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ABSTRACT 

The quest ion of whether concepts expressible 
as d is junc t ions of conjunct ions can be learned 
from examples in polynomial t ime is i nves t i ga ted . 
Pos i t i ve resu l t s are shown fo r s i g n i f i c a n t sub­
classes tha t a l low not only p ropos i t i ona l p re ­
d icates but also some r e l a t i o n s . The algori thms 
are extended so as to be provably t o l e ran t to a 
ce r ta i n q u a n t i f i a b l e e r ro r ra te in the examples 
data. I t i s f u r t he r shown tha t under ce r ta in r e ­
s t r i c t i o n s on these subclasses the learn ing a lgo­
r i thms are w e l l su i ted to implementation on neural 
networks of threshold elements. The possib le im­
portance of d is junc t ions of conjunct ions as a know­
ledge representat ion stems from the observations 
tha t on the one hand humans appear to l i k e using 
i t , and, on the o ther , tha t there is c i rcumstan t ia l 
evidence tha t s i g n i f i c a n t l y la rger classes may not 
be learnable in polynomial t ime. An NP-complete-
ness r e s u l t corroborat ing the l a t t e r is a lso p re ­
sented. 

1 . In t roduc t ion 

The a b i l i t y of humans to learn new concepts is 
remarkable and myster ious. L i t t l e progress has 
been made in the problem of s imula t ing t h i s process 
by computer. Worse s t i l l there is l i t t l e agreement 
on what r e a l i s t i c spec i f i ca t ions of the desired 
behavior of such a s imula t ion might look l i k e . The 
approach taken to t h i s problem in a previous paper 
[13] was to appeal to computational complexity 
theory to provide some guidel ines on t h i s l a s t 
quest ion . In p a r t i c u l a r , var ious classes of prop­
o s i t i o n a l concepts were explored tha t could be 
learned from examples, or sometimes o rac les , in a 
polynomial number of computational s teps. Pre­
sumably b i o l o g i c a l systems cannot learn classes 
tha t are computat ional ly i n t r a c t a b l e . 

The o v e r a l l model was h i e r a r c h i c a l . A concept 
to be learned was expressed as a p ropos i t i ona l 
expression in terms of concepts already known. I f 
t h i s expression was too complex it was computation­
a l l y i n f eas i b l e to learn i t . The maximal complex­
i t y of such expressions tha t could be learned 
feas ib l y was s tud ied . 

That i nves t i ga t i on pointed to one p a r t i c u l a r 
concept class tha t espec ia l l y warranted fu r t he r 
i nves t iga t ion - - those tha t could be expressed as a 
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d i s j unc t i on o f conjunct ions, ca l l ed d i s j unc t i ve 
normal form (DNF). The a t t r a c t i o n of t h i s class is 
tha t humans appear to l i k e i t f o r represent ing 
knowledge as is evidenced, f o r example, by the 
success of the product ion system paradigm [6] and 
of Horn clause log ics [ 8 ] . Our inves t iga t ions sug­
gest tha t s i g n i f i c a n t l y larger classes may not be 
learnable in polynomial t ime. Hence t h i s class may 
tu rn out to have a cen t ra l r o l e . 

This paper is organized as f o l l ows . In Sec­
t i o n 2 the formal framework w i l l be described 
f i r s t . I t w i l l then be shown tha t s i g n i f i c a n t sub­
classes of p ropos i t i ona l DNF expressions can be 
learned in polynomial time j u s t from examples. 
Whether the whole class can be so learned remains 
an open problem. 

The sect ion fo l low ing tha t w i l l discuss how 
the above resu l t s can be extended to al low v a r i ­
ables and re l a t i ons in the manner of predicate 
ca lcu lus . The extension is to a very r e s t r i c t e d 
par t of the predicate calculus where there is only 
e x i s t e n t i a l q u a n t i f i c a t i o n and a l i m i t e d number of 
va r i ab les . 

In Section 4 the question as to whether the 
above a lgor i thm can be made robust to er rors in 
the data is discussed. I t is shown tha t the 
learn ing algori thms can indeed be made robust to a 
small ra te of even mal ic ious ly constructed e r ro r s . 

