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Abstract

Appearance information is essential for applications

such as tracking and people recognition. One of the main

problems of using appearance-based discriminative mod-

els is the ambiguities among classes when the number of

persons being considered increases. To reduce the amount

of ambiguity, we propose the use of a rich set of feature

descriptors based on color, textures and edges. Another

issue regarding appearance modeling is the limited num-

ber of training samples available for each appearance. The

discriminative models are created using a powerful statis-

tical tool called Partial Least Squares (PLS), responsible

for weighting the features according to their discrimina-

tive power for each different appearance. The experimen-

tal results, based on appearance-based person recognition,

demonstrate that the use of an enriched feature set analyzed

by PLS reduces the ambiguity among different appearances

and provides higher recognition rates when compared to

other machine learning techniques.

1 Introduction

Appearance-based person recognition has widespread

applications such as tracking and person identification and

verification. However, the nature of the input data poses

great challenges due to variations in illumination, shadows,

and pose, as well as frequent inter- and intra-person occlu-

sion. Under these conditions, the use of a single feature

channel, such as color-based features, may not be power-

ful enough to capture subtle differences between different

people’s appearances. Therefore, additional cues need to

be exploited and combined to improve discriminability of

appearance-based models.

In general, human appearances are modeled using color-

based features such as color histograms [4]. Spatial infor-

mation can be added by representing appearances in joint

color spatial spaces [6]. Also, appearance models of indi-

viduals based on nonparametric kernel density estimation

have been used [11]. Other representations include spatial-

temporal appearance modeling [8] and part-based appear-

ance modeling [10].

Previous studies [12, 17, 18, 20, 22] have shown that sig-

nificant improvements can be achieved using different types

(or combinations) of low-level features. A strong set of fea-

tures provides high discriminatory power, reducing the need

for complex classification methods. Therefore, we augment

color-based features with other discriminative cues. We ex-

ploit features based on textures and edges, obtaining a richer

feature descriptor set as result.

To detect subtle differences between appearances, it is

useful to perform a dense sampling for each feature channel,

as will be shown on the experiments. However, as a result,

the dimensionality of the feature space increases consider-

ably (a feature vector describing an appearance is composed

of more than 25,000 features).

Once discriminative appearance-based models have been

built, machine learning methods need to be applied so that

new samples of the appearances can be correctly classified

during a testing stage. Learning methods such as support

vector machines (SVM) [2], k-neareast neighbors combined

with SVM [21], decision trees [1], learning discriminative

distance metrics [11] have been exploited. However, since

feature augmentation results in a high dimensional feature

space, these machine learning methods may not always be

used directly due to high computational requirements and

low performance, as we show in the experimental results.

The dimensionality of the data needs to be reduced first.

The high dimensionality, the very small number of sam-

ples available to learn each appearance and the presence of

multicollinearity among the features due to the dense sam-

pling make an ideal setting for a statistical technique known

as Partial Least Squares (PLS) regression [19]. PLS is a

class of methods for modeling relations between sets of ob-

servations by means of latent variables. Although originally
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Figure 1. Spatial distribution of weights of the discriminative appearance-based models considering

eight people extracted from video sequence #0 of the ETHZ dataset. The first row shows the ap-

pearance of each person and the second row the weights estimated by PLS for the corresponding

appearance. Models are learned using the proposed method combining color, texture and edge fea-

tures. PLS is used to reduce the dimensionality and the weights of the first projection vector are

shown as the average of the feature weights in each block. Red indicates high weights, blue low.

proposed as a regression technique, PLS can be also be used

as a class aware dimensionality reduction tool. This is in

contrast to the commonly used Principal Component Anal-

ysis (PCA), which does not consider class discrimination

during dimensionality reduction.

The projection vectors estimated by PLS provide infor-

mation regarding the importance of features as a function of

location. Since PLS is a class-aware dimensionality reduc-

tion technique, the importance of features in a given loca-

tion is related to the discriminability between appearances.

For example, Figure 1 shows the spatial distribution of the

weights of the first projection vector when PLS is used to

combine the three feature channels. High weights are lo-

cated in regions that better distinguish a specific appearance

from the remaining ones. For example, blacks regions of the

homogeneous jackets are not given high weights, since sev-

eral people wear black jackets. However, the regions where

the white and red jackets are located obtain high weights

due to their unique appearances.

In this work we exploit a rich feature set analyzed by

PLS using an one-against-all scheme [13] to learn discrimi-

native appearance-based models. The dimensionality of the

feature space is reduced by PLS and then a simple classifi-

cation method is applied for each model using the resulting

latent variables. This classifier is used during the testing

stage to classify new samples. Experimental results based

on appearance-based person recognition demonstrate that

the feature augmentation provides better results than mod-

els based on a single feature channel. Additionally, experi-

ments show that the proposed approach outperforms results

obtained by techniques such as SVM and PCA.

