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ABSTRACT

The question of whether concepts expressible
as disjunctions of conjunctions can be learned
from examples in polynomial time is investigated.
Positive results are shown for significant sub-
classes that allow not only propositional pre-
dicates but also some relations. The algorithms
are extended so as to be provably tolerant to a
certain quantifiable error rate in the examples
data. It is further shown that under certain re-
strictions on these subclasses the learning algo-
rithms are well suited to implementation on neural
networks of threshold elements. The possible im-
portance of disjunctions of conjunctions as a know-
ledge representation stems from the observations
that on the one hand humans appear to like using
it, and, on the other, that there is circumstantial
evidence that significantly larger classes may not
be learnable in polynomial time. An NP-complete-
ness result corroborating the latter is also pre-
sented.

1. Introduction

The ability of humans to learn new concepts is
remarkable and mysterious. Little progress has
been made in the problem of simulating this process
by computer. Worse still there is little agreement
on what realistic specifications of the desired
behavior of such a simulation might look like. The
approach taken to this problem in a previous paper
[13] was to appeal to computational complexity
theory to provide some guidelines on this last
question. In particular, various classes of prop-
ositional concepts were explored that could be
learned from examples, or sometimes oracles, in a
polynomial number of computational steps. Pre-
sumably biological systems cannot learn classes
that are computationally intractable.

The overall model was hierarchical. A concept
to be learned was expressed as a propositional
expression in terms of concepts already known. If
this expression was too complex it was computation-
ally infeasible to learn it. The maximal complex-
ity of such expressions that could be learned
feasibly was studied.

That investigation pointed to one particular
concept class that especially warranted further
investigation--those that could be expressed as a
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disjunction of conjunctions, called disjunctive
normal form (DNF). The attraction of this class is
that humans appear to like it for representing
knowledge as is evidenced, for example, by the
success of the production system paradigm [6] and
of Horn clause logics [8]. Our investigations sug-
gest that significantly larger classes may not be
learnable in polynomial time. Hence this class may
turn out to have a central role.

This paper is organized as follows. In Sec-
tion 2 the formal framework will be described
first. It will then be shown that significant sub-
classes of propositional DNF expressions can be
learned in polynomial time just from examples.
Whether the whole class can be so learned remains
an open problem.

The section following that will discuss how
the above results can be extended to allow vari-
ables and relations in the manner of predicate
calculus. The extension is to a very restricted
part of the predicate calculus where there is only
existential quantification and a limited number of
variables.

In Section 4 the question as to whether the
above algorithm can be made robust to errors in
the data is discussed. It is shown that the
learning algorithms can indeed be made robust to a
small rate of even maliciously constructed errors.

The suitability of our learning algorithms to
implementations on distributed "brain-like" models
of computation is the subject of Section 5. In the
propositional case, under certain natural restric-
tions, such implementations are immediate, but this
does not appear to extend to the case allowing re-
lations.

Finally in Section 6 we observe that the limits
of learnability are not far off. Even if it is
known that a single purely conjunctive expression
explains fifty percent of the occurrences of a con-
cept, discovering or approximating this conjunction
may be NP-hard.

The word learning has been used in numerous
senses in philosophy, psychology and Al. A useful
distinction to make in this context is whether the
available data from which the learning or induction
is to be made is consistent with many varied hypoth-
esis, or essentially with just one. In the former
situation, which is often tacitly accepted in the
philosophy of science, and also in machine learning



(e.g. [5]), the learning problem is ill-defined
because of lack of information, and the best one
can hope for is to select, with good taste, from
among the several plausible hypotheses, In con-
trast, in the latter situation, sufficient informa-
tion is available in the data and the only problem
is to deduce the hypothesis from it computation-
ally. Our current work is directed at the latter
situation and is motivated by the observation that
distinct human individuals appear to converge
remarkably to essentially the same notions about
familiar concepts.

The technical idea that makes our positive
results possible is the probabilistic method of
specification. We assume that positive and negative
examples of concepts are drawn from certain prob-
ability distributions that are determined by the
real world, but arc otherwise arbitrary and possibly
unknown. The task of the learning procedure is to
discover a recognition algorithm for the concept
that gives the correct answer with high probability
on further examples drawn from the same distribu-
tion.

