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Learning Disentangled Representation Implicitly via

Transformer for Occluded Person Re-Identification
Mengxi Jia, Xinhua Cheng, Shijian Lu and Jian Zhang

Abstract—Person re-identification (re-ID) under various oc-
clusions has been a long-standing challenge as person images
with different types of occlusions often suffer from misalign-
ment in image matching and ranking. Most existing methods
tackle this challenge by aligning spatial features of body parts
according to external semantic cues or feature similarities but
this alignment approach is complicated and sensitive to noises.
We design DRL-Net, a disentangled representation learning
network that handles occluded re-ID without requiring strict
person image alignment or any additional supervision. Lever-
aging transformer architectures, DRL-Net achieves alignment-
free re-ID via global reasoning of local features of occluded
person images. It measures image similarity by automatically
disentangling the representation of undefined semantic compo-
nents, e.g., human body parts or obstacles, under the guidance
of semantic preference object queries in the transformer. In
addition, we design a decorrelation constraint in the transformer
decoder and impose it over object queries for better focus on
different semantic components. To better eliminate interference
from occlusions, we design a contrast feature learning technique
(CFL) for better separation of occlusion features and discrim-
inative ID features. Extensive experiments over occluded and
holistic re-ID benchmarks (Occluded-DukeMTMC, Market1501
and DukeMTMC) show that the DRL-Net achieves superior re-
ID performance consistently and outperforms the state-of-the-art
by large margins for Occluded-DukeMTMC. Code is available
at https://github.com/Anonymous-release-code/DRL-Net.

Index Terms—Person re-identification, representation learning,
visual Transformer, Occlusion Scene.

I. INTRODUCTION

PERSON re-identification (re-ID) [1] is a computer vision

task that aims to associate person images captured by non-

overlapping cameras. It has been studied intensively in recent

years due to its wide applications in various video surveillance

tasks [2], [3], [4], [5], [6]. Thanks to the advance in deep

learning and large-scale benchmarks, the re-ID research has

achieved substantial progress and different approaches have

been successfully proposed to tackle variations in viewpoints

and poses [7], illumination conditions [8], camera configura-

tions [9], etc. On the other hand, most existing holistic re-ID

methods [10] assume that the entire human body is visible in

person images which hence cannot generalize well to occluded
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Fig. 1: Illustration of the proposed DRL-Net in occluded per-

son re-ID: Person images often suffer from various occlusions

with different visible and invisible body parts which greatly

complicate image alignment and similarity computation. The

proposed DRL-Net is alignment-free which exploits semantic

preferences object queries that guide transformer to disentan-

gle the representation of body parts and eliminate occlusion

noises in similarity measurement.

person images that suffer from incomplete information with

various invisible body parts. Since humans are often occluded

by clutters and obstacles in natural scenes, occluded re-ID

[11], [12] has great values in different surveillance tasks

which is worth further investigation despite the complication

resulting from missing body-part information.

Occluded re-ID is facing two major challenges. The first

is super-rich variation of occlusions that block different body

parts randomly and change the appearance of person images

substantially. The occlusions thus introduce more intra-class

variations which lead to more image matching errors and

degraded re-ID performance. The second is interference of

occlusions which often shares similar appearance as body

parts and deteriorates the learnt person image representations.

Most existing methods address the occlusion challenge by

detecting the non-occluded body parts and aligning visible

human parts in person image matching, and two typical

alignment approaches have been widely investigated. The

first approach exploits various external cues such as person
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masks [13], [14], semantic parsing [15] and pose estimation

[12], [16], [17] for accurate alignment of visible body parts.

However, the extraction of external cues is sensitive which

tends to fail while facing severe occlusions and background

noises. The other approach aligns body parts based on the

similarity of local image features [18], [19], [20], [21], but it

often struggles in differentiating human bodies from obstacles

which often leads to mismatches. Beyond that, both alignment

approaches involve complicated extra operations that take time

in inference and also tend to accumulate errors.

This paper presents DRL-Net, an alignment-free re-ID

framework that handles occlusions through disentangled rep-

resentation learning as illustrated in Fig. 1. Leveraging the

transformer architecture [22], DRL-Net eliminates the error-

prone person alignment operations which first extracts com-

pact image representations using CNNs and then performs

global reasoning and ID prediction using the transformer

encoder and decoder.

Specifically, DRL-Net disentangles the representations of

undefined semantic components in occluded person images

based on object queries without any additional supervision.

