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Abstract—In this paper, a novel algorithm for finding discrimi-
nant person-specific facial models is proposed and tested for frontal
face verification. The most discriminant features of a person’s face
are found and a deformable model is placed in the spatial coor-
dinates that correspond to these discriminant features. The dis-
criminant deformable models, for verifying the person’s identity,
that are learned through this procedure are elastic graphs that
are dense in the facial areas considered discriminant for a specific
person and sparse in other less significant facial areas. The dis-
criminant graphs are enhanced by a discriminant feature selection
method for the graph nodes in order to find the most discriminant
jet features. The proposed approach significantly enhances the per-
formance of elastic graph matching in frontal face verification.

Index Terms—Elastic graph matching, expandable graphs,
frontal face verification, linear discriminant analysis.

I. INTRODUCTION

A
well-known technique for face recognition and verifica-

tion is the elastic graph matching (EGM) algorithm [1].

In EGM, a reference object graph is created by overlaying a

rectangular elastic sparse graph on the object image and then

calculating a Gabor wavelet bank response at each graph node.

The graph matching process is implemented by a stochastic op-

timization of a cost function which takes into account both jet

similarities and grid deformations. A two-stage coarse-to-fine

optimization procedure suffices for the minimization of such a

cost function.

Since its invention, EGM for face verification and recognition

has been a very active research field [2]–[11]. In [2], it has been

shown that EGM outperforms eigenfaces and autoassociation

classification neural networks for face recognition. In [3], the

graph structure has been enhanced by introducing a stack-like

structure, the so-called bunch graph, and has been tested for face

recognition. For every node in the bunch graph structure, a set

of jets has been measured for different instances of a face (e.g.,
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with opened or closed mouth, eyes opened or shut). This way,

the bunch graph representation could cover a variety of possible

changes in the appearance of a face. In [4], the bunch graph

structure has been used for determining facial characteristics,

such as a beard or the presence of glasses, or a even a person’s

sex.

In [6], EGM has been proposed and tested for frontal face

verification, and different choices for the elasticity of the graph

have been investigated. A variant of the standard EGM, the

so-called morphological elastic graph matching (MEGM), has

been proposed for frontal face verification and tested for var-

ious recording conditions [7]–[9]. In MEGM, the Gabor fea-

tures have been replaced by multiscale morphological features

obtained through dilation-erosion of the facial image using a

structuring function [12]. In [7] and [9], the standard coarse to

fine approach [6] for EGM has been replaced by a simulated

annealing method that optimizes a cost function of the jet sim-

ilarity measures subject to node deformation constraints. The

multiscale morphological analysis has proven to be suitable for

facial image analysis and MEGM has given better verification

results than the standard EGM approach, without having to com-

pute the computationally expensive Gabor filter bank output.

Another variant of EGM has been presented in [10], where mor-

phological signal decomposition has been used instead of the

standard Gabor analysis [6].

Discriminant techniques have been employed in order to en-

hance the recognition and verification performance of the EGM.

The use of linear discriminating techniques at the feature vectors

for selecting the most discriminating features has been proposed

in [6], [7], and [9]. Several schemes that aim at weighting the

graph nodes according to their discriminatory power have also

been proposed in [7], [9], [11], and [13].

Little or no research has been conducted concerning the type

of graphs that are more appropriate for face recognition/verifica-

tion. The sparse graph that has been used for face representation

in the literature is:

• either an evenly distributed graph placed over a rectangular

image region [6], [7], [9], [10], [13];

• or a graph that is placed on preselected nodes that corre-

spond to some fiducial facial points (e.g., nose, eyes, etc.)

[3], [4].

Intuitively, one may think that graphs with nodes placed at spec-

ified fiducial points may perform better than the rectangular

graphs. However, such graphs are more difficult to be applied

automatically, since they require a detection module to find the

precise coordinates of the facial features in the reference im-

ages or, in many cases, manual feature selection [3] is applied.

On the contrary, an evenly distributed rectangular graph is easier

to handle automatically, since only a face detection algorithm is

1556-6013/$25.00 © 2007 IEEE
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Fig. 1. Different types of facial graphs : (a) Rectangular graph. (b) Graph with
nodes at fiducial points.

needed in order to find an initial approximation of the rectan-

gular facial region [6], [7], [9], [10], [13]. Fig. 1 shows the two

different types of facial graphs used in elastic graph-matching

algorithms.

In [4], [6], [7], [9], [11], and [13], the discriminant anal-

ysis has been used for finding either linear discriminant trans-

forms for the feature selection at graph nodes or for discrim-

inant weighting of the local node similarity measures. In this

paper, we extend the use of discriminant analysis for finding the

most discriminant facial features of a person’s face. To do so, we

introduce a discriminant analysis that produces a graph whose

nodes correspond to the discriminant facial points of a person.

In order to find such graphs, we introduce a heuristic cost

optimization algorithm, which has as outcome the graph that

optimizes a preselected discriminant cost. The cost is formed

by calculating the significance of each node using discriminant

values such as the ones proposed in [6]–[8]. We assume that

nodes with high discriminant values correspond to facial points

with high discriminant capability. Then, we try to represent, in

a better way, the corresponding neighborhood by adding more

nodes around the original one. This practically means that we

expand the nodes that are considered to be discriminant. This

way, graphs that are person specific and have nodes placed at

discriminant facial features, are obtained. Moreover, in order to

improve the performance of the new discriminant graphs, we

apply a discriminant feature extraction method at each graph

node which is a variant of the method proposed in [7] and [8].

