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A B S T R A C T  

The task of object identification occurs when integrating in- 
formation from multiple websites. The  same data  objects 
can exist in inconsistent text  formats across sites, making 
it difficult to identify matching objects using exact text  
match. Previous methods of object identification have re- 
quired manual construction of domain-specific string trans- 
formations or manual setting of general transformation pa- 
rameter weights for recognizing format inconsistencies. This 
manual process can be t ime consuming and error-prone. We 
have developed an object identification system called Active 
Atlas [18], which applies a set of domain-independent  string 
transformations to compare the objects '  shared at tr ibutes 
in order to identify matching objects. In this paper, we dis- 
cuss extensions to the Active Atlas system, which allow it to 
learn to tailor the weights of a set of general transformations 
to a specific application domain through limited user input. 
The  experimental  results demonstrate  that  this approach 
achieves higher accuracy and requires less user involvement 
than previous methods across various application domains. 

1. I N T R O D U C T I O N  
Information mediators [19], such as SIMS [2] and Ari- 

adne [11], integrate information from multiple information 
sources on the web. One problem that  can arise when in- 
tegrating information is that  da ta  objects can exist in in- 
consistent text  formats across several sources. An example 
application of information integration involves integrating 
all the reviews of restaurants from the Zagat 's  Restaurants 
website with the current restaurant health ratings from the 
Department  of Health 's  website. To integrate these sources 
requires comparing the objects from both  sources and iden- 
tifying which restaurants are the same. 

Examples of the object identification problem are shown 
in Figure 1. In the first example the restaurant  referred to 
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as "Art 's  Deli" on the Zagat 's website may appear as "Art 's  
Delicatessen" on the Health Depar tment ' s  site. Because of 
this problem, the objects '  instances cannot be compared us- 
ing equality, they must be judged according to text  similar- 
ity in order to identify if the objects are the same. When 
two objects are determined the same, a mapping is created 
between them. 

Name Street Phone 

A.r t' $ I~] i |  2224 V~m m Bou ~vmd ~118.756..4124 ,1~ 

TfEcsa's 60 Mo~lqtIR St 718-520-29 I0 

12S Frecqoat St. 702.362-1fi4~0 

Les Celebrites 155 W. Mth St. 217~484~5113 

t 

I~armx~t off Health I 

Name Street Phone 

)P-Art "s D e l i m t ~ m  ,2224 vmtWll Bid. 81l///5~i.4100 

~ [lalOn's C e l l s  Shoo 121~ Flmment ~ ?~Yb'392-161~0 

~ 1..4~ C~lebrites. 160 C~tttl  Park S 212hIM-5113 

F i g u r e  1: M a t c h i n g  R e s t a u r a n t  O b j e c t s  

The examples in Figure 1 are each representative of a 
type of possible mapping found in the restaurant  domain. 
Together, these types of examples demonstrate  the impor- 
tance of certain at t r ibutes or combinations of at t r ibutes for 
deciding mappings between objects. Both sources list a 
restaurant named "Teresa's," and even though they match 
exactly on the N a m e  attr ibute,  we would not consider them 
the same restaurant. These restaurants belong to the same 
restaurant chain, but  they may not share the same health 
rating. In this restaurant application the N a m e  at t r ibute  
alone does not provide enough information to determine the 

mappings. 
The "Steakhouse The" and "Binion's Coffee Shop" restau- 

rants are located in the same food court of a hotel, so that  
they both have listed the same address and main phone num- 
ber of the hotel. Although they match on the S t r e e t  and 
P h o n e  attributes, these restaurants may not have the same 
health rating and should not be considered the same restau- 
rant. In the last example, due to error and unreliability 
of the data  values of the S t r e e t  at tr ibute,  the restaurant  
objects match only on the N a m e  and P h o n e  attributes. 
Therefore, in order for objects to be correctly mapped to- 
gether in this application, the objects must match highly on 
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both the N a m e  and the St ree t  attributes ("Art's Deli") or 
on both the N a m e  and P h o n e  attributes ( "Les Celebrites" ). 
This type of critical attribute information is captured in the 
form of object identification rules (mapping rules), which are 
then used to determine the mappings between the objects. 

We have developed an object identification system called 
Active Atlas [18], which applies a set of general string trans- 
formations in order to propose possible mappings between 
the objects and then employs an active learning technique 
that learns the necessary mapping rules to classify the map- 
pings with high accuracy. Previously, Active Atlas, as many 
other object identification systems [15~ 20, 14], required that 
the transformation weights be set manually before the map- 
ping process began. 

The focus of this paper is to describe work extending Ac- 
tive Atlas to learn to weight transformations for a specific 
application domain. In order to increase mapping accuracy, 
it is important to accurately weight transformations, be- 
cause some transformations can be more appropriate for a 
specific application domain than others. The transformation 
weights measure the likelihood that a given transformation, 
like "Equality" or "Acronym," participates in a correct map- 
ping between two objects. 

It is expensive, in terms of the user's time, to manually 
encode this type of knowledge for an object identification 
system. Also, due to errors that can occur in the data, a 
user may not be able to provide comprehensive information 
to classify the data with high accuracy without thoroughly 
reviewing all data. Yet, in our view the user must play a 
limited but important role in object mapping because the 
mapping assignment may depend on the specific application. 
If the application is altered then the mapping assignment 
may change as well, even though the sets of data are the 
same. 

