, 1979; Freedman & Diaconis, 1981;
Knuth, 2013; Scargle, Norris, Jackson, & Chiang, 2013), but this ignores dependencies
between variables and leads to suboptimal performance, as demonstrated in Appendix A.
A more principled method is the minimum description length (MDL) principle discretization
(Friedman & Goldszmidt, 1996). The MDL principle proposed by Rissanen (1978) states
that the best model for a dataset is the one that minimizes the amount of information
needed to describe it (Grünwald, 2007). MDL methods trade off goodness-of-fit against
model complexity to reduce generalization error. In the context of Bayesian networks,
Friedman and Goldszmidt (1996) applied the MDL principle to determine the optimal
number of discretization intervals for continuous variables and the optimal positions of
their discretization edges. Their approach selects a discretization policy that minimizes
the sum of the description length of the discretized Bayesian network and the information
necessary for recovering the continuous values from the discretized data.

The optimal discretization policy of a single continuous variable under MDL can be
found using dynamic programming in cubic runtime with the number of data instances.
For Bayesian networks with multiple continuous variables, MDL discretization can be iter-
atively applied to each continuous variable. Only one variable is treated as continuous at
a time, while all other continuous variables are treated as discretized based on an initial
discretization policy or the discretization result from a previous iteration.

MDL discretization requires that the network structure be known in advance, but an
iterative approach allows it to be incorporated into the structure learning process. Simulta-
neous structure learning and discretization alternates between traditional discrete structure
learning and optimal discretization. Starting with some preliminary discretization policy,
one first applies a structure learning algorithm to identify the locally optimal graph struc-
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ture. One then refines the discretization policy based on the learned network. The cycle is
repeated until convergence.

Results in this work suggest that the MDL method suffers from low sensitivity to dis-
cretization edge locations and returns too few discretization intervals for continuous vari-
ables. This is caused by MDL’s use of mutual information to measure the quality of dis-
cretization edges. Mutual information, which is composed of empirical probabilities com-
puted using event count ratios, varies less significantly with the positions of discretization
edges than the method we suggest in this article.

MODL (Boullé, 2006) is a Bayesian method for discretizing a continuous feature accord-
ing to a class variable, which selects the model with maximum probability given the data.
The MODL method uses dynamic programming to find the optimal discretization policy
for a continuous variable given a discrete class variable, and has an O

(
n3 + r · n2

)
runtime,

where r is the number of class variable instantiations. Lustgarten et al. (2011) suggested
several formulations for the prior over models. The asymptotic equivalence between MDL
and MODL on the single-variable, single-class problem was examined by Vitányi and Li
(2000).

This paper describes a new Bayesian discretization method for continuous variables in
Bayesian networks, extending prior work on single-variable discretization methods from
Boullé (2006) and Lustgarten et al. (2011). The proposed method optimizes the discretiza-
tion policy relative to the network and takes parents, children, and spouse variables into
account. The optimal single-variable discretization method is derived in Section 3, using a
prior which reduces the discretization runtime to O

(
r · n2

)
without sacrificing optimality.

Section 4 covers Bayesian networks with multiple continuous variables and Section 5 covers
discretization while simultaneously learning network structure. The paper concludes with
a comparison against the existing minimum-description length (Friedman & Goldszmidt,
1996) method on real-world and synthetic datasets in Section 6.

2. Preliminaries

This section covers the notation used throughout the paper to describe discretization poli-
cies. This section also provides a brief overview of Bayesian networks.

2.1 Discretization Policies

Let X be a continuous variable and let x be a specific instance of X. A discretization policy
ΛX = 〈e1 < e2 < . . . < ek−1〉 for X is a mapping from R to {1, 2, . . . , k} such that

ΛX(x) =







1, if x < e1

i, if ei−1 ≤ x < ei

k, otherwise.

(1)

The discretization policy discretizes X into k intervals. Let the samples of X in a given
dataset D be sorted in ascending order, x1:n = {x1 ≤ x2 ≤ . . . ≤ xn}, and let the unique
values be u1:m = {u1 < u2 < . . . < um}. The index of the last occurrence of ui in x1:n is
denoted si.
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The discretization edges e1:k−1 mark the boundaries between discretization intervals. In
this paper, as with MODL, they are restricted to the midpoints between unique ascending
instances of X. Thus, each edge ei equals (uj +uj+1)/2 for some j. Two useful integer
representations of ΛX can be written

ΛX = 〈λ1 < λ2 < . . . < λk〉 ≡ 〈γ1, γ2, . . . , γk〉, (2)

where λ1 = s1, λi ∈ s1:m, γ1 = λ1, and γi = λi−λi−1. The λ1:k representation is the number
of instances before every discretization edge whereas the γ1:k representation is the number
of instances within each discretization interval. Both λ1:k and γ1:k representations will be
used in the following content. The former makes the dynamic programming algorithm more
succinct, and the latter makes equations more compact when calculating data instantiations.
Table 1 and 2 demonstrate variable assignments for an example dataset.

Table 1: An example dataset used to demonstrate the variables defined in Section 2.1. Rows are
assignments to continuous variable X and discrete variables A and B.

X A B

1.1 1 3
1.2 1 3
1.2 1 4
2.9 2 3
2.9 2 4
2.9 1 4
3.5 1 4
4.3 1 4
4.3 2 3
5.0 2 3

Table 2: Assignments for variables defined in Section 2.1 according to the dataset in Table 1. Note
that Λex

X
is an example of a valid discretization policy. Discretization policies can be represented

by their edges 〈〉e, their sorted unique dataset indices 〈〉λ, or by the interval between sorted unique
dataset indices 〈〉γ . That is to say, in the edge representation, e1 = 1.55 and e2 = 4.65. In the λ1:k

representation, λ1 = 3, λ2 = 9, and λ3 = 10. In the γ1:k representation, γ1 = 3, γ2 = 6, and γ3 = 10.
Furthermore, one can check that λ1 = γ1 = 3, λ2 − λ1 = γ2, and λ3 − λ2 = γ2.

