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Abstract state space for representing the events, which in turn resjui

a large data-set for training. On the other hand, Stochastic
Automatic detection of dynamic events in video sequencea h&€ontext-Free Grammars(SCFG) [16, 6] with their flexiblereep
variety of applications including visual surveillance ambni- sentation provide more expressibility and require simpbelats
toring, video highlight extraction, intelligent transgation sys- for the event representation. This in turn allows trainising
tems, video summarization, and many more. The main ch&leagsmall labeled data-set even in complex environments ssich a
in most real-world applications is the learning of the eveat outdoor scenes as depicted by our results.
scriptors from limited data in the presence of noise and-vari
ations in the occurrence of such events. The main contribthile SCFGs have been applied to a limited extent to event de-
tion of this work is a semi-supervised learning method in titection from image sequences [6, 11], little attention hasnb
aforementioned setting for detecting dynamic events ieovidpaid to learning the grammar from data. This works addresses
sequences. Concretely we introduce a stochastic corrtext-this issue given a knowledge of the grammar structure. The ad
grammar approach for representing the events and learn t@ntage in automatically learning the event descriptorsher
event descriptors using an entropy minimization-basedi-segrammar from the data is that such an approach scales easily
supervised method. Experimental results demonstratiageth to novel scenes with minimal user provided knowledge.
ficacy of the learning algorithm and the event detection webth

applied to real-world video sequences are presented. This paper is organized as follows: After introducing thekgr
lem in Section 1, the learning problem is formally introdd e

Section 2. A brief background of the learning method is pre-
Keywo rds sented in Section 3 followed by a survey of related works it+ Se
tion 4. The event detection method using the SCFGs and the
Event detection, stochastic context-free grammars, semi-léarming algorithm are described in Section 5. Section ents
supervised learning, entropy minimization. some experimental results of event detection on some redttw
example trajectories followed by their discussion in Swcfr.
Finally, Section 8 concludes the paper.

1 Introduction

Dynamic event detection from video sequences is a fundahe@ Problem Statement

problem in computer vision with several applications imihg,

video surveillance and monitoring, video indexing and kgt Given a spatio-temporal patterfi, expressed as a string of ac-

extraction, intelligent transportation systems, and mamye. tionsS = {ai,as9,...,a,}, with 1,...,n being the discrete-

Spatio-temporal trajectories such as a vehicle or a robetmgo time sampling intervals, we seek the gramiGarcorresponding

with varying speeds give rise to dynamic events. For examplean event clas#; that can generate the said pattern.

the dynamic event shown in Fig. 1 consists of a vehicle mov-

ing from south to north through an intersection. As illustchin - Given a fully specified SCFG, that is with fixed non-terminals

the figure, this event representslassof trajectories, as vehi-and terminals, the inside-outside algorithm [9] is the wjzta-

cle trajectories can vary in several ways, including spelede tion algorithm for estimating the rule probabilities. Hoxee,

changes, stop-n-go motion without altering the basic ewygret. automatically learning all the parameters, namely, theniteal

Real-world scenes present additional complexities in trenf Symbols, the non-terminals, the productions, and theibg@ro

of ambiguous data (arising from noise) and limited useelleth Pilities from data is generally a much difficult problem ag th

data. Automatic learning and the detection of dynamic eveftructure of the grammar is unknown. However, when at-least

under these settings is the main contribution of this work. ~ part of the structure is available to the learner, it has isbemwn
that grammars can be induced in polynomial time [14, 16]. In

The standard approach to dynamic event detection using stais work, the structure of the grammar is supposed to bd-avai

space models such as the hidden Markov models (HMM) atee beforehand as bracketed pairs of actions. The main chal

not applicable or atleast require complex formulationshsulenge however is learning from data contaminated by noise as

as [5, 13]. Additionally, such models require prohibitivédrge common in vision-based inference from uncontrolled image s



(a) Typical south-north motion.  (b) Stop-n-go south-north motion. (c) Lane change south-north mo-
tion.

Figure 1:Example categories of south-north motion. As shown, ségetacategories or events arise for the same south-nortiomo

quences. Noisy inference results from ambiguities in pretr  mars. The conditional classification entropy is expressed a
ing occlusions, illumination changes, and other factossiltng

. k
from unmodeled environmental effects.