2 Proposed Method

In this section we describe the method used to learn the

appearance models. The combination of a strong feature set

and dimensionality reduction is based on our previous work

developed for the purpose of pedestrian detection [16]. The

features used are described in section 2.1 and an overview

of partial least squares is presented in section 2.2. Finally,

section 2.3 describes the learning stage of the discriminative

appearance-based models.

2.1 Feature Extraction

In the learning stage, only one exemplar is provided for

each appearance i in the form of an image window. This

window is decomposed into overlapping blocks and a set

of features is extracted for each block to construct a fea-

ture vector. Therefore, for each appearance i, we obtain one

sample described by a high dimensional feature vector vi.

To capture texture we extract features from co-

occurrence matrices [9], a method widely used for texture



analysis. Co-occurrence matrices represent second order

texture information - i.e., the joint probability distribution of

gray-level pairs of neighboring pixels in a block. We use 12
descriptors: angular second-moment, contrast, correlation,

variance, inverse difference moment, sum average, sum

variance, sum entropy, entropy, difference variance, differ-

ence entropy, and directionality [9]. Co-occurrence features

are useful in human detection since they provide informa-

tion regarding homogeneity and directionality of patches.

In general, a person wears clothing composed of homoge-

neous textured regions and there is a significant difference

between the regularity of clothing texture and background

textures.

Edge information is captured using histograms of ori-

ented gradients (HOG) [5]. This method captures edge

or gradient structures that are characteristic of local shape.

Since the histograms are computed for regions of a given

size within a window, HOG is robust to some location vari-

ability of body parts. HOG is also invariant to rotations

smaller than the orientation bin size.

The last type of information captured is color. In or-

der to incorporate color we use color histograms computed

for blocks. To avoid artifacts obtained by monotonic trans-

formation in color and linear illumination changes, before

calculating the histogram the value of pixels within a block

are transformed to the relative ranks of intensities for each

color channel R, G and B, similarly to [11]. Finally, each

histogram is normalized to have unit L2 norm.

Once the feature extraction process is performed for all

blocks inside an image window, features are concatenated

creating a high dimensional feature vector vi.

2.2 Partial Least Squares for Dimension
Reduction

Partial least squares is a method for modeling relations

between sets of observed variables by means of latent vari-

ables. The basic idea of PLS is to construct new predic-

tor variables, latent variables, as linear combinations of the

original variables summarized in a matrix X of descrip-

tor variables (features) and a vector y of response variables

(class labels). While additional details regarding PLS meth-

ods can be found in [15], a brief mathematical description

of the procedure is provided below.

Let X ⊂ R
m denote a m-dimensional space of feature

vectors and similarly let Y ⊂ R be a 1-dimensional space

representing the class labels. Let the number of samples be

n. PLS decomposes the zero-mean matrix X (n × m) and

zero-mean vector y (n × 1) into

X = TP T + E

y = UqT + f

Figure 2. Proposed method. For each ap-

pearance represented by an image window,

features are extracted and PLS is applied to

reduce dimensionality using a one-against-

all scheme. Afterwards, a simple classifier

is used to match new samples to models

learned.

where T and U are n × p matrices containing p extracted

latent vectors, the (m × p) matrix P and the (1 × p)
vector q represent the loadings and the n × m matrix

E and the n × 1 vector f are the residuals. The PLS

method, using the nonlinear iterative partial least squares

(NIPALS) algorithm [19], constructs a latent subspace com-

posed of a set of weight vectors (or projection vectors)

W = {w1,w2, . . . wp} such that

[cov(ti,ui)]
2 = max

|wi|=1

[cov(Xwi,y)]2

where ti is the i-th column of matrix T , ui the i-th col-

umn of matrix U and cov(ti,ui) is the sample covariance

between latent vectors ti and ui. After the extraction of

the latent vectors ti and ui, the matrix X and vector y are

deflated by subtracting their rank-one approximations based

on ti and ui. This process is repeated until the desired num-

ber of weight vectors had been extracted.

The dimensionality reduction is performed by project-

ing a feature vector vi onto the weight vectors W =
{w1,w2, . . . wp}, obtaining the latent vector zi (1 × p) as

a result. This latent vector is used in the classification.
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Figure 3. Samples of the video sequences used in the experiments. (a) sequence #1 is composed of

1,000 frames with 83 different people; (b) sequence #2 is composed of 451 frames with 35 people;

(c) sequence #3 is composed of 354 frames containing 28 people.