Variable Value

n 10
m 6

x1:10 {1.1, 1.2, 1.2, 2.9, 2.9, 2.9, 3.5, 4.3, 4.3, 5.0}
u1:6 {1.1, 1.2, 2.9, 3.5, 4.3, 5.0}
s1:6 {1, 3, 6, 7, 9, 10}
Λex
X

〈1.55, 4.65〉e, 〈3, 9, 10〉λ, 〈3, 6, 1〉γ

2.2 Bayesian Networks

A Bayesian Network B over N random variables X1:N is defined by a directed acyclic graph
G containing one node for each variable Xi, and each node is associated with a conditional
probability distribution P (Xi | paXi

) for the node given its parents in G. The edges in a
Bayesian network represent probabilistic dependencies among nodes and encode the Markov
property: each node Xi is independent of its non-descendants given its parents paXi

in G.
The children of node Xi are denoted chXi

.
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When discussing the discretization of a particular continuous variable X, let Pi be the
ith parent of X, let Ci be the ith child of X, and let Si be the set of spouses of X associated
with the ith child. The parents, children, and spouses of a variable form its Markov blanket.

3. Single Variable Discretization

This section covers the discretization of a single continuous variableX in a Bayesian network
where all other variables are discrete. An optimal discretization policy for a dataset D
maximizes P (Λ) · P (D | Λ) for some prior P (Λ) and likelihood P (D | Λ).

3.1 Priors and Objective Function

Let DY be the subset of the training data corresponding to variable subset Y . Four princi-
ples for the optimal discretization policy enable the formulation of P (Λ) and P (D−X | Λ),
where D−X is the subset of the dataset for all variables but X, and the probability of the
data associated with the target variable, P (DX), is already captured in P (Λ). The four
principles, which can be considered an extension of the priors in MODL (Boullé, 2006) and
Lustgarten et al. (2011) to Bayesian networks, are:

1. The prior probability of a discretization edge between two consecutive unique values
ui and ui+1 is proportional to their difference:

1− exp

(

−L ·
ui+1 −ui

um −u1

)

, (3)

where larger values of L encourage more discretization intervals. This prior encourages
edges between well-separated values over edges between closely packed samples. The
experiments in this paper set L to the largest number of intervals among discrete
variables in X’s Markov blanket, which encourages Bayesian networks with consistent
interval counts. Higher values of L can be used when the continuous variable requires
more discretization intervals than its Markov blanket.

2. For a given discretization interval, every distribution over the parents ofX is equiprob-
able.

3. For each pair 〈Ci,Si〉 and a given discretization interval, every distribution over Ci

given an instance of Si is equiprobable.

4. The distributions over X given each child, parent, and spouse instantiation are inde-
pendent.

From the first principle one obtains the prior over the discretization policy:

P (Λ) ∝
k−1∏

i=1

[

1− exp

(

−L ·
xλi+1 −xλi

xn −x1

)] k∏

i=1

[

exp

(

−L ·
xλi
−xλi−1+1

xn −x1

)]

. (4)
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The likelihood term P (D−X | Λ) for a Bayesian network graph structure factors accord-
ing to X’s Markov blanket:

P (D−X | Λ) ∝ P
(
DpaX | Λ

)
·
∏

i

P (DCi
| Λ, DSi

). (5)

For example, in Figure 1, P (D−X | Λ) factors according to

P (DP1,P2,P3 | Λ) · P (DC1 | Λ, DS1) · P (DC2 | Λ, DS2). (6)

C2 C1

X

P1 P2 P3

S1S2

Factor 1

Factor 2

Factor 3

Figure 1: Factorization of P (D−X | Λ).

The concept behind the factorization is also the motivation behind forward sampling in
a Bayesian network. The parents of X are independent of the children given X. The par-
ents are not necessarily individually independent, and thus the parental term P (DpaX | Λ)
cannot be factored further. The children of X are similarly independent given X and the
corresponding spouses, leading to their factored product

∏

i P (DCi
| Λ, DSi

). Each compo-
nent in the decomposition can be evaluated given a discretization policy and a dataset.

3.1.1 Evaluation of P
(
DpaX | Λ

)

Let JP be the number of instantiations of the parents of X, and let n
(P)
i,j be the number of

instances ofX within the ith discretization interval of Λ given the jth parental instantiation.

Note that γi =
∑

j n
(P)
i,j . It follows that

P
(
DpaX | Λ

)
=

Principle 4
︷︸︸︷

k∏

i=1

Principle 2
︷ ︸︸ ︷

1
(
γi+JP−1
JP−1

)
1
γi!

n
(P)
i,1 ! n

(P)
i,2 ! ··· n

(P)
i,JP

!

. (7)

Both factors on the right hand side come from the second principle: all distributions of
values of the parents of X in a given interval are equiprobable. The fourth principle is that
the distributions for each interval are independent, so the factors can be multiplied together.

Note that the combinatorics of factors
(
γi+JP−1
JP−1

)
and γi!/n

(P)
i,1 ! · · · n

(P)
i,JP

! are explained in the
MODL paper (Boullé, 2006).
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3.1.2 Evaluation of P (DCj
| Λ, DSj

)

Let JCj
be the number of instantiations of the jth child of X, let J

(j)
S be the number of

instantiations of the jth spouse set Sj , and let n
(j)
i,m,ℓ be the number of instances of X in the

ith discretization interval of Λ given the mth instantiation of Cj and the ℓth instantiation

of Sj . Let n
(j)
i,ℓ =

∑Jj
m=1 n

(j)
i,m,ℓ. Note that γi =

∑

ℓ n
(j)
i,ℓ for all j. It follows that

P (DCj
| Λ, DSj

) =

Principle 4
︷ ︸︸ ︷

k∏

i=1

J
(j)
S∏

ℓ=1

Principle 3
︷ ︸︸ ︷

1
(n

(j)
i,ℓ

+JCj
−1

JCj
−1

)

1

n
(j)
i,ℓ

!

n
(j)
i,1,ℓ! n

(j)
i,2,ℓ! ··· n

(j)
i,JCj

,ℓ
!

. (8)

Both factors on the right hand side come from the third principle: all distributions of
values of Cj in a given interval and with a given value of Sj are equiprobable. According
to the fourth prior, these distributions are independent from each other, and one can thus
take their product. If Sj = ∅, then Equation 8 is equivalent to

P (DCj
| Λ,Sj = ∅) =

Principle 4
︷︸︸︷

k∏

i=1

Principle 3
︷ ︸︸ ︷

1
(γi+JCj

−1

JCj
−1

)
1
γi!

n
(j)
i,1,∅

! n
(j)
i,2,∅

! ··· n
(j)
i,JCj

,∅
!

