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Abstract

Segmenting the prostate from CT images is a critical step in the radio-therapy planning for 

prostate cancer. The segmentation accuracy could largely affect the efficacy of radiation treatment. 

However, due to the touching boundaries with the bladder and the rectum, the prostate boundary is 

often ambiguous and hard to recognize, which leads to inconsistent manual delineations across 

different clinicians. In this paper, we propose a learning-based approach for boundary detection 

and deformable segmentation of the prostate. Our proposed method aims to learn a boundary 

distance transform, which maps an intensity image into a boundary distance map. To enforce the 

spatial consistency on the learned distance transform, we combine our approach with the auto-

context model for iteratively refining the estimated distance map. After the refinement, the prostate 

boundaries can be readily detected by finding the valley in the distance map. In addition, the 

estimated distance map can also be used as a new external force for guiding the deformable 

segmentation. Specifically, to automatically segment the prostate, we integrate the estimated 

boundary distance map into a level set formulation. Experimental results on 73 CT planning 

images show that the proposed distance transform is more effective than the traditional 

classification-based method for driving the deformable segmentation. Also, our method can 

achieve more consistent segmentations than human raters, and more accurate results than the 

existing methods under comparison.

1 Introduction

CT images are widely used in the image-guided radiotherapy planning (IGRT), as it provides 

Hounsfield units for all image voxels, which are necessary for dose calculation. In the IGRT 

for prostate cancer, the prostate and nearby organs (e.g., the bladder and the rectum) need to 

be segmented in order to optimize the dose plan for precisely targeting the radiation beams 

on the prostate and minimizing the radiation exposure to the surrounding tissues. The 

segmentation accuracy of the prostate could largely affect the efficacy of radiation treatment. 

However, due to the touching boundaries with the bladder and the rectum, the prostate 

boundary is often indistinct in CT images (Fig. 1), which imposes much difficulty upon the 

manual delineation. It usually takes an experienced clinician 10 – 12 minutes to manually 

delineate the prostate boundary in CT image of each patient. Despite of taking this long 

delineation time, manual segmentations still vary much among different raters [1,2]. Thus, 

an automatic and robust segmentation method is highly desired in this context.
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Previous works [3,4] often reply on learning a patient-specific model for addressing the 

aforementioned challenge, as the prostate appearance and shape variations are small for the 

image data acquired from the same patient. However, these methods are not applicable for 

prostate segmentation from the planning CT images, as no segmented CT images of the 

same patient are available for appearance and shape learning in the radiotherapy planning 

stage. Consequently, only population information (i.e., CT images of other patients) could be 

used for guiding the prostate segmentation in the planning CT images. Among the 

population-based methods, most of them utilize the shape constraint for deriving a robust 

segmentation. For example, Costa et al. [5] proposed a coupled deformable model for 

segmenting the prostate by imposing a non-overlapping constraint from the bladder. Chen et 

al. [6] proposed a Bayesian framework that incorporates anatomical constraints from the 

surrounding bones for prostate segmentation. However, due to the lack of an effective 

appearance model for guiding the deformable segmentation, the accuracy of these methods 

is very limited. Recently, classification-based methods [2,7] have been proposed to segment 

the prostate from CT images, and achieved significant improvement over the traditional 

intensity-based methods [5,6,8]. The main idea is to train a classifier for distinguishing 

prostate voxels from background voxels based on local patch appearance. The learned 

classifier could be used to label the intensity image into a prostate likelihood map for 

guiding the deformable segmentation.

In this paper, we propose to learn a distance transform for boundary detection and 

deformable segmentation of the prostate. The learned distance transform can map a new 

intensity image into the distance map of the target prostate boundary, which could be further 

utilized for anatomical boundary detection as well as deformable segmentation. In particular, 

regression forest is adopted to learn the non-linear relationship between a voxel’s local 

image appearance and its 3D displacement to the nearest point on the target prostate 

boundary. Once the forest is learned, it can be used to predict the 3D displacement from any 

voxel in the new testing image to the target prostate boundary. By taking the magnitude of 

the displacement vector, the distance map of the prostate boundary can be obtained for a new 

testing image. To enforce the spatial consistency within the obtained distance map, we 

further combine the high-level context features extracted from the previously obtained 

distance map with the original image appearance features into the auto-context framework 

[9] for iterative refinement. Finally, the refined distance map will be integrated into a level 

set formulation for segmenting the prostate from CT images. Experimental results show that 

learning a boundary distance transform is more effective than prostate classification for 

guiding the deformable segmentation. In addition, our method can achieve more consistent 

segmentations than human raters, and also more accurate results than existing methods 

under comparison.

