
... 1

Learning-Driven Lossy Image Compression; A
Comprehensive Survey

Sonain Jamil, Md. Jalil Piran, and MuhibUr Rahman

Abstract—In the realm of image processing and computer
vision (CV), machine learning (ML) architectures are widely
applied. Convolutional neural networks (CNNs) solve a wide
range of image processing issues and can solve image com-
pression problem. Compression of images is necessary due to
bandwidth and memory constraints. Helpful, redundant, and
irrelevant information are three different forms of information
found in images. This paper aims to survey recent techniques
utilizing mostly lossy image compression using ML architectures
including different auto-encoders (AEs) such as convolutional
auto-encoders (CAEs), variational auto-encoders (VAEs), and
AEs with hyper-prior models, recurrent neural networks (RNNs),
CNNs, generative adversarial networks (GANs), principal com-
ponent analysis (PCA) and fuzzy means clustering. We divide all
of the algorithms into several groups based on architecture. We
cover still image compression in this survey. Various discoveries
for the researchers are emphasized and possible future directions
for researchers. The open research problems such as out of
memory (OOM), striped region distortion (SRD), aliasing, and
compatibility of the frameworks with central processing unit
(CPU) and graphics processing unit (GPU) simultaneously are
explained. The majority of the publications in the compression
domain surveyed are from the previous five years and use a
variety of approaches.

Index Terms—learned image compression, deep learning,
JPEG, end-to-end image compression, machine learning.

I. INTRODUCTION

IN this modern era of big data, the size of the data is the
biggest concern for scientists and researchers. Due to the

limited bandwidth of the channel and limited memory space,
there is the requirement of data compression for the successful
transmission and storage of data without losing significant
information [1]. Data compression can be performed in several
ways: audio compression, image compression, video compres-
sion, and document compression [2]. There are three types
of information in an image: useful, redundant, and irrelevant.
Irrelevant information can be ignored for the compression
of images. Redundant information is crucial for highlight-
ing details in images, whereas useful information is neither
redundant nor irrelevant. Without accurate information, we
cannot reconstruct or decompress images properly [3]. In
image compression, there are two major categories. The first
is lossless image compression, where no information is lost,
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and the second is lossy image compression. Lossless image
compression techniques are very efficient for small-size data.

Lossless techniques such as Huffman coding, run-length
encoding (RLE), arithmetic coding, Lempel-Ziv-Welch (LZW)
Coding, and JPEG-LS are efficient for the small data [14]-
[15]. The major drawback of the lossless compression tech-
niques is less compression efficiency than lossy compression
techniques. That is why many researchers are working on
image compression using ML.

There are many surveys focused on image compression.
Many surveys address the pros and cons of conventional
image compression algorithms based on discrete cosine trans-
form (DCT), and discrete wavelet transforms (DWT). Shukla
et al. in [5], surveyed the prediction and transform-based
image compression algorithms. This survey highlighted the
importance and application of the prediction and transform-
based conventional algorithms for image compression. These
prediction-based algorithms were based on edge detection, gra-
dient, and block-based prediction. However, transform-based
algorithms were based on wavelets. The survey presented the
comparative analysis of the entropy coding. However, this
lacked the discussion about end-to-end based image com-
pression architectures using ML. In [6], the authors stud-
ied the DCT and DWT-based algorithms. The survey did
not address the recently learned image compression tech-
niques. Likewise, in [13] the authors surveyed several lossy
and lossless algorithms for image compression. The article
highlighted the advantages and drawbacks of the predictive,
entropy coding, and discrete Fourier transform-based image
compression frameworks. The survey did not address the
ML-based image compression architectures. Several surveys
highlight the importance of the conventional DCT, DWT, and
entropy-based approaches for image compression. There is
a requirement to survey ML-based still image compression
techniques.

A plethora of techniques have been proposed by researchers
in recent years to address the problem of still image compres-
sion using ML techniques [4]. So, there is a need to survey
ML-based image compression techniques and highlight the
open research problems. In this survey, we focus on recent
ML-based image compression techniques. The following open
research questions need to be addressed.

• Which end-to-end still image compression using ML
gives better compression efficiency?

• Which learned image compression frameworks give a
better visual representation of the reconstructed image?

• Which compression technique saves GPU memory?
• Which compression technique has a fast response time?
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TABLE I
LIST OF ACRONYMS.