Under the guidance of semantic preferences object queries,

it adapts the transformer architecture that disentangles CNN

features together with positional encoding into ID-relevant

features (for person image matching) and ID-irrelevant fea-

tures (for eliminating occlusion interference). DRL-Net per-

forms global reasoning based on the interrelation of undefined

semantic components, which allows feature disentanglement

without any supervision of part correspondences and ac-

cordingly avoids the complicated and error-prone alignment

process. For the transformer decoder, we impose a decorre-

lation constraint over semantic preference object queries to

force them to focus on respective semantic components. In

addition, we design a contrast feature learning module and

a data augmentation strategy for better isolating ID-irrelevant

features from global representation and suppressing occlusion

interference.

The main contributions of this work are three-fold.

• We propose a novel transformer framework DRL-Net that

tackles occluded person re-ID by learning disentangled

representation implicitly without any additional supervi-

sion and complicated alignment process.

• We design a novel contrast feature learning technique

together with a data augmentation strategy that mitigate

the interference of occlusion noises effectively.

• The proposed DRL-Net achieves state-of-the-art re-ID

performance under various occlusions yet without sac-

rificing performance over normal re-ID data with little

occlusion.

II. RELATED WORK

Person Re-ID has been one of the most studied problems

due to its important application, and most of existing works

were developed for matching holistic person that cannot tackle

the occluded Re-ID problem. Since our method is proposed

for occluded re-ID and based on transformer architecture, we

only briefly review several related works in this section.

A. Occluded Person Re-ID

The challenges of occluded re-ID mainly lie in body in-

formation incompleteness and spatial misalignment. Existing

occluded re-ID methods can be roughly summarized into two

streams, approaches with external cues and approaches based

on part-to-part matching.

Previous methods leverage external cues such as human

parsing, pose estimation or foreground segmentation to align

parts of bodies. Under the guidance of extra semantic labels,

such methods align parts precisely and benefit the feature

representation. Miao et al. [12] propose a pose-guided feature

alignment method (PGFA), taking advantage of the human

semantic key-points to guide the matching of probe and gallery

images. Gao et al. [16] present a pose-guided visible part

matching algorithm (PVPM) which jointly learns features and

predicts the part visibility with attention heatmaps guided by

pose estimation and graph matching accordingly. Wang et al.

[17] propose a framework jointly modeling high-order rela-

tion and human-topology information by utilizing key-points

estimation for robustly aligned features. However external

cues requiring limits their usage and robustness in practical

deployment. The inference of extra modules costs more time

inevitably, and the generated semantic labels are untrustworthy

under severe occlusions or low-resolution scenarios.

Models based on Part-to-part matching strategy handle

occlusions by generating part alignment relations according

to the similarity of local features across query and gallery

images. Sun et al. [23] propose a network named Part-based

Convolutional Baseline (PCB) which divided feature maps into

horizontal pieces to learn local features directly. Zhang et

al. [24] align local features and compute distance by finding

the shortest path. Zhu et al. [25] locate human body parts

and potential person belongings at pixel-level by clustering

algorithms to alignment. These methods match local features

through self-supervision without external cues. Nevertheless,

such auto-alignment steps require complicated algorithms

like shortest path finding and clustering, and predict results

strongly influenced by the way of dividing images. Different

from above strict alignment-based approaches, our method

addresses the occluded person re-ID by leveraging transformer

architectures, which can automatically and implicitly extract

and disentangle the representations of target person without

any additional supervision.

B. Visual Transformer

Transformer is a type of deep neural network which utilizes

the self-attention mechanism and shows great performance on

natural language processing tasks. Inspired by the significant

success of transformer in the NLP field [26], [27], [28], [29],

researchers applied transformer to various computer vision

areas. Carion et al. [30] present detection transformer (DETR)

to view object detection as a direct set prediction problem,

which firstly bring transformer architecture in high-level vision

task. Vision transformer (ViT) proposed by Dosovitskiy et

al. [31] apply pure transformer and treats image patches

as sequences directly, which achieved state-of-the-art perfor-

mance on image recognition benchmarks. Now transformer
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Fig. 2: The framework of the proposed DRL-Net: DRL-Net consists of three components. The first component is occluded

sample augmentation that synthesizes person images by inserting various obstacles. The second component is semantic

representation extraction and disentanglement that disentangles the representation of undefined semantic components into

ID-relevant features and ID-irrelevant features under the guidance of semantic preference object queries. The third component

is contrast feature learning that isolates ID-irrelevant features from global representation by optimizing features in both ID

embedding space and occlusion embedding space reversely. Additionally, a decorrelation constraint is imposed over the object

queries of the decoder to force them to focus on non-overlapped semantic parts.

are extended to more vision tasks including image processing

[32], segmentation [33], [34], pose estimation [35], [36], etc.