The proposed algorithm has been applied to frontal face veri-

fication on the XM2VTS data base [14] and the Color FERET

data base [15]–[17], using a modified morphological multiscale

analysis proposed in [18].

Summarizing, the contributions of this paper are as follows.

• The introduction of the use of person-specific graphs

placed on his or her discriminant facial features. These

graphs substitute the rectangular evenly distributed graphs

[7], [8] and the graphs having their nodes manually located

at fiducial points [3].

• A novel heuristic cost optimization algorithm that automat-

ically finds such graphs.

• The application of a two-class (genuine versus impostor

samples) linear discriminant transform at the nodes of the

new graphs for discriminant feature selection.

Moreover, we illustrate the efficiency of our approach in the

frontal face verification problem.

The rest of the paper is organized as follows. In Section II, the

elastic graph matching algorithm is revisited and the problem

is stated. In Section III, the algorithm that is used for learning

person-specific facial models along with the discriminant

analysis of feature vectors are presented. Experimental results

are depicted in Section IV. Finally, conclusions are drawn in

Section V.

II. ELASTIC GRAPH MATCHING REVISITED

In the first step of the EGM algorithm, a sparse graph that is

suitable for face representation is selected [3], [6], [7]. The fa-

cial image region is analyzed and a set of local descriptors is

extracted at each graph node. Analysis is usually performed by

building an information pyramid using scale–space techniques.

In the standard EGM, a 2-D Gabor-based filter bank has been

used for image analysis [1]. The output of multiscale morpho-

logical dilation–erosion operations or the morphological signal

decomposition at several scales are nonlinear alternatives of the

Gabor filters for multiscale analysis and both have been success-

fully used for facial image analysis [7], [9], [10], [18]. At each

graph node that is located at image coordinates , a jet (feature

vector) is formed

(1)

where denotes the output of a local operator applied to the

image at the th scale or at the th pair (scale, orientation) and

is the jet dimensionality. The next step of EGM is to trans-

late and deform the reference graph on the test image in order

to find the correspondences of the reference graph nodes on the

test image. This is accomplished by minimizing a cost function

that employs node jet similarities and, in the same time, pre-

serves the node neighborhood relationships. Let the subscripts

and denote a test and a reference facial image (or graph), re-

spectively. The norm between the feature vectors at the th

graph node of the reference and the test graph is used as a sim-

ilarity measure between jets, i.e.,

(2)

Let be the set of all graph vertices of a certain facial image.

For the rectangular graphs, all nodes, except from the boundary

nodes, have exactly four connected nodes. Let be the four-

connected neighborhood of node . In order to quantify the node

neighborhood relationships using a metric, the local node defor-

mation is used

(3)

The objective is to find a set of vertices in the

test image that minimizes the cost function

(4)

The jet of the th node that has been produced after the matching

procedure of the graph of the reference person in the image of
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the test person , is denoted as . This notation is used due

to the fact that different reference graphs result in different test

jets . Thus, the jet of the th node of the test graph is

a function of the reference graph . The notation is used

only when the th node is in a preselected position of a facial

image.

In [7], the optimization of (4) has been interpreted as a simu-

lated annealing with additional penalties imposed by the graph

deformations. Accordingly, (4) can be simplified to the mini-

mization of

subject to

(5)

where is a global translation of the graph and denotes a

local perturbation of the graph nodes. The choices of in (4)

and in (5) control the rigidity/plasticity of the graph [6],

[7]. After the matching procedure, the distance is used as

a quantitative measure for the similarity of two faces [6]–[8].

It is obvious that the standard EGM algorithm does not use

any information about the facial classes used for verification. In

order to treat this problem of EGM in [7] and [8], linear dis-

criminant techniques have been used for node feature selection

or for node similarity measure weighting.

In this paper, we propose a method that answers to the ques-

tion “which facial points should be taken into consideration in

order to create a graph that is discriminant for a particular ref-

erence person ?”. Then, we create a graph using these fidu-

cial points and use it as a model when an identity claim occurs.

Moreover, we answer to the question “which features of each jet

are discriminant?” by solving the optimization problem in [7]

and [8] by using methods inspired by [19]–[21], for optimizing

the Fisher’s discriminant ratio.

III. FINDING DISCRIMINANT PERSON-SPECIFIC

MODELS USING EXPANDABLE GRAPHS

In Section III-A, we formally define the optimization problem

which produces the discriminant graphs. In Section III-B, we

describe a heuristic algorithm that finds the person-specific dis-

criminant graphs. In Section III-C, the discriminant analysis

used for feature selection at the graph nodes is presented. In the

following, denotes the mean vector of a set of vectors

, and denotes its cardinality. When is a set of scalar

values, their mean will be denoted as and their variance

as .

A. Setting the Optimization Problem

Let and be the sets of the jets of the th node that

correspond to genuine and impostor claims related to person ,

respectively. In order to define the similarity of a test jet

with the class of reference jets for the same node, we use the

following norm [7]:

(6)

Fig. 2. (a) Rectangular sparse graph. (b) Graph that is more discriminant than
the rectangular graph.