The s u i t a b i l i t y of our learn ing algori thms to 
implementations on d i s t r i b u t e d " b r a i n - l i k e " models 
of computation is the subject of Section 5. In the 
p ropos i t i ona l case, under ce r ta in na tu ra l r e s t r i c ­
t i o n s , such implementations are immediate, but t h i s 
does not appear to extend to the case al lowing r e ­
l a t i o n s . 

F i n a l l y in Section 6 we observe tha t the l i m i t s 
o f l e a r n a b i l i t y are not fa r o f f . Even i f i t i s 
known tha t a s ing le pure ly conjunct ive expression 
explains f i f t y percent of the occurrences of a con­
cept , d iscover ing or approximating t h i s conjunct ion 
may be NP-hard. 

The word learn ing has been used in numerous 
senses in phi losophy, psychology and A I . A usefu l 
d i s t i n c t i o n to make in t h i s context is whether the 
ava i lab le data from which the learn ing or induc t ion 
is to be made is consistent w i t h many var ied hypoth­
es i s , or essen t i a l l y w i t h j u s t one. In the former 
s i t u a t i o n , which i s o f ten t a c i t l y accepted in the 
philosophy of science, and also in machine learn ing 
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(e .g . [ 5 ] ) , the learning problem is i l l - d e f i n e d 
because of lack of in format ion, and the best one 
can hope fo r is to se lec t , wi th good tas te , from 
among the several p lausib le hypotheses0 In con­
t r a s t , i n the l a t t e r s i t u a t i o n , s u f f i c i e n t informa-
t i o n is ava i lab le in the data and the only problem 
is to deduce the hypothesis from i t computation­
a l l y . Our current work is directed at the l a t t e r 
s i t u a t i o n and is motivated by the observation that 
d i s t i n c t human ind iv idua ls appear to converge 
remarkably to essent ia l l y the same notions about 
f a m i l i a r concepts. 

The technical idea that makes our pos i t i ve 
resu l t s possib le is the p r o b a b i l i s t i c method of 
s p e c i f i c a t i o n . We assume that pos i t i ve and negative 
examples of concepts are drawn from cer ta in prob­
a b i l i t y d i s t r i b u t i o n s that are determined by the 
r e a l wo r ld , but arc otherwise a rb i t ra ry and possibly 
unknown. The task of the learning procedure is to 
discover a recogni t ion algori thm fo r the concept 
tha t gives the correct answer w i th high p r o b a b i l i t y 
on f u r t he r examples drawn from the same d i s t r i b u ­
t i o n . 

The main assumption made by our methodology as 
ou t l i ned in [13] is that useful classes of learnable 
concepts can have simple mathematical character iza­
t i o n s . Although we bel ieve that DNF expressions 
cons t i t u te a good and relevant knowledge representa­
t i o n , we don ' t wish to make th i s an equally cen t ra l 
assumption. A l te rna t i ve classes may be also worth 
exp lo r ing , such as those considered in [13] , 

As a ph i losophica l note we observe that our 
p r o b a b i l i s t i c spec i f i ca t i on of learning has p a r t i c ­
u la r ef fect iveness in cer ta in extreme emp i r i c i s t 
or procedur is t wor lds. Suppose tha t the world is 
too complex to model but i n t e l l i g e n t systems manage 
to cope using simple st rategies ( c . f . [11 ] ) . Then 
spec i fy ing how these s t ra teg ies achieve t h e i r goals 
may be too complex to describe and consequently 
programming or discovering these s t ra teg ies may be 
very d i f f i c u l t . In our model the simple s t ra teg ies 
correspond to the recogni t ion a lgor i thms. The com­
plex wor ld is captured by the d i s t r i b u t i o n , which 
need never be described. The important po in t is 
tha t the e f f i c iency of our learning procedures is 
l i m i t e d only by the complexity of the a lgor i thm to 
be learned and not by the complexity of the d i s t r i ­
bu t i on , which may indeed by a r b i t r a r i l y complex w i th 
no i l l e f f e c t . We conclude tha t in such worlds 
learn ing may have an unexpectedly cen t ra l ro le tha t 
cannot be replaced by programming (c. fo Simon [12 ] ) . 
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from c a l l s of EXAMPLES+ or EXAMPLES" f o r the given 
concept F . This is feas ib le i f appropr iate cond i ­
t ions hold fo r the d i s t r i b u t i o n s , such as the f o l ­
lowing : 