H(y|S) == pylS = k,Gi)log(p(y|S = k;Gx)) (1)

=1

3 Background wherey is the output label0 — 1], S is the input spatio-temporal
pattern,Gy, is the current grammar for clags

A stochastic context-free grammar consists of the follauwifi)

a set of terminals or alphabetsx etc., of the languagg, a set To summarize, the basic approach to learning consists raf-ite

of non-terminalsV, a start symbol non-termindl, rule or pro- tively refining the event grammars using the unlabeled exesnp

ductions" for deriving the string of terminals and non-terminalgvhich produce the lowest entropy. The individual class gram

and the probability of each production in the rule set. Thmte Mars are initially trained using a small number of labeleainex

nals correspond to the individual actions that an agent ean Ples. Another measure applicable for the stopping contiso

form in the given scene. The rules are used for deriving antevé1e empirical conditional classificiation entropy, exgetas,

pattern obtained from a targe@ trajecto_ry. (_Siven_ the gramma M

structure, the goal_of the learning _algorlthm is to mducze_$ht H(y) = Z H(y|S:) @)

of relevant productions for generating the patterns cpoeding

to a particular event using a small set of labeled exampldsaan

larger collection of unlabeled examples. where there aré/ unlabeled patterns.

=1

3.1 Learning From Increasingly Complex Exam- 4 Related Work

les
P Approaches to detecting spatio-temporal events range fiem

Learning using solely positive examples is in general adliffi mensionality reduction methods such as [10, 12], to the fre-
problem as the learner has to overcome both over-gendiatizaquently used state space models such as the hidden Markev mod
and over-specialization. It has been shown in previous @jrk els (HMM) and their variations. Examples of the HMM-based
that this problem can be made more tractable by learning fapproaches applied to detecting activities in video secggim-
from examples with lower Kolmogorov complexity. In otheclude [7, 1, 5]. The main limitation of the dimensionality thne
words, the approach is to learn from simple examples befads stems from the use of unsupervised clustering to guigle th
learning from the complex ones. The learning approach m tdimensionality reduction which in turn fails to weight thatd
work is motivated by this idea. differently with respect to noise. Furthermore, these agphes
also require a lot of data to obtain a reasonable estimateeof t
The Kolmogorov complexity is directly related to the enyyopevent profiles. Similarly, state space model approaches asic
The entropy in the classification of a pattern correspondseo HMMs require non-typical formulations such as time-dwati
uncertainty in attributing it's membership to theclasses. Thus HMMs for modelling the varying temporal scales of the events
lower entropy will essentially correspond to the case witieée The complex models coupled with the generative model sgttin
pattern has membership to fewer classes, thereby corgdess of HMMs increases the burden of training particularly innter
ambiguity. In turn, such samples make good candidatesdortr of a larger training data set.
ing in comparison to those possessing large ambiguitiess,Th
the event classes are updated using the examples that higue uContext-free grammar approaches have been recently dplie
membership first before using the examples that have mlalisc event recognition in video sequences. The flexibility ofesen-
membership, thereby preventing collapsing of the eveningratation afforded by these methods allows one to model a lsgter



of variations in the data for a particular kind of event. Hdrei

al. [4] recently proposed an approach to detect anomalous activ
ities from video sequences using tri-grams where the iddai
sub-sequences or sub-classes of typical events are haled-co
by the user. Unusual activities are then detected basedyn an
observed atypical ordering or non-typical combination lod t
known sub-classes of activities. Hakeem and Shah [3] used a
graphical network with hand-coded grammar for detectiniy-ac
ities arising from target interactions in video sequend@ther

examples of context-free grammars applied to detectingtsvesjgyre 2:Example cell-based representation of the spatial regioe. T
in video sequences include [6, 11]. Ivanov and Bobick apipligel|s are shown as white regions with the correspondingdatéen ex-
SCFGs [6] for gesture recognition as well as for detectingeso ample trajectory of a lane-changing vehicle is shown inklac

simple events in outdoor scenes involving a single targetrd

der to deal with noise, the probability of each symbol (ol )

from a HMM) was incorporated in the forward and the inn&-2 Learning Event Grammars

probabilities of the parsing algorithm. An approach forldeal-h set of events in the scene are assumed to arise from
ing with noise in image sequences was introduced by Moore ‘?ﬂl‘ix

. ddition. deleti di , o rent classes. In general, the same underlying digioh
Essa [11] using a Jition, deletion, and insertion operaitim- (s,y) is assumed to produce both the test and training exam-
ilar to those used in edit distances for matching stringse T |

, Lo es. Learning consists of estimating the conditionakitistion
events were detected for a small set of fixed entities in thaesc