The main assumption made by our methodology as
outlined in [13] is that useful classes of learnable
concepts can have simple mathematical characteriza-
tions. Although we believe that DNF expressions
constitute a good and relevant knowledge representa-
tion, we don't wish to make this an equally central
assumption. Alternative classes may be also worth
exploring, such as those considered in [13],

As a philosophical note we observe that our
probabilistic specification of learning has partic-
ular effectiveness in certain extreme empiricist
or procedurist worlds. Suppose that the world is
too complex to model but intelligent systems manage
to cope using simple strategies (c.f. [11]). Then
specifying how these strategies achieve their goals
may be too complex to describe and consequently
programming or discovering these strategies may be
very difficult. In our model the simple strategies
correspond to the recognition algorithms. The com-
plex world is captured by the distribution, which
need never be described. The important point is
that the efficiency of our learning procedures is
limited only by the complexity of the algorithm to
be learned and not by the complexity of the distri-
bution, which may indeed by arbitrarily complex with
no ill effect. We conclude that in such worlds
learning may have an unexpectedly central role that
cannot be replaced by programming (c.fo Simon [12]).

2. Ppropositicnal DNF Expressions

We ghall first introduce the terminclogy we
use which is consistent with [13]. Let {pj,...,Pil
be a set of Boolean predicates. Let Mg be the set
of all 3t monomiala (or conjuncts) over these
predicates., A monomial is any product cbtained by
choosing for each 1 (1 <j €t) whether p; or
pj or neither should appear in it, and_conjolning
these choices. Thus if t #»4 then PyP3 and
p1P,p4 are typical members of M.
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Let ¥ be a Boolean function over {El""’ptL
More formally F is a mapping from {0,l}~~{0,1}
that specifies for each combination of truth values
of the t arguments PiresssPy of F whether F
is false or true, To allow for incompletely defined
inputs we shall extend F to the domain {0,1,"}t
according to the following rule: For vE€{0,1,*}%
Filv) =1 iff F(v') =1 for all v'E1{0,l}t such
that v and v' agree on all components on which
v is defined {i.e., egquals O or 1}. For example
if F{1,0,0) =1 and F(1,0,1} =1 then we define
F{1,0,%) =1. 1If either F{1,0,0) or F(1l,0,1)
were ) then F({l1,0,*] would be 0. Such an exten-
sion of a function we call the emeept F, The
criterion of truth of the concept for an incom=
pletely defined input v is whether the defined
compohents of v are sufficient to guarantee the
truth of the associated function F,

Por each concept F we define two probability
distributions DY and DT on its positive and
negative examples. The praitive examples are the

vectors v€1{0,1,*}* such that F(v) =1. On this
set D™ (v) =0 and DV (v) #0. The sum I Dt{v)
egquals cne when summed over this set, Similarly
the negative examples are the vectors v €10,1,%}%

such that F(v) =0. On this second set D%(v) =0
and D™ (v) #0. The sum I D™(v) eguals one when
summed over this set.

We define two procedures that generate posi-
tive and negative examples randomly from their re-—
spective distributions. A call of EXAMPLES' will
generate a vector v €{0,1,*}% such that Fiv) =1
where sach such v has probability DV({v) of being
produced at each call, A call of EXAMFLES™ will
generate a vector v such that F(v) =0 where
each such v has probability D™ ({v) of being pro=-
duced. Each call of these procedurea ia probabi-
listically independent of each other call,

h disfinetive normal form (DNF) expressiom f
is an expression

where McM_ . Thus f is the disjunction of a sub-~
set of the monomial set Mg,

Since My is of size exponential in t and we
will be interested in expressions that can be con—
structed in polyromial time, we shall need to dis-
cuss subclasges of M, that are of only polynomial
size,

Definition. A set M; €M, is polynomial generable
deterministically (p.g.d.) iff there is a determin-
istic algorithm that in time polynomial in t ter-
minates and generates descriptions of all the mem-
bers of M;.

Example 2.1, For any positive integer k the class
] of monomials coneisting of k or fewer predi-
cates (negated or not) ig p.g.d.