Acronym Meaning
AEs Autoencoders
BGAN+ Binary Generative Adversarial Network
BPG Better Portable Graphics
bpp Bits per pixel
CAEs Convolutional Autoencoders
CLIC Challenge on Learned Image Compression
CNNs Convolutional Neural Networks
C Computer Vision
CPU Central Processing Unit
DCT Discrete Cosine Transform
DNN Deep Neural Network
DWT Discrete Wavelet Transform
GANs Generative Adversarial Networks
GDN Generalized Divisive Normalization
GMM Gaussian Mixture Module
GPU Graphics Processing Unit
HDR High Resolution
HEVC High Efficiency Video Coding
IGDN Inverse Generalized Divisive Normalization
JPEG Joint Photographic Expert Group
JPEG XR JPEG Extended Range
KL Kullback-Leiber
LSTM Long Short-Term Memory
LZW Lempel-Ziv-Welch
ML Machine Learning
MNIST Modified National Institute of Standards and Technology
MSE Mean Squared Error
MS-SSIM Multi-scale Structural Similarity Index Measure
NL Non-Local
NLAM Non-local Attention Module
NLD Non-linear Decoder
NLE Non-linear Encoder
NN Neural Network
OOM Out Of Memory
PCA Principal Component Analysis
PNG Portable Network Graphics
PSNR Peak Signal-to-Noise Ratio
RD Rate Distortion
RLE Run Length Encoding
RNNs Recurrent Neural Networks
SCT Stop Code Tolerant
SRD Striped Region Distortion
SSIM Structural Similarity Index Measure
SWTA-AE Stochastic Winner-Take-All Autoencoder
VAEs Variational Autoencoders
VVC Versatile Video Coding

This article presents a detailed survey of using ML algo-
rithms for still image compression considering these questions.

As presented in Fig. 1, the rest of this paper is organized
as follows. Section II presents the related work. In Section
III, still image compression with conventional compression
techniques is presented. The use of ML techniques for image
compression is explained in Section IV. Section V gives an
insight into the future research directions. Finally, Section VI
draws the conclusions.

II. RELATED WORK

Still image compression has been a concern for researchers
for many years. Initially, image compression was performed
using conventional frameworks, and with the introduction of
ML, algorithms used ML models for image compression.
Several surveys focused on image compression algorithms.

In [7], the authors presented the comprehensive study of the
image compression models based on the neural networks.
This study lacked the discussion of other ML-based end-to-
end image compression methods. The survey included old
algorithms. Shum et al. in [8], surveyed the DCT and DWT-
based image compression and representation algorithms. The
authors in [5] and [9] conducted a study on conventional DCT
and DWT-based frameworks.

Similarly, the authors in [10] surveyed the entropy-based
image compression algorithms. [6] and [11] surveyed the
DCT and DWT-based image compression techniques in 2014.
Likewise in 2017, Setyaningsih et al. [12], surveyed the
hybrid compression techniques. In [13], the authors surveyed
the predictive, entropy encoding, as well as discrete Fourier
transform-based image compression architectures. In [14] and
[15] the authors surveyed the conventional image compression
algorithms. In [14] the authors surveyed arithmetic entropy
coding techniques while in [15], the authors presented the sur-
vey of image compression standards such as joint photographic
experts group (JPEG), JPEG-2000, portable network graphics
(PNG), WebP. Table II presents the comprehensive summary
of the related surveys.

After analyzing Table II, it is evident that all the existing
surveys deal with the conventional compression techniques.
However, there is a plethora of learning-driven lossy image
compression frameworks and these architectures have limita-
tions, pros and cons. There is a need for to survey learning-
driven lossy image compression models.In this survey, we
provide an in-depth detailed discussion regarding still lossy
image compression. We present analysis, comparison, pros and
cons of the state-of-the-art techniques used for still lossy image
compression. We outline several open research problems and
trends in this research field for substantial future research.

The upcoming section explains the still image compression.

III. STILL IMAGE COMPRESSION

The concept of image compression started in 1992 when
Wallace proposed the JPEG standard for still image compres-
sion [16]. In the JPEG compression standard, DCT is used,
which can be calculated as follows [17].

