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Abstract

Automatic detection of dynamic events in video sequences has a
variety of applications including visual surveillance andmoni-
toring, video highlight extraction, intelligent transportation sys-
tems, video summarization, and many more. The main challenge
in most real-world applications is the learning of the eventde-
scriptors from limited data in the presence of noise and vari-
ations in the occurrence of such events. The main contribu-
tion of this work is a semi-supervised learning method in the
aforementioned setting for detecting dynamic events in video
sequences. Concretely we introduce a stochastic context-free
grammar approach for representing the events and learn the
event descriptors using an entropy minimization-based semi-
supervised method. Experimental results demonstrating the ef-
ficacy of the learning algorithm and the event detection method
applied to real-world video sequences are presented.
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1 Introduction

Dynamic event detection from video sequences is a fundamental
problem in computer vision with several applications including,
video surveillance and monitoring, video indexing and highlight
extraction, intelligent transportation systems, and manymore.
Spatio-temporal trajectories such as a vehicle or a robot moving
with varying speeds give rise to dynamic events. For example,
the dynamic event shown in Fig. 1 consists of a vehicle mov-
ing from south to north through an intersection. As illustrated in
the figure, this event represents aclassof trajectories, as vehi-
cle trajectories can vary in several ways, including speeds, lane
changes, stop-n-go motion without altering the basic eventtype.
Real-world scenes present additional complexities in the form
of ambiguous data (arising from noise) and limited user-labeled
data. Automatic learning and the detection of dynamic events
under these settings is the main contribution of this work.

The standard approach to dynamic event detection using state
space models such as the hidden Markov models (HMM) are
not applicable or atleast require complex formulations such
as [5, 13]. Additionally, such models require prohibitively large

state space for representing the events, which in turn requires
a large data-set for training. On the other hand, Stochastic
Context-Free Grammars(SCFG) [16, 6] with their flexible repre-
sentation provide more expressibility and require simple models
for the event representation. This in turn allows training using
a small labeled data-set even in complex environments such as
outdoor scenes as depicted by our results.

While SCFGs have been applied to a limited extent to event de-
tection from image sequences [6, 11], little attention has been
paid to learning the grammar from data. This works addresses
this issue given a knowledge of the grammar structure. The ad-
vantage in automatically learning the event descriptors orthe
grammar from the data is that such an approach scales easily
to novel scenes with minimal user provided knowledge.

This paper is organized as follows: After introducing the prob-
lem in Section 1, the learning problem is formally introduced in
Section 2. A brief background of the learning method is pre-
sented in Section 3 followed by a survey of related works in Sec-
tion 4. The event detection method using the SCFGs and the
learning algorithm are described in Section 5. Section 6 presents
some experimental results of event detection on some real-world
example trajectories followed by their discussion in Section 7.
Finally, Section 8 concludes the paper.

2 Problem Statement

Given a spatio-temporal patternS, expressed as a string of ac-
tions S = {a1, a2, . . . , an}, with 1, . . . , n being the discrete-
time sampling intervals, we seek the grammarGi corresponding
to an event classEi that can generate the said pattern.

Given a fully specified SCFG, that is with fixed non-terminals
and terminals, the inside-outside algorithm [9] is the optimiza-
tion algorithm for estimating the rule probabilities. However,
automatically learning all the parameters, namely, the terminal
symbols, the non-terminals, the productions, and their proba-
bilities from data is generally a much difficult problem as the
structure of the grammar is unknown. However, when at-least
part of the structure is available to the learner, it has beenshown
that grammars can be induced in polynomial time [14, 16]. In
this work, the structure of the grammar is supposed to be avail-
able beforehand as bracketed pairs of actions. The main chal-
lenge however is learning from data contaminated by noise asis
common in vision-based inference from uncontrolled image se-
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(a) Typical south-north motion. (b) Stop-n-go south-north motion. (c) Lane change south-north mo-
tion.

Figure 1:Example categories of south-north motion. As shown, several sub-categories or events arise for the same south-north motion.

quences. Noisy inference results from ambiguities in interpret-
ing occlusions, illumination changes, and other factors resulting
from unmodeled environmental effects.