D e f i n i t i o n . D i s t r i bu t i ons {D+,D-} have polynomial ly 
generable monomial sets (p.g.m.s.) i f there is an 
a l g o r i t h m t h a t can c a l l EXAMPLES+ and EXAMPLES-, runs 
i n t i m e p o l y n o m i a l i n t and h , and g e n e r a t e s a s e t 

o f monomials t h a t w i t h p r o b a b i l i t y a t l e a s t 

has t h e f o l l o w i n g p r o p e r t y : 

where summation i s ove r eve ry v such t h a t 
f o r any [ N . B . I n a s e l s e w h e r e , 
v and m a r e i d e n t i f i e d w i t h Boo lean f u n c t i o n s 
in t h e o b v i o u s way. Thus v ->m means t h a t t h e 
t r u t h v a l u e s d e f i n e d i n v make m t r u e , ] 

The m o t i v a t i o n f o r t h i s l a s t d e f i n i t i o n i s t o 
j u s t i f y c e r t a i n s t r a t e g i e s f o r f i n d i n g a n M 1 t h a t 
wou ld o t h e r w i s e appear t o b e u n j u s t i f i e d h e u r i s t i c s . 

Example 2 . 2 . Suppose t h a t f o r some s m a l l pa rame te r 
we c a l l e d EXAMPLES+ a c e r t a i n number of t i m e s 

and p u t i n t o M1 e v e r y monomia l t h a t appears as a 
submonomial o f t h e p o s i t i v e examples w i t h f r e q u e n c y 
a t l e a s t For some d i s t r i b u t i o n s t h i s s e t wou ld 
b e e x p o n e n t i a l l y l a r g e . For c e r t a i n o t h e r s , w h i c h 
one c o u l d d e f i n e , t h e s e t w o u l d b e o n l y p o l y n o m i a l l y 
l a r g e . 

Example 2 . 3 . A good p r a c t i c a l p o s s i b i l i t y m i g h t be 
t o l e t M 1 b e t h e i n t e r s e c t i o n o f some M ( k ) o f 
Example 2 . 1 w i t h t h e s e t g e n e r a t e d i n Example 2 . 2 . 
For example i f we choose k =3 and t h e n t h e 
monomia l s e t i s s i m p l y a l l c o n j u n c t s o f s e t s o f u p t o 
t h r e e p r e d i c a t e s t h a t a re e v e r s a t i s f i e d s i m u l t a ­
n e o u s l y i n some p o s i t i v e examp le . 

The q u a n t i t a t i v e a s p e c t s o f ou r l e a r n i n g s t r a t ­
e g i e s a r e c a p t u r e d b y t h e f u n c t i o n L ( h , S ) : Suppose 
we have an u r n c o n t a i n i n g a l a r g e number ( p o s s i b l y 
i n f i n i t e ) o f marb les o f a t most S k i n d s . We want 
to sample a number x of marb les ( w i t h r ep lacemen t ) 
s o t h a t w i t h p r o b a b i l i t y a t l e a s t 1 - h - 1 t h e sam­
p l e i s such t h a t i f a f u r t h e r m a r b l e i s p i c k e d a t 
random t h e n t h e p r o b a b i l i t y t h a t t h i s new marb le i s 
n o t a l r e a d y r e p r e s e n t e d i n t h e p r e v i o u s sample i s 
l e s s t h a n h - 1 . I n [13] i t i s shown t h a t t h e r e i s 
a f u n c t i o n L ( h , S ) < 2 h ( S + l oge h ) t h a t i s an upper 
bound o n t h i s x f o r a l l p o s s i b l e r e l a t i v e f r e ­
quenc ies o f t h e S k i n d s o f m a r b l e s . 

Our b a s i c r e s u l t s abou t l e a r n i n g DNF e x p r e s ­
s i o n s f r o m examples a l o n e w i l l b e exp ressed w i t h 
r e s p e c t t o o u r p r e v i o u s d e f i n i t i o n s o f a concep t 

h a v i n g d i s t r i b u t i o n s D+, D- where 
w i t h summat ion o v e r some I t i s 

e s s e n t i a l l y t h e d u a l o f Theorem A i n ] 1 3 ] . 