Q) wherey is the output for the inpug, and(2 is the
Until now, to the author’s knowledge all video-based evest (v]s, $) Y P p

. X . oo odel that maps inputs to the outputs in a discriminativeieg
tection approaches employing variants of probabilistamgmars setting. The learning problem can be formulated as maxigizi
are restricted to recognition or classification of actestusing a ;

the conditional likelihood of the output labglgiven the input
pre-specified grammar. This work addresses the problem-of g\[lljings and classes L as P 79 P

tomatically learning the grammar from the image data using a

semi-supervised learning approach. Most of the work omlear N &k

ing the grammars exists in language modeling [8, 15] andbioi A= Z H p(y(i)]s(i); ;). (3)
formatics [18], albeit using fully labeled data. i=1 j=1

) ) _ Entropy is the clearest way of characterizing the uncettam
5 Event Detection using Stochasticthe posterior probabilities of the classification labgléor an

) input strings. In other words, an entropy zero corresponds to
Context-Free Grammars perfect classification, or the case when utmost one clask is a

51 Patt R tati tributable to the given input string. With no need to invoke t
. atiern kepresentation independence assumptions, entropy provides a convenant w

An action sequence or a pattern is represented as a disetete 40 express the relative certainty in attributing a pattertne dif-

primitive actions obtained by sampling from a target'secapry. ferent classes. Expressed in terms of empirical conditiena

The sampling intervals are fixed beforehand. A primitivéaact tropy, and assuming uniform prior on all the classes. ., ,

is composed of the spatial location and the current localanot Edn. (3) becomes,

of the target obtained from an estimator such as a Kalmanfilte Nk

The local motions are are discretized into one of “straightm Hy|S) = Z Zp(y(z’ﬂs(i); Q,)log o 1 @)
=1 j=1

ing”, “stopped or slow moving”, “fast moving”, “left” and fght y(i)]s(4); Q)

turning” through thresholding of the local velocity estisand

simple heuristics for turn detection. The spatial locat®again whereS = s4,. .., sy. Again, the empirical conditional entropy
obtained from the region occupied by the targetin the im&ge. is the lowest when the co-dependance aids is high. Hence,
this purpose, the image is discretized into an arbitrarylmemof  the algorithm consists of refining the class grammars itasigt
cells as shown in Fig. 2. The cells can either be laid out by t§gch that the empirical conditional entropy is minimizeeatch
user or randomly generated. step and repeated until convergence. The basic learning alg

] . . rithm is summarized in Table. 1.
The actions are represented as a pair of local motion and the

spatial region corresponding to the local motion. An exampAs depicted in Table. 1, after learning a preliminary modighw
string is depicted in Fig. 3, whe€1, C5, C'6 correspond to the g few labeled training examples, the SCFG model for eacls clas
discrete spatial cells andt(aight, fastyorrespond to the localis iteratively refined until convergence. The computati@oa-
motion. plexity of the learning algorithm is polynomial, with the veb

; 5 ) i
1In our case, we use an extended switching Kalman filter farking the CaS€ CompleX“t)O(”_ k + C) wheren is the number of _tram'
targets in the scene. ing examples, and is the number of classes. Assuming that




SUPERVI SED: for each class k
for each |l abeled string s belongs to k
updat e grammar of k

end
UNSUPERVI SED:
do
for each string sinl1lto N
for each grammar | in 1 to K
conpute p(y|s,granmar(j)) //y=1 when classified into j, y=0
ot herw se
end

/1 Conput e conditional classification entropy
E(s) = H(y|s, classl)+...+H(y|s, classk)
end
[/ conpute enpirical conditional entropy
ol dE=sum(E(s=1: M)
[mn_string_entropy, mnlndex] = (mnimm E(s=1:M > 0)
do
nunmJpdat edG ammars = 0
if (mn_string_entropy > entropy_threshol d)
then exit
el se
for each grammar | 1 to N
if(y==1 for string(mnlndex) & granmar(j)) then
update grammar j with string(m nlndex)
newtE = sum(E(i=1: M) //reconpute enpirical conditional entropy
i f(newE > ol dE)
accept new grammar for class j
nunlpdat edGranmar s = nuniJpdat edGranmars + 1
end if
end for
mn_string_entropy = minimunm E(1: M > mn_entropy)
end el se
whi | e (nunipdat edG anmars > 0)
(while maximumtrials | change_in_entropy < t)

Table 1:Algorithm for grammar update. The grammar for the typicaksks is updated incrementally using the strings with thet Entropy.