, (9)

where n
(j)
i,m,∅ is the number of instances of X in the ith discretization interval of Λ given the

mth instantiation of Cj .
The objective function can be formulated given equations 4, 5, 7, 8 and 9. The log-

inverse of P (Λ) · P (D−X | Λ) is minimized for computational convenience:

k−1∑

i=1

− ln

(

1− exp

(

−L ·
xλi+1 −xλi

xn −x1

))

+

k∑

i=1

L ·
xλi
−xλi−1+1

xn −x1
+

k∑

i=1



ln

(
γi + JP − 1

JP − 1

)

+ ln




γi!

n
(P)
i,1 ! n

(P)
i,2 ! · · · n

(P)
i,JP

!







+

nc∑

j=1

k∑

i=1

J
(j)
S∑

ℓ=1



ln

(
n
(j)
i,ℓ + JCj

− 1

JCj
− 1

)

+ ln




n
(j)
i,ℓ !

n
(j)
i,1,ℓ! n

(j)
i,2,ℓ! · · · n

(j)
i,JCj

,ℓ!









(10)

3.2 Single-Variable Discretization Algorithm

The procedure used to minimize the objective function involves dynamic programming.
Note that because the objective function is cumulative over intervals, if a partition Λ =
〈γ1, γ2, . . . , γk〉 of X is an optimal discretization policy, then any subinterval is optimal for
the corresponding subproblem. It follows that dynamic programming can be used to solve
the optimization problem exactly.
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Precomputation reduces runtime. Hence, h(u, v) is computed first for each interval

γq = γ
(u,v)
q starting from xu to xv for all u, v satisfying u ≤ v:

h(u, v) = ln

(
γq + JP − 1

JP − 1

)

+ ln




γq!

n
(P)
q,1 !n

(P)
q,2 ! · · ·n

(P)
q,Jp

!





+

nc∑

j=1

J
(j)
S∑

ℓ=1



ln

(
n
(j)
i,ℓ + JCj

− 1

JCj
− 1

)

+ ln




n
(j)
i,ℓ !

n
(j)
i,1,ℓ! n

(j)
i,2,ℓ! · · · n

(j)
i,JCj

,ℓ!









(11)

The calculation of h(u, v) for all u ≤ v has aO
(
nc · L

ns · n2 + Lnp · n2
)
runtime, where nc

and np are the number of child and parent variables respectively, L is the largest cardinality
of variables in X’s Markov blanket, and ns = maxj | paCj

|. The n2 factor in the runtime
comes from the fact that both xu and xv have to run over all possible values of X, which
has n instantiations.

The optimization problem over Equation 10 can now be solved. The dynamic program-
ming procedure is shown in Algorithm 1. It takes three inputs: X, the continuous variable;
D, the joint data instances over all variables sorted in ascending order according to DX ; and
G, the network structure. The runtime of Algorithm 1 is also O

(
nc · L

ns · n2 + Lnp · n2
)

because the runtime of the dynamic programming procedure is less than the runtime for
computing h(u, v). As will be discussed in Section 6, the MDL discretization method has a
runtime of O

(
n3 + (nc · L

ns + Lnp) · n2
)
, which includes an extra O

(
n3
)
term. The Bayesian

discretization method is quadratic in the sample count n, whereas the MDL discretization
method is cubic.

Algorithm 1 is guaranteed to be optimal. For faster methods with suboptimal results,
see Boullé (2006).

4. Multi-variable Discretization

The single-variable discretization method can be extended to Bayesian networks with mul-
tiple continuous variables by iteratively discretizing individual variables. The discretization
process for a single variable requires that all other variables be discrete. The iterative ap-
proach uses an initial discretization policy in order to start the process which assigns k
equal-width intervals to each continuous variable, where k is the largest number of intervals
of initially discrete variables in the network.

After the initial discretization, the one-variable discretization method is iteratively ap-
plied over each continuous variable in reverse topological order, from the leaves to the root.
Reverse topological order has the advantage of relying on fewer initial discretizations of the
continuous variables during the first pass. For example, in the network of Figure 2, if S2

is the only discrete variable, then the discretization of P1 involves both P2 and X, whereas
the discretization of C1 only involves X.

The algorithm is terminated when the number of discretization intervals and their as-
sociated edges converge for all variables, and a maximum number of complete passes is
enforced to prevent infinite iterations when convergence does not occur. The algorithm
typically converges within a few passes when tested on real-world data.
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Algorithm 1 Discretization of one continuous variable in a Bayesian network

function DiscretizeOne(D, G, X)
H ← an n× n matrix such that H[u, v] = h(u, v); can be precomputed
L← the largest cardinality over all discrete variables in the Markov blanket of X
S[i]← the optimal objective value computed over samples 1 to si

5: Λ[i]← the discretization policy for the subproblem over samples 1 to si

W [i]← − ln
[

1− exp
(

−L ·
xsi+1−xsi

um−u1

)]

for i ∈ [1,m− 1] and W [m]← 0

for v ← 1 to m do

if v = 1 then

S[v]← H(1, sv) + L[v]
10: Λ[v]← {(uv +uv+1)/2}

else

Ŝ, û←∞, 0
DiscEdge←∞
for u← 1 to v do

15: if u = v then

S̃ ←W [v] +H(1, sv) + L · uv−u1
um−u1

else

S̃ ←W [v] +H(su + 1, sv) + L · uv−uu+1

um−u1
+ S[u]

if S̃ < Ŝ then

20: Ŝ, û← S̃, u
DiscEdge← (xsu +xsu+1)/2

S[v]← Ŝ
Λ[v]← Λ[û] ∪ {DiscEdge}

return Λ[m]
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C1 C2

X S2

P1 P2

Figure 2: An example network.

The pseudocode for the multi-variable discretization procedure is shown in Algorithm 2.
It requires four inputs: D, a dataset of samples from the joint distribution; G, the fixed
network structure; X, the set of all continuous variables in reverse topological order, and
n̂cycle, an upper bound on the number of complete passes.

