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Abstract

This paper proposes a novel regression method

based on distance metric learning for human age es-

timation. We take age estimation as a problem of

distance-based ordinal regression, in which age differ-

ence is measured by an efficient distance metric. To

reach this goal, we propose to learn such a distance

metric that can preserve both the ordinal information

of different age groups and the local geometry struc-

ture of the target neighborhoods simultaneously. Then,

the facial aging trend can be truly discovered by the

learned metric. Experimental results on the publicly

available FG-NET database are very competitive a-

gainst the state-of-the-art methods.

1. Introduction

In recent years, human age estimation attracted much

attention in computer vision and pattern recognition [3,

2, 6, 7]. The purpose of age estimation is to label a face

image automatically with the exact age (year) or the age

group (year range). To achieve this goal, many algo-

rithms formulate age estimation as a regression prob-

lem [6, 14, 4], in which the age labels are taken as nu-

merical values.

However, it should be noted that the performance of

these regression models is dependent critically on their

being given distance metric over the input space. Since

aging face process is an ordinal procedure in temporal

domain, the faces with smaller age difference should be

more related than the faces with larger age difference.

In a sense, it is similar to learn an appropriate distance

metric to measure the distance between the aging faces,

so that the distance between the face representations

with smaller age difference should be shorter than the

distance between face representations with larger age

difference.

Generally, distance metric learning is to learn a dis-

tance metric for an input space from some side informa-

tion such as must-link/cannot-link constraints between

data instances. The optimal distance metric is found

such that the objects in must-link constraints are close

to each other while the objects in the cannot-link con-

straints are well separated. So far, various distance met-

ric learning algorithms have been proposed, such as the

convex programming approach [13], relevance compo-

nent analysis [8], neighborhood component analysis (N-

CA) [5], metric learning via large margin nearest neigh-

bor [11], and Bayesian distance metric learning [15].

Almost all the proposed distance metric learning

techniques are only applicable for the tasks of classifi-

cation and clustering, they are not focusing on regres-

sion problem. Taking age estimation as an example,

must-link/cannot-link constraints in the distance metric

learning algorithms can make the distances among the

faces representation with the same age label minimized

and the distances among the faces representation with

different age labels maximized, but it cannot preserve

the ordinal information among aging faces, which is of

great importance in age estimation. Recently, [12] pro-

posed a distance metric learning approach for regres-

sion and applied to age estimation. It aimed to preserve

the local geometry of the same semantic neighborhoods,

but it did not take account of keeping the ordinal rela-

tionship.

In this paper, we propose a novel algorithm to learn

distance metric for regression (LDMR), and apply it for

age estimation. The proposed approach targets at: 1)

maximizing the margins between two aging face group-

s with different age labels; 2) keeping the ordinal in-

formation among aging faces groups of different age

labels; 3) preserving the local geometry of the target

neighborhoods. Mathematically, we formulate it as a

semidefinite programming (SDP) problem. Based on

the learned metric, we build a new kNN regression mod-

el for age estimation. Experimental results on FG-NET

Aging Database [1] demonstrate its power compared to

the state-of-the-arts.



2. Formatting your paper

Let {(xi, yi)}(i = 1, 2, · · · , n) denote a training set

of n labeled examples with inputs xi ∈ R
d and their

associated continuous non-negative age labels yi. The

goal is to learn a Mahalanobis metric A that defines

distances of the form:

dA(xi,xj) = ‖xij‖A =
√
xT
ijAxij (1)

where xij = xi − xj , and A is a parameter in the dis-

tance function that is a positive semi-definite matrix.

In [12], the authors try to preserve the local geome-

try of the same semantic neighborhoods. An example

is given by Figure 1(a). Before training, the five points

nearly have the identical distances to xi in the original

2-D space as shown in the left part of Figure 1(a). After

training, the three yellow points have the same relative

distances to xi. Meanwhile, the red point and the blue

point are separated from xi as far as possible, which is

shown in the right part of Figure 1(a). However, the

ordinal information among all points is not well pre-

served, which may reduce the regression performance.

The desired result should be like Figure 1(b), in

which the ordinal information is well kept according to

the learned distance metric. To reach this goal, we for-

mulate the objective function as follows:

max J(A) =
∑

i,j

w(i, j)d2
A
(xi,xj) (2)

s.t. d2A(xi,xj) = d2ij if ηij = 1 (3)

A � 0 (4)

where w(i, j) is a weighting factor, and is defined as:

w(i, j) =

{
( D(i,j)+δ

C−D(i,j) )
m if yi 6= yj

0 otherwise
(5)

where D(i, j) is the absolute label difference between

xi and xj . δ refers to the labeling noise. C = D(i, j)+
θ, θ > 0 which ensures the denominator not to be zero.

m is chosen to make data easier to discriminate. In ad-

dition, ηij ∈ {0, 1} indicates whether xj is xi’s one of

K target neighbors, i.e., K other inputs with the same

age label yi having the minimal distance to xi. dij is

the Euclidean distance between xi and xj .

In Eq.(2), the objective function penalizes small dis-

tances between each input and all other inputs with-

out sharing the same age label. More importantly, the

weighting factor w(i, j) makes the objective function

penalize small distances between two inputs with large

age difference, which can preserve the ordinal informa-

tion of different age groups. The constraint condition
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Figure 1. Schematic illustration of the

metric learning approach. Here we on-
ly take the sample xi’s neighborhoods as

an example. In both Figure (a) and (b),
the left part is the situation of neighbor-

hood before training and the right part de-

lineates the situation after training. Data
with the same age labels are marked in

the same shape and color.

makes sure that the distance between the target neigh-

borhoods is unchanged, which can preserve the local

geometry of the target neighborhoods. In the absence

of prior knowledge, we use Euclidean distance to rep-

resent the distance between the target neighborhoods in

the original space.