We extend DETR to occluded re-id tasks, using object

queries to extract features of semantic components instead of

extra prediction or artificial pre-definition. Benefit from the

outstanding representation capabilities of transformer archi-

tectures, our method achieves promising performance.

III. PROPOSED METHOD

In this section, we firstly introduce the architecture of

the proposed DRL-Net in Section III-A, which consists of

a CNN and a Transformer. We then elaborate the designed

contrast feature learning strategy for the DRL-Net in Section

III-B, which suppresses occlusion interference by separation

of occlusion features and discriminative ID features. In Section

III-C, we explain the training and inference strategies in

details. An overview of our method is shown in Fig. 2.

A. Semantic Representation Extraction and Disentanglement

1) Feature Extractor: Our feature extractor contains a CNN

backbone and encoder-decoder layers, in order to extract

compact representations and generate features of semantic

component accordingly.

For a person image x, the CNN backbone generates feature

maps f = CNN(x) ∈ R
C×H×W , where C,H,W denote

the channel dimension, height and width of the feature maps

respectively. With the non-linear activation function σ(·), we

obtain the activated feature maps a = σ(f) ∈ R
C×H×W . A

1×1 convolution layer is followed to generate the new feature

maps g ∈ R
d×H×W , where d is smaller than C to reduce the

computation complexity of transformer. In order to construct

the sequence form that transformers expect, we flatten the

tensor along the last two spatial dimensions and finally get

the g ∈ R
d×HW .

The encoder-decoder layers in our feature extractor fol-

low the standard architecture of the transformer. We apply

learnable positional encodings to encode spatial information

and add it to the input of each encoder attention layer. To

produce features of semantic components, we define semantic

preferences object queries, which are a set of learnable input

embeddings for decoder layers. More specifically, there are

Nq − 1 human semantic object queries and 1 occlusion object

query, where Nq is the semantic preferences object query

number. The semantic preferences object queries denoted as

Q = [q0, ..., qNq−1; qo],Q ∈ R
Nq×d are different to generate

representation features and they are added to the input of
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each attention layer. The representation features of undefined

semantic components generated by Q and encoder-decoder

layers are denoted as F = [f0, ..., fNq−1; fo],F ∈ R
Nq×d.

Features of human semantic components generated by Nq −1
ID relevant queries are concatenated as the ID relevant feature

f = concat([f0, ..., fNq−1]) ∈ R
(Nq−1)·d, and ID irrelevant

feature f = fo ∈ R
d generated by occlusion query are used to

reduce the interference of occlusions and noises.

We adopt cross entropy loss as identity loss to supervise

the learning of feature extractor, and label smoothing is used

to prevent the model from overfitting training IDs, which is

defined as:

Lce = −

N
∑

n=1

M
∑

m=1

qm logPm (fn) ,

qm =

{

1− ǫ+ ǫ
M

if m = yn
ǫ
M

otherwise,

(1)

where N is the number of training samples, M is the person

identity number of the training set, Pm(fn) is the predicted

probability of feature fn belonging to identity m, and yn is the

ground-truth label of fn. qm is the smoothing label according

to the label yn and ǫ is a small constant and set to be 0.1.

2) Object Query Decorrelation Constraint: To extract

semantic-aligned features without external supervising, we

expect features decoded from different object queries repre-

sent different semantic components. We propose object query

decorrelation constraint to make object queries orthogonal

with each other. Giving the set of object queries Qi ∈ R
Nq×d

extracted from person image i, the object query decorrelation

constraint loss is computed using the following formula:

Lo = α

N
∑

i=1

Nq
∑

n=1

Nq
∑

m=1

abs(

〈

qi
n, qi

m

〉

||qi
n|| ||q

i
m||

), (2)

where abs(·) denotes the absolute value function, 〈·, ·〉 denotes

the inner product, and α is the penalty factor of decorrelation

constraint loss.

The proposed decorrelation constraint is imposed over dif-

ferent object queries to force them to focus on respective

semantic components with few overlaps, which helps the

transformer better separate and localize the representation of

different semantic components.