Algorithm 2 Discretization of multiple continuous variables

function DiscretizeAll(D, G, X, n̂cycle)
ΛX ← the discretization policies for each X in X

D∗ ← the dataset D discretized according to ΛX

k ←Max({|X| s.t. X does not have corresponding X in X})
5: for (X, X) such that X ∈X and X is the discretized version of X do

ΛX ← equal-width discretization of X with k intervals
D∗

X ← ΛX(DX)

ncycle ← 0
while ΛX has not converged and ncycle ≤ n̂cycle do

10: increment ncycle

for (X, X) such that X ∈X do

D∗
X ← DX

ΛX ← DiscretizeOne(D∗, G,X)
D∗

X ← ΛX(DX)

15: return ΛX

5. Combining Discretization with Structure Learning

It is often necessary to infer the structure of a Bayesian network from data. Three common
approaches to Bayesian network structure learning are constraint-based, score-based, and
Bayesian model averaging (Koller & Friedman, 2009). This work uses the K2 structure
learning algorithm (Cooper & Herskovits, 1992), a frequently used score-based structure
learning method. Score-based structure learning methods over discrete variables commonly
evaluate candidate structures according to their likelihood against a dataset D. In practice,
one maximizes the log-likelihood, also known as the Bayesian score, lnP (G | D) (Cooper
& Herskovits, 1992).
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For a Bayesian network over N discrete and discretized variables X1:N , ri represents
the number of instantiations of Xi, and qi represents the number of instantiations of the
parents of Xi. If Xi has no parents, then qi = 1. The Bayesian score is:

lnP (G | D) = lnP (G) +

N∑

i=1

qi∑

j=1

ln




Γ
(

α
(0)
ij

)

Γ
(

α
(0)
ij + β

(0)
ij

)



+

ri∑

k=1

ln




Γ
(

α
(k)
ij + β

(k)
ij

)

Γ
(

α
(k)
ij

)



, (12)

where Γ is the gamma function, α
(k)
ij is a Dirichlet parameter and β

(k)
ij is the observed

sample count for the kth instantiation of Xi and the jth instantiation of paXi
. In the

equation above,

α
(0)
ij =

ri∑

k=1

α
(k)
ij β

(0)
ij =

ri∑

k=1

β
(k)
ij . (13)

The space of acyclic graphs is superexponential in the number of nodes; it is common to
rely on heuristic search strategies (Koller & Friedman, 2009). The K2 algorithm assumes
a given topological ordering of variables and greedily adds parents to nodes to maximally
increase the Bayesian score. A fixed ordering ensures acyclicity but does not guarantee
a globally optimal network structure. K2 is typically run multiple times with different
topological orderings, and the network with the highest likelihood is retained.

Traditional Bayesian structure learning algorithms require discretized data, whereas the
proposed discretization algorithm requires a known network structure. The discretization
methods can be combined with the K2 structure learning algorithm (Cooper & Herskovits,
1992) to simultaneously perform Bayesian structure learning and discretization of continu-
ous variables.

The proposed algorithm alternates between K2 structure learning and discretization.
The dataset is initially discretized as was described in Section 4, and K2 is run to obtain an
initial network structure. The affected continuous variables are rediscretized every time an
edge is added by K2. The resulting discretization policies are used to update the discretized
dataset, and the next step of the K2 algorithm is executed. This cycle is repeated until the
K2 algorithm converges.

This procedure is given in Algorithm 3, and takes five inputs: D, a dataset of samples
from the joint distribution; X, the set of all continuous variables; order, a permutation of
the variables in D; n̂parent, an upper bound on the number of parents per node; and n̂cycle,
an upper bound on the number of complete passes. The upper bound on the number of
parents is common practice, and is used to prevent computing conditional distributions with
excessively large parameter sets. The function g in Algorithm 3 computes a component of
the Bayesian score (Equation 12):

g
(
Xi, paXi

)
=

qi∑

j=1

ln




Γ
(

α
(0)
ij

)

Γ
(

α
(0)
ij + β

(0)
ij

)



+

ri∑

k=1

ln




Γ
(

α
(k)
ij + β

(k)
ij

)

Γ
(

α
(k)
ij

)



. (14)

It is common practice to run K2 multiple times with different variable permutations and
to then choose the structure with the highest score. As such, Algorithm 3 is run multiple
times with different variable permutations and the discretized Bayesian network with the
highest score is retained.
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Algorithm 3 Learning a discrete-valued Bayesian network

function LearnDVBN(D, X, order, n̂parent, n̂cycle)
N ← the number of variables in the Bayesian network
k ←Max{‖v‖, v /∈ C}
ΛX ← the discretization policies for each X in X

5: D∗ ← the dataset D discretized according to ΛX

G← the initially edgeless graph structure
for (X, X) such that X ∈X and X is the discretized version of X do

ΛX ← equal-width discretization of X with k intervals
D∗

X ← ΛX(DX)

10: for i← 1 to N do

Pold ← g(Xi, paXi
) (Equation 14)

OKToProceed ← true

while OKToProceed and ‖ paXi
‖ < n̂parent do

Y ← an element from the set order[1 : i]\(paX)
15: Pnew ←

(
g(Xi, paXi

)
∪ (Y ))

if Pnew > Pold then

Pold ← Pnew

paXi
←
(
paXi

)
∪ (Y )

X
′ ← X sorted in reverse-topological order given G

20: Λ← DiscretizeAll(D, G, X′, n̂cycle) (see Algorithm 2)
D∗ ← Λ(DX)

else

OKToProceed ← false

return G, Λ
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6. Experiments

This section describes experiments conducted to evaluate the Bayesian discretization method.
All experiments were run on datasets from the publicly available University of California,
Irvine machine learning repository (Lichman, 2013). Variables are labeled alphabetically
in the order given on the dataset information webpage. In the figures that follow, shaded
nodes correspond to initially discrete variables and the subscripts indicate the number of
discrete instantiations.

Two experiments were conducted on each dataset. The first experiment compares the
performance of the Bayesian and MDL discretization methods on a known Bayesian net-
work structure. The structure was obtained by discretizing each continuous variable into
k uniform-width intervals, where k is the median number of instantiations of the discrete
variables, and using the structure with the highest Bayesian score from 1000 runs of the K2
algorithm with random topological orderings. The second experiment compares the same
methods applied when simultaneously discretizing and learning network structure.

The discretizations are compared using the mean cross validated log-likelihood of the
data D given the Bayesian network B and discretization policies ΛX. Note that all log-
likelihoods shown have been normalized by the number of data samples. The log-likelihood
has two components,

ln p(D | B,ΛX) = lnP (D∗ | B) + ln p(D | ΛX, D∗), (15)

where D is the original test dataset and D∗ is the test dataset discretized according to ΛX.