2 Method

Our method consists of three components: 1) regression forest for learning boundary 

distance transform, 2) iterative refinement of the predicted distance map by context features, 

and 3) distance-map-guided boundary detection and deformable segmentation with level 

sets. Fig. 2 shows the flowchart of our method.
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2.1 Learning Boundary Distance Transform by Regression Forest

Regression forest, as a non-linear regression model, has recently been used for efficient 

anatomy detection [10], i.e., detecting the bounding box of one specific organ. In this paper, 

we extend it to learn the distance transform for a specific organ boundary (e.g., prostate 

boundary). The learned distance transform is used for mapping a new 3D intensity image 

into the distance map of the target boundary. More specifically, given any voxel in the new 

testing image, we want to predict its nearest distance to the target boundary. Hence, distance 

transform learning is essentially a regression problem. In our work, regression forest is 

particularly used for learning the non-linear relationship between a voxel’s local image 

appearance and its 3D displacement vector to the nearest point on the target boundary. By 

taking the magnitude of the 3D displacement vector, the distance of this voxel to the target 

boundary can be obtained. Thus, the learned regression forest can be regarded as a boundary 

distance transform. In the next paragraphs, we will show how the regression forest is trained 

for learning boundary distance transform, and how the learned forest could be applied to a 

new testing image for predicting the distance map.

To learn the distance transform for a specific organ boundary, we first randomly sample 

voxels near the boundary in every training image according to a Gaussian distribution: 

p(x) = 1/( 2πσ) × exp ( − d(x)2/2σ
2), where p(x) indicates the probability of voxel x ∈ ℝ3 in 

a training image to be sampled, d(x) is the nearest distance of voxel x to the target boundary 

in this training image, and σ controls the size of narrowband for sampling. In this way, the 

majority of sampled voxels will be close to the target boundary, thus making the learned 

model more specific on detecting the target boundary. This sampling strategy is important 

for accurate organ segmentation, as boundary voxels are usually the most difficult to 

characterize. Afterwards, the sampled voxels from all training images are used as our 

training dataset. For each sampled voxel in one training image, we extract randomized 3D 

Haar-like features from an intensity patch centered at this voxel for capturing the local 

image appearance around it. The Haar-like features are defined as follows.

f (I) = ∑
i = 1

M

ti ∑
‖x − c

i
‖

∞
≤ s

i

I(x) (1)

where f(I) denotes one 3D Haar-like feature extracted from intensity patch I, M is the 

number of 3D cubic functions used in this Haar-like feature, and ti ∈ {+1, −1}, ci and si are 

the polarity, the center and the size of the i-th cubic function, respectively. By randomizing 

the parameters M, ti, ci and si in Eq. 1, we can generate an unlimited number of 3D Haar-like 

features for regression forest learning. In this work, M is limited to {1, 2}, si is limited to {3, 

5}, and ci is not limited as long as the 3D cubic function stays within intensity patch I of size 

30 × 30 × 30.

Once the feature representation of each voxel is determined, a regression forest can be 

trained for predicting the 3D displacement from any image voxel to the nearest point on the 

target boundary. Given a new testing image, the learned forest can be applied to voxel-wisely 
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estimate the 3D displacement for every image voxel. By taking the magnitude, a boundary 

distance map can then be obtained.

2.2 Iterative Refinement of Distance Map by Context Features

As the displacement from each image voxel to the target boundary is predicted 

independently, the estimated distance map for a new testing image is often spatially 

inconsistent, as shown in the leftmost distance map of Fig. 2. To overcome this limitation, 

we integrate the proposed distance transform learning with the auto-context model [9] for 

iteratively refining the estimated distance map. The main idea is to train a sequence of 

distance transforms, each utilizing both the local image features extracted from the original 

intensity image, and the high-level context features extracted from the output of the previous 

distance transform for gradually improving the quality of the estimated distance map.