Theorem 2 . 1 . There i s a n a l g o r i t h m E c a l l i n g 
EXAMPLES+ and EXAMPLES" such t h a t ( i ) whe the r 
f o r some M 1 t h a t i s p . g . d . o r ( i i ) whe the r 
{D+,D~} has a p . g . m . s . , E w i l l g e n e r a t e a DNF 
f o r m u l a g i n t i m e p o l y n o m i a l i n h and t t h a t 
w i l l have p r o b a b i l i t y a t l e a s t o f h a v i n g 

To v e r i f y (a) we no te t h a t i n case ( i ) t h e 
monomials of F c o n s i s t o n l y of members of M1 and 
w i l l a lways b e c o n t a i n e d i n t h e monomial s e t o f g . 
Hence I n case ( i i ) 
some monomials o f F w i l l be m i s s i n g f rom g b e ­
cause t h e y were a l r e a d y m i s s i n g f r om M1. Bu t by 
t h e d e f i n i t i o n o f p . g . m . s . t h e p r o b a b i l i t y 
summed o v e r a l l v such t h a t f o r any 
i s bounded b y h - 1 w i t h p r o b a b i l i t y a t l e a s t 

Hence summed ove r v such t h a t 
g ( v ) =0 i s bounded by t h e same q u a n t i t y . 

To show (b) suppose to t h e c o n t r a r y t h a t t h e 
sum is a t l e a s t Suppose we c o n s i d e r 
each t h a t is n o t a monomia l o f F to be a 
ma rb le and t h a t a c a l l o f v<-EXAMPLES" i s i n t e r ­
p r e t e d as t a k i n g a sample o f a t l e a s t one m a r b l e , 
( i . e . t h e submonomials o f v canno t be monomials 
o f F ) . Then a f t e r s u c h c a l l s w i t h 
p r o b a b i l i t y a t l e a s t t h e s e t o f monomials 
i n M1 t h a t a re n o t i n F and have n o t been chosen 
have t o t a l p r o b a b i l i t y o f o c c u r r e n c e 

A l g o r i t h m s i n t h e s t y l e o f a l g o r i t h m E a re 
n a t u r a l i n s e v e r a l c o n t e x t s i n i n d u c t i v e i n f e r e n c e 
[ 2 ] . I n t h e c u r r e n t c o n t e x t i t i s made n o t e w o r t h y 

b y i t s p r o v a b l y good b e h a v i o r f o r a l l d i s t r i b u t i o n s . 

3. DNF Expressions w i t h Relat ions 

In AI app l ica t ions there is o f ten need f o r 
r e f e r r i n g to several d i s t i n c t objects and to ex­
pressing re la t ionsh ips among them. For sheer 
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expressive power the f u l l predicate calculus is very 
useful, of course, but it clearly includes much 
power, such as arbitrary alternations of quantifiers, 
that are l i t t l e used. It is an interesting question 
to delineate the minimal part of the predicate cal­
culus that is s t i l l expressive enough for conven­
t ional AI applications. Only a few attempts have 
been made in this direction [4]. 

Here we are concerned with the question of how 
much the class of expressions that is learnable can 
be extended to allow relations without sacrif icing 
polynomial time learnabil i ty. We shall now allow 
object variables x1 , . , . ,x r . Instead of proposi-
t ional predicates we w i l l allow relation predicates 
P1,...,Pt each of which has a number, i t s ar i ty , 
that defines the number of arguments it has. A 
monomial is now an existentially quantified con­
junction of relational predicates, such as: 

For notational brevity the existential quantifica­
t ion w i l l be suppressed. 

This notation is sufficient to express a predi­
cate on a scene that depends on the existence of 
certain subobjects in the scene that obey certain 
relations among themselves. 

For a fixed r and a fixed set of predicates 
p1, . . . ,p t we can define the class MQ of a l l mono­
mials that can be formed from then in the obvious 
way. We regard two monomials are identical i f f they 
can be obtained from each other by permuting the 
variable names. 

Definit ion. A set is polynomial generable 
deterministically (p.g.d.) i f f there is a determin­
i s t i c algorithm that in time polynomial in t and 
r terminates and generates a l l the members of M1. 