In practical applications, not all constraints in Eq.(3)

could be satisfied, therefore we add some slack vari-

ables to ensure that the feasible is not empty as follows:

max J(A) =
∑

i,j

w(i, j)d2A(xi,xj) + α
∑

l

ǫl (6)

s.t. d2
A
(xi,xj) + ǫl = d2ij if ηij = 1 (7)

A � 0 (8)

ǫl ≥ 0 (9)

This problem is a standard semidefinite programming

problem, and it can be effectively solved to obtain



its global maximum by several online generic pack-

ages [9].

After obtaining the learned distance metric A, we

build a new kNN regression model as follows:

ŷ =

∑K

i=1 λiΛi∑K
i=1 λi

(10)

where ŷ is the estimated age label of the testing sample

x̂ ,{Λi, i = 1, 2, · · · ,K} are the corresponding age la-

bels of x̂’s K nearest neighbors in the training set and

λi is the weighting coefficient, which is calculated as:

λi =
1

d2
A
(x̂,xi)

(11)

3. Experiment

We evaluate the performance of the proposed method

(LDMR) on the public available FG-NET database [1].

This database contains totally 1002 color or gray im-

ages from 82 different persons with the age ranges from

0 to 69 years. We use AAM [3] as the feature extraction

method in the experiments because it is capable of ex-

tracting both the shape and the appearance features of

human images.

For all the experiments, we set C = 80, δ = 1,m =
0.4, and the nearest neighborhood number K = 20 em-

pirically. For all the statistical experiments, we follow

the popular test scheme, namely Leave-One-Person-

Out (LOPO), which is usually taken for the FG-NET

database, as in [2, 6, 12, 4]. The mean absolute error

(MAE, i.e., 1
n

∑n
i=1 |ŷi − yi|) is used as the evaluation

measure. Here {ŷ1, . . . , ŷn} denote the estimated ages

and {y1, . . . , yn} are the true ages.

3.1 Experimental Results

To evaluate the effectiveness of the learned metric,

we compare it with two related distance metric learn-

ing approaches [12] and [11]. We also use the Eu-

clidean metric as the baseline. For fair comparison, all

the distance metrics are combined with kNN regression

to do age estimation. Following [12], we first randomly

choose 400 training samples from the whole training set

to learn the distance metric, and then apply kNN regres-

sion to the whole training set for age estimation. Table 1

reports the results. It is clear to see LDMR outperforms

the other distance metric learning methods.

We also compare LDMR with the existing results

on the FG-NEG database reported in recent year. Ta-

ble 2 lists the MAEs reported in the literatures togeth-

er with that of our algorithm. LDMR outperforms n-

early all the other methods except OHRank [2]. Al-

though the MAE of OHRank is slightly smaller than

Table 1. MAEs over different age ranges
on FG-NET Database wrt kNN in different

metrics.
Age Image mkNN lmNN Eucli- LDMR

Range Num. [12] [11] Metric

00-09 371 2.29 3.16 5.65 2.06

10-19 339 3.65 3.50 3.39 3.09

20-29 144 5.44 5.14 4.91 3.61

30-39 79 10.55 11.52 13.13 9.16

40-49 46 15.81 20.17 22.39 16.30

50-59 15 25.18 27.33 30.27 26.33

60-69 8 36.80 39.86 43.13 34.5

Overall 1002 4.93 5.66 6.83 4.51

that of LDMR, the implementation of OHRank is much

harder and the computation cost is much higher. In

LDMR, what we need is to learn a new distance metric,

and then build a kNN regression on the learned met-

ric. In OHRank, it needs to train multiple SVM clas-

sifiers for age estimation. LDMR is also competitive

to [4], while [4] is based on a nonlinear distance metric

learning method. Moreover, the amount of the training

samples used in [4] for learning the metric is more than

twice that of our work.

Figure 2. MAE of different methods using

different amounts of training samples.

To further disclose the relationship between the per-

formance and the amount of training data used for learn-

ing distance metric, we test the MAE results of LDM-

R under different amounts of training samples ranging

from 100 to 400. We compare it with mkNN [12],

which has already shown its effectiveness in Table 1.

The results are shown in Figure 2. The proposed dis-

tance metric outperforms mkNN under all differen-



Table 2. MAE comparisons of different al-
gorithms

Method MAE

LARR [6] 5.07

RPK [14] 4.95

BIF [7] 4.77

Nonliear metric+kNN [4] 4.67

OHRank [2] 4.48

LDMR 4.51
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Figure 3. The 2-D visualization of PCA on

the Euclidean metric and the learned met-
ric. The color of the point represents age

with blue being the youngest and red be-
ing the oldest.

t amounts of training samples.

To show the learned distance metric is helpful for

discovering an apparent aging trend intuitively, we ran-

domly choose 100 facial images as the training data to

learn the distance metric and the rest of images are used

as the testing data. Figure 3(a) and (b) give the details

of the training stage. Figure 3(a) displays the 2-D visu-

alizations of principal component analysis (PCA) [10]

on the training data using Euclidean metric. Figure 3(b)

shows the 2-D visualizations of PCA on the same train-

ing data using the learned metric. We can see the aging

trend is clear by using our metric. Figure 3(c) and (d)

displays the 2-D visualizations for the testing data. The

aging trend is still discovered apparently by our learned

metric.

4. Conclusion

In this paper we present a novel distance metric

learning algorithm for age estimation. By keeping ordi-

nal information of different age groups and preserving

the local geometry of target neighborhoods, the learned

metric can truly discover the aging trend. Experimental

results on a widely used public aging database validate

the effectiveness of the proposed method.
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