It would appear to be more flexible, and hence

advantageous in practice, if the monomial set were
not ec constrained, a pricri, but were to be deduced
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from calls of EXAMPLES+ or EXAMPLES" for the given

concept F. This is feasible if appropriate condi-
tions hold for the distributions, such as the fol-
lowing:

Definition. Distributions {D+,D-} have polynomially

generable monomial sets (p.g.m.s.) if there is an
algorithm that can call EXAMPLES+ and EXAMPLES-, runs
in time polynomial in t and h, and generates a set
HICHY of monomials that with probability at least

{1-h

En*m «pn™t

is over every v such
[N.B. | "wobm", s
v and m are identified with Boolean functions
in the obvious way. Thus v ->m means that the
truth values defined in v make m true,]

has the following property:

that v =#m

elsewhere,

where summation
for any mEHM;.

The motivation for this last definition is to
justify certain strategies for finding an M1 that
would otherwise appear to be unjustified heuristics.

Example 2.2. Suppose that for some small parameter
% #0 we called EXAMPLES+ a certain number of times
and put into M1 every monomial that appears as a
submonomial of the positive examples with frequency
at least A. For some distributions this set would
be exponentially large. For certain others, which

one could define, the set would be only polynomially

large.

Example 2.3. A good practical possibility might be
to let M1 be the intersection of some M(k) of
Example 2.1 with the set generated in Example 2.2.
For example if we choose k =3 and h =3 then the
monomial set is simply all conjuncts of sets of up to

three predicates that are ever satisfied simulta-
neously in some positive example.

learning strat-
L(h,S): Suppose

The quantitative aspects of our
egies are captured by the function
we have an urn containing a large number (possibly
infinite) of marbles of at most S kinds. We want
to sample a number x of marbles (with replacement)
so that with probability at least 1 -h-1 the sam-
ple is such that if a further marble is picked at
random then the probability that this new marble is
not already represented in the previous sample is
less than h-1. In [13] it is shown that there is
a function L(h,S) <2h(S + loge h) that is an upper
bound on this x for all possible relative fre-
quencies of the S kinds of marbles.

Our basic results about
sions from examples alone will

learning DNF expres-
be expressed with

respect to our previous definitions of a concept
Fip ,...,pt! having distributions D+, D- where
=1‘ mj with summation over some MEMy. It is
essentially the dual of Theorem A in 113].
Theorem 2.1. There is an algorithm E ~calling
EXAMPLES+ and EXAMPLES" such that (i) whether M&M;
for some M1 that is p.g.d. or (ii) whether
{D+,D~} has a p.g.m.s., E will generate a DNF
formula g in time polynomial in h and t that
will have probability at least (1=h"1) of having

each of the following properties:

(a) g: p*tv) < n7?
giv)=0
Z p vy <n

gv)=1

(&)

[In case (i) EXAMPLES® is not necessary and the sum

I bt in (a) is zero.]
Procf, Algorithm E is gimply the following:

[in case (i) determinis-
tically, in case (ii) prob-
abilistically to have the
desired propertiesl;
L+L{n, M |3;

begin Generate M;

For i+l to L do

begin v EXAMPLES™ ;

Por all mEM; s.t. v=m

Ml +H1 -m;

end

summed over mEM ;

g+im 1

end

(a) we note that in case (i) the
monomials of F consist only of members of M1 and
will always be contained in the monomial set of g.
Hence g(v) =0 =F(v) =0 =Dt{v) =0 In case (ii)
some monomials of F will be missing from g be-
cause they were already missing from M1. But by
the definition of p.g.m.s. the probability E otiv)
summed over all v such that wvem for any mEMl,
is bounded by h-1 with probability at least

t ~h=l, Hence E D*{v} summed over v such that
g(v) =0 is bounded by the same quantity.

To verify

(b) suppose to the contrary that the
sum I D {v) is at least w1, Suppose we consider
each mEMl that is not a monomial of F to be a
marble and that a call of v<-EXAMPLES" is inter-
preted as taking a sample of at least one marble,
(i.e. the submonomials of v cannot be monomials
of F). Then a f tLi|My|,h)a c h calls with
probability at least {L=h"1) the set of monomials
in M1 that are not in F and have not been chosen
have total probability of occurrence

E D v} <nt

gfvi=l

To show

Algorithms in the style of algorithm E are
natural in several contexts in inductive inference
[2]. In the current context it is made noteworthy
by its provably good behavior for all distributions.