Let and be the sets of local similarity values

that correspond to genuine and impostor claims, respec-

tively. A possible measure for the discriminant power of the th

node is the Fisher’s discriminant ratio [22]

(7)

In [7] and [9], it has been proposed to weigh the graph nodes

after the elastic graph matching using the coefficients in

order to form a similarity measure between graphs. Another pos-

sible measure of the discriminant power of a graph node is the

following:

(8)

The measure (8) increases when the impostor local similarity

measures for the graph node are high and/or the local similarity

measures for the genuine class are small.

By summing the discriminant coefficients for a certain graph

setup , we have

(9)

where is the total number of nodes. This is the mean of all the

discriminant ratios and is a characteristic measure for a partic-

ular graph setup of some reference person . The scalar

could be any discriminant measure such as the ones defined in

(7) and (8) and is estimated using a training set of impostor and

genuine claims. The measure defined in (9) creates an ordering

relationship between graphs. That is, for two graphs and

and for some reference person if , the graph

is considered more discriminant than the graph . Practi-

cally, the nodes of the graph are placed in more discriminant

facial points than the nodes of . Fig. 2 shows two different

graph setups and with different values. Both graphs

have 64 nodes. The graph depicted in Fig. 2(b) is found exper-

imentally to be more discriminant than the rectangular graph

depicted in Fig. 2(a) since .

The previous analysis leads to an optimization procedure in

order to find the graph that has maximum . The desired
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properties (constraints) of the graph apart from having max-

imum are as follows:

• the graph should have a relatively small number of nodes

so that the elastic graph matching procedure has low com-

putational cost;

• the nodes should not be very close to each other in order to

avoid redundant use of the same discriminant information.

Formally, the above optimization problem can be written as

subject to

nodes with

constant (10)

where is a preselected threshold that controls the density of

the graph.

B. Heuristic Optimization Approach

In order to solve the maximization problem (10), someone

has to follow a heuristic optimization approach, since an ex-

haustive search is not feasible. The ideal solution is a subgraph

of a rectangular graph that obeys the constraints (10),

where is the width and is the height of the facial area (in

pixels), respectively. The overall maximum of (10) can be found

by measuring the discriminant power of each node (one node is

placed at each pixel) and keeping a subset of nodes of the rectan-

gular graph that maximizes the constraint optimization

problem (10). The previously described procedure guarantees

that it will find one of the optimal solutions of (10) (since there is

no guarantee that there is a unique solution) but has a prohibitive

computational cost in the training phase, since the number of the

nodes of the graphs that should be matched to impostor and to

genuine images in order to calculate the discriminant power of

every node is extremely high (the size of the graphs for a facial

area of pixels is 15.000 nodes).

In order to avoid such a computationally infeasible procedure,

a sampling of the solution space should be performed prior to

optimization. Thus, we should search for a suboptimal solution

of the constraint optimization problem (10) by assuming that

the desired graph is a subgraph of a more sparse graph than the

rectangular one. One possible solution is to assume

that the solution is a subgraph of the graph of -equilateral

triangles with internode distance equal to pixels ( is the

threshold that controls the sparsity of the graph in (10).) Another

option is the most dense -rectangular graph (i.e., an evenly

distributed graph with nodes placed every pixels). Fig. 3(a)

shows the graph with -equilateral triangles, having a total of

768 nodes. Fig. 3(b) shows the most dense -rectangular graph

with nodes placed every nine pixels apart, having a total of 700

nodes. Fig. 3(c) shows a discriminant subset of the -rectan-

gular dense graph that has only 64 nodes.

In this work, we have used rectangular graphs, even though

they are not the densest possible graphs (e.g., for , the

graphs with 9-equilateral triangles are more dense than the

most dense 9-rectangular graph having about 10% more nodes).

We have followed this solution in order to have compliance

with the majority of the proposed approaches for elastic graph

matching that use rectangular graphs as well [1], [6], [7], [9],

Fig. 3. (a) Dense graph of 9-equilateral triangles. (b) A 9-rectangular dense
graph. (c) Discriminant subset of the rectangular dense graph.

[10]. Also, the rectangular graphs have less computational

complexity than other graph structures that may require more

nodes to be matched. We have experimented using graphs of

various types and we have observed that the type of the dense

graph, for which the suboptimal solution will be a subgraph,

is not significant. Nevertheless, the proposed algorithm can be

easily extended in order to support other graphs types (such as

the graphs of -equilateral triangles).

Moreover, it is also very computationally expensive to com-

pute the discriminant measures of the nodes of the most dense

-rectangular graph. Thus, a second sampling step is required.

In the second sampling step, a sparse subgraph of the most dense

-rectangular graph is selected as the starting point of the opti-

mization procedure. A possible solution for the initial sampling

of the most dense rectangular graph is the evenly distributed

rectangular graph with a total of nodes. A solution for se-

lecting the initial position of the sparse graph could be a se-

lection based on a face detection/localization algorithm. These

sampling steps are inevitable in order to have a computationally

feasible solution of the constrained optimization problem (10).

After sampling the solution space, an iterative algorithm that

uses expandable graphs is proposed in order to find the discrim-

inant graph. We assume that the nodes that have high discrim-

inant values should be placed in facial regions that are indeed

discriminant for the specific person. These facial regions should

be better represented. This can be achieved by expanding cer-

tain nodes that possess the highest discriminant power.