The log-likelihood of the discretized dataset given the Bayesian network is

P (D∗ | B) =
N∏

i=1

qi∏

j=1

ri∏

k=1

(

α
(k)
ij + β

(k)
ij

α
(0)
ij + β

(0)
ij

)β
∗(k)
ij

, (16)

where α and β are the Dirichlet prior counts and observed counts in the training set for
B, and β∗ is the set of observed counts in the test set D∗. All experiments used a uniform
Dirichlet prior of αijk = 1 for all i, j, and k.

The log-likelihood of the original dataset given the discrete dataset is

ln p(D | ΛX, D∗) =

N∑

i=1

1{Xi∈X} ·
ri∑

k=1

qi∑

j=1

β
∗(k)
ij ln




1

e
ΛXi

k − e
ΛXi

k−1



. (17)

Note that e
ΛXi

0 = Min(DXi
) and e

ΛXi
ri = Max(DXi

). The mean cross-validated log-likelihood
is the mean log-likelihood on the witheld dataset among cross-validation folds, and acts as
an estimate of generalization error. Ten folds were used in each experiment.

The method for computing the MDL discretization policy is similar to the method for
the Bayesian method. For a Bayesian network with a single continuous variable X, the
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MDL objective function is

1

2
ln(n)
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∑
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I(Xj , paXj
)




 ,

(18)

where I(A,B) is the mutual information between two discrete variable sets A and B,
H(p) = −p ln(p)− (1− p) ln(1− p), and X is the discretized version of X.

The global minimum of Equation 18 can be found using dynamic programming. For a
given Bayesian network, the first three terms only depend on the number of discretization in-
tervals |X| and the fourth term is cumulative over the intervals. Hence, if Λ = 〈γ1, γ2, . . . , γk〉
is an MDL optimal discretization policy with k intervals, then Λ′ = 〈γ1, γ2, . . . , γk−1〉 is an
MDL optimal discretization policy for the corresponding subproblem with k − 1 intervals.
This procedure takes runtime O

(
n3 + (nc · L

ns + Lnp) · n2
)
. All variables are defined in

Section 3.2. Therefore, the runtime of the proposed method in this paper is less than the
MDL discretization method by O

(
n3
)
, since the former has a more efficient form of dynam-

ical programming. There also exist faster methods of MDL discretization, but they lead to
suboptimal results (Friedman & Goldszmidt, 1996).

Note that the preliminary discretization and the discretization order of variables can
be arbitrary for the MDL discretization method, as stated in the original work (Fried-
man & Goldszmidt, 1996). In order to make a fair comparison between the Bayesian and
MDL method, the preliminary discretization and the discretization order follows the same
procedure as in Section 4.

6.1 Dataset 1: Auto MPG

The Auto MPG dataset contains variables related to the fuel consumption of automobiles
in urban driving. The dataset has 392 samples over eight variables, not including six
instances with missing data. Three variables are discrete: B, G, and H, with 5, 13, and 3
instantiations respectively.

6.1.1 Discretization with Fixed Structure

The Bayesian and MDL discretization methods were tested on the Auto MPG data using
the network shown in Figure 3. This structure was obtained by initially discretizing each
continuous variable into five uniform-width intervals, where five is the median cardinality
of the discrete variables, and then taking the structure with highest likelihood from 1000
runs of K2.

Table 3 lists the discretization edges and mean log-likelihoods under 10-fold cross vali-
dation of the discrete Bayesian network resulting from the two discretization methods. The
MDL method does not produce any discretization edges, assigning one continuous interval
to each continuous variable, and produces the result with the lower likelihood. The reason
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E
D

F
A G(13)

H(3)

Figure 3: Bayesian network structure obtained from running K2 on the initially uniformly discretized
Auto MPG dataset.

why MDL produces fewer discretization edges is discussed in Section 6.5. Two examples
that MDL produces comparable results to the Bayesian method are given in Appendix B.

Table 3: Discretization result of the Auto MPG dataset with fixed structure from Figure 3. The first
five rows list the discretization edges and the last row lists the mean cross-validated log-likelihood;
positive values are better.

Variable Bayesian MDL

A 15.25, 17.65, 20.90, 25.65, 28.90 -
C 70.5, 93.5, 109.0, 159.5, 259.0, 284.5 -
D 71.5, 99.0, 127.0 -
E 2115, 2481, 2960, 3658 -
F 12.35, 13.75, 16.05, 22.85 -

Log-Likelihood −26.04 −30.40

Figure 4 shows the marginal probability density for variables A and C under the Bayesian
discretization policy overlaid with the original Auto MPG data. The resulting probability
density is a good match to the original data.

6.1.2 Discretization while Learning Structure

In this experiment, the network structure was not fixed in advance and was learned si-
multaneously with the discretization policies. Figure 5 shows a learned Bayesian network
structure and the corresponding numbers of intervals after discretization for each continuous
variable. This result was obtained by running Algorithm 3 fifty times using the Bayesian
method and choosing the structure with the highest K2 score (Equation 12).

Figure 6 compares the Bayesian discretizaton policy for variables A and C in the learned
network with the original Auto MPG data. The color of a discretized region indicates
the marginal probability density of a sample from P (A,C) being drawn from that region.
Although there are fewer discretization edges for A and C in the learned network, the
marginal distribution is still captured. The discretization policy will vary as the network
structure changes, and it still produces high-quality discretizations.
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Figure 4: Comparison of the Bayesian discretization policy for variables A and C to the original
Auto MPG data learned with a fixed network. The marginal probability density closely matches the
data.
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C(6)

E(4)

D(2)

H(3)

F(2)

A(3)

G(13)

Figure 5: The discrete-valued Bayesian network learned from the Auto MPG dataset using the
Bayesian method.

6.2 Dataset 2: Wine

The Wine dataset contains variables related to the chemical analysis of wines from three
different Italian cultivars. The dataset has 178 samples over fourteen variables. Variable A
is the only discrete variable and has three instantiations.

6.2.1 Discretization with Fixed Structure

The Bayesian and MDL discretization methods were tested on the Wine data using the
network shown in Figure 7. This structure was obtained by initially discretizing each
continuous variable into three uniform-width intervals, where three is the median cardinality
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Figure 6: Comparison of the Bayesian discretization policy for variables A and C to the original Auto
MPG data learned simultaneously with the network structure. Although the number of discretization
edges is less than those in Figure 4, the probability distribution still closely matches the original
data.

of the discrete variables, and then taking the structure with highest likelihood from 1000
runs of K2.