k << n, the complexity of the algorithm i©(n?). ples as well as specify the structure of the scene. The peopos
learning algorithm can easily be applied to data arisinghftbe

Once the grammar is revealed, namely, the set of terminas, Nsaid applications with minimal user provided knowledge.
terminals, and productions, the production probabilitas be

estimated using the standard optimization techniquesasif$i. o
5.3 Event Classification and Error Recovery

As mentioned earlier, the grammar structure is assumed to be

available before-hand in the form of bracketed expressigms ONce the grammar for each class is learned, a novel pattern is
example is depicted in Fig. 3. As shown, non-terminals age cflassified by parsing it with all the available grammars. The

ated from the terminal pairs (individual actions represdrin 9rammar which produces the successful parse of the pattern i
the brackets) which are then merged with the newly createcd?gfiPuted as producing the pattern. In the case of mulspte
previously existing non-terminals in the grammar. Thispab CceSsful parses, the grammar that required the least nunfiber o
obtain a concise description of the rules. This processrigasi SKiPS of the strings is attributed the classification.  Ofee,

to the non-terminal merging operation proposed by Stoltkg [ 1S are broken arbitrarily.

The only prior knowledge the learning algorithm requires i9'€ SKip or the “lookahead” operation is mainly used for erro

some knowledge of the structure of the grammar and a small'§&CVery. For instance, some of the sub-strings in a givéera
of supervised examples. In most real-world domains suatas MY be erroneous owing to the target temporarily coveredby a

fic intersection monitoring and human activity recognititiris  °¢¢Usion. In such a case it is not possible to generate @sscc

impossible to obtain a large amount of supervised learniage Ul Parse and such strings are skipped. However, a penaityos
associated with the skips to prevent all patterns beingified



Cl(straight) C1(straight)| |  Cl(straight) C5(fddt)  C5(fast) Ce(stralght)  C6(straight) C6(sifpight) _ C6(straight) C6(straight)

M1 M2 M3 M4 M5

v

M4

Figure 3:An example action sequence with bracketed structure andararinal creation. The boxes around the strings reprebertiracketed
structure. The terminals consist of the spatial cell ocedifly the target such as C1, and the corresponding local matich astraight, fast,
slow, left, right turn. The non-terminals are depicted as M1, M2, M3, etc.

into all classes. The penalty is computed as, 6.2 Results

e = exp(—(n)/L) (5) Fig. 5 and Fig. 6 show some examples of event classifications
for different trajectorieDetection of atypical events including
wheren is the number of lookahead steps dnis the total length y-turns and unusual motion paths are shown in Fig. 7. An
of the String. The Iarger the number of SkipS the Sma”eréthe advantage of app|y|ng the SCFGs is that a trajectory can be
This is similar to the error recovery scheme used in [11]. Upfassified even with partial information as shown in Fig. 8,
like [11], currently we don’t use the insert and delete opers \here only part of the vehicle’s trajectory was available du
and leave that as part of future work. to a large occlusion along the remaining trajectory of theiale.

6 EXpe“mentaI Results Fig. 9 illustrates the effect of the ratio of labeled to urdksa

L N i examples on the generalization performance of the classitie
ijectlve The objective of the experiments was to tegt the %I—'axis corresponds to the ratio of the number of labeled ta-un
ficacy of the proposed learning method on real-world image Beled examples. The maximum number of labeled examples was

quences. 60 and unlabeled 290. As can be seen, the effect of increasing
the number of labeled examples is that the margin of gezerali

6.1 Experiment Description tion risk of using only labeled examples and combining labtel
unlabeled examples is reduced. This means that the effeict-of
ﬁgbeled examples diminishes as the number of labeled exampl
is increased. However, adding unlabeled examples stiltonrgs
p%rformance. The risk is computed by testing the classificat

erformance of all the learned grammars on a testset differe
rom those used in the training examples.

For the experiments we chose scenes from outdoor trafficin
sections such as depicted in the Fig. 4. Traffic intersestae
one of the most complex scenes both for target localizatson
well as event detection. The uncontrolled environmenfaloes
such as occlusions and changing illumination makes tagyet
calization a challenging task. The resulting ambiguityhie db-

served data in addition to the significant overlaps betwegh vV a5 3 henchmark experiment, we compared the classification
ous events makes event recognition difficult. performance of the proposed SCFG with a spectral clustering
method as presented in [10]. In the tests, 1069 trajectomses
used for testing. Being an unsupervised clustering metalbd,
the datasets were directly presented to the spectral dhugpta-
gorithm. For training the SCFG, a total of 250 examples from a
different data-set was used. Out of the 250, 50 trajectovers
labeled or 5-6 examples on an average per event Elas® re-
sults of the classification performance are depicted inelahl
One thing to note is that none of the test examples consisted o
atypical motions such as U-turns, or reversing motions aseth
cannot be detected using the spectral clustering algorhit