In the following, the steps of the proposed algorithm are de-

scribed in more detail. This procedure should be repeated for

every reference person in the data base. Before starting the

optimization procedure, the reference graphs for the person

should be created. The reference graphs are created by over-

laying a rectangular sparse graph on the facial image region in

the positions indicated by a face localization algorithm. Fig. 4

shows the reference facial images with the corresponding graphs

for a person in the XM2VTS data base. The procedure is person

specific and is executed once for every person. That is, there

is no need to rerun the procedure for the other already trained

people when a new person arrives.

Let the initial graph contain vertices at the first iteration

. Let be the set of graph vertices at the th iteration.

The algorithm has the following steps.

Step 1) Take the reference graphs and match them in all gen-

uine and impostor images.

Step 2) For each node , calculate the measure .
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Fig. 4. Reference facial images with the reference graphs.

Fig. 5. Expanding the rectangular graph.

Step 3) Select a subset of the nodes with the higher discrim-

inant value that have not been already expanded and

expand them. The nodes that lie in the perimeter

of the graph can be expanded only inside the facial

region. Fig. 5 describes pictorially this step for the

rectangular graphs. For other types of graphs, other

expanding steps should be followed (i.e. for the

graph of -equilateral triangles, six nodes should

be inserted in the graph at this step).

Step 4) Verify that the inserted nodes do not violate the graph

sparseness criterion. That is, erase the new nodes

that violate the criterion ,

(for the rectangular graphs used in this work, this is

equivalent to checking whether some of the inserted

nodes have already been examined). The set of the

final inserted nodes in the th iteration is denoted as

.

Step 5) Match locally the nodes of in all of the genuine

and impostor facial images. Let be an in-

serted node and be the initial coordinate vector

for the node in a test image . The local matching

procedure is the outcome of the local search

subject to

(11)

is the final coordinate vector that gives the jet

.

Step 6) For each node , calculate its discriminant

value .

Step 7) Let . Order the nodes in according to

their discriminant power and obtain a graph by

keeping only the nodes with the highest discrimi-

nant power. The set contains the nodes of .

Step 8) If , then and go

to Step 4), else stop.

The procedure described is a “greedy,” hill-climbing algorithm

for finding the graph with maximum . It always follows

the direction of the best solution and, thus, it may get stuck at

local maxima. An alternative way is to interpret this optimiza-

tion procedure as a simulated annealing procedure [23] having

as the energy function. Moreover, in Step 4) we could ex-

pand not only some nodes that have high discriminant value but

also some randomly selected ones. In this way, we may prevent

the loss of some discriminant regions that have been captured

neither by the initial graph nor by the expanding procedure.

Fig. 6 shows the steps of the above algorithm for the first

person in the training set of the XM2VTS data base [4]. The al-

gorithm starts from the rectangular 8 8 graph which is shown

in the top left image of Fig. 6. The second image from the top

raw shows the first expanded instance of the rectangular graph.

The third image shows the graph after the first node erasing

step. The images that follow in a row-wise manner show a se-

quence of expanding/erasing steps. The algorithm converges

after a total of seven expanding steps. The connections between

nodes in all images have been created for visualization pur-

poses. As can be seen in Fig. 6 (lower right-hand image), the

discriminant graph nodes are concentrated in the areas between

his cheeks and nose. This region is indeed characteristic for this

particular person of the XM2VTS data base.

Using as a reference, the facial images and graphs depicted

in Fig. 7, we demonstrate the discriminant graph that is derived

from the proposed procedure. As can be seen, the discriminant

graph depicted in Fig. 7(d) is comprised of nodes around the

mouth and in the lower forehead. This occurs due to the fact

that in some reference facial images (shown in Fig. 7(a)–(c)), the

facial region is partially occluded by hair while, in some other

ones, the hair does not overlap with the rectangular graph. This

is of particular importance, since the proposed representation

can handle the cases of people who tend to change hairstyle

(or facial style in general (e.g., eyeglasses, beard) frequently. In

such cases, the graph nodes tend to concentrate in the interior

facial region that is not affected at all by the hair style. Similarly,

the proposed method will discard nodes lying in the chin area

if the person sometimes has a beard and sometimes not. On the

contrary, if a person always has a beard and, particularly, if he

is the only one having a beard in the entire data base, then the

beard nodes will be expanded and will be considered as highly

significant. Unfortunately, this procedure may some times cause

overfitting (i.e., the discriminant graph may catch some facial

points that are not truly discriminant but have been accidentally

located upon the facial area during the training procedure). This

issue will be discussed in more detail in Section IV-B1.

The plots of the measure versus the number of itera-

tions until convergence are illustrated in Fig. 8(a) and (b) for

the two people in Figs. 6 and 7, respectively. As can be seen

for both people, the algorithm converges after a total of seven
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Fig. 6. Sequence of the steps for learning the graph that is comprised by expanding and erasing steps.

Fig. 7. Reference facial images with the reference graphs and the corresponding discriminant graph.

iterations. In the eighth iteration, no new node has been inserted

and the algorithm converges. The elastic graph-matching pro-

cedure of the new graphs is performed using the minimization

procedure indicated in the optimization problem (5). The opti-

mization problem (5) uses the global translation of the graph.