F (u, v) = 1√
2N

C(u)C(v)
∑N−1
x=0

∑N−1
y=0 f(x, y) . . .

cos( (2x+1)uπ
N )cos( (2y+1)vπ

N ),
(1)

where x is the pixel row, for the integer 0 6 x 6 N , y
is the pixel column, for the integer 0 6 y 6 N , Fu,v is
the reconstructed approximate coefficient at coordinates (u, v),
fx,y is the reconstructed pixel value at coordinates (x, y) and
C(u) is

C(u) =

{
1√
N
, for u = 0

1, for otherwise.
(2)

The basic framework of JPEG compression and decompression
is shown in Fig. 2.

JPEG was widely used for still image compression until an
updated, and improved version of JPEG known as JPEG-2000
was proposed in 2001 [18]. JPEG-2000 uses DWT instead of
DCT. The basic framework of JPEG-2000 is shown in Fig. 3.
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Fig. 1. Organization of the paper.

TABLE II
SUMMARY OF THE IMAGE COMPRESSION SURVEYS.

Survey Year Scope of the Architecture Surveyed Contributions and limita-
tions

AE VAE CNN RNN GAN

[7] 1999 × × × × × Survey of NN based frame-
works only

[8] 2003 × × × × × Survey of DCT and DWT-
based image representation
and compression algorithms

[5] 2010 × × × × × Survey of predictive and trans-
form based image compression
methods

[9] 2012 × × × × × Survey of entropy based
encoding, JPEG, JPEG2000
methods

[10] 2013 × × × × × Survey of entropy based en-
coding methods

[6] 2014 × × × × × Survey of DCT and DWT
based architectures only

[11] 2014 × × × × × Survey of JPEG and DCT
based architectures

[12] 2017 × × × × × Survey of hybrid DCT, DWT
based compression techniques

[13] 2018 × × × × × Survey of predictive, entropy
coding and discrete Fourier
transform based architectures

[14] 2019 × × × × × Survey of arithmetic encoding
based architectures only

[15] 2021 × × × × × Survey of conventional JPEG,
JPEG2000, WebP, PNG based
architectures

This survey 2021 X X X X X Survey of end-to-end ML
based image compression
frameworks, New outlook to
the open research gaps
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Fig. 2. Block diagram of JPEG compression and decompression.

The entropy encoding scheme used in JPEG-2000 is Huffman
encoding [19], RLE [20] or arithmetic encoding [21].

JPEG and JPEG-2000 standards have been widely used.
Later on, researchers developed JPEG extended range (JPEG
XR) [22], and JPEG XT [23] to overcome the limitations of the
JPEG standard. However, both these algorithms failed due to
hardware incompatibility. Recently, WebP [24], better portable
graphics (BPG) [25] and JPEG XL [26] algorithm were pro-
posed for the compression of high resolution (HDR) images.
Recently, high-efficiency video coding (HEVC) displayed the
most impressive performance. In [27], the authors explained
the use of HEVC for high-depth medical image compression.
They also proposed a novel algorithm to reduce the complexity
of HEVC. In [28], the authors presented a comparative analysis
of all these algorithms. These conventional algorithms still
have limitations. ML has addressed several issues like visual
quality improvement for image compression. The next section
presents learning-driven lossy image compression techniques.

IV. LEARNING-DRIVEN LOSSY IMAGE COMPRESSION

ML has a significant influence on every field of research.
There has been a revolution in image processing due to
CNN’s compiling property of features extractions. Inspired by
this, many ML architectures have been proposed to compress
images. We categorize architectures concerning ML models.

A. Compression with AE

The most widely used learning-driven lossy image compres-
sion model was proposed by Ballé in 2016 [29]. The backbone
of this model is AE [38]. An AE can be divided into three
parts input, bottleneck, and output. A bottleneck in CAE is
the place where latent space is represented.

AEs gained popularity in image compression as the basic
purpose of an AE is to reduce the dimensions of the input
image. Ollivier et al. in [39], used AE to compress data by
minimizing the code length. This method used the generative
property of AE. In [40], the authors used AE with Kalman
filter for the compression of the modified national institute
of standards and technology (MNIST) images. The model

failed to perform better for red-green-blue (RGB) images.
Similarly, in [41], the authors used the Kodak dataset to train
AE and achieved better performance than JPEG, JPEG-2000,
and WebP. In [42] and [43], the authors used AE for the
compression of images. In [44], the authors proposed AE
for the image compression. They used generalized divisive
normalization (GDN) and inverse generalized divisive normal-
ization (IGDN) layers instead of rectified linear unit (ReLU)
layers to boost up the training process. Cheng et al. in [45]
and Alexandre et al. in [46], deployed AE for the compression
of high resolution image.