During the training stage, after the distance transform of the first iteration is learned as 

described in Section 2.1, it can be used to predict a boundary distance map for every training 

image. Then, the additional high-level context features can be extracted from the estimated 

distance map, and further combined with the original image features to form a new feature 

representation for each voxel. Afterwards, a new distance transform can be learned by using 

the updated feature representation. This iterative training procedure continues until a 

specified number N of distance transforms is obtained. In our work, the high-level context 

features are also the randomized Haar-like features as defined in Eq. 1. Different from image 

appearance features, these context features are extracted from the distance map estimated by 

the previous distance transform. Since the rough distances of nearby voxels to the target 

boundary have been encoded in the previously estimated distance map, the new distance 

transform learning can utilize this valuable information to impose the spatial consistency on 

the to-be-estimated distance map, thus improving the overall prediction accuracy. In the 

testing stage, the learned distance transforms can be applied sequentially as shown in Fig. 2 

to iteratively refine the estimated distance map for a new testing image.

2.3 Distance-Map-Guided Boundary Detection and Deformable Segmentation (with Level 

Sets)

Once the boundary distance map is estimated for a new testing image, it can be used for 

either boundary detection or level set segmentation.

Boundary Detection—In most cases, the estimated distance map of a new testing image 

will be directly utilized for the final segmentation (e.g., to guide the deformable 

segmentation). However, sometimes if the organ-specific boundary segments are desired, we 

can also adopt non-minima suppression and hysteresis thresholding, similar as in the canny 

edge detector [11], to detect these organ-specific boundaries from the estimated distance 

map.

Level Set Segmentation—Since the target boundaries are located in the valley of the 

estimated distance map, the local means in the estimated distance map should be similar for 

both sides of the zero level set. Based on this assumption, we can design the following 

evolution flow to segment the prostate from the boundary distance map:
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∂ϕ

∂t
= δ(ϕ)(u1(x) − u2(x)) + vδ(ϕ)div(

∇ϕ

‖∇ϕ‖
) (2)

u1(x) =
∫ K(y − x)H(ϕ(y))Ω(y)d y

∫ K(y − x)H(ϕ(y))d y
, u2(x) =

∫ K(y − x)(1 − H(ϕ(y)))Ω(y)d y

∫ K(y − x)(1 − H(ϕ(y)))d y
(3)

where ϕ is the level set function with ϕ > 0 as the inner part and ϕ < 0 as the outer part, δ is 

the Delta function, u1(x) and u2(x) are the local means of the inner and outer parts, 

respectively, K is a Gaussian kernel function with the standard deviation of 3, H is the 

Heaviside step function [12], and Ω denotes the estimated boundary distance map. The first 

data-fitting term attracts the zero level set to the valley of the estimated distance map Ω, and 

the second regularization term imposes the smoothness constraint on the evolving surface ϕ.

3 Experiments

Data Descriptions—Our dataset consists of 73 planning CT images, scanned from 

different patients. The typical image size is 512 × 512 × (61 ~ 81) with voxel size 0.94 × 

0.94 × 3.00 mm3. The prostate in each planning CT image has been manually delineated by 

a radiation oncologist, which we use as ground truth. The dataset is of large appearance 

variability due to the uncertainty on the level of contrast agent that is present. Fig. 3 shows 

typical planning CT images (sagittal view) in our dataset along with the detected prostate 

boundaries by our boundary detection method (green) and manual rater (blue).

Parameter Setting—In the regression forest training, the number of trees is 10, the 

maximum tree depth is 15, the number of randomized Haar-like features is 1000 for both 

image appearance and context features, and the minimum sample number for each leaf node 

is 8. σ for controlling the size of narrowband sampling is 8. v in the level set segmentation is 

set to 0.01. All the parameters of regression forest is typical as adopted in other works [10]. 

To evaluate our segmentation method, we use four-fold cross-validation with 54 images for 

training and 19 images for testing. The initialization of the level set function is accomplished 

by using an affine transformation to transform the mean prostate shape onto the testing 

image. The affine transformation is estimated between six automatically detected prostate 

landmarks (i.e., top, base, anterior, posterior, left and right) in the testing image and their 

counterparts on the mean shape [2].