B. Semantic Preferences guided Contrast Feature Learning

1) Occluded Sample Augmentation (OSA): Occluded Sam-

ple Augmentation is a data augmentation strategy for our

semantic preferences guided contrast feature learning. The

limited number of occluded samples in training data often

leads to the low diversity of occluded samples in each training

batch, which makes the re-ID model sensitive to occlusions. To

address this issues, we employ OSA to augment person images

which can preserve the person identities while generating new

person images contains multiple obstacles. We first select

different obstacles appearing in the train set as obstacle set

Xobstacle. During the training stage, we randomly selected k

obstacles from the Xobstacle to synthesize augmented samples

for each training batch. Specifically, given an image batch B
and random k obstacles [o1, ..., ok] ∈ Xobstacle, for each xi ∈
B with label yi, we generate augmented image [xi,1, ..., xi,k]
with label yi which occluded by k obstacles. In this way, the

sample number in each batch increase by a factor of k. The

augmented images together with original images are used for

contrast feature learning (CFL). The benefits of employing

OSA can be further demonstrated by introducing CFL.

2) Contrast Feature Learning (CFL): We proposed se-

mantic preferences guided contrast feature learning to expect

semantic components generated by object queries to focus

on body parts without the disturbance of occlusions. More

specifically, we construct contrast triplets for given person

image x with the help of OSA, consisting of x itself as the

anchor, a positive instance with the same ID but different

obstacles, and a negative one with different IDs but the same

obstacle. The triplet loss with contrast triplets is defined by:

Ltri =

N
∑

n=1

[δ +D(fn, fn+)−D(fn, fn−)]+, (3)

where fn denotes the ID relevant features of image xn, and

fn+, fn− denote the features belonging to the same or different

person with fn respectively. D(·, ·) is the distance function

between features and δ is a margin parameter.

Furthermore, we proposed reverse triplet loss to make ID

irrelevant features focus on occlusions or noises. We reverse

the positive instances and negatives in contrast triplets to guide

occlusion object query extract occlusion semantic components

in images. The reverse triplet loss is defined by:

Lrtri =
N
∑

n=1

[δ +D(fn, fn−)−D(fn, fn+)]+, (4)

where fn denotes the ID irrelevant feature representations

of image xn, and fn+, fn− denote the features belonging to

the same or different person with fn respectively. With the

proposed decorrelation constraint and CFL, we force occluded

semantic components only extracted by ID irrelevant object

query, making human semantic components extracted by ID

relevant queries free from occlusions.

C. Training and Inference

The training and inference process of the proposed DRL-Net

is shown in Algorithm 1. Before the training stage, the obstacle

set is constructed by obtaining obstacles from training images.

In the occluded sample augmentation stage, given a mini-batch

of images for training, we generate augmented samples with

random obstacles to obtaining positive pairs and negatives. The

entire feature extractor containing convolutional layers and

encoder-decoder layers are trained together with the overall

loss. The overall loss is therefore calculated as:

L = Lce + Lo + Ltri + λLrtri, (5)

where λ is the scale factor of reverse triplet loss, and the scale

factors of others are set to be 1.
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Algorithm 1 Proposed DRL-Net

Input: Training/query/gallery: Xtrain, Xquery , Xgallery

Output: Distance Matrix D
1: %Data preparation

2: Obtain the obstacle set Xobstacle from the train set Xtrain.

3: %Training stage

4: Initialize the CNN network parameters Θ.

5: for each mini-batch B ⊂ Xtrain do

6: Create set B′ = ∅

7: Random select obstacle [o1, ..., ok] ∈ Xobstacle.

8: for each xi ∈ B do

9: Generate augmented sample [xi,1, ..., xi,k] by xi and

[o1, ..., ok].
10: Adding [xi; xi,1, ..., xi,k] to set B′.

11: end for

12: Extract ID relevant feature fi and irrelevant feature fi
of each xi ∈ B′ using DRL-Net.

13: Calculate Lce,Lo,Ltri,Lrtri by Eqs.(1, 2, 3, 4).

14: Optimize CNN parameters Θ according to Eq.(5).

15: end for

16: %Inference stage

17: for each xq ∈ Xquery , xg ∈ Xgallery do

18: Extract fq, fg of xq, xg respectively using DRL-Net.

19: Calculate D(fq, fg) by cosine distance metric.