Since the data itself may not be enough to decide the 
mappings between the sets of objects, the user's knowledge 
about object similarity is needed to increase the accuracy of 
the total mapping assignment. We have adopted a general 
domain-independent approach for incorporating the user's 
knowledge. Active Atlas achieves high accuracy object iden- 
tification by simultaneously learning to tailor both the trans- 
formation weights and mapping rules to a specific applica- 
tion domain through limited user input. The main goal of 
this research is to achieve the highest possible accuracy in 
object identification with minimal user interaction. 

1.1 Active Atlas System Overview 
In this paper we provide descriptions of all stages and 

components of Active Atlas in order to show how transfor- 
mation weight learning has been integrated into the object 
identification process. Learning the transformation weights 
and mapping rules for a specific domain is a circular prob- 
lem, where the accuracy of the mapping rules depends on 
the accuracy of the transformation weights and vice-versa. 
This process has two stages as shown in Figure 2, applying 
the transformations to calculate initial similarity scores and 
then learning the mapping rules and transformation weights 
to properly map the objects between the sources. 

In the first stage the candidate generator is used to pro- 
pose the set of possible mappings between the two sets of 
objects by applying the transformations to compare the at- 
tribute values. Initially, it is unknown which transforma- 
tions are more appropriate for a specific domain, so all trans- 

formations are treated the same when computing the ini- 
tial similarity scores for the proposed mappings. The set of 
candidate mappings, produced by the candidate generator, 
serves as the basis for the learning to begin. 

In the next stage the mapping learner determines which 
of the proposed mappings are correct by learning to tailor 
the appropriate mapping rules and transformation weights 
to the application domain. The given initial similarity scores 
are highly inaccurate. To address this problem Active Atlas 
employs an active supervised learning technique that iter- 
atively refines both the mapping rules and transformation 
weights. First, mapping rules can be created to classify the 
mappings, then using this classification information, new 
transformation weights can be calculated, allowing for new 
attribute similarity scores and mapping rules that more ac- 
curately capture the relationships between the objects. 

[ C~mmputing Similarity S c ~  

J Candidate Generator 
Attribute Similarity Formula: 

S.(a n, bn) ~ (an,. b,.)/(lla I'lJbl[) 

i : V  
Mapping Learner 

Mapping Rule Learner 
Mapping Rules: 

Attribute I • s I => mapped 
Attribute n < s, A Attribute 3 • s3=> mapped 

Attribute 2 < s2=> not mapped 

Transformation Weight Learnel 
Transformations: 

T~fpi 
T,= p~ 

Figure 2: General System Architecture 

The remaining sections provide a detailed description of 
the Active Atlas object identification system. Section 2 ex- 
plains the process of applying the transformations to com- 
pute the initial similarity scores, while section 3 describes 
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how both learning the transformation weights and mapping 
rules are integrated together in the mapping learner. Section 
4 presents the experimental results of the system. Section 5 
discusses related work, and section 6 concludes with a dis- 
cussion and future work. 

2. APPLYING TRANSFORMATIONS 
The candidate generator uses a set of domain-independent 

transformations to judge the similarity between two objects, 
so that only the most similar candidate mappings between 
the sources are generated. The main function of the can- 
didate generator is to produce an initial set of quality can- 
didate mappings. The candidate generator keeps a record 
of the set of transformations that were applied for each 
mapping, which is essential for learning the transformation 
weights, and also calculates a set of similarity scores, neces- 
sary for learning the mapping rules. 

When comparing objects, the alignment of the attributes 
is determined by the user. The values for each attribute 
are compared individually (e.g. N a m e  with Name,  Street  

with Street ,  and P h o n e  with Phone) .  Comparing the 
attributes individually is important in reducing the confu- 
sion that can arise when comparing the objects as a whole. 
Words can overlap between the attribute values. Comparing 
the attributes individually saves computation and also de- 
creases mapping error by reducing the number of candidate 
mappings considered. 

Given the two sets of objects, the candidate generator is 
responsible for generating the set of candidate mappings by 
comparing the attribute values of the objects. The output 
of this component is a set of attribute similarity scores for 
each candidate mapping. A candidate mapping has a com- 
puted similarity score for each attribute pair (Figure 3). The 
process for computing these scores is described later in this 
section. 

Name Street Phone 

[ Zagat's I ~ D e l i  12224 Ventnta Boulevard i 818~756-4124 I 

i 
, ,  

IDept of Healthl] Art's Delicatessen 12224 Ventura Blvd. 818/755-41(~ 

F igure  3: Set of C o m p u t e d  S imi la r i ty  Scores 

Figure 3 displays example attribute similarity scores for 
the candidate mapping of the objects "Art's Deli" and "Art's 
Delicatessen." The similarity scores for the N a m e  and 
St ree t  attribute values are relatively high. This is because 
the text values are similar and the text formatting differ- 
ences between them can be resolved. The P h o n e  attribute 
score is low because the two phone numbers only have the 
same area code in common, and since the dataset contains 
many restaurants in the same city as "Art's Deli," the area 
code occurs frequently. 

