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Abstract

Compared to other subjects the typical introductory programming (CS1) course has
higher than usual rates of both failing and high grades, creating a characteristic
bimodal grade distribution.  In this paper I explore two possible explanations.  The
conventional explanation has been that learners naturally fall into populations of
programmers and non-programmers.  A review of decades of research, however, finds
little or no evidence to support this account.  I propose an alternative explanation, the
learning edge momentum (LEM) effect.  This hypothesis is introduced by way of a
simulated model of grade distributions, then grounded in the psychological and
educational literature.  LEM operates such that success in acquiring one concept
makes learning other closely linked concepts easier (whereas failure makes it harder).
This interaction between the way that people learn and the tightly integrated nature of
the concepts comprising a programming language creates an inherent structural bias
in CS1 which drives students towards extreme outcomes.
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1  Introduction

A central focus of computer science education (CSEd) research is the teaching and

learning of a first programming language.  Research into novice programmers spans

more than thirty years and has examined a wide range of issues, such as comparisons

of novice and expert characteristics, the acquisition and use of both knowledge and

strategies, the role of mental models of programs and “notional machines”,

explorations of the generation and comprehension of programs, and so on.  For

reviews of this literature see Robins, Rountree & Rountree (2003), Pears et al. (2007).

Much of the motivation for this research stems from the fact that learning to

program appears to be, for many people, a very difficult task.  In introductory

programming courses (which I will by convention refer to as “CS1”) failure rates are

often high.  One recent statement reflects widely reported experience: “between 30%

and 60% of every university computer science department’s intake fail the first

programming course” (Dehnadi & Bornat, 2006).  The high failure rate is only one

side of the story however.  Paradoxically, typical CS1 courses also have unusually

high rates of high grades as well.  Consequently CS1 grade distributions, having

fewer mid range results, are often described as bimodal:

“One of the most disconcerting aspects of teaching under-graduate courses in
statistics and computer science is the appearance of a bimodal distribution of
grades.” (Hudak & Anderson, 1990).

“A strongly bimodal distribution of marks in the first programming course is
frequently reported anecdotally, and corresponds to our experience in several
different academic institutions over a considerable period of time.” (Bornat,
Dehnadi & Simon, 2008).

“Faculty data typically have shown a bimodal distribution of results for students
undertaking introductory programming subjects with a high proportion of
students receiving a high mark and a high proportion of students receiving a low
or failing mark.” (Corney, 2009).

While this pattern appears to be typical of large CS1 courses with a general intake,

smaller or more selective courses can of course show considerable variation.

Bennedsen & Caspersen (2007) surveyed 67 institutions internationally and reported a

huge variation in fail rates, from 0% to over 60%, as shown in Figure 1.  Some of the
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variation is correlated with class size, small classes (less than 30 students) had an

average fail rate of 18%, large classes 31%.  Further variation arises from the makeup

of the student population and other factors.  However, as a general rule, for large open

entry CS1 courses it appears that failure rates of 30% to 60% as claimed by Dehnadi

and Bornat are not uncommon.  At the other end of the scale Forbes & Garcia (2007)

surveyed 32 “top-rated” CS departments in America.  As might be expected failure

rates were low and A grade rates were high, but there was significant variation in the

specifics of grade distributions (Forbes & Garcia, 2007, online resources).

Discussion in this paper will focus on the general case of CS1 courses that are open

entry, usually with large numbers of students, and that are taught in typical tertiary

institutions.  By “CS1 distribution” I mean the typical bimodal distribution described

above with high proportions of both fail and high grades.

The CS1 course at my own institution (COMP160 at the University of Otago)

illustrates many of these issues.  COMP160 is offered in two different formats.  As a

regular semester course it is taught over 13 weeks with a class size of 200 to 300.  The

grade distribution is similar each year, the average distribution for 2005 to 2008 is

shown in Figure 2.  The distribution is strongly bimodal, with a failure rate (D and E

grades) of 48%1.  In its second format as a summer school course COMP160 is taught

over 6 weeks with a class size of 20 to 40.  The student population is different,

consisting mostly of students who are repeating the course or who have gained

accelerated entry from high school.  In this format the course has a failure rate of just

20%.  I will use the results of the regular large scale version of the course, as shown in

Figure 2, as an illustrative example of the CS1 distribution.

What causes the CS1 distribution?  It doesn’t seem difficult to explain the large fail

group.  It can be argued that the material is very challenging and for most students it

requires better than average study skills and habits to master it.  In this context it is

more difficult to explain the large high grade group however – it would seem difficult

to argue that the material is simultaneously both hard and easy.  The generally

                                                  
1 This includes 10% of “ghost students” who are technically enrolled but never attend, a common
occurrence in our general first year courses, but not summer school.
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accepted explanation, which implicitly or explicitly underlies a lot of current practice

and research, has been succinctly stated as follows:

“All teachers of programming find that their results display a ‘double hump’. It
is as if there are two populations: those who can, and those who cannot, each
with its own independent bell curve.” (Dehnadi, 2006).