Similarly to PCA, in the dimensionality reduction using

PLS, after relevant weight vectors are extracted, an appro-

priate classifier can be applied in the low dimensional sub-

space. The difference between PLS and PCA is that the for-

mer creates orthogonal weight vectors by maximizing the

covariance between elements in X and y. Thus, PLS not

only considers the variance of the samples but also consid-

ers the class labels.

2.3 Learning Appearance-Based Models

The procedure to learn the discriminative appearance-

based models for a training set t = {u1,u2, . . . ,uk},

where ui represents a subset of exemplars of each person

(appearance) to be considered, is illustrated in Figure 2 and

described in details as follows. Each subset ui is composed

of feature vectors extracted from image windows containing

examples of the i-th appearance.

In this work we exploit one-against-all scheme to learn

a PLS discriminatory model for each person. Therefore,

when the i-th person is considered, the remaining samples

t \ ui are used as counter-examples of the i-th person.

For the one-against-all scheme, PLS gives higher

weights to features located in regions containing discrimi-

natory characteristics, as shown in Figure 1. Therefore, this

process can be seen as a feature selection process depending

on the feature type and the location.

Once the PLS model has been estimated for the i-th

appearance, the feature vectors describing this appearance

are projected onto the weight vectors. The resulting low-

dimensional features are used during the testing stage to

match a query samples.

When a sample is presented during the testing stage,

its feature vector is projected onto the latent subspace es-

timated previously for each one of the k appearances and

has its Euclidean distance to the samples used in training

are computed. Then, this sample is classified as belonging

to the appearance with the smallest Euclidean distance.

Figure 4. Samples of a person’s appearance

in different frames of a video sequence be-

longing to ETHZ dataset.

3 Experimental Results

In this section we present experiments to evaluate our

approach. Initially, we describe the parameter settings and

the dataset used. Then, we evaluate several aspects of our

method, such as the improvement provided by using a richer

feature set, the reduction in computational cost and im-

provement in performance compared to PCA and SVM.

Dataset. To obtain a large number of different people

captured in uncontrolled conditions, we choose the ETHZ

dataset [7] to perform our experiments. This dataset, origi-

nally used for human detection, is composed of four video

sequences, where the first (sequence #0) is used to estimate

parameters and the remaining three sequences are used for

testing. Samples of testing sequence frames are shown in

Figure 3.

The ETHZ dataset presents the desirable characteristic

of being captured from moving cameras. This camera setup

provides a range of variations in people’s appearances. Fig-

ure 4 shows a few samples of a person’s appearance ex-

tracted from different frames. Changes in pose and illumi-

nation conditions take place and due to the fact that the ap-

pearance model is learned from a single sample, a strong set

of features becomes important to achieve robust appearance

matching during the testing stage.

To evaluate our approach, we used the ground truth in-
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Figure 5. Recognition rate as a function of the number of factors (plots are shown in different scales

to better visualization).

formation regarding people’s locations to extracted samples

from each video (considering only people with size higher

than 60 pixels). Therefore, a set of samples is available for

each different person in the video. The learning procedure

presented in Section 2.3 is executed using one sample cho-

sen randomly per person. Afterwards, the evaluation (ap-

pearance matching) considers the remaining samples.

Experimental Setup. To obtain the experimental results

we have considered windows of 32 × 64 pixels. Therefore,

either to learn or match an appearance, we rescale the per-

son size to fit into a 32 × 64 window.

For co-occurrence feature extraction we use block sizes

of 16×16 and 32×32 with shifts of 8 and 16 pixels, respec-

tively, resulting in 70 blocks per detection window for each

color band. We work in the HSV color space. For each color

band, we create four co-occurrence matrices, one for each

of the (0◦, 45◦, 90◦, and 135◦) directions. The displace-

ment considered is 1 pixel and each color band is quantized

into 16 bins. The 12 descriptors mentioned earlier are then

extracted from each co-occurrence matrix. This results in

10, 080 features.

We calculate HOG features considering blocks with

sizes ranging from 12× 12 to 32× 64. In our configuration

there are 326 blocks. As in [5], 36 features are extracted

from each block, resulting in a total of 11, 736 features.

The color histograms are computed from overlapping

blocks of 32 × 32 and 16 × 16 pixels extracted from the

image window. 16-bin histograms are computed for the R,

G and B color bands, and then concatenated. The resulting

number of features extracted by this method is 5, 472. Ag-

gregating across all three feature channels, the feature vec-

tor describing each appearance contains 27, 288 elements.