2.1 General Transformations 
There are two basic types of the transformations. Unary 

transformations require only a single token as input in order 
to compute its transformation. N-sty transformations com- 
pare tokens from two objects. Included in this framework is 
a set of general domain independent transformations to re- 
solve the different text formats used by the objects. These 

transformations (e.g. Abbreviation, Acronym, Substring, 
etc.) are domain--independent and are applied to all of the 
attribute values in every application domain and for every 
attribute. These transformations determine if text transfor- 
mations exist between words (tokens) in the attribute values, 
e.g., (Prefix - "Deli", "Delicatessen") or between phrases, 
e.g. (Acronym -. "California Pizza Kitchen", "CPK').  If 
transformations exist between the tokens, then a candidate 
mapping is proposed between the corresponding objects. 

2.1.I Unary transformations 

• Equa l i ty  tests if a token contains the same characters 
in the same order. 

• S t e m m i n g  converts a token into its stem or root. 

• Soundex  converts a token into a Soundex code. To- 
kens that sound similar have the same code. 

• A b b r e v i a t i o n  looks up token and replaces with cor- 
responding abbreviation (e.g., 3rd or third). 

2.1.2 N-ary transformations 

• In i t i a l  computes if one token is equal to the first char- 
acter of the other. 

• Pref ix  computes if one token is equal to a continuous 
subset of the other starting at the first character. 

• Suffix computes if one token is equal to a continuous 
subset of the other starting at the last character. 

• Subs t r i ng  computes if one token is equal to a contin- 
uous subset of the other, but does not include the first 
or last chs.racter. 

• C o m p u t e d  A b b r e v i a t i o n  computes if one token is 
equal to a subset of the other (e.g., Blvd, Boulevard). 

• A c r o n y m  computes if all characters of one token are 
initial letters of all tokens from the other object, (e.g., 
CPK, California Pizza Kitchen). 

• Drop  determines if a token does not match any other 
token 

2.2 Generating Candidate Mappings 
For the candidate generator, the attribute values are con- 

sidered short documents. These documents are divided into 
tokens. The tokenization process is to first lowercase all 
characters and remove punctuation, so that the instance or 
document "Art's Deli" would produce the following three 
token list ("art" "s" "deli"). Once the instances have been 
tokenized, they are then compared using the transforma~ 
tions. If a transformation exists between the tokens or if 
the tokens match exactly, then a candidate mapping is gen- 
erated for the corresponding objects. For the example be- 
low, a candidate mapping is generated for the objects "Art's 
Deli" and "Art's Delicatessen," because there are transfor- 
mations between their tokens: (Equality - "Art", "Art"), 
i.e. exact text match, (Equality - "s", "s"), and (Prefix - 
"Deli", "Delicatessen") (Figure 4). 

The candidate generator applies the transformations in a 
three-step process. The first step is to apply all of the unary 
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['Zagat'sN.  I [ ] 
Art's Deli Art's Delicatessen 

0 

Equality 

Figure 4: Applying Transformations 

transformations to the data. The second step, after apply- 
ing the unary transformations, is to determine the set of 
object pairs that are related. And the third step is to apply 
the n-ary transformations in order to further strengthen the 
relationship between the two data objects. 

Table 1 shows a subset of the candidate mappings for the 
query object "Art 's Dell." This is important information for 
learning the transformation weights. Keeping record of the 
set of transformations that  were applied for each mapping 
will later allow the transformation weight learner to mea- 
sure the likelihood that if the transformation is applied, the 
objects will be classified as mapped. 

Query: "Art 's  Deli" (Zagat's) 

Restaurant Name Hypothesis Rule Set 
"Art 's Delicatessen" ("Art" Equality "Art") 

("s" Equality "s") 
("Deli" Prefix "Delicatessen") 

("Deli" Equality "Dell" ) 
(Drop "Carnegie") 

(Drop "Art") 
(Drop "s") 

("Art" Stemming "Arte" ) 
("Dell" Stemming "Dell" ) 

(Drop "Trattoria" ) 
(Drop "s") 

("Dell" Equality "Deli" ) 
( "s" Initial "Sonora" ) 

(Drop "Art") 

"Carnegie Deli" 

"Trattoria Dell'Arte" 

"Sonora Deli" 

Table 1: Candidate Mappings with N-ary Transfor- 
mations 

This process of generating a set of candidate mappings by 
applying the transformations is performed for each object of 
the Zagat's dataset across all of the attributes. Once these 
sets have been computed for every candidate mapping, then 
the attribute similarity scores can be calculated. 

2.3 Computing Attribute Similarity Scores 
The sets of applied transformations are used to calculate 

the at tr ibute similarity scores. The candidate generator em- 
ploys the cosine measure commonly used in information re- 
trieval engines with the TFIDF (Term Frequency x Inverse 
Document Frequency) weighting scheme [7] to calculate the 
similarity of each of the objects. Because the at tr ibute val- 
ues of the object are very short, the within-document term 
frequency weighting is binary. The within-document fre- 

quency is 1 if the term exists in the document and 0 oth- 
erwise. The similarity score for a pair of attribute values is 
computed using this at tr ibute similarity formula: 

t 

Similarity(A, B) = ~ i = l  (Wla • Wlb) 

lw?o . 