B. Compression with VAE

VAE is a version of NN and belongs to the probabilistic
graphical models and variational Bayesian methods. Compres-
sion with VAE incorporates mean and variance for latent space
distributions. The results achieved by VAE are better than
simple AE. A simple illustration of image compression using
VAE is shown in Fig. 4.

Several researchers used VAE for still image compression.
In [47], the authors demonstrated the use of VAE having non-
linear transform and uniform quantizer for image compression.
Challenge one learned image compression (CLIC) dataset
used for training the model. The model was complex due to
massive training parameters. Recently, Chen et al. in [48],
proposed a VAE based architecture for high resolution image
compression. The authors demonstrated a non-local attention
module (NLAM) to boost the training process. However, the
model complexity increased significantly. Similarly, Larsen et
al. in [49], proposed a VAE to compress images. In [50], the
authors used VAE to compress images and achieved bits per
pixel (bpp) of 4.10. However, the model was very complex
due to its architecture.

C. Compression with CNN

CNN has prime importance in image processing due to its
feature extraction characteristics. CNN is also used for image
compression. The simple illustration of the image compression
and artifacts reduction is shown in Fig. 5.
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In [51]– [55], the authors used CNNs to compress images.
These CNN-based image compression models outperformed
JPEG and JPEG-2000 in structural similarity index measure
(SSIM) and peak signal-to-noise ratio (PSNR). In [56], the
authors proposed a CNN-based framework for the compression
of gigapixel images. They used unsupervised learning for the
training of the neural network. Similarly, in [57], the authors
proposed a state-of-the-art optimized deep CNN-based tech-
nique for the compression of the still images. The proposed
method used an attention module to compress certain regions
of the images with different bits adaptively. The approach
outperformed JPEG and JPEG-2000. However, the results of
Ballé [29] are better.

In [58], the authors also used CNN for the compression
of high-resolution images. They used CLIC 2018 dataset for
training and achieved 7.81% BD-Rate reduction over BPG and
JPEG-2000. In [59], the authors introduced a new concept of
multi-spectral transform for the multi-spectral image compres-
sion using CNN. It achieved better compression efficiency than
state-of-the-art anchors like JPEG-2000. Likewise, in [60], the
authors proposed a data reduction CNN for the compression of
hyperspectral images. Similarly, in [61], the authors proposed a

CNN-based end-to-end compression architecture for the multi-
spectral image compression. The authors extracted spatial
features by partitioning and achieved better performance in
terms of PSNR than JPEG-2000. Similarly, [62]– [65] also
used CNN based frameworks.

D. Compression with RNN

RNN can be utilized for image compression too. A sim-
ple RNN-based image compression architecture has some
convolutional layers, GDN layer, RNN modules, binarized
convolutional layers, and IGND layer. A simple illustration
image compression using RNN is shown in Fig. 6 as proposed
in [66]. Covell et al. proposed RNN based compression
architecture using stop code tolerant (SCT) to train the model.
They achieved bpp and PSNR of 0.25 and 27dB for Kodak
and imageNet datasets, respectively. The dataset used in the
method was Celeba dataset [67]. Likewise, in [68], an RNN-
based method was proposed to compress still images. The
training dataset used in this article was Kodak and achieved
bpp of 0.5 and SSIM of 0.77. The model’s performance was
superior to JPEG, JPEG-2000, and WebP.
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Toderici et al. in [69], demonstrated the use of RNN with
entropy encoding to compress images. They achieved bpp
of 0.5, PSNR of 33.59dB, SSIM of 0.8933, and multi-scale
structural similarity index (MS-SSIM) of 0.9877. In [70], the
authors proposed a DL-based end-to-end image compression
model to compress images based on semantic analysis. The
authors used RNN for the compression purpose and achieved
better results than the conventional compression techniques
like JPEG. The compression rate at 0.75 bpp was obtained 32
using this method. Furthermore, [71]- [74] also used RNN for
image compression and achieved a better compression ratio
than anchors such as JPEG and JPEG-2000.