Example 3.1. For any fixed numbers r and k the 
set of monomials consisting at most k predicates, 
negated or not, is p.g.d. In fact there are no more 
than (2r+1t)k of them0 

In treating the probabilistic generation of 
monomials from examples a problem would arise if we 
had to relate the variables {xi} to the primitive 
input vectors {v}. In the case under consideration, 
however, this whole problem can be completely 
finessed. Let D+, D- be probability distributions 
on the positive and negative examples of the primi­
tive input vectors {v}. We extend D+, D- to the 
domain of monomials Mo as follows: D+(m) is the 
probability that the conjunctive relation m holds 
for a random output v of EXAMPLES+. Similarly 
for D-. 

Definit ion. Distributions {D+,D-} have polynomially 
generably monomial sets (p.g.m.s.) if there is an 
algorithm calling EXAMPLES+ and EXAMPLES" that runs 
in time polynomial in h, t and r and generates 
a set of monomials that with probability 
at least- " has the following property: 

where summation is over every v such that 
for any m€M-̂  [ i . e . , as in the propositional case 
the monomials of F missing from M1 account for 
a small fraction of the probability space {v}. 
Now, however, has the complex meaning that 
the monomial expression m is true of primitive 
input v . ] . 

Examples 3.2 and 3.3. The analogues of Examples 
2.2 and 2.3 can be defined in the obvious way. 

Theorem 3.1. The statement and proof are identical 
to those of Theorem 2.1 except that the monomial 
set M1. has the more general interpretation allow­
ing relations. o 

In summary, the learning algorithm we are 
suggesting, if we use Example 3.3 with as 
the monomial set, is the following: List a l l mono­
mials with up to r object variables and k predi­
cates, that hold in at least one observed positive 
example. Eliminate from this l i s t a l l monomials 
that occur in some observed negative example. Take 
the disjunction of the remaining monomials as the 
desired expression. 

4. Robustness 

How much tolerance to erroneous data should we 
require of a learning system? On the one hand 
experience suggests that learning is d i f f i cu l t 
enough from error-free data and becomes well nigh 
impossible if the data is seriously flawed. This 
suggests the possibi l i ty that the learning phenom­
enon is only feasible with very low error rates. 
On the other hand some robustness is clearly essen­
t i a l and it is reasonable to investigate the maximum 
error rate that can be compensated for. 

In this section we w i l l modify Algorithm E and 
show that the modified form Algorithm E*, is resis­
tant to a quantifiable, if low, error rate, whether 
in the propositional or extended relational case of 
Section 3. 

Definit ion. If A is an oracle then we say that 
oracle B is "oracle A with error rate if at 
each cal l of B (i) with probability it 
calls oracle A correctly, and ( i i ) with proba­
b i l i t y it produces an arbitrary answer possibly 
chosen maliciously by an adversary. 

The modified algorithm that has access only to 
an oracle "EXAMPLES" with error rate w i l l 
now perform cycles and w i l l depend on a 
parameter , where and T are related 
below. 2 is an integer array indexed by the mem­
bers of M1 and in i t ia l ized to zero. Algorithm E* 
is the following: 



564 L. Valiant 

end 

The fo l l ow ing analogue to Theorems 2.1 and 3.1 can 
be proved. We s h a l l r e s t r i c t ourselves to the 
de te rm in i s t i c case. The other case, when M1 has 
p .g .m.s . , can be t rea ted s i m i l a r l y by detect ing any 
mal ic ious ly generated monomials having too many 
submonomials by t h e i r low frequency of occurrence. 
Thus the r e s u l t re fe rs to an a r b i t r a r y func t ion 
F tha t can be expressed as the sum of monomials 
from M1. 

Theorem 4 . 1 . There is an a lgor i thm E* c a l l i n g 
EXAMPLES" w i t h e r ro r ra te t ha t w i l l 
generate a DNF formula g in time polynomial in h 
and t such tha t w i t h p r o b a b i l i t y at least 

g has the fo l l ow ing proper t ies 

Proof. We w i l l show tha t the described a lgor i thm E* 
su f f i ces i f and 

(a) A monomial m of F can be missing from 
g only because it has been removed from M1 by 
having occurred w i t h frequency greater than E in 
the negative examples. This can only happen if the 
oracle behaved erroneously at least ET times in 
T t r i a l s where the p r o b a b i l i t y of each such occur­
rence is at most By the binomial d i s t r i b u ­
t i o n (e .g . [3]) the p r o b a b i l i t y o f t h i s happening 
is less than 

under the assumed bounds on T and 
Hence the p r o b a b i l i t y of t h i s happening to any m 
in F is a t most h-1. 