3. DNF Expressions with Relations
In Al applications there is often need for

referring to several distinct objects and to ex-
pressing relationships among them. For sheer



expressive power the full predicate calculus is very

useful, of course, but it clearly includes much
power, such as arbitrary alternations of quantifiers,
that are little used. It is an interesting question

to delineate the minimal part of the predicate cal-
culus that is still expressive enough for conven-
tional Al applications. Only a few attempts have
been made in this direction [4].

Here we are concerned with the question of how
much the class of expressions that is learnable can
be extended to allow relations without sacrificing
polynomial time learnability. We shall now allow
object variables x1,.,.,xr. Instead of proposi-

tional predicates we will allow relation predicates
P1,...,Pt each of which has a number, its arity,
that defines the number of arguments it has. A

monomial is now an existentially quantified con-
junction of relational predicates, such as:

axlaxz. . .Exrpl (x2,x3}p2 (xl,x4,x5)p4( )

For notational brevity the existential quantifica-
tion will be suppressed.

This notation is sufficient to express a predi-
cate on a scene that depends on the existence of
certain subobjects in the scene that obey certain
relations among themselves.

For a fixed r and a fixed set of predicates
p1,....,pt we can define the class MQ of all mono-
mials that can be formed from then in the obvious
way. We regard two monomials are identical iff they
can be obtained from each other by permuting the
variable names.

Definition. A set M]_EMD
deterministically (p.g.d.)

is polynomial generable
iff there is a determin-

istic algorithm that in time polynomial in t and
r terminates and generates all the members of M1.
Example 3.1. For any fixed numbers r and k the

set of monomials consisting at most k predicates,
negated or not, is p.g.d. In fact there are no more
than (2r+1t)k of themO

In treating the probabilistic generation of
monomials from examples a problem would arise if we
had to relate the variables {xi} to the primitive
input vectors {v}. In the case under consideration,
however, this whole problem can be completely
finessed. Let D+, D- be probability distributions
on the positive and negative examples of the primi-

tive input vectors {v}. We extend D+, D- to the
domain of monomials Mo as follows: DHm) is the
probability that the conjunctive relation m holds

for a random output
for D-.

v of EXAMPLES+. Similarly

Definition. Distributions {D+,D-} have polynomially
generably monomial sets (p.g.m.s.) if there is an
algorithm calling EXAVAES+ and EXAMPLES' that runs
in time polynomial in h, t and r and generates

a set My eMp of monomials that with probability

at least- (L"™-h™t) has the following property:

ED+(V] <n?
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where summation is over every v such that wvwm
for any m@w" [i.e., as in the propositional case
the monomials of F missing from M1 account for
a small fraction of the probability space {v}.
Now, however, v =m has the complex meaning that
the monomial expression m is true of primitive
input v.].

Examples 3.2 and 3.3. The analogues of Examples
2.2 and 2.3 can be defined in the obvious way.

Theorem 3.1. The statement and proof are identical
to those of Theorem 2.1 except that the monomial

set M1. has the more general interpretation allow-
ing relations. o

In summary, the learning algorithm we are
suggesting, if we use Example 3.3 with i =0 as
the monomial set, is the following: List all mono-
mials with up to r object variables and k predi-
cates, that hold in at least one observed positive
example. Eliminate from this list all monomials
that occur in some observed negative example. Take
the disjunction of the remaining monomials as the
desired expression.

4. Robustness

Howv much tolerance to erroneous data should we
require of a learning system? On the one hand
experience suggests that learning is difficult
enough from error-free data and becomes well nigh
impossible if the data is seriously flawed. This
suggests the possibility that the learning phenom-
enon is only feasible with very low error rates.

On the other hand some robustness is clearly essen-
tial and it is reasonable to investigate the maxmum
error rate that can be compensated for.

In this section we will modify Algorithm E and
show that the modified form Algorithm E*, is resis-
tant to a quantifiable, if low, error rate, whether
in the propositional or extended relational case of
Section 3.