20: end for

21: return D

In the inference stage, query and gallery images are the

input to feature extractor without augmentation, and we utilize

ID relevant feature f to compute the distance between query

images and gallery images, ignoring the ID irrelevant feature

f.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

The experiments are conducted on three person ReID

datasets, including one occluded re-ID dataset Occluded-

DukeMTMC and two widely used Holistic re-ID datasets

MSMT1 and Market-1501.

Occluded-DukeMTMC [12] is a split of DukeMTMC-reID

[37] which keeps occluded images and removes some overlap

images. It contains 15,618 training images, 17,661 gallery

images, and 2,210 occluded query images, which is by far

the largest occluded re-ID datasets. The experiments on this

dataset follow the standard setting [12] and the training, query,

and gallery sets contain 9%, 100%, and 10% occluded images,

respectively. Market-1501 [38] consists of 32,668 images

of 1,501 identities captured by 6 camera views. Following

the standard setting [38], the whole dataset is divided into

a training set containing 12,936 images of 751 identities

and a testing set containing 19,732 images of 750 identi-

ties. DukeMTMC [37] contains of 36,411 images of 1,812

persons from 8 cameras. 16,522 images of 702 persons are

randomly selected from the dataset as the training set, and the

remaining images are divided into the testing set containing

2,228 query images and 17,661 gallery images. The setting

is same to [37]. MSMT17 contains 126,441 images of 4,101

IDs captured from a 15-camera network. The training set has

32,621 images of 1,041 identities, and the testing set has

93,820 images of 3,060 identities. During inference, 11,659

images are randomly selected as query images and the other

82,161 images are used as gallery images from the testing set

[39].

Evaluation metric We adopt Cumulative Matching Charac-

teristic (CMC) curve and mean average precision (mAP) for

evaluations. All experiments are conducted in the single query

mode and don’t use Re-Ranking to further refine the matching

results.

B. Implementation Details

Data preprocessing. All person images are resized to 256×
128 in both training and inference stages. The training images

are augmented with random horizontal flipping, random crop-

ping and random erasing [40] with a probability of 0.5. We

construct an occlusion set by fetch obstacles which hardly

appeared in test images from train set. All train images

are copied and synthesized with random obstacles from our

occlusion set in occluded sample augmentation stage.

Backbones. We adopt ResNet-50 [41] as the convolution

neural backbone network. Following the setting of most ReID

methods [42] , the last spatial down-sampling operation in

ResNet-50 is removed to increase the spatial size of the feature

map. In this case, the size of the feature map is 2048×16×8.

The hidden dimension d is set to 256. The transformer layers

are same with DETR and initialized with Xavier init [43].

The numbers of encoder layers, decoder layers and multi-head

attention are set to 2, 2, 8 respectively. The cosine distance

is used to measure the distance between probe and gallery

images.

Optimization. The CNN backbone network is pertrained over

ImageNet [44]. Adam optimizer is adopted and we warm up

the model for 10 epochs with a linearly growing learning rate

from 3.5×10−5 to 3.5×10−4. The learning rate is decreased

by a factor of 0.1 at 40th and 70th epoch. The batch size is

set to 32 with 4 images per ID.

C. Comparison with the State-of-the-Art

We compare our method with state-of-the-art methods for

both occluded and holistic person re-ID tasks in Table I and

Table III, respectively. The backbones of compared methods

are ResNet-50 or modified ResNet-50 by using branches,

attentions or different convolution operations.

Results on Occluded-DukeMTMC. The comparision results

over dataset Occluded-DukeMTMC are shown in Table I.

There are three mainstream types of occluded re-ID methods

are compared: holistic re-ID methods without designing mod-

ules for occlusions (DIM [45], Part Aligned [46], HACNN

[47], Adver Occluded [48] and PCB [23]), Occluded re-ID

methods with external cues (Part Bilinear [49], FD-GAN [50],

PGFA [12] and HONet [17]), and Occluded re-ID methods

based on part-to-part matching (DSR [19], SFR [51] and MoS

[52]). Our DRL-Net method achieves 65.0% Rank-1 accuracy,
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TABLE I: Comparison with state-of-the-art methods of oc-

cluded re-ID on Occluded-DukeMTMC. It shows that DRL-

Net is superior to all three types of methods including the

methods designed for holistic re-ID in the 1st group, utilizing

external cues in the 2nd group and adopting part-to-part

matching strategy in the 3rd group.

