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Abstract
Motivated by the temporal processing properties of human hear-
ing, researchers have explored various methods to incorporate
temporal and contextual information in ASR systems. One such
approach, TempoRAl PatternS (TRAPS), takes temporal pro-
cessing to the extreme and analyzes the energy pattern over long
periods of time (500 ms to 1000 ms) within separate critical
bands of speech. In this paper we extend the work on TRAPS
by experimenting with two novel variants of TRAPS developed
to address some shortcomings of the TRAPS classifiers. Both
the Hidden Activation TRAPS (HATS) and Tonotopic Multi-
Layer Perceptrons (TMLP) require 84% less parameters than
TRAPS but can achieve significant phone recognition error re-
duction when tested on the TIMIT corpus under clean, rever-
berant, and several noise conditions. In addition, the TMLP
performs training in a single stage and does not require critical
band level training targets. Using these variants, we find that
approximately 20 discriminative temporal patterns per critical
band is sufficient for good recognition performance. In combi-
nation with a conventional PLP system, these TRAPS variants
achieve significant additional performance improvements.

1. Introduction
While typical ASR systems use acoustic models trained on fea-
tures extracted from spectral slices in time, a promising and
complementary approach to acoustic modeling is TempoRAl
PatternS or TRAPS [1][2][3]. Instead of extracting phonetic in-
formation from spectral slices in a short amount of time, as con-
ventional ASR systems do, TRAPS extracts phonetic informa-
tion from separate frequency channels (critical bands) spanning
the full spectrum over a large amount of time ( 0.5 second to 1
second). Indeed, [4] shows that significant amounts of informa-
tion exist at times greater than 100 ms away from the current
time for phonetic classification. Using TRAPS in combination
with conventional features, researchers have shown significant
performance improvements in many conditions especially in the
high noise conditions[1][3].

A TRAPS acoustic model as shown in Figure 1 consists of
two stages of multi-layer perceptrons (MLPs). The first stage is
a non-linear mapping from log critical band energy time trajec-
tories to phonetic probabilities, and the second stage consists of
another MLP that combines these critical band phonetic prob-
abilities (one set per critical band) to obtain the overall pho-
netic probabilities. Let us focus our attention on the first stage
of the TRAPS acoustic model. For each critical band, there is
an MLP trained using the standard error back-propagation algo-
rithm to learn phone posteriors by minimizing the cross-entropy
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Figure 1: TRAPS Acoustic Model

en the network output and target distributions. Each net
as input, a half second (or a 1 second as in [1]) long log

al band energy temporal trajectory consisting of 51 frames
frame per 10 ms calculated using a short-term FFT over
), and the training target is the phone label for the current
. The input to hidden layer connections of these nets learn
plane separations in the input space of the 0.5 second long
itical band energy trajectories. Another way to look at it
t they learn matched filters useful for phonetic classifica-
n the temporal evolution of the log critical band energy. In
ese critical band MLPs learn 300 such matched filters for
critical band. The hidden to output layer of these critical
MLPs combine the outputs of the matched filters to form

probabilities. The actual performance of these critical
MLPs on phonetic classification is actually quite low. The

classification error rates of these nets range from 66%
% on TIMIT. This suggests that there is not enough in-
tion within a 0.5 second long log critical band trajectory
urately classify a phone. This is not surprising consider-
at different phones may look quite similar within a nar-
requency band. Only after the second combining stage
TRAPS model do we find low phone classification error

since the model is able to combine the critical band phone
riors to come up with the overall phone posteriors. Even
h this conventional setup for TRAPS works well, we be-
that further improvements are possible, so we consider two
ions:

Can we skip the mapping from the outputs of the matched
s to critical band phone posteriors?

ve noted how the high frame classification error rates sug-
that we cannot make all phone distinction given only a sin-
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Figure 2: Hidden Activation TRAPS (Note: MLP-OL stands for
MLP minus the output layer)

gle critical band temporal trajectory. We hypothesize that what-
ever important phonetic information that can be gleaned from
the critical band trajectory is already captured by the matched
filters (critical band MLP input to hidden layer connections).
The additional mapping from the matched filters to phone pos-
teriors may be an extraneous and inaccurate mapping. Why not
skip this intermediate mapping and instead use the outputs from
the matched filters from every critical band as inputs for the sec-
ond stage merger? In this way, we hope to find a more parsimo-
nious model.