E. Compression with GAN

GANs are algorithmic architectures. GANs use two NN,
pitting one against the other to generate new, synthetic data
instances that can pass for actual data. These have the gen-
erator part and discriminator portion. GANs are also utilized
for image compression. The simple flow diagram of image
compression using GAN is shown in Fig. 7, where encoder
and decoders are GAN modules.

Torfason et al. in [75], illustrated the use of GAN for the
compression and classification of semantic data. Similarly,
[76] proposed an extreme image compression architecture
using GAN. They used two types of modules for image com-
pression. The first module was generative compression, where
no semantic label maps were required. The type applied was
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Input

Image

Decoded

Image

Fig. 7. Image Compression with GAN.

selective generative compression, where semantic label maps
were used. They provided insight towards the full resolution
image compression and targeted low bit-rate, i.e., less than 0.1
bpp. In [77], the authors demonstrated the use of unified binary
GAN (BGAN+) for image compression and image retrieval.
The model achieved better than JPEG and JPEG-2000. The
visual quality of the reconstructed image was much improved
than JPEG and JPEG-2000 at low bit-rate such as 0.15 bpp.
In [78]- [83], the authors proposed GAN-based architectures
for the image compression and achieved high compression
efficiency. The drawback of the GAN-based architecture is
the cost of deployment.

F. Compression with PCA

PCA is also used for image compression. In [84], the authors
utilized vector quantization and PCA for the compression of
hyperspectral images. The technique achieved better perfor-
mance than JPEG-2000. Similarly, in [85], the authors used
PCA and DCT to compress hyperspectral images. The used
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Fig. 8. Percentage of architectures present for still image compression.

PSNR metric for the evaluation of the quality of the image.
The method applies to hyperspectral images only.

In [86], the authors used weighted PCA and JPEG-2000 to
compress hyperspectral images. They demonstrated that the
hybrid approach of weighted PCA and JPEG-2000 achieved
better PSNR than the JPEG and JPEG-2000. Similarly, the
authors of [87] proposed PCA for lossy compression and
achieved quality reconstructed image. However, the method
depended on the number of components, and the performance
decreased with the increase of PCA components.

G. Compression with fuzzy means clustering

Martino et al., in [88] proposed a fast algorithm to improve
the performance of the multilevel fuzzy transform image
compression method [89]. The authors demonstrated that the
reconstructed image’s visual quality.

Moreover, in [90] the authors proposed a conventional
technique of using a curve-fitting novel hyperbolic function for
the compression. The main advantages of this approach were:
strengthening the edges of the image, removing the blocking
effect, improving the SSIM, and increasing the PSNR up to
20 dB.

Table III and IV present a detailed summary of the tech-
niques used for image compression. Fig. 8 shows the percent-
age of the different ML architectures present in literature for
still image compression. It is evident that 24% of architectures
in the literature are based on AEs while 12% are based on
VAEs. The majority of the architectures are based on CNN
32%.

H. Comparative Analysis of State-of-the-art Techniques

This subsection presents a comparative analysis of state-of-
the-art techniques in terms of compression ratio, computational
time, PSNR, MS-SSIM, bpp, and RD-rate. Fig. 9 shows the
minimum bpp of the learning-driven lossy image compression
models. Fig. 10 and Fig. 11 show the corresponding MS-SSIM

and PSNR achieved at minimum bpp by reference respectively.
Ayzik et al. [51] achieved PSNR of 30dB and MS-SSIM
of 0.925 at the minimum bpp of 0.025. The comparison of
the three context models as presented in [91] shows that the
encoding time for all three context models, which are masked
context [92], causal context, and causal context plus causal
global prediction model. The reason behind this is that the
encoding can be performed in parallel while the decoding
time for all three models is different as the masked context
model takes less time for decoding while the combined causal
context and causal global prediction take approximately 39
seconds, as explained in [91]. The comparison of the encoding
and decoding time of all three models is shown in Fig. 12.
However, the decoding time of masked context-based CAE
architectures used for still image compression is less than the
other causal and global context models. The encoding time for
all three types of architectures is the same. The use of masked
convolution [93] has also impacted the visual representation of
the reconstructed image. The reconstructed image has better
visual quality in [91] than other state-of-the-art techniques.

Table V presents the comparison of the performance of the
recent deep learning-based learned image compression models.

We also compare the run time complexity of the various
benchmark learning-driven algorithms with standard codecs.
Table VI shows the comprehensive comparison.