Definition. If A is an oracle then we say that
oracle B is "oracle A with error rate &" if at
each call of B (i) with probability 1-4% it
calls oracle A correctly, and (ii) with proba-
bility & it produces an arbitrary answer possibly
chosen maliciously by an adversary.

The modified algorithm that has access only to
an oracle "EXAMPLES' with error rate &{t,h)" will
now perform T(]Hll,hl cycles and will depend on a

parameter e(t,h), where &,e and T are related
below. 2 is an integer array indexed by the mem-
bers of M1 and initialized to zero. Algorithm E*

is the following:

begin Generate Hl,-
i<l to T do

T «T{ Iuli (his
For
begin v «"EXAMPLES with error 3";

For all mEM a.t.
Zlm] «Z[m] +1;

v -m
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g+Im with summation over all m s.t,
Z2im] <&T;

end
The following analogue to Theorems 2.1 and 3.1 can
be proved. We shall restrict ourselves to the
deterministic case. The other case, when M7 has
p.g.m.s., can be treated similarly by detecting any
maliciously generated monomials having too many
submonomials by their low frequency of occurrence.
Thus the result refers to an arbitrary function
F that can be expressed as the sum of monomials
from M1.

Theorem 4.1. There is an algorithm E* calling
EXAMPLES" with error rate &= {4h|m;|3=1 that will
generate a DNF formula g ’in time polynomial in h
and t such that with probability at least

{(t -h-1) g has the following properties

(a) ¥ oty =0
g{v]=0

and
(b (; D) <nl
g(v)=l
Proof. We will show that the described algorithm E*
suffices if e=28 and T=36hIMlllog(IMl|h).

(@) A monomial m of F can be missing from
g only because it has been removed from M1 by
having occurred with frequency greater than E in
the negative examples. This can only happen if the
oracle behaved erroneously at least ET times in
T trials where the probability of each such occur-
rence is at most & =e/2. By the binomial distribu-
tion (e.g. [3]) the probability of this happening
is less than exp{-1/2¢eT} <exp(-4 log {|M;|h))
< |M4]n=1 under the assumed bounds on T and &.
Hence the probability of this happening to any m
in F is at most h-1.

(b) A monomial m such that b~ (v) 20 for
some Vv such that m =>v can be included in g if
there have been fewer than £T negative examples
containing m. Now if some m €M1 is implied with
frequency at least 2e¢ by D- then the probability
of having found at most eT negative examples in T
trials each with probability of success at least
2e{l-4) [i.e., allowing for the 6 error rate] can
be bounded above_by exp(-(1/3)+48T{1-&)
< [(1-8)/(2-26)]1%) <exp(-§T/9), Hence the probabil-
ity that at least one such monomial with frequency
at least 2e has been wrongly included in g is at
most Mq*exp(-8T/9) €h~1 under the assumed bounds.
Hence if only those monomials remain that have fre-
quency less than 2e then their total contribution
to ED7(v} is at most |My{e(2n|M;])~1&n"1, D

5. Naive Neural Modelling

The methodology behind this study is that of
determining the largest classes of "concepts", that
can be learned in a feasible total number of compu-
tation steps. Since learning is exhibited by bio-
logical systems it is an interesting afterthought

to determine whether the algorithms discovered hap-
pen to be well suited to implementation on a "brain-
like" model of computation, such as considered by
Feldman [6] or Ackley et al. [1], for example.

In this section we observe that a partial im-
plementation of our algorithm on networks of linear
threshold devices can be found that is noteworthy
for its simplicity. In the propositional case it
is able to learn DNF expressions if the distributions
are such that the monomial sets are generable in a
certain sense on these networks. While this class
is still plausible and accommodates robustness
exactly as in Section 4, it does require more res-
tricted distributions than before and does not allow
for the relations of Section 3.

The essential idea is that if the input nodes
of the network are exposed to the vectors constitu-
ting the examples, then the monomials in the mono-
mial set M1 will be learned in unsupervised
fashion at various distinct nodes in the network.
The final disjunction over these is learned in
supervised mode at a specified node. To accomplish
the unsupervised stage symmetry in the network is
broken by assuming randomness in the network (either
of the connections or of the weights).