1.2. Is there a better way to train critical band matched fil-
ters?

Because training MLPs to learn phone posteriors from log crit-
ical band temporal trajectories is too difficult a task, what cate-
gories, instead of phones, should we train the first stage TRAPS
models to learn? In [3] the critical band classifiers are trained to
learn six broad categories based on manner of articulation. One
can also imagine training the critical band classifiers to other
linguistic feature-like classes that can be better distinguished at
the critical band level; however, it would be better to learn what
categories are important from data. Furthermore, any training
labels that we can specify at the sub-band level based on full-
band phonetic labels may be inaccurate because of potential
asynchrony among the sub-bands [5]. We experiment with a
new model for TRAPS which consists of a single 4-layer neural
network whose architecture resembles TRAPS and whose train-
ing procedure obviates the need to specify critical band categor-
ical targets - the log critical band matched filters are learned au-
tomatically from the data without specifying critical band level
labels.

2. A Parsimonious Model: Hidden
Activation TRAPS (HATS)

We have developed a version of the TRAPS acoustic model
which we call Hidden Activation TRAPS (HATS). The archi-
tecture and training of HATS is very similar to conventional
TRAPS. The training procedure of the first stage critical band
MLPs is identical to that of TRAPS. Once the critical band
MLPs are trained, we “chop off” the hidden to output layer of
every critical band MLP, leaving only the output (“activations”)
of the hidden layer (hence, Hidden Activation TRAPS). After
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Figure 3: Tonotopic Multi-Layer Perceptron

back-propagation training, one can interpret these hidden
activations as the outputs of discriminatively trained criti-
nd matched filters. The second stage of HATS is just like
S: a merger MLP (trained using the same training set and

-validation set as in the first stage training) takes the hidden
tions from all the critical bands and learns the mapping to
posteriors. The HATS setup is shown in Figure 2.
may seem that we don’t gain anything from this HATS ap-

h except reducing the number of parameters via the chop-
off procedure, but we can significantly further reduce the
er of parameters by reducing the number of matched filters
red per critical band. In conventional TRAPS this number
et to 300 per critical band. To determine an optimal num-
matched filters for HATS, we trained several HATS mod-

at differ only in the number of matched filters per critical
For fair comparison, we kept the total number of param-

constant (about 160,000 total neural net weights and bi-
The frame classification accuracy of these HATS models

r cross-validation set has an optimal performance peak at
tched filters per critical band.

3. One Stage Training: Tonotopic
Multi-Layered Perceptron(TMLP)

ave also created a 4 layer MLP that trains the critical band
ed filters without the need for specifying critical band
targets. The first hidden layer consists of several groups
dden units, each of which is constrained to receive the
nergy inputs from only a single critical band. Note that
critical band hidden units correspond to the discrimina-
trained matched filters as in the HATS system. The sec-
idden layer and the output layer combines the outputs of
atched filters across all frequencies to obtain phone pos-
estimates. We call this model Tonotopic Multi-Layered

ptron (TMLP) because the first hidden layer is arranged
ding to frequency channels. Figure 3 shows the architec-
f TMLP. This is similar to HATS except that in this case
aining of the first hidden layer happens as a part of the
ll error back propagation training algorithm. This obvi-
he need to specify any kind of critical band training targets
the one stage training learns what is important implicitly.
efore continuing with the results of our experiments on
and TMLP, we take a brief detour to explain our experi-

l setup.



4. Experimental Setup
We use the TIMIT database for our experimental work. Using
the recommended training set consisting of 3696 utterances, we
set aside 3326 utterances for training our various MLPs and 370
utterances for cross validation. The cross validation set is used
for adjusting the learning rate during MLP training and also for
determining the early stopping point to prevent over-fitting.