I. Impact of Context-Based Entropy Modeling
In current learned lossy image compression algorithms, the

rate loss is generally the entropy of the codes. To reduce
entropy and improve joint rate-distortion performance, a pre-
cise estimate of the probabilistic distribution of the codecs
is critical. Most of the learning-driven architectures have
utilized context-based entropy modeling to improve the RD
performance of the codecs. The architectures consider local
as well as non-local (NL) contexts.

The use of global similarity among pixels in image de-
noising was initially proposed using NL approaches. Deep
neural network (DNN)-based image processing approaches
then incorporate it into DNNs to use the global information
and improve performance in various tasks. The authors in
[99] investigated pixel self-similarity and presented the NL
means for image denoising based on a content weighted NL
average of all pixels in the picture. Wang et al. in [100]
defined the non-local operation as a uniform block, which they
used in DNNs to mix local and NL data for object detection.
In [101], Liu et al. suggested an NL recurrent network for
image restoration that includes NL operations into a recurrent
network. The authors of [102] used the NL operation to create
attention masks to capture long-range dependence between
pixels and pay greater attention to the challenging sections
of picture restoration.

Li et al. [103] proposed learning context to model entropy
block in the end-to-end image compression framework. The
analysis, as well as synthesis block, utilized U-Net [104]-
[105] block for encoding and decoding operations. The NL
operation was proposed in entropy block to incorporate the
global similarities.
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TABLE III
COMPARISON OF THE LEARNING-DRIVEN LOSSY IMAGE COMPRESSION MODELS.

Research Technique bpp Performance Parameters Contributions and limitations

PSNR
[dB]

SSIM MS-
SSIM

[39] AE – – – – Generative property of AEs, by minimizing code-length, lim-
ited to theoretical perspective.

[40] AE – – – – The combination of the non-recurrent architecture of three-
layers with kalman filter, limited to grayscale images.

[41] AE 0.4 29 0.83 0.94 Compressive AE with MSE loss function trained by residual
network and non-differentiability of the quantization noise
reduced using rounding based quantization, visual artifacts
problem at low bit rate.

[42] AE 0.2 – – 0.92 Vector quantization preferred over scalar quantization, joint
optimization of learning of latent space representation, worst
performance than BPG.

[43] AE 0.1 31.5 – – Global rate-distortion (RD) constraint in a framework stochas-
tic winner-take-all autoencoder (SWTA-AE), worst perfor-
mance than JPEG-2000, changing strides of convolutional
layers harms NN.

[44] AE 0.2 31 – – GDN as well as IGDN layers, worst performance than HEVC
intra.

[45] AE 1.2 33 – – Parametric ReLU activation function, to produce feature maps
with low dimensionality, uses a CAE instead of a transform
and an inverse transform, along with some max-pooling-up-
sampling layers, comparable performance with Ball’ e model
for grayscale images only.

[46] AE 0.126 29.30 – 0.924 Feature map coding block with Importance Net, Uses skip
connections AEs and trained with loss function of MSE and
MS-SSIM, less PSNR than BPG.

[47] VAE 0.15 30.76 – 0.955 Non-linear encoder (NLE) transform, uniform quantizer, non-
linear decoder (NLD) transform, and post-processing module
form a VAE framework of article.

[48] VAE 0.2 30 – 0.7768 Non local (NL) operations to consider local as well as global
context, better performance than Ball’ e model.

[49] VAE – – – – Kullback-Leiber (KL) loss function, limited to image gener-
ation.

[50] VAE 4.10 – – – Recurrent VAE for learning latent space, limited to conceptual
compression.

[51] CNN 0.025 – – 0.925 Initial decoded image and side information require more
complexity and storage space, cloud based model, visual
artifacts at low bpp.

[52] CNN 0.25 30 – – Coarse to fine hyperprior based model, lacks parallel decod-
ing.

[53] CNN 0.0726 23.93 0.8118 – Loss function consisting of MSE, adversarial and layer wise
loss.

[54] CNN 0.519 33.62 – 0.981 The Lagrange multiplier for joint rate-distortion, considerable
run-time complexity due to the attention modules.

[55] CNN 0.2 31 – 0.7878 Gaussian mixture module (GMM) alogwith JointIQ-Net to
outperform JPEG-2k, BPG, versatile video coding (VVC)
Intra scheme.

[56] CNN – – – – Two step CNN based framework and the unsupervised train-
ing, limited to histopathology images.