• Wia= (0.5 + 0.5freqia) x IDF 

• Wib= freqi b x IDF i 

• freqi a = frequency for token i of attribute value a 

• IDFi= IDF (Inverse Document Frequency) of token i 
in the entire collection 

• freqi b = frequency of token i in at tr ibute value b 

In this formula a and b represent the two documents (at- 
tribute values) being compared and t represents the total 
number of transformations in the document collection. The 
terms Wia and Wib correspond to the weights computed by 
the TFIDF weighting function. 

When the candidate generator is finished, it outputs all 
of the candidate mappings it has generated along with each 
of their corresponding set of at tr ibute similarity scores. For 
each candidate mapping, the total object similarity score 
is calculated as a weighted sum of the attribute similarity 
scores. The mappings are then ranked my their total object 
similarity score. 

3. LEARNING TRANSFORMATION 

WEIGHTS 
The purpose of learning the transformation weights is to 

reduce the amount of user involvement needed by the system 
to achieve high accuracy mapping. The candidate generator 
provides the necessary information to learn the rules and 
weights for mapping the objects. Given with each candidate 
mapping are the set of computed attr ibute similarity scores 
and the set of transformations applied between the objects. 
From this information mapping rules and transformations 
weights are tailored to a specific application domain 

The mapping learner (Figure 5) combines both types of 
learning, the mapping-rule learning and the transformation 
weight learning, into one active learning system. The map- 
ping learner incrementally learns to classify the mappings 
between objects by offering the user one example to label at 
a time, and from those examples learning both the mapping 
rules and transformation weights. The criteria for choosing 
the next example for the user to label is determined by input 
from both the mapping-rule learner and the transformation 
weight learner. 

3.1 Mapping-Rule Learner 
The mapping-rule learner determines which attribute, or 

combinations of attributes (Name,  S t r ee t ,  Phone) ,  are 
most important for mapping objects. The purpose of learn- 
ing the mapping rules is to achieve the highest possible accu- 
racy for object mapping across various application domains. 
In this approach, the system actively chooses the most infor- 
mative candidate mappings (training examples) for the user 
to classify as mapped or not mapped in order to minimize 
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Figure 5: Mapping Learner 

the number of user-labeled examples required for learning 
high accuracy mapping rules. 

The mapping-rule learner consists of a committee of de- 
cision tree learners. Each decision tree learner creates its 
own set of mapping rules from training examples labeled by 
the user. The mapping rules classify an example as mapped 
or not mapped. These classifications are used by the trans- 
formation weight learner for increasing the accuracy of the 
transformation weights, and are also needed for deciding 
which training examples should be labeled. 

Mapping rules contain information about which combina- 
tion of attributes are important for determining the map- 
ping between two objects, as well as, the thresholds on the 
similarity scores for each attribute. Several mapping rules 
may be necessary to properly classify the objects for a spe- 
cific domain application. Examples of mapping rules for the 
restaurant domain are: 

• Ru le  1: N a m e  > .859 and S t ree t  > .912 ~ mapped 

• Ru le  2: N a m e  > .859 and P h o n e  > .95 ~ mapped 

To efficiently learn the mapping rules for a particular task 
or domain, we use a supervised learning technique, which 
uses a combination of several decision tree learners based 
on an active learning algorithm called query by bagging [1]. 
This technique generates a committee of decision tree learn- 
ers that vote on the most informative example or candidate 
mapping for the user to classify next. A single decision tree 
learner on its own can learn the necessary mapping rules 
to properly classify the data with high accuracy, but may 
require a large number of user-labeled examples. 

With a committee of decision tree learners, the classifi- 
cation of an example or candidate mapping by one decision 

tree learner is considered its vote on the example. The votes 
of the committee of learners determine which examples are 
to be labeled by the user. One of the key factors in choosing 
an example is the disagreement of the query committee on 
its classification (Figure 6). The maximal disagreement oc- 
curs when there are an equal number of mapped (yes) and 
not mapped (no) votes on the classification of an example. 
This example has the highest guaranteed information gain, 
because regardless of the example's label, half of the com- 
mittee will neect to update their hypothesis. As shown in 
Figure 6 the example C P K ,  Cal i forn ia  P izza  K i t c h e n  is 
the most informative example for the committee (L1, L2, 
L3, L4, LS, L6, LT, L8, L9, and L10). 

Examples  L1 L2 I.,3 L4 L$ L6 L7 L8 L9 LI0 

Art's Dell, Art'S Dclicatc.~n 

CPK, California Pizza Kitchen 

Ca'Brat,  La Brca Bakery 

Yes Yes Yes Yes Yes Yes Y u  Yes Yes Y~ 

Yes No Yes No Yes Y a  Yes No No No 

NO NO NO NO NO NO NO NO NO No 

Figure 6: C o m m i t t e e  Votes 

The committee votes are used in deciding the next exam- 
ple to label, and they are also necessary for determining the 
classification of an example. Each learner votes on all candi- 
date mappings. Those mappings where the majority of the 
learners vote yes are considered mapped otherwise they are 
not mapped. These classifications of the examples are then 
given as input to the transformation weight learner. 