In our experiments, we use the hybrid ANN/HMM speech
recognition framework [6]. The artificial neural nets estimate
phone posteriors. These posteriors are then scaled by the phone
priors to produce the scaled likelihoods needed for the HMM
back-end which is the Chronos decoder [7]. We also use a stan-
dard phone bigram language model during decoding.

Each of the various neural nets is trained to learn the orig-
inal 61 TIMIT phones. The best phone sequence decoded by
Chronos is at first a sequence of these 61 phones. In many pre-
vious studies using TIMIT, researchers map these 61 phones
into a smaller set of 39 phones [8] and report their results using
this smaller phone set. We perform the same mapping on the
decoded output and then use SCLITE to obtain our phone error
rates(%substitutions+%deletions+%insertions) on the complete
TIMIT test set consisting of 1344 utterances and 51664 total
phones.

In the following sections we present results in clean con-
dition as well as in noisy and reverberant conditions. Please
note, however, that all training was done using clean speech.
We have experimented with two noisy conditions: Mercedes
Benz noise (recorded inside the car) and exhibition hall noise
(containing mainly speech babble). The noise files come from
the Wall Street Journal Task for the AURORA2 evaluations. We
add these noises to the clean files at different signal to noise ra-
tios. We also convolve the clean signals with a room impulse
response, corresponding to a 60 dB reverberation time of 0.8
seconds.

The features fed to our various TRAPS-like acoustic mod-
els are calculated from the clean, noisy and reverberant speech
waveforms. These features are log critical band energies [9]
calculated for every critical band and for each frame every 10
ms. The mean and standard deviation of the energies from each
critical band are calculated and subtracted (divided in the case
of standard deviation) on a per utterance basis. 51 consecutive
frames of the log energies from each critical band forms the in-
put features for our systems at the time corresponding to the
26th frame.

5. Results
We trained and tested four systems: a TRAPS baseline system,
a HATS, a TMLP system, and a conventional PLP baseline sys-
tem on the TIMIT training set using the original hand-labeled
phones consisting of 61 distinct phones. The baseline TRAPS
system is similar to the one presented in [1]. This TRAPS base-
line system has 300 hidden units per critical band MLP and a
merger MLP with 317 hidden units for a total of 1,032,377 pa-
rameters. The HATS system has 20 hidden units per critical
band and also 317 hidden units for the merger. The total num-
ber of parameters for the HATS system is 159,935. The TMLP
system also contains 20 hidden units per critical band, 317 hid-
den units for the merger and has the same number of parameters
as the HATS system. Finally, the PLP system uses 12th order
PLP [9] plus energy and first and second derivatives. These fea-
tures undergo a per utterance mean and variance normalization
and are then fed to an MLP with 9 frames of input context which
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ers also. We stress that TRAPS, HATS, and TMLP differ
cantly from this conventional PLP system because they
on long narrow frequency patterns rather than the shorter

ral slices in PLP. Table 1 shows the phone recognition error
of these four systems for the clean, reverberant, Mercedes
noise, and exhibition hall noise conditions

addition to these four systems by themselves, we have
initial combination experiments using frame-wise poste-
ultiplication. This is the simplest combination technique
hybrid ANN/HMM framework and has worked well in

tudies. For each phone, the posterior probabilities from
ifferent systems are simply multiplied and scaled by the
e of the prior of the phone. Table 2 shows the phone recog-
error rates for these combined systems

Test System Description
Condition TRAPS HATS TMLP PLP

lean 32.7% 29.8% 31.0% 29.7%
everberant 56.3% 54.2% 58.0% 59.2%
enz Noise

20 dB 35.9% 33.8% 35.5% 36.5%
10 dB 42.7% 42.2% 42.8% 42.2%
0 dB 55.0% 56.7% 54.2% 50.5%

xhib. Noise
20 dB 41.6% 39.9% 41.8% 40.4%
10 dB 61.4% 63.4% 62.0% 60.0%
0 dB 102.2% 95.7% 86.5% 95.9%

1: Phone error rates of the four systems on the full TIMIT
t under various conditions