This appears to explain the facts.  The “can” population generates the high end of the

CS1 distribution, the “cannot” population generates the low / fail end.  The question

which naturally arises, however, is what is the factor that determines or characterises

these two different populations?   Section 2 of this paper reviews the extensive

literature relating to the range of possible factors and predictors.  I will argue that this

literature has not identified convincing predictors of success, and has not successfully

characterised two populations, and that it is in fact doubtful that these two distinct

populations actually exist.

The main contribution of this paper is to propose an alternative explanation for the

CS1 distribution.  This learning edge momentum (LEM) hypothesis is introduced by

way of a simulated model of grade distributions in Section 3, then grounded in the

psychological and educational literature in Section 4.  I suggest that LEM arises as a

consequence of the interaction of two factors: the widely accepted principle that we

learn at the edges of what we know; and the new claim that the concepts involved in a

programming language are unusually tightly integrated.  In short, successfully

acquiring one concept makes learning other closely linked concepts easier, while

failing makes further learning harder.  This interaction between the way that people

learn and the nature of the CS1 subject material creates an inherent structural bias

which drives CS1 students towards extreme outcomes.  Pedagogical implications and

directions for further research are explored in Section 5.
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2  Explaining programmers and non-programmers?

The assumption that there are two kinds of people, programmers and non-

programmers underlies (either explicitly or implicitly) a lot of computing related

practice and CSEd research.  In this section I briefly explore the literature relating to

attempts to understand the factors that predict success in learning to program, or to

explain what it is that defines or characterises these two hypothetical groups.

2.1 Aptitude tests

The attempt to understand and manage high failure rates in learning programming,

and the often associated idea that programming ability must be “innate”, are issues

with a long history in the computing profession and in CSEd research:

“Katz (1962) administered several tests from the Army Classification Battery to
190 trainees in the Army’s Automatic Data Processing Programming course.
He used these test results in an attempt to reduce the wasted training time and
costs associated with the prevailing high attrition rate.”  (Bauer, Mehrens &
Vinsonhaler, 1968).

“One can conclude that programming ability (as measured in this study) may be
much more innate than 'business training course spiels' would have one believe.
Anyone cannot be a programmer...”  (Newstead, 1975).

The use of aptitude tests to predict programming ability was commonplace in the

early decades of the profession, the most popular being the “IBM Programmer

Aptitude Test” (PAT).  As early as the mid 1960s such tests were used by 68% of

computing organisations surveyed in the United States and 73% in Canada

(Dickmann & Lockwood, 1966).  Other popular tests included the Computer

Programmer Aptitude Battery (CPAB) and the Wolfe Programming Aptitude Tests

(WPAT), as described for example by Pea & Kurland (1984).  In the academic

community there was an ACM Special Interest Group in Computer Personnel

Research (SIGCPR), which published two “major journals”,  Computer Personnel

and the yearly Proceedings of the Nth Annual Computer Personnel Research

Conference (Simpson, 1973).
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Despite their widespread use, it was never clear that early programmer aptitude

tests were actually effective:

“Ever since the 1950s, when the [PAT] was developed by IBM to help select
programmer trainees, consistently modest correlations (at their best from 0.5 to
0.7, hence accounting for only a quarter to a half of the variance), and in many
cases much lower, have existed between an individual's score on such a measure
and his or her assessed programming skill.” (Pea & Kurland, 1984).

The predictions of programmer aptitude tests with respect to actual job performance

were also poor (Mayer & Stalnaker, 1968; Bell, 1976).  Although Curtis (1986) states

that such tests had “already fallen into disfavor” by 1968, and the PAT was last

distributed in 1973, there are many subsequent explorations of their use.

Mazlack(1980) reported low predictive values for the PAT, and suggested that tests of

this type should not be administered to university students because the results are

unreliable.  Further critiques can be found in Evans & Simkin (1989), and

Subramanian & Joshi (1996).  Lorenzen & Chang (2006) note that historically

popular aptitude tests have low predictive value, and that IBM no longer endorses the

PAT.

As the limitations of early tests became clear, various alternatives for predicting

programming success were explored, including the development of more

sophisticated tests (some focusing specifically on university level education), and the

exploration of a broader range of variables such as demographic factors and high

school SAT scores.  Of this second generation of tests the Berger Aptitude for

Programming Test (B-APT) (see Berger as cited in Mayer & Stalnaker (1968),

Simpson (1973)), emerged as the most popular, with claims that it “obtained some of

the highest validities to date, although these studies have not been reported in the

archival literature” (Curtis, 1986).