Both the mapping-rule learner and the transformation 
weight learner influence the decision on choosing the next 
example to be labeled by the user. The mapping-rule learner 
contributes the committee votes on each example, and the 
transformation weight learner provides the new ranking of 
the examples based on their total object similarity scores. 
Using the mapping-rule learner criteria allows for the exam- 
ple with the most information gain to be chosen. 

Once an example is chosen, the user is asked to label 
the example. After the user labels the query example, the 
learner updates the committee and learns new mapping rules 
in order to reclassify the examples. This learning process is 
repeated until either all learners in the committee converge 
to the same decision tree or the user threshold for labeling 
examples has been reached. When learning has ended, the 
mapping-rule learner outputs a majority-vote classifier that 
can be used to classify the remaining pairs as mapped or not 
mapped. 

3.2 Transformation Weight Learner 
The purpose of optimizing the transformation weights is 

to reduce the number of labeled examples needed by the 
system to achieve high accuracy mapping. The transforma- 
tion weight learner must learn how to increase the similarity 
scores for the correct mappings, while decreasing the scores 
for the incorrect mappings. Having the correct mapping 
scores higher than the incorrect mapping scores will allow 
the mapping-rule learner to construct higher accuracy deci- 
sion trees with fewer labeled examples. 

Given as input to the transformation weight learner are 
the mapping-rule learner's classifications of the examples or 
committee votes and the set of applied transformations for 
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each example collected by the candidate generator. With 
this input the transformation weight learner first calculates 
the transformation weights for each transformation and then 
uses these new probability scores to recalculate the attribute 
similarity scores for each example. Once all of the attribute 
similarity scores are calculated for every attribute, the ex- 
amples are then ranked according to their total object sim- 
ilarity scores. 

3.2.1 Calculating Transformation Weights 
The method for calculating new transformation weights 

takes into consideration classifications of both user-labeled 
and unlabeled examples. The transformation weights mea- 
sure the likelihood that a given transformation, like "Equal- 
ity" or "Acronym," participates in a correct mapping be- 
tween two objects. 

Because initially it is not known which transformations 
are appropriate for the application domain, the initial at- 
tribute similarity scores determined by the candidate gener- 
ator do not accurately represent the true similarity between 
all of the objects. Therefore, due to the inaccuracy of the 
initial attribute similarity scores, there is some error in the 
mapping rules and the classifications of the examples by the 
mapping-rule learner. While there are some misclassifica- 
tions of the unlabeled data, they still help to increase the 
accuracy of the transformation weights. Using an active 
learning approach reduces the number of user-labeled data, 
so there are sparse number of labeled examples to learn the 
correct transformation weights from. 

The unlabeled data augments the information about trans- 
formations known from the labeled examples. Yet, because 
there are misclassifications on the unlabeled examples they 
should not have the same impact on the computation of the 
transformation weights as the labeled examples, as discussed 
in previous work on combining labeled and unlabeled exam- 
pies [16]. In order for the labeled examples to have greater 
importance than the unlabeled ones, the population of the 
labeled examples is increased by adding o~ duplicates of each 
of the labeled examples to the set of training data. 

Given the classifications of the examples the transforma- 
tion weights can be tailored to the application domain. The 
likelihood that if the transformation tf is applied between 
two objects that those objects will be classified as mapped 
r6 can be estimated using the following formula: 

p(m I t fi ) = positive classifications with trans f ormationi 

total number of  trans f ormationl 

p(m [ tfl) is calculated for each of the general transfor- 
mations detailed in section 2, i.e. Equality, Acronym, etc. 
Therefore, the instantiated transformations, like (Equality 
"Art" "Art") and (Equality "s" "s"), of the general transfor- 
mation Equality will have the same transformation weight, 
and the classifications of mappings which use these instan- 
tiated transformations will contribute to the calculation of 
the transformation weight of the general transformation, i.e. 
Equality. Once all of the transformation weights have been 
calculated then the attributes similarity scores are com- 
puted. 

3.3 Re-computing Attribute Similarity Scores 
To determine the attribute similarity scores for each can- 

didate mapping, first the product of the probabilities of the 

applied transformations is computed, and then normalized. 

t 

AttributeSimilarityScore( A, B) = H t fi 
i = 1  

Table 3 shows an example of how the attribute similarity 
scores are recalculated for the candidate mapping of "Art's 
Deli" and " Art's Delicatessen." The computing of the at- 
tribute similarity scores is repeated for each attributes. 

Example: 
Mapping: "Art's Deli" and " Art's Delicatessen" 

Transformation p(m It)  ~p(m It)  
(EQUAL "Art .... Art") .9 .1 

(EQUAL "s .... s") .9 .1 
(PREFIX "Dell .... Delicatessen") .3 .7 

Total mapped score m = .243 
Total not mapped score n = .007 

m 
NormalizedAttributeSimilarityScore = (m + n) 

.243 

(.243 + .007) 

AttributeSimilarityScore = .9612 

Table 3: Recalculating Attribute Similarity Scores 

When the attribute similarity scores have been calculated 
then the total object similarity scores are again computed 
for each candidate mapping as shown in section 2. These 
candidate mappings are ranked according the new total ob- 
ject similarity scores. The new scores, attribute and object 
similarity scores, are given to the mapping-rule learner in 
order to create more accurate mapping rules. They play an 
important factor in increasing the mapping accuracy and 
deciding the next example to be labeled. 