That is, the components cannot be translated independently but

only as part of the entire graph. In the second step, every node

can be locally matched (deformed) independently as it imposed

by the optimization problem (5).

C. Discriminant Feature Selection

We can improve the performance of the new graph by im-

posing discriminant analysis in the feature vectors of the graphs

as in [7] and [9]. Therefore, we should try to find a discriminant

dimensionality reduction transform matrix for every node

of the graph of the reference person . In the reduced space,

we use the following metric in order to define the similarity of

test matched jets as:

(12)

The discriminant criterion used is similar to the one given in (8)

and can be expanded as

(13)
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Fig. 8. Plot of E (r) versus the number of iterations (a) for the person in Fig. 6. (b) For the person in Fig. 7.

where the matrices and are given by

(14)

and

(15)

The maximum of , in case that is invertible, is ob-

tained when is a matrix having columns of the generalized

eigenvectors of . In order to satisfy the invert-

ibility of , the training set should contain at least as many

samples from the genuine class as the feature dimensionality.

Thus, in many cases, it is difficult to satisfy the invertibility of

(refer to Section IV for more details). In [7] and [9], prin-

cipal component analysis (PCA) has been initially used in order

to satisfy the invertibility of .

Recently, direct linear discriminant analysis (D-LDA) algo-

rithms for discriminant feature extraction have been proposed

[24]–[26] in order to prevent the loss of discriminatory informa-

tion that occurs when a PCA step is applied prior to LDA [27].

In D-LDA, the search of discriminant directions is applied in

the null space (i.e., formed by the eigenvectors that correspond

to null eigenvalues) of the between scatter matrix. Moreover, in

[19] and [20], it has been shown that two different discriminant

transforms can be derived from the Fisher’s LDA optimization

problem, the so-called regular and irregular discriminant trans-

forms. The novelty of the proposed approach is that it exploits

all of the available information of the discriminant criterion (13)

in contrast to the methods proposed in [7] and [9] that discard

useful information using an initial PCA step.

We apply the theory developed in [19] and [20] in order to

find the regular and the irregular discriminant information for

the discriminant criterion (13). First, we have to deal with the

null space of . The vectors contained in the null space

of the matrix maximize the criterion (13). That is, all

of the projections that satisfy both and

(or, equivalently, and

) maximize the criterion (13). For these

vectors, we define the following criterion:

(16)

Using the criteria (13) and (16), two different discriminant

feature extraction transforms can be derived that correspond

to regular and irregular discriminant information, respectively.

The first step of the discriminant dimensionality reduction is to

find the orthonormal eigenvectors that correspond to non-null

and null eigenvalues of . Let and be the ma-

trices having as columns the orthonormal eigenvectors of

that correspond to non-null and to null eigenvectors, respec-

tively. The eigenanalysis of is an easy task since, in most

cases, the graph jets do not have more than 20 features [6], [7],

[9], [10].

1) Regular Discriminant Transform: Let

and be

the and matrices projected in the space spanned

by the vectors in . In this space, is invertible. Thus,

the discriminant transform in this space can be given by the

matrix that has as columns the generalized eigenvectors

of . The regular discriminant features are given

by

(17)

This step gives the regular discriminant feature vectors

, with

.

2) Irregular Discriminant Transform: The irregular dis-

criminant transform can be found by projecting in

the space spanned by , only if is singular. This

occurs when the number of training genuine feature vectors

is smaller than the dimensionality of the feature vector. Let

be the projected matrix

in the null space of . The discriminant transform in this

space is given by that has as columns the orthonormal
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eigenvectors of . The irregular transform matrix is given

by

(18)

The irregular discriminant transform gives the vectors

and with

. It is easy to prove that the irregular

discriminant transform performs perfect classification in the

training set. That is, every genuine training jet falls in the same

point in the projected space [28].

For a test jet , two kinds of discriminant feature vec-

tors are available using the regular and the irregular discriminant

transform (i.e., and , respectively). The sim-

ilarity of these two feature vectors with the reference facial class

can be estimated using two distances

and

The final distance is a fusion of the two measures and

. The total normalized distance at the th node between the

reference and the test person is

(19)

where is the training facial image data base. The new distance

between faces, after discriminant analysis, is given by

(20)

IV. EXPERIMENTAL RESULTS

A. Data Bases and Evaluation Protocols

The experiments were conducted in the XM2VTS data base

using the protocols described in [14] and in the Color FERET

data base using the face verification evaluation methodology

presented in [15]. The description of the XM2VTS data base is

available at [29]. There have been many versions of the FERET

data base released from time to time, the current version being

released is the Color FERET data base [30].

1) XM2VTS Data Base and Testing Protocol: The XM2VTS

data base contains 295 subjects, 4 recording sessions, and 2

shots (repetitions) per recording session. The XM2VTS data

base provides two experimental setups, namely, Configuration I

and Configuration II [14]. Each configuration is divided in three

different sets: the training set, the evaluation set, and the test set.

The training set is used to create genuine and impostor models

for each person. The evaluation set is used for learning the veri-

fication decision thresholds. In case of multimodal systems, the

evaluation set can be also used for training the fusion manager.