Table 4 lists the discretization edges and mean log-likelihoods under 10-fold cross val-
idation of the Bayesian network resulting from each discretization method. The Bayesian
method outperforms the MDL method in likelihood by a significant margin. The MDL
method creates significantly fewer discretization edges.

Some discretization edges appear in both discretization methods, such as 1.42 and 2.35
for variable C and 0.785 for variable L. MDL can find some important discretization edges,
but it is not sensitive to find more edges. Actually, as shown later in Section 6.5, while the
MDL and Bayesian methods both produce the optimal discretization as the training data
grows, the Bayesian method can produce these discretizations with fewer data samples.

H

A(3)G

M NLKD

I

E F

J

B C

Figure 7: Bayesian network structure obtained from running K2 on the initially uniformly discretized
Wine dataset.

Figure 8 compares the Bayesian and MDL discretizaton policies for variables E and K
with the original Wine data. The discretization edges 17.9 for E and 34.6 for K appear
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Table 4: Results from discretization of the Wine MPG dataset with fixed structure. Bold discretiza-
tion edges were identified by both methods.

Variable Bayesian MDL

B 12.745, 13.54 12.78
C 1.42, 2.235 1.42, 2.235
D 2.03, 2.605, 3.07 -
E 17.9, 23.25 17.9

F 88.5, 135.0 -
G 2.105, 2.58, 3.01 -
H 0.975, 1.885, 2.31, 3.355 -
I 0.395 0.395

J 1.185, 1.655 -
K 3.46, 4.85, 7.4 3.46, 7.55
L 0.785, 1.005, 1.295 0.785

M 2.475 2.115, 2.505
N 476.0, 716.0, 900.5 -

Log-Likelihood −19.94 −23.60

in both plots. The MDL method does not use enough intervals for discretization. Relative
sensitivities of each method to the input data is discussed in Section 6.5.
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Figure 8: Comparison of the discretization policies for variables E andK obtained using the Bayesian
and MDL methods.

6.2.2 Discretization while Learning Structure

Figure 9 is the discrete-valued Bayesian network learned from the Wine dataset, obtained
by running Algorithm 3 fifty times. A comparison of Figures 9 and 7 show that the Bayesian
network learned during the discretization process has more edges than the network learned
on the initially discretized data. When a network is learned along with discretization, the
algorithm has more freedom to adjust the structure and the discretization policy simulta-
neously to identify useful correlations and produce a denser structure.

Figure 10 shows the discretization policy for variables E and K obtained with the
Bayesian method. The discretization edge E = 17.9 also appears in both discretization
policies from the fixed network (Figure 8). This suggests that discretization edges can be

120



Learning Discrete Bayesian Networks from Continuous Data

robust against network structure. Furthermore, the discretization edge at E = 23.5 in the
fixed-structure case is missing in the learned structure. This is caused by E having twice as
many parents in the learned network structure. The more parents a variable has, the fewer
discretization intervals it can to support, as the number of sufficient statistics required to
define the resulting distribution increases exponentially with the number of parents.
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E(2)H(5)
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M(3)

A(3)

K(4)F(2)

Figure 9: The discrete-valued Bayesian network learned from the Wine dataset using the Bayesian
method.
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Figure 10: The discretization policy for variables E andK on the learned network. The discretization
edge E = 17.9 also appears in the policies for the fixed network.

6.3 Dataset 3: Housing

The Housing dataset contains variables related to the values of houses in Boston suburbs.
The dataset has 506 samples over fourteen variables. Only variables D and I are discrete-

121



Chen, Wheeler, & Kochenderfer

Table 5: Discretization policy summary of the Housing dataset based on the fixed network structure
shown. The first twelve rows show the numbers of discretization intervals and the last row is the
mean cross-validated log-likelihood.

Variable Bayesian MDL

A 3 1
B 4 1
C 8 1
E 14 1
F 4 1
G 3 1
H 6 1
J 8 1
K 5 7
L 4 1
M 6 1
N 6 1

Log-Likelihood −31.40 −43.20

valued, with 2 and 9 instantiations, respectively. Despite their being continuous, several
variables in the Housing dataset possess many repeated values. The following experiments
were conducted with a maximum of three parents per variable to prevent running out of
memory when running MDL.

6.3.1 Discretization with Fixed Structure

The Bayesian network structure in Figure 11 was obtained by initially discretizing each
continuous variable into five uniform-width intervals and then running the K2 algorithm
1000 times and choosing the network with the highest likelihood. Table 5 shows the numbers
of interval after discretization for each continuous variable and the log-likelihood of the
dataset based on each discretization method. The MDL method does not produce any
discretization edges for most variables. The relative weighting of each method’s objective
function will be discussed in Section 6.5.

E D(2)

B

I(9)

J

L
K

C

HG

M

N A

F

Figure 11: Bayesian network structure obtained from running K2 on the initially uniformly dis-
cretized Housing dataset.
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Figures 12 and 13 show the discretization policy learned using the Bayesian approach on
the fixed network shown in Figure 11. The scatter points in Figure 12 were jittered to show
the quantity of repeated values for variables C and E. Each repeated point forms a single
discrete region, thereby encouraging discretization. In contrast, the samples for H are well
spread out, resulting in fewer discretization regions and larger discretization intervals.
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Figure 12: The discretization policies for variables C and E learned using the Bayesian approach
on the fixed network. The scatter points were jittered to reveal the repeated values in the dataset.
Values perfectly repeated in C and E lead to high correlation and concentrated densities in the
marginal distribution.

6.3.2 Discretization while Learning Structure

Figure 14 shows a learned Bayesian network structure and the corresponding numbers of
intervals after discretization for each continuous variable. Variable D is neighborless in
both the learned and fixed networks. The continuous variables C, E, J and K, which are
all connected through C, have many discretization intervals. Typically, when discretizing a
variable, the expected number of discretization intervals is close to the highest cardinality
among variables in its Markov blanket. This naturally leads to clusters of variables with
many discretization intervals.