Wileman, Konvalina & Stephens (1981) explored predictors of success (final exam

score) in a beginning computer science course.  Of the three demographic and five

test based factors studied, four test based factors (reading comprehension, sequence

completion, logical reasoning, and algorithmic execution) were found to be
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significant.  A stepwise multiple regression including all eight factors explained

approximately 25% of the variability in the final exam scores.  Werth (1986) reviewed

and explored a wide range of factors, including demographic details, academic

background (particularly mathematics), work experience and commitments,

personality tests, cognitive development tests and cognitive style.  Werth reported

“modest correlations” and “conflicting results”, and noted that: “The models which

have been produced are not very powerful; many students who do not fit the proposed

criteria still do well in their computer science classes”.  Similarly Evans & Simkin

(1989) review the use of aptitude tests, demographic background, past high school

achievement, and “general cognitive processes” (such as problem-solving strategies).

They note that linear regression models (based on 54 variables) had “only limited

predictive power”, and conclude that:

“… no single set of variables – demographic, behavioral, cognitive, or problem
solving – dominated the others as a "best" set of predictors of student
performance. Rather, the results suggest that several factors from all four areas
may be useful in forecasting computer aptitude.” (Evans & Simkin, 1989).

Subramanian & Joshi (1996) explored the Computer Aptitude, Literacy & Interest

Profile test (CALIP), which was specifically designed for evaluating novices,

concluding that while some dimensions of the test were better than others, overall it

“is not a good predictor of programming performance”.  More recently Whittington,

Bills & Lawrence (2003) note that: “Performance in high school coursework, SAT

scores, AP courses, and even pre-testing can be poor predictors of success for

individuals”.

From today’s perspective, the early close links between the professional and the

academic exploration of programmer aptitude have not been maintained.  The Special

Interest Group in Computer Personnel Research (SIGCPR) is no longer active, and

the new Special Interest Group in Computer Science Education (SIGCSE) has

emerged.  There is far less emphasis on the exploration of aptitude tests in the

academic literature. Despite their historically mixed performance, however, such tests

are still in use in the computing profession.  Various organisations offer programming

aptitude tests as a professional service, for example Psychometrics I.T. Tests states on

its web pages:
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“The B-APT has become the DP trainee selection instrument of choice at many
Fortune 500 corporations, governmental agencies, and foreign companies.
Organizations use the B-APT primarily to identify high aptitude candidates for
programmer training.” (Psychometrics I.T. Tests, 2009)2.

Tests used by large companies such as Microsoft and Google have attracted

considerable popular attention.  There are also a multitude of “free” online “tests”,

and books and other resources devoted to advice on how to prepare for and pass such

tests.  Soh et al. (2005) describe the use of “placement tests” to stream students in

some university computing departments.

2.2 Possible explanations

In this section I briefly review the kinds of factors which have been explored as

possible predictors of or explanations for programming ability in the aptitude testing

and general CSEd literatures.

Cognitive capacity

The most obvious explanation, and the assumption that underlies most of the huge

effort devoted to aptitude tests, is that programming depends on some particular

cognitive capacity or capacities which we can identify and measure.  In order to

directly account for the CS1 bimodal distribution, we would expect to find a bimodal

distribution of this capacity – two populations, those that can and those that can’t.

The possibilities explored in the aptitude testing literature were many and varied.

For the tests noted above, the final version of the IBM PAT consisted of letter series,

figure analogies, and number series and arithmetical reasoning subparts (Pea &

Kurland, 1984; Subramanian and Joshi, 1996).  The CPAB consisted of verbal

meaning, reasoning, letter series, mathematical reasoning, and flow chart

                                                  
2 For similar organisations see also for example (retrieved July 3rd, 2009):

http://www.psychometrics-uk.co.uk/
http://pages.netaxis.ca/winrow/
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diagramming subparts (Pea & Kurland, 1984).  The WPAT was designed to test

accuracy, deductive and logical ability, the ability to reason with symbols, and

reading comprehension, by requiring participants to manipulate numbers according to

a complicated set of procedural instructions (Wolfe, 1969; Tukiainen & Mönkkönen,

2002).  The CALIP focused on the detection of patterns, with subparts relating to

mathematical patterns, logical patterns, and visual patterns (Subramanian & Joshi,

1996).  The B-APT, while not assuming any programming background, requires

participants to use an invented language to write short “programs” which explore

concepts such as looping, incrementing and branching.  The test used by Wileman,

Konvalina & Stephens (1981) had five components: reading comprehension,

alphabetic and numeric sequences, logical reasoning, algorithmic execution, and

alphanumeric translation.