4. EXPERIMENTAL RESULTS 
In this section we present the experimental results that 

we have obtained from running Active Atlas with trans- 
formation weight learning across three different application 
domains: Restaurants, Companies and Airports. We have 
included results from three other object identification sys- 
tem experiments as well. For each domain, we ran exper- 
iments for a system called Passive Atlas. The Passive At- 
las system includes the candidate generator for proposing 
candidate mappings and a single C4.5 decision tree learner 
for learning the mapping rules, which is similar to previ- 
ous methods for addressing the merge/purge problem of re- 
moving duplicate records in a database [15, 9]. The second 
system is a baseline experiment that runs the candidate gen- 
erator only and requires the user to review the ranked list of 
candidate mappings to choose an optimal mapping thresh- 
old. In this experiment only the stemming transformation 
is used, which is similar to an information retrieval system, 
such as Whirl [5]. We will refer to this experiment as the 
IR system. The third object identification system that will 
be compared is the previous version of Active Atlas [18], 
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Zagats Health Dept Classification Labeled by 

"Trattoria Dell'Arte" "Carnegie Deli" Not Mapped Learner 
"Art's Deli" "Art's Delicatessen" Mapped Learner 

"Spago (Los Angeles)" "Spago" Not Mapped Learner 
"CPK" "California Pizza Kitchen" Mapped User 

"Joe's Restaurant" "Jan's Family Restaurant" Not Mapped Learner 

Table  2: C a n d i d a t e  Mapp ings  wi th  Classif icat ions 

which did not perform transformation weight learning and 
required the transformation weights be set manually prior 
to the mapping process. 

4.1 Restaurant Domain 
For the restaurant domain, the shared object attributes 

are Name ,  St reet ,  and Phone .  Many of the data objects 
in this domain match almost exactly on all attributes, but 
there are types of examples that do not, as shown in Fig- 
ure 1. Because of these four types of examples, the system 
learns two mapping rules: if the restaurants match highly on 
the N a m e  & St ree t  or on the N a m e  & P h o n e  attributes 
then the objects should be mapped together. These two 
mapping rules are used to classify all of the candidate map- 
pings. Any candidate mapping that fulfills the conditions of 
these rules, will be mapped. Because in our application we 
are looking for the correct health rating of a specific restau- 
rant, examples matching only on the N a m e  attribute, like 
the "Teresa's" example, or only on the S t ree t  or P h o n e  at- 
tribute, like "Steakhonse The" are not considered mapped. 

In this domain the Zagat's website has 331 objects and 
the Dept of Health has 533 objects. There are 112 cor- 
rect mappings between the two sites. When running the 
IR system experiment, the system returns a ranked set of 
all the candidate mappings. The user must scan the map.- 
pings and decide on the mapping threshold or cutoff point 
in the returned ranked list. Every candidate mapping above 
the threshold is classified as mapped and every candidate 
mapping below the threshold is not mapped. The optimal 
mapping threshold has the highest accuracy. Accuracy is 
measured as the total number of correct classifications of the 
candidate mappings divided by the sum of the total num- 
ber of candidate mappings and the number of true object 
mappings not proposed. This method is comparable to the 

Whirl system [5]. 
For the IR system experiment the optimal mapping thresh- 

old is at rank 111 in the list, and therefore, the top 111 ex- 
amples in the list are considered mapped together. At this 
optimal threshold, only 109 examples of the 111 are correct 
mappings, 3 true examples have been missed and 2 false 
examples have been included; therefore, 5 examples in to- 
tal are incorrectly classified. In this domain application, a 
threshold can not be chosen to achieve perfect accuracy. In 
general, selecting the optimal threshold to obtain the highest 
possible accuracy is an unsolved problem. Also, even though 
this approach computationally less intensive, it can poten- 
tially require more user involvement because a user must 
view a positive mapping for it to be considered mapped. 

The accuracy results from the four types of experiments 
are shown in relation to the number of examples that were 
labeled. For the two learning systems the results have been 
averaged over 10 runs, and the learners classified 3310 can- 
didate mappings proposed by the candidate generator. Fig- 

ure 7 shows that; learning the mapping rules increases the 
accuracy of the :mapping assignment. In the Active Atlas 
experiments, the system achieved 100% accuracy at 45 ex- 
amples, while Passive Atlas surpassed the IR system results 
at 1594 and reac:hed 100% accuracy at 2319 examples. The 
graph also shows that Active Atlas systems require fewer 
labeled examples than Passive Atlas. 
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Figure 7: Restaurant Domain Experimental Results 

The purpose of the Passive Atlas experiments are to show 
that learning the mapping rules can achieve higher accu- 
racy than the Ill. system experiment, while also demonstrat- 
ing that both Active Atlas systems can achieve the higher 
accuracy with fewer labeled examples. The goal of the learn- 
ing systems is to deduce more information about how the 
objects match in order to increase the accuracy of the to- 
tal mapping assignment. Both active learners are able to 
outperform the passive learner because it is able to choose 
examples that give it the most information about the do- 
main and guide the learning process. The passive learner 
chooses examples in a random manner, independent of the 
actual data. Because these domains have a sparse number of 
positive (mapped) examples, on the order of 1% of the data, 
it is harder for the passive learner to randomly choose posi- 
tive examples that lead to high accuracy mapping rules; and 
therefore, it requires more examples. The sparse number of 
positive examples also explains why the IR system accuracy 
appears high. VVhen the threshold is set to 0 so that no ex- 
ample is considered mapped, it still has over 96% accuracy 
because the vast majority of examples are not mapped. 