For both configurations, the training set has 200 clients, 25 eval-

uation impostors, and 70 test impostors. The two configurations

differ in the distribution of the client training and the client eval-

uation data. For additional details concerning the XM2VTS data

base, the interested reader can refer to [14]. Recently, frontal

face verification competitions using the XM2VTS [31], [32]

Fig. 9. Some examples of discriminant graphs learning during the training pro-
cedure in the XM2VTS data base

have been conducted. The interested reader can refer to [31] and

[32] and to the references therein for the tested face verification

algorithms.

The performance of face verification systems is measured in

terms of the false rejection rate (FRR) achieved at a fixed false

acceptance rate (FAR). There is a tradeoff between FAR and

FRR, producing the so-called receiver operating characteristic

(ROC) curve [8], [13]. The performance of a verification system

is often quoted by a particular operating point of the ROC curve

where FAR = FRR. This operating point is called the equal error

rate (EER).

When a verification technique is to be evaluated for a real

application, then the decision thresholds should be set a priori.

The evaluation set is used for setting the thresholds. The same

thresholds will then be used on the test set. Let FAE and FRE be

the corresponding FAR and false rejection rate (FRR) obtained

from the evaluation set. Since application requirements might

constrain the FAR or FRR to be within certain limits, the system

is evaluated for three different vectors of decision thresholds that

correspond to the operating points where FAE = 0, FRE = 0, or

FAE = FRE. For each given threshold, the total error rate (TER)

can be obtained as the sum of FAR and FRR.

2) FERET Data Base and Testing Protocol: The Color

FERET that has been used in our experiments contains 994

people [30]. The evaluation methodology of the FERET data

base is not as strict as the XM2VTS protocol (i.e., it does

not define who would be the clients or the impostors). It only

requires that the training should be performed using the FA set

(also referred to as gallery set) that contains one frontal view

per person. The testing sets (also referred to as probe sets)

include [15].

• FB images: the second frontal image taken from the same

set as the gallery image (FA set). Usually, the person has a

different expression from the one posed in FA. The FB set

contains 992 individuals.

• Duplicate images 1 (Dup1): This probe set is used for ana-

lyzing the effect of aging on the verification performance.

The images are taken in a different session (different date)

or taken under special circumstances (such as the subject

was wearing glasses, different hair length, etc). The Dup1

probe set contains 736 images of 249 individuals.

• Duplicate images 2 (Dup2): The Dup2 probe set is a subset

of the Dup1 probe set consisting of frontal images captured

at least 540 days after the capture of the subject gallery

image (FA set). The Dup2 probe set size is 228 images of

75 individuals.
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Fig. 10. (a)–(b) Some of the training samples. (c) The corresponding discriminant graph. (d) Test image.

B. Experiments in the XM2VTS Data Base

For initializing the algorithm, described in Section III, a rect-

angular 8 8 graph setup has been used [6], [7]. The multiscale

analysis used for filling the jets is the one proposed in [18] (i.e.,

normalized morphological elastic graph matching (NMEGM))

and the jet dimension has been set to 19. The structuring ele-

ment used in all experiments was cylindrical [7], preferred for

computational reasons. Only the luminance information at a res-

olution of 720 576 has been considered in our experiments.

We have used the value 9 for the parameter that controls

the sparsity of the graph.

Unlike most of the subspace techniques [33]–[35] that re-

quire a perfect manual alignment in order to perform well, the

proposed algorithm has been combined with a fully automatic

alignment method according to the eyes position of each facial

image using the eye coordinates that have been derived from the

method reported in [36]. The impact of inaccurate facial feature

localization upon face recognition is pointed in [37] and [38].

1) Learning the Discriminant Person-Specific Graphs: The

training set of the Configuration I contains 200 people with

thrree images per person. The evaluation set contains three im-

ages per client for genuine claims and 25 evaluation impostors

with eight images per impostor. Thus, an evaluation set gives

a total of 3 200 = 600 genuine claims and 25 8 200

40.000 impostor claims. The test set has 2 images per client

and 70 impostors with 8 images per impostor and gives 2

200 400 genuine claims and 70 8 200 112.000 im-

postor claims. The training set is used for learning the discrimi-

nant graph for each reference person, according to the algorithm

presented in Section III. For initializing the algorithm, the face

localization procedure proposed in [8] has been used. We have

used the discriminant measure defined in (8) for learning the dis-

criminant graphs. We have seen that similar discriminant graphs

have been acquired using the measure defined in (7). We have

also seen that the proposed procedure for finding discriminant

graphs is quite fast, since the inserted nodes are only matched

locally and, in all cases, the algorithm has converged using no

more than seven expanding steps for the training persons in the

XM2VTS data base. Fig. 9 shows some of the graphs that have

been learned during the training procedure.

One possible drawback of the proposed approach is overfit-

ting, which may occur in any discriminant technique. In our

case, overfitting can occur when the discriminant graph is placed

in facial points that are not truly discriminant but have acciden-

tally appeared in the facial area during the training procedure.

For example, when all of the training facial images of a person

contain glasses, cosmetics, or tattoos, it is highly possible that

the nodes of the discriminant graph are placed in the spatial co-

ordinates that contain a visual instance of these artifacts. This

fact is exemplified in Fig. 10. In the training phase, only facial

images with eye glasses with a black thick skeleton have been

present. Thus, many nodes of the discriminant graph have been

placed in the spatial coordinates that correspond to eye glasses.