[57] CNN 0.5 – 0.77 – Better performance than JPEG and JPEG-2k but worst per-
formance than Ballé. [29]
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TABLE IV
COMPARISON OF THE LEARNING-DRIVEN LOSSY IMAGE COMPRESSION MODELS.

Research Technique bpp Performance Parameters Contributions and limitations

PSNR
[dB]

SSIM MS-
SSIM

[58] CNN 0.2 – – 0.93 Trained with perceptual as well as adversarial loss for the
generation of sharp details, outperforms JPEG, JPEG-2000,
BPG and WebP.

[59] CNN – – – – Multi-spectral transform for the multi-spectral image com-
pression.

[60] CNN – – – – Introduction of data reduction block to save GPU memory.

[61] CNN – – – – Feature extraction by partitioning, better performance than
JPEG-2000.

[67] RNN 0.25 27 – – RNN trained using SCT, limited to adaptive encoding.

[68] RNN 0.5 – 0.77 – Focuses on 32x32 size thumbnail images, better than JPEG,
JPEG-2000 and WebP.

[69] RNN 0.5 33.59 0.8933 0.9877 Long short-term memory (LSTM)-based progressive encoding
of thumbnail pictures (32× 32), decent compression perfor-
mance at low bit rates, pixel RNN for entropy coding.

[70] RNN 0.75 32 – – Semantic analysis, better performance than JPEG.

[75] GAN 0.0983 28.54 0.85 0.973 For semantic understanding combined training for compres-
sion and classification.

[76] GAN 0.033 – – – Full-resolution image compression, applicable only when se-
mantic labels are available.

[77] BGAN+ 0.15 – – 0.95 Reconstructed image without distorting the small objects
present in the image at low bit-rates such as 0.15bpp.

[84] PCA – – – – Better performance than JPEG-2000, limited to hyper-spectral
data.

[88]- [89] Multilevel
Fuzzy
Transform

– – – – Reconstructed image with better visual quality, limited to
maximum of 1024×1024 image resolutions.

[90] Curve-
fitting with
hyperbolic
function

– 20 – – Removed blocking effects and improved SSIM, results are
dependent on block size and compression ratio.

All the learning-driven lossy image compression models
have limitations and research gaps. The upcoming section
highlights the research gaps of learning-driven lossy image
compression frameworks.

V. RESEARCH GAPS AND FUTURE DIRECTIONS

There are several techniques present for still image compres-
sion. All frameworks have their pros and cons. After a detailed
survey, we find that there are still research gaps. All ML-based
architectures have problems of SRD, parallel acceleration, and
OOM.

A. SRD in Reconstructed Image

SRD is the striped regions distortion in the reconstructed
image using ML-based architectures. SRD in the reconstructed
image is one of the open research problems in ML-based

image compression techniques. There is no technique available
in the literature that addresses this problem. There is a need
to solve this problem in future research.

B. Standardization of Architecture

The second research gap is the standardization of the end-
to-end compression architecture. It is very challenging for
the researchers. The deep learning architectures present in
the literature work well only when the training is performed
on GPU and testing is also performed using GPU. Similarly,
when the training is done using CPU and testing is performed
on CPU, the results are better. However, if the training is
performed on the GPU and the testing is done on the CPU
and vice versa, the image cannot be reconstructed correctly.
There is a requirement for the standard generalized model that
gives an optimal solution to this problem.



... 10

The
is2

01
7 [

38
]

Agu
sts

son
20

17
 [3

9]

Dum
as2

01
7 [

40
]

Dum
as2

01
8 [

41
]

Che
ng

20
18

 [4
2]

Alex
an

dre
20

18
 [4

3]

Zho
u2

01
8 [

44
]

Che
n2

02
1 [

45
]

Ayz
ik2

02
0 [

48
]

Hu2
02

1 [
49

]

Ram
an

20
20

 [5
0]

Che
ng

20
20

 [5
1]

Lee2
02

0 [
52

]

Li20
20

 [5
4]

Liu2
01

8 [
55

]

Cov
ell

20
17

 [6
4]

Tod
eri

ci2
01

6 [
65

]

Tod
eri

ci2
01

7 [
66

]

W
an

g2
01

9 [
67

]

Torf
ass

on
20

18
 [7

2]

Agu
sts

son
20

19
 [7

3]

Son
g2

02
0 [

74
]

1.25 

1 

0.75 

0.5 

0.25 

0 

m
in

 b
pp

Fig. 9. Minimum bpp achieved by different models.
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Fig. 10. MS-SSIM achieved at minimum bpp by different models.