3 Background

A stochastic context-free grammar consists of the following: (i)
a set of terminals or alphabetsλ, κ etc., of the languageΞ, a set
of non-terminalsN , a start symbol non-terminalT , rule or pro-
ductionsΓ for deriving the string of terminals and non-terminals,
and the probability of each production in the rule set. The termi-
nals correspond to the individual actions that an agent can per-
form in the given scene. The rules are used for deriving an event
pattern obtained from a target trajectory. Given the grammar
structure, the goal of the learning algorithm is to induce the set
of relevant productions for generating the patterns corresponding
to a particular event using a small set of labeled examples and a
larger collection of unlabeled examples.

3.1 Learning From Increasingly Complex Exam-
ples

Learning using solely positive examples is in general a difficult
problem as the learner has to overcome both over-generalization
and over-specialization. It has been shown in previous work[2]
that this problem can be made more tractable by learning first
from examples with lower Kolmogorov complexity. In other
words, the approach is to learn from simple examples before
learning from the complex ones. The learning approach in this
work is motivated by this idea.

The Kolmogorov complexity is directly related to the entropy.
The entropy in the classification of a pattern corresponds tothe
uncertainty in attributing it’s membership to thek classes. Thus
lower entropy will essentially correspond to the case wherethe
pattern has membership to fewer classes, thereby containing less
ambiguity. In turn, such samples make good candidates for train-
ing in comparison to those possessing large ambiguities. Thus,
the event classes are updated using the examples that have unique
membership first before using the examples that have multi-class
membership, thereby preventing collapsing of the event gram-

mars. The conditional classification entropy is expressed as,

H(y|S) = −

k∑

i=1

p(y|S = k, Gk)log(p(y|S = k; Gk)) (1)

wherey is the output label[0− 1], S is the input spatio-temporal
pattern,Gk is the current grammar for classk.

To summarize, the basic approach to learning consists of itera-
tively refining the event grammars using the unlabeled examples
which produce the lowest entropy. The individual class gram-
mars are initially trained using a small number of labeled exam-
ples. Another measure applicable for the stopping condition is
the empirical conditional classificiation entropy, expressed as,

H(y) =
M∑

i=1

H(y|Si) (2)

where there areM unlabeled patterns.

4 Related Work

Approaches to detecting spatio-temporal events range fromdi-
mensionality reduction methods such as [10, 12], to the fre-
quently used state space models such as the hidden Markov mod-
els (HMM) and their variations. Examples of the HMM-based
approaches applied to detecting activities in video sequences in-
clude [7, 1, 5]. The main limitation of the dimensionality meth-
ods stems from the use of unsupervised clustering to guide the
dimensionality reduction which in turn fails to weight the data
differently with respect to noise. Furthermore, these approaches
also require a lot of data to obtain a reasonable estimate of the
event profiles. Similarly, state space model approaches such as
HMMs require non-typical formulations such as time-duration
HMMs for modelling the varying temporal scales of the events.
The complex models coupled with the generative model setting
of HMMs increases the burden of training particularly in terms
of a larger training data set.

Context-free grammar approaches have been recently applied for
event recognition in video sequences. The flexibility of represen-
tation afforded by these methods allows one to model a largerset



of variations in the data for a particular kind of event. Hamid et
al. [4] recently proposed an approach to detect anomalous activ-
ities from video sequences using tri-grams where the individual
sub-sequences or sub-classes of typical events are hand-coded
by the user. Unusual activities are then detected based on any
observed atypical ordering or non-typical combination of the
known sub-classes of activities. Hakeem and Shah [3] used a
graphical network with hand-coded grammar for detecting activ-
ities arising from target interactions in video sequences.Other
examples of context-free grammars applied to detecting events
in video sequences include [6, 11]. Ivanov and Bobick applied
SCFGs [6] for gesture recognition as well as for detecting some
simple events in outdoor scenes involving a single target. In or-
der to deal with noise, the probability of each symbol (obtained
from a HMM) was incorporated in the forward and the inner
probabilities of the parsing algorithm. An approach for deal-
ing with noise in image sequences was introduced by Moore and
Essa [11] using addition, deletion, and insertion operations sim-
ilar to those used in edit distances for matching strings. The
events were detected for a small set of fixed entities in the scene.
Until now, to the author’s knowledge all video-based event de-
tection approaches employing variants of probabilistic grammars
are restricted to recognition or classification of activities using a
pre-specified grammar. This work addresses the problem of au-
tomatically learning the grammar from the image data using a
semi-supervised learning approach. Most of the work on learn-
ing the grammars exists in language modeling [8, 15] and bioin-
formatics [18], albeit using fully labeled data.