Test Combination System
ndition PLP+TRAPS PLP+HATS PLP+TMLP

an 27.2% 26.5% 26.8%
erberant 52.9% 52.4% 54.1%
z Noise

20 dB 30.9% 30.7% 30.9%
10 dB 35.9% 36.2% 36.3%
0 dB 44.9% 45.8% 44.9%

ib. Noise
20 dB 36.2% 35.8% 36.5%
10 dB 54.4% 55.7% 55.6%
0 dB 79.9% 65.8% 81.3%

2: Phone error rates of the combined systems on full
T test set under various conditions

6. Discussion
hree different variants of TRAPS show similar overall per-
nce characteristics; however, HATS performs better than

TRAPS and TMLP in the case of clean or low noise con-
s and also in the reverberant condition. In high noise con-
s, both TRAPS and TMLP show more robustness than
, but in high exhibition hall noise TMLP outperforms all
systems. When compared with the conventional PLP sys-
hese TRAPS variants perform better in reverberation. PLP
ch better in very noisy car condition, while much worse in
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Figure 4: Comparison between HATS and TMLP for the av-
erage absolute magnitude of input to first hidden layer weights
within a particular critical band (band 11, 1777 Hz). The center
of the temporal window is at frame 26.

very noisy exhibition hall condition suggesting that combina-
tion of the TRAPS variants with PLP would show further gains.

The preliminary simple combination results show much pro-
mise. All combination error rates are significantly less than
the corresponding error rates for the individual systems, and
the clean results are close to the best published TIMIT phone
recognition error rate that we are aware of. The PLP+HATS
combination error rate on clean, 26.5%, is slightly greater than
the best published TIMIT phone recognition error rate of 24.2%
in [10].

An important result to note is that using only 20 discrimi-
native patters per critical band in the HATS and TMLP systems,
we can achieve comparable phone recognition performance to
that of TRAPS which uses 300 discriminative patterns per criti-
cal band. The HATS and TRAPS systems both have 84% fewer
parameters than TRAPS. From our results using the HATS sys-
tem, we conclude that dropping the intermediate mapping from
hidden unit activations to critical band phone posteriors, espe-
cially in clean conditions or in the presence of modest noise, is
a good idea.

When training the discriminative critical band matched fil-
ters as part of the overall error back-propagation algorithm in
the TMLP, we see similar performance to that of TRAPS. There
does seem to be some advantage to TMLP in the highly noisy
conditions (0 dB). Further analysis reveals a difference in the
average temporal extent between the matched filters learned in
the two-stage (HATS or TRAPS) and one-stage training (TMLP).
In general, the matched filters learned in the two-stage train-
ing tend to have a much narrower temporal extent than that
learned in the one-stage training. Figure 4 shows a compari-
son of the average absolute magnitude of input to first hidden
layer weights within a particular critical band (band 11, 1777
Hz) between HATS and TMLP. It shows that TMLP matched
filters are temporally broader and less sharply concentrated at
the current frame than their HATS counterpart. Similar patterns
are observed across all critical bands. It is not entirely clear why
there is such a difference or what implication it has on the net-
work performance. Perhaps the superior performance of TMLP
in severe noise conditions (cf. Table 1) over HATS is due to the
broad shape of these matched filters.

7. Conclusions
In this paper we have found that approximately 20 discrimi-
native temporal patterns per critical band is sufficient to per-
form TIMIT phone recognition. We have developed two new
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ts to TRAPS: HATS and TMLP. Both drastically reduce
mber of parameters required while improving the phone

nition performance under clean condition. Furthermore,
ATS system outperforms TRAPS under reverberant and
rate noise conditions, and the TMLP system outperforms

under severe noise conditions. In addition, TMLP can
ined in one stage without the need of specifying critical
training targets. In combination with a conventional PLP

, all three variants achieve better performance than any
alone.

hese results are encouraging and we are currently extend-
is work by experimenting with other combination tech-
s. Within our HATS and TMLP framework, we are also
ring using unequal number of matched filters across crit-
ands, thus tailoring the number of discriminative patterns
information contained in each critical band. Finally, we
also like to extend our experiments beyond TIMIT cor-
perform phone and word recognition on conversational

one speech.
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