Figures 15 and 16 show the discretization result for variables in the network shown in
Figure 14. Again, variable C and E have many discretization edges due to repeated values.
Although the number of intervals after discretization on H is less the number in Figure 13,
it still captures the distribution of the raw data along with the discretization edges for E.
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Figure 13: The discretization policies for variables H and E learned using the optimal Bayesian
approach on the fixed network shown in Figure 11. The values for variable H are not as repeated,
thus producing fewer discretization intervals than E.
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Figure 14: The discrete-valued Bayesian network learned from the Housing dataset using the optimal
Bayesian method.
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Figure 15: The discretization policy for variables C and E on the learned network in Figure 14.
The large number of discretization edges are due to repeated values in C and E. The two regions
at (C,E) = (3.9, 0.65) and (6.8, 0.44) are color-saturated due to the high concentration of repeated
values.
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Figure 16: The discretization policy for variables H and E on the learned network in Figure 14.
There are fewer discretization intervals for H than for the fixed network structure in Figure 13, but
the discretization result still closely models the raw data.

6.4 Results on Additional Datasets

Six additional datasets (Lichman, 2013) are tested to compare the Bayesian and MDL
discretization methods. The results are summarized in Table 6. Each row corresponds
to a dataset and provides the number of samples n, the number of variables N , the fixed
network structure, and the log-likelihood for each method. Fixed network structures are
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obtained by the same principle as with the previous three datasets and are represented
by listing the parents for each variable. For example, in the first row, the representation
{∅, A,BE,AB,B,AH,BDG,B} indicates that paA = ∅, paB = A, pac = {B,E}, etc. The
Bayesian discretization method has higher mean cross-validated log likelihood in all cases.

Table 6: Discretization results for several datasets, summarizing the number of samples, number
of variables, network structure, and mean cross-validated log-likelihood under each discretization
method. The Bayesian method consistently has higher likelihood.

Name n N Network Bayesian MDL

Seeds 210 8 {∅, A,BE,AB,B,AH,BDG,B} −2.35 −5.71
Glasses 214 10 {F,EFH,FGH,AFH,AF, ∅, AF, F, ∅, ∅} −1.62 −7.75
Heart 270 13 {H,M, J,EF, ∅, ∅, J, IK,C, ∅, IJ,A, I} −25.81 −26.91
Liver Disorder 345 7 {∅, EF, ∅, CE,C,CD,D} −23.73 −26.57
Indian Liver Patient 583 10 {DEFI,E, ∅, ∅, DG, ∅, F, CGIJ,DEJ, ∅, ∅} −34.89 −40.53
Banknote Authority 1372 5 {BD,D,AB, ∅, AD} −8.99 −12.13

Finding optimal discretization policies according to Equation 10 via dynamic program-
ming requires computation times on the order of days on a personal laptop on datasets
with more than 100 variables. The runtime for the MDL approach is significantly worse.
Approximation approaches are reasonable options for such large datasets, for example a
greedy heuristic (Friedman & Goldszmidt, 1996). Approximations can also be applied dur-
ing dynamic programming when solving Equation 10 (Boullé, 2006).

6.5 Discussion

X

P1 P2

Figure 17: A simple Bayesian network used to demonstrate the sensitivity of each method.

To qualitatively assess the sensitivity of each method to the number and position of dis-
cretization intervals, consider the Bayesian network in Figure 17, where X is continuous and
P1 and P2 are discrete. If paX = {P1, P2} and DX = {1, 2, 3, . . . n}, then the corresponding
objective functions for the discretization methods are:

fMDL =

Penalty Term
︷ ︸︸ ︷

Z1 · k + ln(k) + ln

(
n+ k − 1

k − 1

)

+

Edge Position Term
︷ ︸︸ ︷

n · I(X∗, paX)

fBayesian = Z2 · k +

k∑

i=1

ln

(
γi + JP − 1

JP − 1

)

︸ ︷︷ ︸

Penalty Term

+

k∑

i=1

ln

(

γi!

nP
i,1!n

P
i,2! · · ·n

P
i,JP

!

)

︸ ︷︷ ︸

Edge Position Term

(19)

Here, Z1 and Z2 are constant over discretizations, k is the number of discretization

intervals, and I(A,B) =
∑

a,b P̂ (a, b) ln P̂ (a,b)

P̂ (a)P̂ (b)
is the mutual information based on esti-

126



Learning Discrete Bayesian Networks from Continuous Data

mated probabilities. Note that the third term of fMDL was approximated using H(p) (see
Equation 18) in the original work by Friedman and Goldszmidt (1996), but it is written
here without that approximation.

The penalty terms tend to increase with the number of discretization intervals; the edge
position terms vary with the position and number of the discretization edges. A policy
with a larger number of discretization edges is only optimal if the edge position term varies
enough with respect to the penalty term in order to produce a local minimum of sufficiently
low value.

The value of the edge position term for MDL is primarily determined by the mutual
information, which varies less severely than the corresponding terms in the Bayesian method.
The MDL term uses empirical probability distributions based off of ratios of counts, whereas
the Bayesian method uses factorial terms, and thus the MDL method varies less. The MDL
method is therefore less sensitive to the discretization edges. This sensitivity gives rise to
the relative performance of the two methods in the experiments conducted above.

To support this argument, we test a synthetic dataset with 800 samples using the network
structure in Figure 17. Data samples are generated by the distribution described in Table 7:
both P1 and P2 are fair coins. The continuous variable X is conditionally dependent on P1

and P2. Note that the symbol ∼ U [a, b] in Table 7 represents a uniform distribution from
a to b. The optimal discretization policy on X has six edges, {2.0, 3.0, 4.0, 4.5, 5.0, 6.0},
since X takes numeric values from 1.0 to 7.5 and there are seven intervals corresponding to
different joint distributions of P1 and P2.

Table 7: Probability distributions for the variables in Figure 17. P1 and P2 are discrete whereas X
is continuous.