5 Event Detection using Stochastic
Context-Free Grammars

5.1 Pattern Representation

An action sequence or a pattern is represented as a discrete set of
primitive actions obtained by sampling from a target’s trajectory.
The sampling intervals are fixed beforehand. A primitive action
is composed of the spatial location and the current local motion
of the target obtained from an estimator such as a Kalman filter.1

The local motions are are discretized into one of “straight mov-
ing”, “stopped or slow moving”, “fast moving”, “left” and “right
turning” through thresholding of the local velocity estimates and
simple heuristics for turn detection. The spatial locationis again
obtained from the region occupied by the target in the image.For
this purpose, the image is discretized into an arbitrary number of
cells as shown in Fig. 2. The cells can either be laid out by the
user or randomly generated.

The actions are represented as a pair of local motion and the
spatial region corresponding to the local motion. An example
string is depicted in Fig. 3, whereC1, C5, C6 correspond to the
discrete spatial cells and (straight, fast)correspond to the local
motion.

1In our case, we use an extended switching Kalman filter for tracking the
targets in the scene.
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Figure 2:Example cell-based representation of the spatial region. The
cells are shown as white regions with the corresponding labels. An ex-
ample trajectory of a lane-changing vehicle is shown in black.

5.2 Learning Event Grammars

The set of events in the scene are assumed to arise fromk
different classes. In general, the same underlying distribution
D(s, y) is assumed to produce both the test and training exam-
ples. Learning consists of estimating the conditional distribution
D(y|s, Ω) wherey is the output for the inputs, andΩ is the
model that maps inputs to the outputs in a discriminative learning
setting. The learning problem can be formulated as maximizing
the conditional likelihood of the output labely given the input
strings and classes1, . . . , k as,

∆ =

N∑

i=1

k∏

j=1

p(y(i)|s(i); Ωj). (3)

Entropy is the clearest way of characterizing the uncertainty in
the posterior probabilities of the classification labelsy for an
input strings. In other words, an entropy zero corresponds to
perfect classification, or the case when utmost one class is at-
tributable to the given input string. With no need to invoke the
independence assumptions, entropy provides a convenient way
to express the relative certainty in attributing a pattern to the dif-
ferent classes. Expressed in terms of empirical conditional en-
tropy, and assuming uniform prior on all the classes1, . . . , k,
Eqn. (3) becomes,

H(y|S) =

N∑

i=1

k∑

j=1

p(y(i)|s(i); Ωj) log
1

p(y(i)|s(i); Ωj)
. (4)

whereS = s1, . . . , sN . Again, the empirical conditional entropy
is the lowest when the co-dependance ofy ands is high. Hence,
the algorithm consists of refining the class grammars iteratively
such that the empirical conditional entropy is minimized ineach
step and repeated until convergence. The basic learning algo-
rithm is summarized in Table. 1.

As depicted in Table. 1, after learning a preliminary model with
a few labeled training examples, the SCFG model for each class
is iteratively refined until convergence. The computational com-
plexity of the learning algorithm is polynomial, with the worst
case complextityO(n2k + C) wheren is the number of train-
ing examples, andk is the number of classes. Assuming that



SUPERVISED: for each class k
for each labeled string s belongs to k

update grammar of k
end
UNSUPERVISED:
do
for each string s in 1 to N

for each grammar j in 1 to K
compute p(y|s,grammar(j)) //y=1 when classified into j, y=0
otherwise

end
//Compute conditional classification entropy

E(s) = H(y|s, class1)+...+H(y|s, classk)
end

//compute empirical conditional entropy
oldE=sum(E(s=1:M))

[min_string_entropy, minIndex] = (minimum(E(s=1:M) > 0)
do
numUpdatedGrammars = 0
if (min_string_entropy > entropy_threshold)

then exit
else

for each grammar j 1 to N
if(y==1 for string(minIndex) & grammar(j)) then

update grammar j with string(minIndex)
newE = sum(E(i=1:M)) //recompute empirical conditional entropy
if(newE > oldE)

accept new grammar for class j
numUpdatedGrammars = numUpdatedGrammars + 1

end if
end for
min_string_entropy = minimum(E(1:M) > min_entropy)

end else
while (numUpdatedGrammars > 0)

(while maximum trials | change_in_entropy < t)

Table 1:Algorithm for grammar update. The grammar for the typical classes is updated incrementally using the strings with the least entropy.

k << n, the complexity of the algorithm isO(n2).