To evaluate the approach described in Section 2.3, we

compare the results to another well-know dimensionality re-

duction technique, PCA, and to SVM. With PCA, we first

reduce the dimensionality of the feature vector and then

we use the same classification approach described for PLS.

However, with SVM the data is classified directly in the

original feature space.

We consider four setups for the SVM: linear SVM

with one-against-all scheme, linear multi-class SVM, kernel

SVM with one-against-all scheme, and kernel multi-class

SVM. A polynomial kernel with degree 3 is used. In the

experiments we used the LIBSVM [3].

Since the high dimensionality of the feature space poses

difficulties to compute the covariance matrix for PCA, we

use a randomized PCA algorithm [14]. In addition, the

classification for PCA uses the same scheme described in

Section 2.3 for PLS, where a query sample is classified as

belonging to the model presenting the smallest Euclidean

distance in the low dimensional space.

Experimental results are reported in terms of the cumula-

tive match characteristic (CMC) curves. These curves show

the probability that a correct match is within the k-nearest

candidates (in our experiments k varies from 1 to 7).

Before performing comparisons, we use the video se-

quence #0 to evaluate how many dimensions (number of

weight vectors) should be used in the low dimensional latent

space for PLS and PCA. Figure 5 shows the CMC curves for

both when the number of factors is changed. The best re-

sults are obtained when 3 and 4 factors are considered for

PLS and PCA, respectively. These parameters will be used

throughout the experiments.

All experiments were conducted on an Intel Xeon, 3 GHz

quad-core processor with 4GB of RAM running Linux op-

erating system. The implementation is based on MATLAB.

Evaluation. Figure 6 shows the recognition rates ob-

tained for each feature individually and their combination.

In both cases the dimensionality is reduced using PLS. In

general, the combination of features outperforms the results

obtained when individual features are considered. This jus-

tifies the use of a rich set of features.

Figure 8 compares the PLS method to PCA and differ-

ent setups of the SVM. We can see that the PLS approach
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Figure 6. Recognition rates obtained by using individual features and combination of all three feature

channels used in this work.

Figure 7. Misclassified samples of sequence

#3. The images on the left show the train-

ing samples used to learn each appearance

model. Images on the right contain samples

misclassified by the PLS method.

obtains high recognition rates on the testing sequences of

the ETHZ dataset. The results demonstrate, as one would

expect, that PLS-based dimensionality reduction provides

a more discriminative low dimensional latent space than

PCA. In addition, we see that classification performed by

SVM in high dimensional feature space when the number of

training samples is small might lead to poor results. Finally,

compared to the other methods, our approach achieves bet-

ter results mainly when the number of different appearances

being considered is high, i.e. sequences #1 and #2.

In terms of computational cost, Figure 8 shows that the

proposed method, is in general, between PCA and SVM.

The training and testing computational costs depend on the

number of people and number of testing samples. Sequence

#1 has 4, 857 testing samples amongst the 83 different peo-

ple and sequences #2 and #3 have 1, 961 and 1, 762, respec-

tively. The number of different people in each sequence is

described in Figure 3.

Figure 7 shows some of the misclassified samples of

sequence #3 together with the samples used to learn the

PLS models. We see that the misclassifications are due to

changes in the appearance, occlusion and non-linear illumi-

nation change. This problem commonly happens when the

appearance models are not updated over time. However, if

integrated into a tracking framework, for example, the pro-

posed method could use some model update scheme that

might lead to higher recognition rates.

Finally, samples used to learn the appearance-based

models for sequence #1 are shown in Figure 9. The large

number of people and high similarity in their appearances

increases the ambiguity among the models.

4 Conclusions and Future Work

We described a framework to learn discriminative

appearance-based models based on PLS analysis. The re-

sults show that this method outperforms other approaches

considering an one-against-all scheme. It has also been

demonstrated that the use of a richer set of features leads

to improvements in results.

As a future direction, we intend to incorporate the use

of the richer set of features and the high discriminative di-

mensionality reduction provided by PLS into a pairwise-

coupling framework aiming at further reduction of ambigu-

ity when the number of appearances increases.
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(a) Recognition rates for sequence #1 (b) Computational time for sequence #1

(c) Recognition rates for sequence #2 (d) Computational time for sequence #2

(e) Recognition rates for sequence #3 (f) Computational time for sequence #3

Figure 8. Performance and time comparisons considering the PLS method, PCA and SVM. SVM1:

linear SVM (one-against-all), SVM2: linear SVM (multi-class), SVM3: kernel SVM (one-against-all),

SVM4: kernel SVM (multi-class).
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