, ] . ) just makes use of the shape of the trajectories for clugieER-
Figure 4:An example traffic scene used in the experiments. 5 mples consisted of a mix of fully-visible and partially ibie
trajectories as was obtained from the tracking algorithme- P
dictably, the clustering method fails when presented watttial

The target statistics including their locations, speedseh
erations etc., are obtained through a vision-based trgaMoo-
rithm as described in [17]. The individual trajectories aan- ‘2Althpugh the classification results are depicted on the sinage, these
pled at discrete intervals to obtain a string of primitiveets or tra’fgggesshgﬂﬁfx;“ t?}'gf:z:t;’”em‘iejn‘;';?)ee:ﬂf:dmgf;ﬁgg'ﬁ;ﬁy or
actions. An action is computed based on the local motion #s Wggating the grammar. The learning algorithm stops as ssacoavergence

as the spatial location. results after the update from a few examples.




(a) North-south motion. (b) South-north motion for a stop-n-go (c) South-west motion.
vehicle.

Figure 5:Trajectory classification by the SCFG for event classeshrsotith, south-north, and south-west.

(a) East-west motion. (b) East-south motion. (c) West-north motion.

Figure 6:Trajectory classification by the SCFG for east-west, easths and west-north motions.

trajectories. Besides, this algorithm will classify an snal mo-
tion such as U-turn into one of the classes instead of datgcti
that as an outlier. With the SCFGs, it is possible to detent-co
plex motions such as weaving motions which consists of multi
ple lane changes with very little additional knowledge anadht
140 S ———— ing. Detection of such complex motions is very challengiog f
—— labeled & unlabeled examples both the clustering algorithm as well as hidden Markov medel
130 — = labelod examples 1 The latter will require complex formulations such as hierical
i models for such detection.

120f
110f

| 7 Discussion and Future Work

1001

generalization risk

%or As depicted in the results, the proposed SCFG method is robus

] for obtaining event classifications in challenging enviramts
such as traffic intersections. The method can yield good clas

80

or ] sification performance even with partial information. Theeu
60 e of a skip or “lookahead” operation helps to deal with missing
0 o 20 80 40 5 60 70 8 90 100 information such as resulting from temporary occlusionpoA

% of labeled examples to total labeled examples

tential advantage of this event representation is that ththoa
Figure 9: Generalization risk performance for training with varyingan easily scale to novel environments as it requires ontyadls
numbers of labeled and unlabeled examples. amount of labeled data in addition to unlabeled data. Giten t
iterative nature of the learning algorithm, it can easilydoa-
verted into an any-time algorithm allowing the applicatafran
on-line learning algorithm.

Classification accuracy is affected mostly by the ambigsiéind
missing information in the input data. For instance, it isgible



(a) Atypical motion I. (b) Atypical motion II.

Figure 7:Example atypical motion detection.

(a) East-south motion. (b) North-east motion. (c) South-west motion.

Figure 8:Accurate detection can be obtained even only when a smaibpaf the trajectory is visible.

that the grammar can learn incorrectly when presented with annotation, and many more. This results in more complex and
labeled data that contains noise. An interesting futureresibn diverse events that need to be learned from the data.

would be to apply user feedback on the performance of classifi

for grammar correction or to apply the method in conjunction

with other classifiers to correct grammars using the resaflts8  Conclusions

other classifiers. Occasional non-unique classificatianuigin
the case of partial trajectories when the trajectory ligb@pro-

' ! This work developed stochastic context-free grammars (§CF
file of multiple classes.

for event detection in challenging outdoor video sequenthke
main contribution of this work is a semi-supervised leagréf
gorithm applied to the SCFG for learning the event categeriz
tions in a given scene. Experimental results on real-wonlage
sequences show the robust performance of this method.

Additionally, the spatial resolution of the cells used tealéetize

the image affects classification accuracy. Larger cellacedhe

total number of spatial cells in the region, thereby inciregathe

overlap between the trajectories from various event ctasse

sulting in increased ambiguities in classification. Howet@o

small of a cell increases the number of total cells, therelyir-

ing a larger training data set for better generalization ab as 9 ACknOW|edgementS
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