Qualitative Results—In addition to the boundary detection results in Fig. 3, we also plot 

the qualitative results for three typical planning CT images (with different levels of contrast 

agent) in Fig. 4. We can see that, after the proposed distance transform, prostate boundaries 

can be clearly seen in the predicted distance maps, and are quite consistent with the 

manually delineated boundaries by radiation oncologist. This demonstrates that our 

proposed method works very well in various planning CTs with different levels of contrast 

agent.
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Classification versus Distance Transform—Fig. 5(a) quantitatively compares the 

classification guided level set method with our proposed method (distance-map-guided level 

set method) on the same dataset. As aforementioned, the classification-based method uses a 

learned classifier to label the new testing image into a prostate likelihood map, which is then 

utilized for guiding the deformable segmentation with level sets [12]. For fair comparison, 

we used the classification forest with the same training parameters for the classification-

guided level set method. Similarly, we also adopt the auto-context model to iteratively refine 

the classification response map. From Fig. 5(a), we can clearly see that our proposed method 

(“distance transform”) outperforms the classification-guided level set method in all iterations 

(e.g., with higher Dice Similarity Coefficient (DSC) and lower Average Surface Distance 

(ASD)). In addition, Fig. 5(b) gives a typical example that compares the classification-based 

auto-context refinement with our distance-map-based auto-context refinement. We can see 

that the distance-map-based refinement is able to achieve more accurate segmentation than 

classification-based refinement. This infers that the context features extracted from the 

boundary distance map are more helpful to assist the auto-context refinement than the 

traditional context features extracted from the classification response map.

Comparison with other CT Prostate Segmentation Methods—Our method obtains 

an average surface distance (ASD) 1.85 ± 0.87 mm on our dataset. Due to the fact that 

neither the executables nor the datasets of other works are publicly available, it is difficult 

for us to directly compare our method with other CT prostate segmentation methods. Thus, 

we only cite the results reported in their publications for reference. The comparison shows 

that our method achieves more accurate segmentations than [8] (ASD 4.09 ± 0.90 mm), [2] 

(ASD 3.35 ± 1.40 mm), and the current state-of-the-art method [7] (ASD 2.37 ± 0.89 mm). 

Besides, it is worth noting that most existing methods were evaluated only on the datasets 

without contrast agent. It is not clear whether these methods can be applied to the mixed 

datasets which contain planning CTs with different levels of contrast agent. Actually, this 

aspect is very important in the clinical application. A desired prostate segmentation method 

should be able to deal with various kinds of planning CTs obtained with different contrasts 

and scanning protocols, as it is never pre-known which type of an unseen image would need 

to be segmented. Clearly, our method wins at this point, since it has been evaluated with 

good performance on the dataset with planning CTs of different contrasts. Additionally, the 

comparison with inter-rater variability of manual prostate delineations (ASD 3.03 ± 1.15mm 

[2]) indicates that our method is also able to obtain more consistent segmentations than the 

human raters.

4 Conclusion

In this paper, we propose to predict the boundary distance transform for anatomical 

boundary detection and deformable segmentation. It is applied to segment the prostate from 

CT images. Validated on 73 planning CT images with various contrasts, our proposed 

distance transform learning method shows better performance than prostate classification 

method for guiding the deformable segmentation of the prostate. Moreover, the comparisons 

with other CT prostate segmentation methods indicate that our method can be more adaptive 

to different datasets with various contrasts. Also, compared to manual prostate delineations, 
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our method can achieve more consistent segmentations, since there often exists large inter-

rater variability for manual delineations.
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Fig. 1. 
A typical 3D planning CT image in the transversal view (left panel) and sagittal view (right 

panel). In each view, the left figure shows the original prostate slice, and the right figure 

shows the corresponding slice overlaid with the manually segmented prostate (red).
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Fig. 2. 
The flowchart of our method. Green boxes show the local patches where appearance and 

context features are extracted for the voxel marked as red crosses. Cold and warm colors in 

the figure indicate voxels with small and large predicted distances to the prostate boundary.
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Fig. 3. 
Typical planning CTs (sagittal view) in our dataset. Green and blue contours indicate the 

prostate boundaries automatically detected by our boundary detection method and manually 

delineated by the expert, respectively.
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Fig. 4. 
Qualitative results from three planning CT images with different levels of contrast agent. 

Each row shows the planning CT images and their corresponding predicted distance maps in 

transversal, sagittal and coronal views. Red and blue contours indicate our final segmented 

prostate boundaries and the manually delineated boundaries, respectively.
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Fig. 5. 
(a) Quantitative comparison between classification-guided and distance-map-guided level set 

methods in our dataset. DSC: Dice Similarity Coefficient. ASD: Average Surface Distance. 

(b) Qualitative comparison between distance-map-based (first row) and classification-based 

(second row) auto-context refinement on a typical planning CT image. Red and blue 

contours indicate automatically-segmented and manually-delineated prostates, respectively.
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