Once the grammar is revealed, namely, the set of terminals, non-
terminals, and productions, the production probabilitiescan be
estimated using the standard optimization techniques suchas [9].

As mentioned earlier, the grammar structure is assumed to be
available before-hand in the form of bracketed expressions. An
example is depicted in Fig. 3. As shown, non-terminals are cre-
ated from the terminal pairs (individual actions represented in
the brackets) which are then merged with the newly created or
previously existing non-terminals in the grammar. This helps to
obtain a concise description of the rules. This process is similar
to the non-terminal merging operation proposed by Stolcke [16].

The only prior knowledge the learning algorithm requires is
some knowledge of the structure of the grammar and a small set
of supervised examples. In most real-world domains such as traf-
fic intersection monitoring and human activity recognition, it is
impossible to obtain a large amount of supervised learning exam-

ples as well as specify the structure of the scene. The proposed
learning algorithm can easily be applied to data arising from the
said applications with minimal user provided knowledge.

5.3 Event Classification and Error Recovery

Once the grammar for each class is learned, a novel pattern is
classified by parsing it with all the available grammars. The
grammar which produces the successful parse of the pattern is
attributed as producing the pattern. In the case of multiplesuc-
cessful parses, the grammar that required the least number of
skips of the strings is attributed the classification. Otherwise,
ties are broken arbitrarily.

The skip or the “lookahead” operation is mainly used for error
recovery. For instance, some of the sub-strings in a given pattern
may be erroneous owing to the target temporarily covered by an
occlusion. In such a case it is not possible to generate a success-
ful parse and such strings are skipped. However, a penalty isalso
associated with the skips to prevent all patterns being classified



M4

M2 M3 M5M4    M1

C1(straight) C1(straight)        C1(straight) C5(fast)      C5(fast) C6(straight)       C6(straight) C6(straight)      C6(straight) C6(straight) 

Figure 3:An example action sequence with bracketed structure and non-terminal creation. The boxes around the strings representthe bracketed
structure. The terminals consist of the spatial cell occupied by the target such as C1, and the corresponding local motion, such asstraight, fast,
slow, left, right turn. The non-terminals are depicted as M1, M2, M3, etc.

into all classes. The penalty is computed as,

ǫl = exp(−(η)/L) (5)

whereη is the number of lookahead steps andL is the total length
of the string. The larger the number of skips the smaller theǫl.
This is similar to the error recovery scheme used in [11]. Un-
like [11], currently we don’t use the insert and delete operations
and leave that as part of future work.

6 Experimental Results

Objective The objective of the experiments was to test the ef-
ficacy of the proposed learning method on real-world image se-
quences.

6.1 Experiment Description

For the experiments we chose scenes from outdoor traffic inter-
sections such as depicted in the Fig. 4. Traffic intersections are
one of the most complex scenes both for target localization as
well as event detection. The uncontrolled environmental effects
such as occlusions and changing illumination makes target lo-
calization a challenging task. The resulting ambiguity in the ob-
served data in addition to the significant overlaps between vari-
ous events makes event recognition difficult.

Figure 4:An example traffic scene used in the experiments.

The target statistics including their locations, speeds, accel-
erations etc., are obtained through a vision-based tracking algo-
rithm as described in [17]. The individual trajectories aresam-
pled at discrete intervals to obtain a string of primitive events or
actions. An action is computed based on the local motion as well
as the spatial location.

6.2 Results

Fig. 5 and Fig. 6 show some examples of event classifications
for different trajectories.2Detection of atypical events including
U-turns and unusual motion paths are shown in Fig. 7. An
advantage of applying the SCFGs is that a trajectory can be
classified even with partial information as shown in Fig. 8,
where only part of the vehicle’s trajectory was available due
to a large occlusion along the remaining trajectory of the vehicle.

Fig. 9 illustrates the effect of the ratio of labeled to unlabeled
examples on the generalization performance of the classifier. The
x-axis corresponds to the ratio of the number of labeled to unla-
beled examples. The maximum number of labeled examples was
60 and unlabeled 290. As can be seen, the effect of increasing
the number of labeled examples is that the margin of generaliza-
tion risk of using only labeled examples and combining labeled,
unlabeled examples is reduced. This means that the effect ofun-
labeled examples diminishes as the number of labeled examples
is increased. However, adding unlabeled examples still improves
performance. The risk is computed by testing the classification
performance of all the learned grammars on a testset different
from those used in the training examples.