We consider the following distributed model of
computation. An instance of a net is described by
a triple (¥,E,AY where V is a set of n nodes
{1,2,...,n), E€v x¥ s a set of directed edges and
A:E --> [0,1] labels each edge (i,j) with a numeri-
cal weight aij. Each node i has a state s.
that at any time has value 0 or 1.

A set of nodes, say {l,...,t} is regarded as
constituting the input. When an example is presented
to the net, for learning or recognition, the states
s1,...,st are set to the Boolean values correspon-
ding to the truth values of the propositional predi-
cates p ,..., p ,

A node j "fires" (i.e., sj =1) in a time
interval if in the previous interval

a,.s, #1 .
(i,y)eg 7 *

A node continues to fire as long as the above con-
dition holds.

The learning mechanism allowed is the following:
When a new example is presented we wait for the
states to stabilize and assume that they do. A
weight aij can be changed only if node i or node
j is firing. |Its new value depends only on the
current values of si Sj and on the values of aij
and aji before the presentation of the current
example. The new value of aij becomes operative
only when a further example has been presented.

We consider two senses in which a net learns a
function F(p1,..., pt) as a consequence of a train-
ing session of examples. F has been learned in
unsupervised mode if the weights have been so modi-
fied during the training session that some node |
now fires whenever (i.e. almost whenever)
F(s1...,st) -1. F has been learned in supervised
mode if the same has been achieved but in the course



of the training session a distinguished node, say |
was controlled by an external omnipotent agent and
made to fire if and only if F(S1,...,st) =1 was
true of the training example (thus overriding possi-
bly the threshold condition above).

For implementing counters on the weights we use
an arbitrary continuous strictly monotone function
o[0,1] +[0,1] such that for anvy ¢ € (0,1)
of{c} *1 and o¢7T(e) »0 as_x-+=. le,qg.,

0{x) =2x -x2, 071(x) =1 -/1-x would do].

First, we notice that if F is a simple mono-
tone disjunction (e.g., p1 vp3 vp7) or a simple
monotone conjunction then it can be learned in super-
vised mode at any node |j to which all the relevant
inputs are connected. The learning rule for dis-
junctions involves changing those a.. where
(i,j) €E provided F=0 as follows:ij

U(ai].) if F=0 and 5i=0

a,. =

ij _n

o fa,.) if F=0 and s, =1 .
i3 i

By duality learning a conjunction is achieved by

oia, ) if F=1 and s, =1
ij i

a,.
ij R

¢ fa,.,) if P=1 and s, =0 .
ij i

z+1 is the inverse of the € =26
of Theorem 4.1. If each aij is initialized to
1/2, say, then each a;. will tend to 0 or 1 as
desired according to wherner its frequency in the
corresponding examples is less than or greater than
.

In both cases

To recognize disjunctions of conjunctions we
will show how certain monomial sets M1 can be gen-
erated in unsupervised mode from examples. A dis-
junction over any subset of M7 can then be learned
by the above method at any node that is connected to
all the nodes computing M1 .

The basic idea is illustrated by the simple
case of wanting to learn the monomial P1P2 . . . Pk
from a distribution D* of examples when the nodes
1,2,...,k,...,d, are all connected to some node
j >d, [Note that here D* will be a distribution
that typically includes both positive and negative
examples of F and no-one informs node | as to
which is the case.] To accomplish this we define
a as above but scaled to the range [O0,(k-1/2)1],
and choose it so that |o(x)-x| is always suitably
small compared with k-1. If each aik is initial-
ized to (k-1/4)"1 then the following learning
algorithm, for 1<i%d, will achieve the task

s, =1

if B, =1 and
j i

c(aij)

-1 .
.= da , =0
a (aij} if sj 1l an s1

provided the distribution D* has favorable proper-

ties such as the following:
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If ¥ is the event that at least Xk of
Bires..8,; are 1 then

1.
Prob(sl-sz=...=sk—1|‘f) >-2-+£. and

Prob(sl=l|Y)< -;-—»c for any 2 (k <t &d) .

The idea is that for the majority of inputs sp =1
for & <k. These will cause s- to fire and hence
increase the values of aps to tend towards
(k=1/2)"1, For the remaining values of & @3 =0
for the majority of inputs and hence alj will
tend to zero as desired.