(b) A monomial m such tha t fo r 
some v such tha t m =>v can be included in g if 
there have been fewer than £T negative examples 
contain ing m. Now if some m €M1 is impl ied w i th 
frequency at least by D- then the p r o b a b i l i t y 
of having found at most negative examples in T 
t r i a l s each w i t h p r o b a b i l i t y of success at least 

[ i . e . , a l lowing fo r the 6 e r ro r ra te ] can 
be bounded above by 

Hence the p r o b a b i l ­
i t y t ha t at least one such monomial w i t h frequency 
at leas t 2e has been wrongly included in g is at 
most under the assumed bounds. 
Hence if only those monomials remain tha t have f r e ­
quency less than then t h e i r t o t a l con t r i bu t i on 
to is at most D 

5. Naive Neural Modell ing 

The methodology behind t h i s study is tha t of 
determining the la rgest classes of "concepts", t ha t 
can be learned in a feas ib le t o t a l number of compu­
t a t i o n s teps. Since learn ing is exh ib i ted by b i o ­
l o g i c a l systems i t i s an i n t e r e s t i n g af ter thought 

to determine whether the algor i thms discovered hap­
pen to be w e l l su i ted to implementation on a "b ra in -
l i k e " model of computation, such as considered by 
Feldman [6] or Ackley et al. [1], fo r example. 

In t h i s sect ion we observe tha t a p a r t i a l im­
plementat ion of our a lgor i thm on networks of l i nea r 
threshold devices can be found tha t is noteworthy 
fo r i t s s i m p l i c i t y . I n the p ropos i t i ona l case i t 
is able to learn DNF expressions i f the d i s t r i b u t i o n s 
are such tha t the monomial sets are generable in a 
ce r ta in sense on these networks. While t h i s class 
is s t i l l p laus ib le and accommodates robustness 
exact ly as in Section 4, i t does requi re more res ­
t r i c t e d d i s t r i b u t i o n s than before and does not al low 
fo r the re la t i ons of Section 3. 

The essent ia l idea is tha t i f the input nodes 
of the network are exposed to the vectors c o n s t i t u ­
t i n g the examples, then the monomials in the mono­
mia l set M1 w i l l be learned in unsupervised 
fashion at var ious d i s t i n c t nodes in the network. 
The f i n a l d i s j unc t i on over these is learned in 
supervised mode at a spec i f i ed node. To accomplish 
the unsupervised stage symmetry in the network is 
broken by assuming randomness in the network (e i ther 
of the connections or of the we igh ts ) . 

We consider the fo l low ing d i s t r i b u t e d model of 
computation. An instance of a net is described by 
a t r i p l e where V is a set of n nodes 
{ 1 , 2 , . . . , n ) , is a set of d i rec ted edges and 
A:E --> [0,1] labels each edge ( i , j ) w i t h a numeri­
ca l weight a i j . Each node i has a s ta te s. 
tha t at any time has value 0 or 1. 

A set of nodes, say { l , . . . , t } is regarded as 
c o n s t i t u t i n g the i npu t . When an example is presented 
to the ne t , fo r learning or recogn i t i on , the states 
s 1 , . . . , s t are set to the Boolean values correspon­
ding to the t r u t h values of the p ropos i t i ona l p r e d i ­
cates p , . . . , p , 

A node j " f i r e s " ( i . e . , sj =1) in a time 
i n t e r v a l i f i n the previous i n t e r v a l 

A node continues to f i r e as long as the above con­
d i t i o n ho lds . 

The learn ing mechanism allowed is the f o l l o w i n g : 
When a new example is presented we wa i t f o r the 
states to s t a b i l i z e and assume tha t they do. A 
weight aij can be changed only if node i or node 
j is f i r i n g . I t s new value depends only on the 
current values of si Sj and on the values of aij 
and aji before the presentat ion of the current 
example. The new value of a i j becomes operat ive 
only when a f u r t he r example has been presented. 