Methods Rank-1 Rank-5 Rank-10 mAP

DIM (ArXiv 17) 21.5 36.1 42.8 14.4
Part Aligned (ICCV 17) 28.8 44.6 51.0 20.2
HACNN (CVPR 18) 34.4 51.9 59.4 26.0
Adver Occluded (CVPR 18) 44.5 - - 32.2
PCB (ECCV 18) 42.6 57.1 62.9 33.7

Part Bilinear (ECCV 18) 36.9 - - -
FD-GAN (NIPS 18) 40.8 - - -
PGFA (ICCV 19) 51.4 68.6 74.9 37.3
HONet (CVPR 20) 55.1 - - 43.8

DSR (CVPR 18) 40.8 58.2 65.2 30.4
SFR (ArXiv 18) 42.3 60.3 67.3 32.0
MoS (AAAI 21) 61.0 74.4 79.1 49.2

DRL-Net (Ours) 65.0 79.3 83.6 50.8

TABLE II: Ablation study over Occluded-DukeMTMC. T,

OSA and CFL denotes proposed transformer architecture,

occluded sample augmentation and contrast feature learning

respectively.

Methods Rank-1 Rank-5 Rank-10 mAP

Baseline 51.0 66.3 71.7 43.8
Baseline+T 59.6 74.4 79.5 49.0
Baseline+T+OSA 60.5 74.7 80.9 48.2
Baseline+T+OSA+CFL 65.0 79.3 83.6 50.8

79.3% Rank-5 accuracy, 83.6% Rank-10 accuracy, and 50.8%

mAP, which outperforming all types of methods by a large

margin.

The superior performance of DRL-Net is summarized into

three aspects. First, the transformer layers enhance the rep-

resentation capacity of CNN backbones. Second, the intro-

duction of object queries and decorrelation constraint gives

our method the ability to learn disentangled representation

implicitly without external cues. Third, the novel metric

learning CFL with synthesized images efficiently weakens the

interference of occlusions and noises.

Results on Market-1501 and DukeMTMC. The comparision

results over holistic re-ID datasets including Market-1501

and Duke-MTMC are shown in Table III. Three types of

holistic re-ID methods are considered for comparison: methods

based on global features (IANet [53], MVPM [54], DMML

[55], SFT [56], VCFL [57], Circle [58], MoS [52]), methods

using part features (PCB, PCB+RPP [23], AlignedReID [24],

DSR [19] and VPM [20]), and methods using external cues

including human-parsing based (SPReID [15] and MGCAM

[13]), attribute information based (AANet [59]) and human

pose based (Pose-transfer [60], PSE [61], PGFA [12] and

HONet [17]). Though DRL-Net is not proposed for the holistic

re-ID task, it performs comparable results with all types

of holistic re-ID methods, showing the robustness of our

proposed methods.

Results on MSMT17. Since MSMT17 is released recently,

hence there are only a few methods that report on this dataset,

including MVMP [54], SFT [56], DG-Net [62], IANet [53],

TABLE III: Comparison over datasets Market-1501 and

DukeMTMC shows DRL-Net can be generalized to holistic

re-ID with superior performance: The compared methods are

grouped into three categories: global feature based, part feature

based and external cues based.

Methods
Market-1501 DukeMTMC

Rank-1 mAP Rank-1 mAP

IANet (CVPR 19) 94.4 83.1 87.1 73.4
MVPM (ICCV 19) 91.4 80.5 83.4 70.0
DMML (ICCV 19) 93.5 81.6 85.9 73.7
SFT (ICCV 19) 93.4 82.7 86.9 73.2
VCFL (ICCV 19) 89.3 74.5 - -
Circle (CVPR 20) 94.2 84.9 - -

PCB(ECCV 18) 92.3 77.4 81.8 66.1
PCB+RPP (ECCV 18) 93.8 81.6 83.3 69.2
AlignedReID(ArXiv18) 91.8 79.3 - -
DSR (CVPR 18) 83.6 64.3 - -
VPM (CVPR 19) 93.0 80.8 83.6 72.6

SPReID (CVPR 18) 92.5 81.3 - -
MGCAM (CVPR 18) 83.8 74.3 46.7 46.0
Pose-transfer (CVPR18) 87.7 68.9 30.1 28.2
PSE (CVPR 18) 87.7 69.0 27.3 30.2
PGFA (ICCV 19) 91.2 76.8 82.6 65.5
AANet (CVPR 19) 93.9 82.5 86.4 72.6
HONet (CVPR 20) 94.2 84.9 86.9 75.6

DRL-Net (Ours) 94.7 86.9 88.1 76.6

TABLE IV: Comparison over holistic re-ID dataset MSMT17.