If the test facial images contain no eyeglasses, we may have false

rejections. In order to solve these problems, eyeglass removing

algorithms, such as the ones proposed in [39] and [40] and/or the

enhancement of the training set with virtual facial image sam-

ples, can be applied. There are many methods for enriching the

training set with virtual samples [41]–[44].

2) Learning the Discriminant Node Transforms: After

learning a discriminant graph for each person, the training set

is used for calculating the discriminant transforms for feature

selection of each reference person and for each node . In

the training set, 3 reference graphs per person are created.

The 3 2 6 graphs that comprise the genuine class are

created by applying elastic graph matching having one image

as reference (i.e., in order to create the graph) and the other 2

images are used as test images. The impostor class contains

3 3 199 1797 graphs. The jet dimension is 19. Thus,

for a reference person and a node , the matrix has 5

non-null dimensions and 14 null dimensions. For every node

jet, two discriminant transforms can be found as described

in Section III-C. The regular discriminant transform can give

discriminant feature vectors up to five dimensions. The feature

vectors derived through the irregular discriminant transform

can give feature vectors up to 14 feature dimensions.

3) Thresholds on Similarity Measure: With or without fea-

ture vector discriminant transforms, a similarity measure be-

tween faces either by using or can be found. In

order to reject or accept an identity claim, a threshold should be

used on this similarity measure. For choosing the thresholds, the

method proposed in [7] has been used. In detail, the similarity

measures for every person are calculated in the training set and

form the distance vector . The elements of the vector

are sorted in ascending order and are used for the person-spe-

cific thresholds on the distance measure. Let denote the

th order statistic of the vector of distances . The threshold

of the person is chosen to be equal to . Let , , and

be the three instances of the person in the training set. A claim

of a person is considered valid if

where is the distance between the graph of test person

and the reference graph (the similarity measure could

be either or ). Obviously, when varying , different

pairs of FAR and FRR can be created to produce the ROC curve.
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TABLE I
ERROR RATES ACCORDING TO XM2VTS PROTOCOL FOR CONFIGURATION I

4) Experimental Results in Configuration I: In order to il-

lustrate the contribution of finding discriminant person-specific

graphs, we have conducted the following experiments.

• NMEGM using rectangular 8 8 evenly distributed graphs

without any discriminant analysis.

• NMEGM using the procedure for finding discriminant

person-specific graphs, described in Section III-B, without

feature vector discriminant analysis (abbreviated as

E–NMEGM).

• NMEGM using rectangular 8 8 evenly distributed

graphs and using the discriminant analysis described in

Section III-C (abbreviated as NMEGM–FD).

• NMEGM using the procedure for finding discrimi-

nant person-specific graphs and using the proposed

feature vector discriminant analysis (abbreviated as

E–NMEGM–FD).

Since all of the tested approaches are fully automatic, we have

not conducted experiments using graphs placed at fiducial

facial points [3] as they require manually localization of these

points in all reference facial images. The error rates according

to the XM2VTS Configuration I protocol are illustrated in

Table I. The NMEGM without any discriminant step has given

a TER 12.9% at FAE FRE in the test set of Configuration

I. When replacing the rectangular evenly distributed graphs

with the person-specific discriminant graphs proposed in this

paper, the TER has been reduced to 6.05%. That is, an increase

in performance of more that 50% in terms of TER is achieved

when using the proposed graphs.

When using the proposed discriminant analysis in the rectan-

gular graphs, a TER 5.1% at FAE FRE has been achieved

(NMEGM–FD). We have kept the number of dimensions that

have given the best EER in the evaluation set. It has been ex-

perimentally found that the best EER has been achieved when

keeping the first 3 dimensions of the regular discriminant trans-

form and the first 3 of the irregular transform. The best results

have been achieved when using feature vector discriminant anal-

ysis in the proposed discriminant graphs keeping, as well, 3 reg-

ular and 3 irregular dimensions. This setup has given a TER

2.9% at FAE FRE (E–NMEGM–FD). Thus, an increase

in performance of about 50% has been verified in the case that

we use feature vector discriminant analysis in the discriminant

graphs. For comparisons, we have implemented a Fisherfaces

(PCA + LDA) approach [27]. For the Fisherfaces, a TER 10%

has been measured at FAE FRE using the same sets of images.

Fig. 11. ROC curves for the different discriminant variants of NMEGM in the
test set of the Configuration I experimental protocol of the XM2VTS data base.

TABLE II
COMPARISON OF TER FOR CONFIGURATION I

USING FULLY AUTOMATIC REGISTRATION

The ROC curves are depicted in Fig. 11 where the EER and

the operating point using the thresholds of the operating point

that corresponds to EER in the evaluation set are also shown

(abbreviated as EER–E in Fig. 11). The operating points that

correspond to the thresholds of the EER measured in the evalu-

ation set are shown in columns 5 and 6 of Table I.

It has been also verified that the proposed discriminant graphs

using feature vector discriminant analysis have very good per-

formance compared with other state-of-the-art face verification

algorithms. Table II shows a comparison of E–NMEGM–FD
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Fig. 12. Some examples of discriminant graphs learning during the training
procedure in the FERET data base.