C. Parallel Acceleration

The third research gap is due to serial decoding; parallel
acceleration of the autoregressive entropy model is impossible.
So, there is a requirement for a framework to address the
problem of parallel acceleration. In [106], the authors proposed
the learned image block-based framework to address this
problem. The framework has block artifacts problems for
meager bit rates. So, it is still an open research problem.

D. OOM Problem

The fourth research gap is given limited GPU resources;
full-resolution inference frequently produces OOM problems,

especially for high-resolution pictures. Block partition is a
good option for dealing with the concerns mentioned above,
but it introduces new challenges in terms of decreasing dupli-
cation between blocks and removing block effects.

E. Aliasing Effect In Reconstructed Image

The fifth research gap is the learning-driven lossy image
compression frameworks’ aliasing effect in the reconstructed
image. The reconstructed images of the CNN and CAE-
based architectures have variations in the directionality of the
patterns, which is called aliasing. This problem needs to be
addressed.
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Fig. 11. PSNR achieved at minimum bpp by different models.

TABLE V
SUMMARY OF THE PERFORMANCE OF THE END-TO-END IMAGE COMPRESSION FRAMEWORKS.

Research Model Minimum bpp PSNR (dB) MS-SSIM

[41] AE 0.4 29 0.94

[42] AE 0.2 – 0.92

[47] VAE 0.15 30.76 0.955

[48] VAE 0.2 30 0.7768

[48] VAE (loss function MSE) 0.1276 34.63 0.9738

[48] VAE (loss function MS-SSIM) 0.1074 32.54 0.9759

[53] CNN 0.0726 23.93 0.8118

[54] CNN 0.519 33.62 0.981

[55] CNN 0.2 31 0.7878

[69] RNN 0.5 33.59 0.9877

[75] GAN 0.0983 28.54 0.973

[94] Hyperprior based AE 0.304 34.4 –

[95] Autoregressive Model 0.01921 18.95 –

[96] Invertible NN (MSE loss function) 0.130 31.51 0.972

[96] Invertible NN (MS-SSIM loss function) 0.124 28.01 0.978

[97] Conditional Autoencoder 0.1697 32.2332 0.9602

[98] Asymmetric Gained VAE (loss function MSE) 0.107 30.68 0.93

[98] Asymmetric Gained VAE (loss function MS-SSIM) 0.109 27.76 0.94
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TABLE VI
RUN-TIME COMPLEXITY OF VARIOUS LEARNING-DRIVEN ALGORITHMS

WITH STANDARD CODECS.

Codecs Encoding Time (ms) Decoding Time (ms)

JPEG 18.600 13.000

JPEG-2000 367.400 80.400

WebP 67.000 83.700

[29] 242.120 338.090

[30] 64.700 12.100

[31] 8.600 9.900

[32] 3.500 4.000

[33] 75.120 73.230

[34] 79.500 17.400

[35] 42.000 32.000

[36] 74.000 984.000

[37] 24.000 32.000

[69] 1606.900 1079.300

These are five major issues in still image compression
that can contribute to future research. The upcoming section
concludes the survey.

VI. CONCLUSION

Images have three types of information, including helpful
information, redundant information, and useless information,
in the era of the modern world, where the visual quality
of images plays a vital role. On the other hand, the is
the requirement for more memory to store as well as more
bandwidth is required to transmit those high-resolution images.
To resolve the problem of memory storage, we perform
image compression. Initially, image compression was based
on conventional arithmetic and entropy encoding techniques
such as JPEG and JPEG-2000. However, since the evolution
of ML many several learned image compression models have
been proposed in the literature. This paper surveyed several
learned image compression techniques based on AEs, VAEs,
CNNs, RNNs, GANs, PCA, and fuzzy means clustering.
The majority of the architectures are based on CNNs and

AEs. These models achieve better compression efficiency than
JPEG-2000, which is an anchor in image compression. We
also highlighted four significant research gaps in ML-based
image compression models. Those gaps are the SRD problems,
architecture standardization, parallel acceleration, aliasing, and
OOM. These problems are yet to be addressed in still image
compression.
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