Variable Distribution

P1
P (p

(1)
1 ) = 0.5

P (p
(2)
1 ) = 0.5

P2
P (p

(1)
2 ) = 0.5

P (p
(2)
2 ) = 0.5

X

p(x | p
(1)
1 , p

(1)
2 ) ∼ U [2, 6]

p(x | p
(1)
1 , p

(2)
2 ) ∼ U [1, 3]

p(x | p
(2)
1 , p

(1)
2 ) ∼ U [4, 5]

p(x | p
(2)
1 , p

(2)
2 ) ∼ U [4.5, 7.5]

Figure 18 shows how the test likelihood and the number of discretization edges for X

vary with respect to the number of training samples. A dataset of 800 samples is drawn
from the synthetic distribution. The size of the subset used for training is varied, and the
remaining samples are used as the test set. When the training set is small, it is difficult
to recognize the underlying pattern and discretize the continuous variable X accordingly.
In this case, both the likelihood of the training data and number of discretization edges
are small. However, the Bayesian method is more sensitive to variation in the data and
produces a distribution both with higher likelihood and more discretization edges. As the
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Figure 18: The average test log-likelihood and the average number of discretization edges for X as
the number of training samples is varied. The complete dataset size is fixed at 800 samples, drawn
randomly from the synthetic distribution. The size of the subset used for training is varied, and the
remaining samples are used as the test set.

size of the training set grows, both methods converge towards the optimal discretization
policy. The Bayesian method finds the six discretization edges faster than the MDL method
and consistently outperforms in likelihood. The curves in Figure 18 demonstrate that the
Bayesian method is indeed more sensitive to the dataset than the MDL method. The results
in Figure 18 are averaged over one hundred trials.

7. Conclusion

This paper introduced a principled discretization method for continuous variables in Bayesian
networks with quadratic complexity instead of the cubic complexity of other standard tech-
niques. Empirical demonstrations show that the proposed method is superior to the state
of the art. In addition, this paper shows how to incorporate existing methods into the
structure learning process to discretize all continuous variables and simultaneously learn
Bayesian network structures. The proposed method was incorporated and its superior
performance was empirically demonstrated. Future work will investigate edge positions
at locations other than the midpoints between samples and will extend the approach to
cluster categorical variables with very many levels. All software is publicly available at
github.com/sisl/LearnDiscreteBayesNets.jl.

Appendix A.

This section illustrates the advantage of structure-aware discretization methods over marginal
discretization methods (Scott, 1979; Freedman & Diaconis, 1981; Knuth, 2013; Scargle
et al., 2013). Marginal discretization methods ignore intervariable dependencies and can
thus lead to suboptimal discretizations for the joint distribution. Consider a synthetic
dataset with two variables, discrete A and continuous B, with 500 data samples sampled
from the Bayesian network A → B described in Table 8. Following the experiment pro-
cedure in Section 6, both the MDL method and the proposed Bayesian approach find the
true discretization edge for B near 1.0 and have log likelihood −0.023. They recover the
discretization shown in Figure 19. The Bayesian Blocks method (Scargle et al., 2013), as
with any marginal method, cannot distinguish between the different conditional distribu-
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Variable Distribution

A
P (a1) = 0.5
P (a2) = 0.5

B
p(b | A = a1) ∼ U [0, 1]
p(b | A = a2) ∼ U [1, 2]

Table 8: Probability distributions for A → B, in which A is discrete and B is continuous. The
marginal distribution for B is U [0, 2].

tions and thus does not locate a discretization edge. The resulting log likelihood is worse,
at −0.69. This example shows that structure-aware discretization methods can leverage
additional information and thus produce better joint representations.
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Figure 19: The resulting conditional probability distribution for B. Marginal methods see one
uniform distribution.

Appendix B.

This section gives two examples of Bayesian networks where MDL produces comparable
results to the Bayesian method. The first example used the Auto MPG dataset. Instead of
testing on the network obtained using initially uniform discretization and structure learning,
the tested network is obtained by Algorithm 3, which can be considered better-structured
than the network in Figure 3. The second example is on the Iris dataset (Lichman, 2013). In
the work of Friedman and Goldszmidt (1996), the Iris dataset was tested on the naive Bayes
network structure and the prediction accuracy was shown. The same test is reproduced
below to compare the Bayesian method to the MDL discretization method.
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B.1 Auto MPG with Comparable MDL Performance

The Bayesian network structure in Figure 20 and the discretization results in Table 9
demonstrate that the MDL method does not always produce fewer discretization intervals
than the Bayesian approach and that the MDL method can produce discretization policies
with comparable likelihood. The Bayesian network in Figure 20 was obtained by running
Algorithm 3 fifty times on the Auto MPG dataset with a maximum of two parents per
variable. The network is structured more favorably with regards to discretization than
the network in Figure 3, as the discretization policies were simultaneously learned with
the network structure, resulting in higher data likelihood. Many edges appear in both
discretization results and are bolded in Table 9.

B(5) CED

F

A

G(13)

H(3)

Figure 20: A Bayesian network structure for the Auto MPG dataset that leads to comparable
discretization policies for the MDL and Bayesian methods.

Table 9: The discretization policies for the Auto MPG dataset with the fixed structure shown in
Figure 20. The methods have the same discretization for variable A, and the log-likelihood for the
Bayesian method is only slightly better than that for the MDL method.

Variable Bayesian MDL

A 17.65, 22.75 17.65, 22.75
C 70.5, 159.5, 259.0, 284.5 159.5, 259.0
D 99.0, 127.0 84.5, 99.0, 123.5
E 2764.5, 3030.0, 3657.5 -
F 14.05 -

Log-Likelihood −25.94 −26.83

B.2 Reproducing MDL Results from the Literature

The Iris dataset contains variables related to the morphologic variation of three Iris flower
species. The dataset has 150 samples over five variables. Only variables E is discrete-valued,
and corresponds to the species category. The following experiment was conducted on the
naive Bayes structure: variable E is the parent of variable A, B, C, and D. Table 10 shows
the discretization edges, the prediction accuracy of the learned classifiers, and the mean
log-likelihood. The discretization policy shown is for running the algorithms on the full
dataset; the likelihood and prediction accuracies were found with 10-fold cross validation.
The MDL discretization method and the Bayesian method have the same discretization
result: all discretization edges coincide. In addition, both methods have 94% accuracy,
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which matches the number in the literature (Friedman & Goldszmidt, 1996). The Bayesian
method likelihood is slightly higher across folds than the MDL method likelihood.

Table 10: The discretization policies for the Iris dataset with the naive Bayes structure. The two
methods produce the same discretization policy on each continuous variable and have nearly identical
10-fold prediction accuracy and log-likelihood.

Variable Bayesian MDL

A 5.45, 6.15 5.45, 6.15
B 2.95, 3.35 2.95, 3.35
C 2.45, 4.75 2.45, 4.75
D 0.8, 1.75 0.8, 1.75

Prediction Accuracy 0.94 0.94

Log-Likelihood −2.25 −2.50
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