Methods Rank-1 Rank-5 Rank-10 mAP

MVPM (ICCV 19) 71.3 84.7 - 46.3
SFT (ICCV 19) 73.6 85.6 - 47.6
DG-Net (CVPR 19) 77.2 87.4 90.5 52.3
IANet (CVPR 19) 75.5 85.5 88.7 46.8
Circle (CVPR 20) 76.3 - - 50.2
Circle + MGN (CVPR 20) 76.9 - - 52.1

DRL-Net (Ours) 78.4 88.2 91.3 55.3

Circle [58] and Circle + MGN [58]. Table IV shows the com-

parison results. DRL-Net achieves outstanding performance in

all evaluation metrics.

D. Ablation Study

In this section, we conducted extensive ablation studies

to investigate the effectiveness of each component of DRL-

Net. We used ResNet-50 as backbone and performed ablation

experiments over Occluded-DukeMTMC. Table II shows ex-

perimental results.

Effectiveness of the proposed Transformer Architecture.

We first study the effect of proposed transformer-based fea-

ture extractor which is denoted as baseline+T by removing

the CFL and OSA in the framework. The Baseline model

which directly uses ResNet-50 as feature extractor and the

baseline+T model are both trained by original triplet loss

as well as identity loss. As shown in the first two rows

of Table II, consistent improvements are achieved on all

four evaluation metrics. This indicates that the transformer

has a strong ability for feature extracting and disentangling

through conducting the global reasoning to further combine

the features, which helps to handle the occlusion challenge

effectively. The benefits of employing transformer architecture

can be further demonstrated by introducing other relevant

designs and operations.
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TABLE V: The comparison and analysis for the number Nl of

transformer layers over Occluded-DukeMTMC. The number

of layers for encoder and decoder are the same.

Nl Rank-1 Rank-5 Rank-10 mAP

1 55.3 71.8 78.0 47.0
2 57.2 72.4 78.2 47.0
3 55.9 71.7 77.4 46.0
4 55.3 71.3 77.6 45.2
5 55.7 73.2 78.8 44.9
6 53.9 70.1 75.7 42.9

TABLE VI: Parameter analysis of the number Nq of object

queries over Occluded-DukeMTMC. The results shows DRL-

Net is robust to different Nq .

Nq Rank-1 Rank-5 Rank-10 mAP

2 53.5 69.2 75.3 43.6
5 55.3 71.9 77.8 46.4
9 57.1 72.4 78.2 47.3
13 57.2 73.9 79.0 47.3
17 57.7 75.2 79.7 47.2

Effectiveness of the proposed OSA. We evaluate the occluded

sample augmentation as described in Section III-B1. For

this experiment, we design a network baseline+T+OSA that

just incorporates the occluded sample augmentation into the

baseline+T and maintain the training strategy. As shown in

Table II, occluded sample augmentation can improve the re-ID

performance on CMC Rank-1/5/10. The improvement can be

explained by the effectiveness of the augmented samples that

increases the diversity of occluded training samples. On the

other hand, due to the gap between the synthesized occluded

images and the real images, it suffers a slight decrease in mAP

when simply incorporating the occluded sample augmentation.

Effectiveness of the proposed CFL. We further evaluate the

contrast feature learning component as described in Section

III-B1. For this experiment, We incorporate contrast feature

learning into the baseline+T+OSA as described in the previous

subsection and we denote it as baseline+T+OSA+CFL. As

shown in Table II, the incorporation of contrast feature learn-

ing significantly improves the person re-ID performance be-

yond baseline+T+OSA. The baseline+T+OSA+CFL achieves

a rank-1 accuracy of 65.0% and an mAP of 50.8% Which

outperforms the corresponding baseline+T+OSA by 4.5% and

2.6%, respectively. The effectiveness of the contrast feature

learning can be largely attributed to the separation of occlu-

sions feature and discriminative ID-relevant features, which is

crucial to eliminate interference from occlusions for occluded

person re-ID.

The ablation studies show that the proposed DRL-Net

outperforms the Baseline by 14.0% in Rank-1 accuracy and

7.0% in mAP while working with the occluded sample aug-

mentation and contrast feature learning. This demonstrates that

the three components complement each other in achieving

better occluded re-ID performance.