As a benchmark experiment, we compared the classification
performance of the proposed SCFG with a spectral clustering
method as presented in [10]. In the tests, 1069 trajectorieswere
used for testing. Being an unsupervised clustering method,all
the datasets were directly presented to the spectral clustering al-
gorithm. For training the SCFG, a total of 250 examples from a
different data-set was used. Out of the 250, 50 trajectorieswere
labeled or 5-6 examples on an average per event class.3 The re-
sults of the classification performance are depicted in Table. 2.
One thing to note is that none of the test examples consisted of
atypical motions such as U-turns, or reversing motions as these
cannot be detected using the spectral clustering algorithmas it
just makes use of the shape of the trajectories for clustering. Ex-
amples consisted of a mix of fully-visible and partially visible
trajectories as was obtained from the tracking algorithm. Pre-
dictably, the clustering method fails when presented with partial

2Although the classification results are depicted on the sameimage, these
trajectories arise from different vehicles under different traffic conditions.

3One should note that not all the unsupervised examples are necessary for
updating the grammar. The learning algorithm stops as soon as convergence
results after the update from a few examples.



(a) North-south motion. (b) South-north motion for a stop-n-go
vehicle.

(c) South-west motion.

Figure 5:Trajectory classification by the SCFG for event classes north-south, south-north, and south-west.

(a) East-west motion. (b) East-south motion. (c) West-north motion.

Figure 6:Trajectory classification by the SCFG for east-west, east-south, and west-north motions.

Figure 9: Generalization risk performance for training with varying
numbers of labeled and unlabeled examples.

trajectories. Besides, this algorithm will classify an unusual mo-
tion such as U-turn into one of the classes instead of detecting
that as an outlier. With the SCFGs, it is possible to detect com-
plex motions such as weaving motions which consists of multi-
ple lane changes with very little additional knowledge and train-
ing. Detection of such complex motions is very challenging for
both the clustering algorithm as well as hidden Markov models.
The latter will require complex formulations such as hierarchical
models for such detection.

7 Discussion and Future Work

As depicted in the results, the proposed SCFG method is robust
for obtaining event classifications in challenging environments
such as traffic intersections. The method can yield good clas-
sification performance even with partial information. The use
of a skip or “lookahead” operation helps to deal with missing
information such as resulting from temporary occlusions. Apo-
tential advantage of this event representation is that the method
can easily scale to novel environments as it requires only a small
amount of labeled data in addition to unlabeled data. Given the
iterative nature of the learning algorithm, it can easily becon-
verted into an any-time algorithm allowing the applicationof an
on-line learning algorithm.

Classification accuracy is affected mostly by the ambiguities and
missing information in the input data. For instance, it is possible



(a) Atypical motion I. (b) Atypical motion II.

Figure 7:Example atypical motion detection.

(a) East-south motion. (b) North-east motion. (c) South-west motion.

Figure 8:Accurate detection can be obtained even only when a small portion of the trajectory is visible.

that the grammar can learn incorrectly when presented with un-
labeled data that contains noise. An interesting future extension
would be to apply user feedback on the performance of classifier
for grammar correction or to apply the method in conjunction
with other classifiers to correct grammars using the resultsof
other classifiers. Occasional non-unique classification occurs in
the case of partial trajectories when the trajectory lies inthe pro-
file of multiple classes.

Additionally, the spatial resolution of the cells used to discretize
the image affects classification accuracy. Larger cells reduce the
total number of spatial cells in the region, thereby increasing the
overlap between the trajectories from various event classes re-
sulting in increased ambiguities in classification. However, too
small of a cell increases the number of total cells, thereby requir-
ing a larger training data set for better generalization as well as
increases the size of the event grammars. This in turn increases
the time to parse and produce a match for a particular pattern.
One possible direction of future work is to apply algorithmsfor
automatically tuning the cell sizes to the observed data forbetter
classification performance.

The current work examined the problem of event detection based
on the activities of individual targets. One scope for future work
is the problem of analyzing events arising from target interac-
tions such as those arising in human activity monitoring, video

annotation, and many more. This results in more complex and
diverse events that need to be learned from the data.

8 Conclusions

This work developed stochastic context-free grammars (SCFG)
for event detection in challenging outdoor video sequences. The
main contribution of this work is a semi-supervised learning al-
gorithm applied to the SCFG for learning the event categoriza-
tions in a given scene. Experimental results on real-world image
sequences show the robust performance of this method.
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