We consider two senses in which a net learns a 
func t ion F ( p 1 , . . . , p t ) as a consequence of a t r a i n ­
ing session of examples. F has been learned in 
unsupervised mode if the weights have been so modi­
f i e d dur ing the t r a i n i n g session tha t some node j 
now f i r e s whenever ( i . e . almost whenever) 
F ( s 1 . . . , s t ) - 1 . F has been learned in supervised 
mode if the same has been achieved but in the course 
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of the t r a i n i n g session a dist inguished node, say j 
was con t ro l l ed by an external omnipotent agent and 
made to f i r e if and only if F ( S 1 , . . . ,s t ) = 1 was 
t rue of the t r a i n i n g example (thus overr id ing poss i ­
b l y the threshold condi t ion above). 

For implementing counters on the weights we use 
an a r b i t r a r y continuous s t r i c t l y monotone funct ion 

F i r s t , we not ice that if F is a simple mono-
tone d i s j unc t i on (e.g. , p1 vp3 vp7) or a simple 
monotone conjunct ion then it can be learned in super­
v ised mode at any node j to which a l l the re levant 
inputs are connected. The learning ru le fo r d i s ­
junct ions involves changing those a . . where 
( i , j ) provided F = 0 as fol lows:i j 

In both cases is the inverse of the 
o f Theorem 4 . 1 . I f each a i j is i n i t i a l i z e d to 
1/2, say, then each w i l l tend to 0 or 1 as 
desired according to wherner i t s frequency in the 
corresponding examples is less than or greater than 

To recognize d is junct ions of conjunctions we 
w i l l show how cer ta in monomial sets M1 can be gen­
erated in unsupervised mode from examples. A d i s ­
j unc t i on over any subset of M1 can then be learned 
by the above method at any node tha t is connected to 
a l l the nodes computing M1 . 

The basic idea is i l l u s t r a t e d by the simple 
case of wanting to learn the monomial P1P2 . . . Pk 
from a d i s t r i b u t i o n D* of examples when the nodes 
l , 2 , . . . , k , . . . , d , are a l l connected to some node 
j >d„ [Note tha t here D* w i l l be a d i s t r i b u t i o n 
tha t t y p i c a l l y includes both pos i t i ve and negative 
examples of F and no-one informs node j as to 
which is the case.] To accomplish t h i s we def ine 
a as above but scaled to the range [ 0 , ( k - 1 / 2 ) 1 ] , 
and choose i t so that is always su i tab ly 
smal l compared w i th k -1 . I f each a i k i s i n i t i a l ­
ized to then the fo l low ing learn ing 
a lgo r i thm, fo r w i l l achieve the task 

p r o v i d e d t h e d i s t r i b u t i o n D * has f a v o r a b l e p r o p e r ­
t i e s such a s t h e f o l l o w i n g : 

The idea is tha t fo r the major i t y of inputs 
fo r These w i l l cause s- to f i r e and hence 
increase the values of to tend towards 

For the remaining values of 
fo r the major i ty of inputs and hence al j w i l l 
tend to zero as des i red. 

To make a r b i t r a r y monomials of length k 
( i . e . , M(K) ) learnable in unsupervised mode, one 
approach is to make the network random so tha t f o r 
each set of k out of the n nodes, there w i l l be 
at least one, and at most a few, nodes to which a l l 
k are connected. Connecting each node to a random 
set of about others achieves t h i s . Then 
any monomial can be learn t at some node, 
and, equal ly impor tan t ly , w i l l be learn t at only a 
few, thus al lowing the other nodes to learn d i f f e r ­
ent monomials. In t h i s way about n d i s t i n c t mono­
mials from M(K) can be l e a r n t . To make a l l t h i s 
possible D* has to be so defined tha t at each node 
at most one monomial from M(K) has over r id ing 
inf luence in the sense of the previous paragraph. 

To make the above concrete consider the case 
k = 2 and suppose tha t we want P1P2 to be l ea rn ­
able. Then D* has to be such tha t if we p ick a 
set of P i ' s to include P1/P2 but to be o ther ­
wise random, then w i th high l i k e l i h o o d the fo l l ow ing 
holds: If v €D* is chosen randomly to have at 
least two of the chosen pi t r u e , then w i t h prob­
a b i l i t y greater than a ha l f these w i l l inc lude p1 
and P2* 

To summarize we have shown tha t a r e s t r i c t e d 
vers ion of Algori thm E of Section 2 can be imple­
mented on a network of threshold elements. It w i l l 
b u i l d up recognizers fo r a set M* of monomials 
tha t occur in examples provided the members of M* 
are su i tab ly separated by D* in the manner i n d i ­
cated above. The network can then learn a r b i t r a r y 
d is junc t ions over M* in supervised mode. 