E. Parameter Analysis

The Number of Transformer Layers. The impressive perfor-

mance that transformer achieved can largely contribute to its

Fig. 3: Illustration of the proposed DRL-Net: For each oc-

cluded query person image on the left, the two rows on the

right show the ten top-matching images as returned by the

baseline model (in the first row) and the proposed DRL-Net

(in the second row). The green and red boxes highlight positive

and negative matching, respectively.

self-attention mechanism, with which transformer can globally

model relations between feature representations of different

semantic components. To evaluate the importance of self-

attention mechanism, we conduct experiments by changing

the number of encoder-decoder layers Nl as shown in Table

V. We observe that when the Nl is set to 2, the best re-ID

performance is achieved, and then the improvement brought

by transformer diminishes as depth increases. We think it is

because the re-ID task utilizes the lower-resolution represen-

tations throughout the network than other high-level vision

tasks (e.g. object detection). Moreover, the scale of the re-ID

datasets is relatively small and the image contents in datasets

are simple, which makes the cross-correlations between the

output elements of the decoder are easy to compute.

The Number of Semantic Preferences Object Queries.

Intuitively, the number of semantic preferences object queries

Nq determines the granularity of the semantic components.

We perform the quantitative ablation studies to find the most
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Fig. 4: Parameter analysis for the scale factor λ and the penalty

factor α.

suitable Nq . As detailed in Table VI, the performance of DRL-

Net is robust to different Nq . We can observe that as the Nq

increases, the re-ID performance is continuously improved, but

the inference cost also increases correspondingly. To balance

performance and cost, we set Nq to 9 in the final version.

The Robustness of Parameters λ and α. We studied hyper

parameters in DRL-Net by setting it to different values and

checking the person Re-ID performance. Fig 4 shows the

experimental results on Occluded-DukeMTMC dataset. We

first analyze the influence of λ in Fig 4 (a), the scale factor λ

in Eq. 5 is the balancing weight of contrast feature learning

(CFL). With λ increasing, the Rank-1/mAP is improved by

4.5%/2.6% (λ = 1.0), which means the CFL module now is

beneficial for learning better occlusion robust re-ID features.

Continuing to increase λ, the performance is degraded because

the weights for human parts feature embedding and the posi-

tion embedding are weakened.

Then we analyze the effect of penalty factor α on base-

line+T model as shown in Fig 4 (b). The penalty factor α in

Eq. 2 will affect correlation among object queries in decoder.

Experiments show that baseline+T performs best when α

= 1.0. Using a smaller α will suppress the value of Lo,

lower the decorrelation ability for object queries. On the other

hand, α should not be very large for preserving the feature

representation capability of the model. Experimental results

both in (a) and (b) show that DRL-Net performs stably and is

tolerant to the change of the parameters.

Fig. 5: Visualization of the decoder attention of ID-irrelevant

object queries: For each of the eight image pairs, the left shows

the original person image and the right shows the heat map

of ID irrelevant object query.

F. Visualization

Qualitative Results. We demonstrate how DRL-Net over-

comes the occlusion constraint by providing several samples of

person image ranking and Fig 3 shows experimental results.

For each occluded query person image on the left, the two

rows of images on the right show the 10 top-matching images

that are produced by the baseline and our proposed DRL-

Net, respectively. We can observe that DRL-Net can overcome

the occlusions and identify images of the same pedestrian

correctly (highlighted by green-color boxes). As a comparison,

the baseline network is very sensitive to occlusions obviously

and returns a large amount of false-matching person images

(highlighted by red-color boxes).

Visualizing for object query. We visualize decoder cross-

attentions for the ID-irrelevant object query (the last object

query on decoder) using the heat map. The redder the heat

map, the higher the attention scores. As Fig. 5 shows, the ID-

irrelevant object query can automatically localize occlusion

and noise areas without explicit supervision, though obstacles

various in different person images. This nice property is largely

attributed to the transformer architecture and the contrast

feature learning that guides the network to disentangle the

representation of different semantic components and encour-

age the separation of occlusions feature and discriminative ID-

relevant features.

V. CONCLUSION

This paper proposes a novel alignment-free method DRL-

Net that handles occluded re-ID through disentangled repre-

sentation learning. Leveraging transformer architectures, DRL-

Net performs global reasoning based on the interrelation of

undefined semantic components, which allows feature disen-

tanglement without any supervision of part correspondences.

Furthermore, to better eliminate the interference of occlusion

noises, we design a contrast feature learning technique to

encourage the separation of occlusions feature and ID-relevant

features. Extensive experimental evaluations on several bench-

marks demonstrate that DRL-Net achieves superior re-ID

performance consistently.
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