To make arbitrary monomials of length k

(i.e., M(K) ) learnable in unsupervised mode, one
approach is to make the network random so that for
each set of k out of the n nodes, there will be
at least one, and at most a few, nodes to which all
k are connected. Connecting each node to a random
set of about nll/k_others achieves this. Then
any monomial m€nk! can be learnt at some node,
and, equally importantly, will be learnt at only a
few, thus allowing the other nodes to learn differ-
ent monomials. In this way about n distinct mono-
mials from M(K) can be learnt. To make all this
possible D* has to be so defined that at each node
at most one monomial from M(K) has overriding
influence in the sense of the previous paragraph.

To make the above concrete consider the case

k =2 and suppose that we want P1P2 to be learn-
able. Then D* has to be such that if we pick a
set of Yn Pi's to include P1/P2 but to be other-

wise random, then with high likelihood the following

holds: If v €D* is chosen randomly to have at
least two of the chosen pi true, then with prob-
ability greater than a half these will include p1
and P2~

To summarize we have shown that a restricted
version of Algorithm E of Section 2 can be imple-
mented on a network of threshold elements. It will
build up recognizers for a set M* of monomials
that occur in examples provided the members of M*
are suitably separated by D* in the manner indi-
cated above. The network can then learn arbitrary
disjunctions over M* in supervised mode.

6. Simple Rules of Thumb May be Hard to Learn

There is evidence that certain significant
extensions to the concept classes here or in [13]
render them computationally intractable. One source
of evidence is cryptography as described in the lat-
ter paper. Here we shall describe an NP-complete-
ness result that shows that extensions in a certain
other direction are probably computationally intrac-
table also.

In the learnable classes considered a simple
formula was assumed to account for a hundred percent
of all positive examples of a concept. Suppose that
the simple formula is now a single monomial that
accounts for just fifty percent, and the rest is
accounted for by a function whose complexity is
unspecified. We shall show that in this situation
it is NP-hard to discover either this monomial, or
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one that approximates it in the sense of accounting
for (172 -h~1) of the distribution for arbitrarily

large h.

Theorem 6.1, Given a function F expressed as a
sum of monomials and distributions D+ and D- of
positive and negative examples, it is NP-hard to
determine whether a monomial m of the following
kind exists, or to construct one if it does:

§D+m >% and 1‘,.;mla'(w) =0

[The descriptions of D and D do not need to be

counted in the input size.]

Proof, We reduce the BALANCED COMPLETE BIPARTITE
SUBGRAPH problem proved NP-complete by Garey and
Johnson ([7], p. 196) to this problem. In the former
problem we are given a bipartite graph
G = (vmV; UV, ECV] xVy) vhere ?vll = |vy|
have to determine whether there are subsets
U;€V; and UV, both of mize |V;|/2 such that

u, XU, cE.

and we

Suppose we interpret the nodes
{P1sesspt} and define for each node
q3 €igyreeas9e) *V2 a monomial my such that
m; =7 p with conjunction over all Jj such that
(3.1 E%. Let D*(vy) =t~l for each v; that is
completely defined and has exactly those predicates
true that occur in my. Also let D7 (v} >0 when-
ever fewer than t/2 predicates are true.

Vl as

Then the distribution ensures that any m
satisfying the theorem must have at least t/2
predicates defined as true, and, also, must imply
at least t/2 of the mi's. But this is exactly
the condition that the graph G has a
(t/2) x (t/2) complete bipartite subgraph.

The above shows that determining whether the
desired m exists or not is NP-hard. Constructing
it on the assumption that this good rule of thumb
exists is therefore also NP-hard since the decision
procedure reduces to this. o

Also if no such m exists then the value of
E pt(v} summed over all ww=@k is at most
{-t-1}/2 and the constant 1/2 cannot be
approached to within h-1 uniformly in a number of
steps polynomial in h and t (unless NP-complete-
ness does not imply intractability).

Finally note that it is not known whether the
size of the largest balanced complete bipartite
subgraph can be approximated to arbitrarily good
multiplicative constant factors in polynomial time.
Hence it is possible that the above reduction estab-
lishes a stronger result than claimed, namely that
finding monomials accounting for (1/2 =g} of the
distribution for sufficiently small constant e s
also difficult.
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