6. S imple Rules of Thumb May be Hard to Lea rn 

There i s ev idence t h a t c e r t a i n s i g n i f i c a n t 
e x t e n s i o n s t o t h e concept c l a s s e s h e r e o r i n [13] 
r ende r them c o m p u t a t i o n a l l y i n t r a c t a b l e . One sou rce 
o f ev idence i s c r y p t o g r a p h y a s d e s c r i b e d i n t h e l a t ­
t e r p a p e r . Here we s h a l l d e s c r i b e an NP-comp le te -
ness r e s u l t t h a t shows t h a t e x t e n s i o n s i n a c e r t a i n 
o t h e r d i r e c t i o n a re p r o b a b l y c o m p u t a t i o n a l l y i n t r a c ­
t a b l e a l s o . 

I n the l e a r n a b l e c l a s s e s c o n s i d e r e d a s i m p l e 
f o r m u l a was assumed to a c c o u n t f o r a hundred p e r c e n t 
o f a l l p o s i t i v e examples o f a c o n c e p t . Suppose t h a t 
the s i m p l e f o r m u l a i s now a s i n g l e monomia l t h a t 
accoun ts f o r j u s t f i f t y p e r c e n t , and t h e r e s t i s 
accoun ted f o r b y a f u n c t i o n whose c o m p l e x i t y i s 
u n s p e c i f i e d . W e s h a l l show t h a t i n t h i s s i t u a t i o n 
i t i s NP-hard t o d i s c o v e r e i t h e r t h i s monom ia l , o r 
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one t h a t approximates i t in the sense of accounting 
f o r o f the d i s t r i b u t i o n f o r a r b i t r a r i l y 
large h. 

Theorem 6 . 1 , Given a func t ion F expressed as a 
sum of monomials and d i s t r i b u t i o n s D+ and D- of 
p o s i t i v e and negative examples, i t i s NP-hard to 
determine whether a monomial m of the fo l l ow ing 
k ind e x i s t s , o r t o construct one i f i t does: 

[The descr ip t ions of D and D do not need to be 
counted in the input s i z e . ] 

Proof, We reduce the BALANCED COMPLETE BIPARTITE 
SUBGRAPH problem proved NP-complete by Garey and 
Johnson ( [ 7 ] , p. 196) to t h i s problem. In the former 
problem we are given a b i p a r t i t e graph 

and we 
have to determine whether there are subsets 

Then the d i s t r i b u t i o n ensures t h a t any m 
s a t i s f y i n g the theorem must have at leas t t / 2 
predicates def ined as t r u e , and, a l s o , must imply 
a t leas t t / 2 o f the m i ' s . But t h i s i s exact ly 
the cond i t ion tha t the graph G has a 
( t /2 ) x ( t / 2 ) complete b i p a r t i t e subgraph. 

The above shows t h a t determining whether the 
desired m ex i s t s or not is NP-hard. Construct ing 
i t on the assumption t h a t t h i s good r u l e of thumb 
ex is ts is there fore also NP-hard since the dec is ion 
procedure reduces to t h i s . o 

Also i f no such m ex i s t s then the value of 
summed over a l l is at most 

and the constant 1/2 cannot be 
approached to w i t h i n h-1 uni formly in a number of 
steps polynomial in h and t (unless NP-complete­
ness does not imply i n t r a c t a b i l i t y ) . 

F i n a l l y note t ha t i t i s not known whether the 
s ize of the la rges t balanced complete b i p a r t i t e 
subgraph can be approximated to a r b i t r a r i l y good 
m u l t i p l i c a t i v e constant fac to rs in polynomial t ime . 
Hence i t is possib le t ha t the above reduct ion estab­
l i shes a stronger r e s u l t than c la imed, namely t ha t 
f i nd i ng monomials accounting f o r of the 
d i s t r i b u t i o n f o r s u f f i c i e n t l y small constant e is 
a lso d i f f i c u l t . 
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