These results of the Active Atlas system with transforma- 
tion weight learning are also a significant improvement (43% 
fewer examples needed) over the results of Active Atlas with 
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manually set transformation weights [18]. The same set of 
general transformations is applied in every application do- 
main and for every attribute. These transformations can 
suggest possible relationships between tokens, e.g. (Prefix 
"Deli", "Delicatessen") or between phrases, e.g. (Acronym 
"California Pizza Kitchen", "CPK"), but these relationships 
may not accurately represent the true relationship between 
the tokens. Therefore, the initial similarity scores calcu- 
lated by the candidate generator may inaccurately reflect 
the similarity of the attribute values. The three other ap- 
proaches must classify examples with inaccurate similarity 
scores, while the Active Atlas with transformation weight 
learning can learn to adjust the similarity scores to more 
accurately capture the true similarity between the attribute 
values. 

4.2 Company Domain 
In the company domain there are two websites, Hoover- 

sWeb and IonTech, which both provide information on com- 
panies (Name,  Ur l  and Descr ip t ion) .  In this domain the 
Ur l  attribute is usually a very good indicator for companies 
to match on, e.g. "Soundworks" (Figure 8). There are ex- 
amples where the N a m e  matches very well, but the Ur l  is 
not an exact match ("Cheyenne Software"); or, where the 
Ur l  matches exactly, but the names are not matched at all 
("Alpharel" & "Altris Software"). Active Atlas, therefore, 
learns the thresholds on the combination of the attributes 
N a m e  and Url,  where one attribute needs to be highly 
matched and the other partially matched in order for there 
to be a mapping between the objects. 
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Name Url Description Name Url Description 
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soundwotks, wwW,Jdw,~m. S tca'eos • So~lwoAa. w~,wJdw.com, ̂ V. FEqtapmmt 

J'Chevetme Softwate,www~c, bey~nne coax soaware 

sol,ware 

Figure 8: Company Domain  Examples  

In this domain HooversWeb has 1163 objects and the Ion- 
Tech site has 957 objects. There are 294 correct mappings 
between the sites. The optimal threshold for the IR system 
experiment is at rank 282, where 41 examples are incor- 
rectly classified and 12% of the object mappings are miss- 
ing. Figure 9 shows the results for the learning experiments. 
For these experiments in the company domain, the candi- 
date generator proposed 14303 candidate mappings, and the 
results have been averaged over 10 runs. Similar to the 
Restaurant domain, Figure 9 shows that learning the map- 
ping rules increases the accuracy of the mapping assignment. 
Active Atlas with transformation weight learning achieves 
higher accuracy than the IR system experiments at 49 exam- 
ples (at 7120 examples for Passive Atlas)and 100% accuracy 
at 95 examples. The graph clearly demonstrates that the 
active learner requires fewer labeled examples than Passive 
Atlas, as well as demonstrating the effect of the inaccura- 

cies of the initial attribute similarity scores on being able to 
classify the mappings. 
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Figure 9: Company Domain  Experimental  Results  

The transformations have more influence in this domain. 
The transformations are able to resolve the spelling mistake 
between "Soundworks" and "Soudworks" (Figure 8) using 
the Soundex transformation, which made the difference in 
it being mapped or unmapped. Also, these Active Atlas 
results required 21% fewer examples than Active Atlas with 
manually set transformation weights. 

4.3 Airport/Weather Domain 
We have a list of 428 airports in the United States and a 

list of over 12,000 weather stations in the world. In order 
to determine the weather at each airport, we would like to 
map each airport with its weather station. The airports 
and the weather stations share two attributes (Code and 
Location). The airport code is a three letter code (e.g., 
ADQ), and the weather station code is a four letter code 
(e.g., PADQ). In the majority of examples the airport code 
is the last three letters of the weather station code, like the 
"Kodiak" example in Figure 10. 

I I I  

Code Location Code Location 

KODIAK, AK 

CHARLESTON AFB VA 

CttARLETON VA 

. ~  KodiAk, AK USA 

Chafler~ VA USA 

Figure 10: A irpor t /Weather  Domain  examples  

The optimal threshold for the IR system experiment is 
set at rank 438, where 220 examples are incorrectly classi- 
fied and over 25% of the object mappings are missing. In 
this domain the set of transformations plays a larger role in 
increasing the accuracy of the object mappings, as clearly 
shown by the IR system results. The main reason for the 
lower accuracy of the experiments with stemming is because 
the IR system is not able to recognize that the airport code 
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is a substring of the weather code for the Code attribute. 
It, therefore, only uses the Loca t ion  attribute to match ob- 
jects, so it makes mistakes, like mapping the "KIGC" and 
"CHS" objects. There are 18 object mappings that were not 
proposed by the candidate generator because it did not have 
the necessary transformations. 