(which gave the best results) with other methods that use

fully automatic alignment. The results have been acquired by

the competition in the XM2VTS data base [32]. Obviously,

E–NMEGM–FD outperforms all of the approaches tested in

[32] using fully automatic alignment. In [45], there has been

another competition using the XM2VTS data base in order

to explore the effects of severe illumination changes in face

verification algorithms. Only one algorithm has been tested

using fully automatic alignment and has achieved a TER =

2.14%.

C. Experiments in the FERET Data Base

In many applications and experimental protocols, such as the

experimental protocol of the FERET data base, there is only one

genuine facial image available in the training set. In this case,

the measures defined in (7) and (8) cannot be used for mea-

suring the discriminant power of a graph node. Hence, in order

to apply the proposed algorithm to the FERET data base using

the FERET evaluation protocol [15]–[17], we have modified the

algorithm so that it can be functional having one sample avail-

able for training. For that case, we use an alternative measure

based only on the numerator of (8)

(21)

where is the jet of the th node in the only reference image

of the person . This measure is based on the impostor class

and on the one genuine sample and emphasizes the client facial

features that are far from the facial features of the impostors

in terms of (21). Since we have only one sample available for

training, it is not possible to use the methods in Section III-C for

discriminant feature selection. Thus, we have used only PCA

for feature selection in the nodes of the elastic graphs. For PCA

feature selection, the number of dimensions has been chosen

to be 5. Some discriminant graphs from the FERET data base

are shown in Fig. 12. In the FERET data base, the NMEGM

algorithm has been combined with a fully automatic alignment

method according to the eyes position of each facial image using

the eye coordinates that have been derived from the method re-

ported in [46]. For comparison, we have also implemented a

PCA approach [47], the so-called Eigenfaces, and we have ap-

plied it to the same set of images. Finally, we have trained an

LDA approach using the XM2VTS data base and tested it in the

FERET data base but, unfortunately, the results have been very

poor even in comparison with PCA. This is partially attributed

to the different environmental conditions between the two data

bases.

The FERET evaluation methodology requires testing to three

sets of images, namely FB, Dup1, and Dup2. For performing

the experiments in the FB set, the FA set has been randomly

partitioned to clients and impostors having 50% (i.e., 497 indi-

viduals) as clients and 50% as impostors. In other words, the

gallery consists of 497 individuals. The FB contains one image

per person. Thus, we have a total of 497 genuine claims. The

remaining 495 images of the FB set have been used for im-

postor claims leading to a total of 495 497 246015 im-

postor claims. We have repeated the experiments four times,

using different partitions for clients and impostors, and the av-

erage ROC curve has been estimated. In the FERET evaluation

protocol, the ROC curves, the probability of correct verifica-

tion (PCV) versus the FA is used [15]. PCV is equal to 1-FR.

The tested approaches have been the raw NMEGM (without

any discriminant analysis), the E-NMEGM, and two approaches

NMEGM–PCA and E–NMEGM–PCA using PCA feature se-

lection in the nodes of the rectangular graphs, in NMEGM, and

in the nodes of the discriminant graphs of the E–NMEGM ap-

proach. The ROC curves for the FB set are shown in Fig. 13(a).

As can be seen, the E–NMEGM–PCA approach outperforms all

other approaches.

The Dup1 set consists of 736 images of 249 individuals. Thus,

a subset of FA has been used for experiments consisting of 249

individuals (the same ones that participate in the Dup1 set). The

subset of the FA set has been randomly partitioned to clients and

impostors having 50% (i.e., 125 individuals) as clients and the

remaining 124 individuals as impostors. We have repeated the

experiments four times and the average ROC curves has been

estimated for all of the tested approaches. In Dup1, the number

of images per individual are not the same for each person. The

mean number of genuine claims has been 367 and the mean

number of impostor claims has been 367 125 45875. The

final test set is the Dup2 set that consists of 228 images of 75

individuals. As in the experiments in Dup1, a subset of FA has

been used for experiments in Dup2 consisting of 75 individuals.

Accordingly, the subset of FA has been randomly partitioned

to clients and impostors having 50% (i.e., 38 individuals) as

clients and the remaining 37 individuals as impostors. We have

repeated the experiments four times and the average ROC curve

has been estimated. In Dup2, the number of images per indi-

viduals are not the same for each person. The mean number of

genuine claims has been 112 and the mean number of impostor

claims has been 36 116 4408. The ROC curves for the Dup1

and Dup2 set are shown in Figs. 13(b) and (c), respectively.

The tests in Dup1 and Dup2 have shown that the proposed dis-

criminant graphs outperform all other tested approaches, even

in very different conditions to the conditions where the training

has been performed.
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Fig. 13. (a) ROC curves for the FB probe set. (b) ROC curves for the Dup1 probe set. (c) ROC curves for the Dup2 probe set.

The experiments in the Color FERET data base verified the

results from the XM2VTS data base (i.e., that the selection of

nodes that consist of the facial graph is important and can signif-

icantly increase the performance of elastic graph matching for

frontal face verification even when only one sample is available

in the training set).

V. CONCLUSION

In this paper, a novel method for learning person-specific fa-

cial models has been proposed. The method is comprised of two

steps. In the first step, a graph having its nodes at discriminant

facial points is found. In the second step, a novel discriminant

feature extraction method is used in order to select the most dis-

criminant features for the graph nodes. The discriminant models

are used along with morphological elastic graph matching and

tested for frontal face verification where state-of-the-art verifi-

cation performance has been achieved.
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