Like the other domains, Figure 11 shows that learning 
the mapping rules increases the accuracy of the mapping 
assignment. Active Atlas with transformation weight learn- 
ing achieves 100% accuracy at 294 examples, and Passive 
Atlas achieves higher accuracy than the IR system results 
after only 80 examples. These results are also a significant 
improvement (40% fewer examples needed) over the results 
of Active Atlas with manually set transformation weights. 
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Figure 11: A irpor t /Weather  D o m a i n  Experimental  
Results  

5. RELATED W O R K  

Previous work on object identification has either employed 
manual methods to customize rules or transformations for 
each domain or has required the user to apply a fixed thresh- 
old to determine which objects are considered mapped to- 
gether. These systems generally require heavy user interac- 
tion in order to achieve high accuracy mapping. None of the 
previous work apply general domain-independent transfor- 
matious that are then adjusted to fit the specific application 
domain. The main advantage of our system is that it can, 
with high accuracy, learn to simultaneously tailor mapping 
rules and transformation weights to a specific domain, while 
limiting user involvement. 

In the database community the problem of object identi- 
fication is also known as the merge/purge problem, a form 
of data cleaning. Domain-specific techniques for correct- 
ing format inconsistencies [4, 3, 12] have been applied by 
many object identification systems to measure text similar- 
ity [8, 9, 10, 21]. The main concern with domain specific 
transformations is that it is very expensive, in terms of user 
involvement, to generate a comprehensive set of transforma- 
tions that are specific not only to the domain, but also to 
the data that is being integrated. 

There are also approaches [15, 17] that use a single very 
general transformation function, like edit distance, to ad- 
dress the format inconsistencies. These approaches require 
the user to manually set the transformation parameters for 
each application domain. Work conducted by Pinheiro and 
Sun [17] and Ganesh et al. [8] used a supervised learning 

technique to learn which combinations of attributes are im- 
portant to generate a mapping. This technique assumes 
that most objects in the data have at least one duplicate 
or matching object. It is most similar to the Passive Atlas 
system, because it requires either that the user choose the 
examples or they are randomly selected. 

The problem of object identification has also appeared 
in the information retrieval community. When determining 
relevant documents to satisfy a user's query, words or to- 
kens from the documents are compared. If there are text 
formatting differences in the documents, then relevant doc- 
uments can be missed. Closely related work on the Whirl 
object identification system by Cohen [5] views data objects 
from information sources as short documents. In this work 
the object mappings are determined by using the informa- 
tion retrieval vector space model to perform similarity joins 
on the shared attributes. A single transformation Stem- 
ming is the only' transformation used to calculate similarity 
between strings; therefore, "CPK" would not match "Cal- 
ifornia Pizza Kitchen." The similarity scores from each of 
the shared attributes are multiplied together in order to cal- 
culate the total similarity score of a possible mapping. This 
requires that objects must match well on all attributes. The 
total similarity scores are then ranked and the user is re- 
quired to set a threshold determining the set of mappings. 
To set the threshold the user scans the ranked set of ob- 
jects [5, page 9]. Setting a threshold to obtain optimal ac- 
curacy is not always a straightforward task for the user. The 
Citeseer project. [13] is an information retrieval system that 
finds relevant and similar papers and articles, where simi- 
larity is based on the set of citations listed in the articles. 
Citeseer also uses domain-specific normalization techniques 
to standardize article citations. 

Probabilistic models of the data are used within the record 
linkage community [6, 20]. Work in the record linkage com- 
munity grew from the need to integrate government census 
data; therefore, they have developed domain-specific trans- 
formations for handling names and addresses to normalize 
attribute values. After the values are normalized then a 
string edit distance function is applied for which the param- 
eters are manually set. In a record linkage system, the user 
is required to make several initial passes reviewing the data 
in order to improve and verify the accuracy of the transfor- 
mations. Once the user is satisfied with the accuracy of the 
transformations, "blocking" attributes are chosen. Choos- 
ing blocking attributes is a way to reduce the set of candi- 
date mappings by only including the pairs that match on 
the chosen attributes. The EM algorithm is then applied to 
learn attribute weightings and classify the candidate map- 
pings into one of three classes: mapped, not mapped, or to 
be reviewed by the user. 

Work conducted by McCallum et al. [14] used a two step 
process of applying trausformations in their approach to per- 
forming object identification on citations. Similar to our 
method in that they first apply less computationally expen- 
sive transformations to determine the initial set of mappings 
and then apply the more expensive transformation, edit dis- 
tance, to compute the similarity metric between the objects. 
This requires the user to manually set the transformation 
weights for each new domain application. 

6. CONCLUSIONS AND FUTURE W O R K  

We have developed a domain-independent approach for 
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incorporating the user's knowledge into an object identifica- 
tion system To achieve high accuracy object identification 
Active Atlas simultaneously learns to tailor both domain- 
independent transformations and mapping rules to a spe- 
cific application domain through limited user input. The 
experimental results demonstrate that Active Atlas achieves 
higher accuracy and requires less user involvement than pre- 
vious methods across various application domains. 

Currently, we are working on running Active Atlas on 
larger data sets. There are several issues for future work 
that we are pursuing, such as providing a method to mini- 
mize noise or error in the labels provided by the user. We 
would also like to applying Active Atlas to other types of re- 
lated research problems, such as sensor fusion or objection 
identification for multimedia data. 
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