Clearly this range of tasks covers many broad cognitive capacities and factors

often associated with intelligence and the attempt to measure IQ.  These include

verbal skills, mathematical skills, spatial skills, analogical reasoning and working

memory capacity.  As noted above, however, no clear pattern has emerged from the

aptitude testing literature.  These measures of various cognitive capacities have at best

moderate predictive power, and certainly nothing like a bimodal distribution of

capacity has been reported.

Of the aptitude (and demographic) factors explored, probably the most widely

studied and intuitively appealing possible explanation for programming success is

mathematical ability.  Most (though not all) studies that explore it conclude that

mathematical ability or background is one of the better predictors.  Pea and Kurland,

however, sound an important note of caution:

“To our knowledge, there is no evidence that any relationship exists between
general math ability and computer programming skill, once general ability has
been factored out.  For example, in some of our own work we found that better
Logo programmers were also high math achievers.  However, these children
also had generally high scores in English, social studies, and their other
academic subjects as well.  Thus, attributing their high performance in computer
programming to their math ability ignores the relationship between math ability
and general intelligence.” (Pea & Kurland, 1984).
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I return to the issue of general intelligence in Section 2.3 below.

Cognitive development

Rather than a specific cognitive capacity, several authors have explored more general

measures relating to “cognitive development”, such Piaget’s Stages of Cognitive

Development (Piaget, 1971a; Piaget, 1971b;  Feldman, 2004), or Bloom’s Taxonomy

of Educational Objectives (Bloom et al., 1956).  This approach seems to lend itself

more naturally to a “two populations” bimodal explanation, as it can be argued that

individuals have either reached a certain level of development or they have not.

Kurtz (1980) used his own test to classify students at three levels of intellectual

development, and found that these were “strong predictors of poor and outstanding

performance, respectively”, but that they were better predictors of performance on

tests (accounting for 80% of variance) than programming (39%).  Barker & Unger

(1983) used a shortened version of the test on a much larger population of students

and found its predictive power to be much weaker.

In a brief review of the literature White & Sivitanides (2002) conclude that

reaching Piaget’s formal operational stage “is a required cognitive characteristic of

people for learning procedural programming”, and claim that “the majority of adults

and many college students fail to develop to full formal operational thinking skills.”

Relating these claims explicitly to grade distributions the authors go on to suggest

that:

“Some programming classes may have a bimodal distribution of students’
grades. The low mode may indicate Piaget's concrete operation stage.  The high
mode may indicate Piaget's formal operation stage.  This is supported by
[Hudak & Anderson (1990)].  That study showed formal operation level
students did better then concrete level students in a Statistics course and an
Introduction Computer Science course.” (White & Sivitanides, 2002).

In contrast, Bennedsen & Caspersen (2006) found no correlation between stage of

cognitive development (particularly “abstraction ability”) and programming ability

(final grade in CS1).
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While not focused on predicting performance, similar topics have been explored by

Scott (2003) in a study of assessment items classified according to Bloom’s

taxonomy.  Scott notes that:

“Many of the students are able to answer the lower level questions and a much
smaller percentage can answer the higher level categories.  This results in a
double bump in the frequency versus score graph.” (Scott, 2003).

The use of Bloom’s taxonomy in CS1 teaching and assessment is also investigated in

Lister (2000) and Lister & Leaney (2003).

Claims relating to developmental stages are difficult to formalise, test and refute.

With respect to Piaget’s four stages (the most influential of the theories) there is

considerable ongoing debate within the psychological literature on the validity and

utility of the framework, and in particular the nature of the “miraculous” transition

between stages, see Feldman (2004) for an excellent overview.  While there is some

variation, as often stated the transition to the formal operational stage takes place

roughly between the ages of 12 and (in various accounts) 16 or 18 years old, or later.

In other words, most of the students tested in CS1 courses should have reached the

formal operational stage.  To attribute the high failure rates in CS1 to a failure to

reach this stage is to suggest that the underlying theory, and the evidence from other

fields that supports it, is wrong in its specification of the typical age range.

Furthermore, it is not clear at the highest formal stage of development what the

relationship is between individual differences in development and individual

differences in IQ, and what exactly is measured by the different tests for these

attributes.  For discussions of the relationship between Piaget’s stages and IQ see for

example Sternberg (1982) or Cianciolo & Sternberg (2004).

Cognitive style

A wide range of other factors have been considered in various literature, described by

terms including cognitive style, learning style, personality type and similar.  I will

briefly consider these under the general heading of “cognitive style”.
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In an early review Cross (1970) noted that “personality tests have not been used

very successfully for predicting work adjustment in the programming occupation, nor

have aptitude tests been entirely satisfactory”.  Cross used tests (“scales”) exploring

programmers’ styles, preferences and values, finding that in many cases results were

inconsistent between an original study and a replication study. Bush and Schkade, in

their overview of the diverse results emerging from aptitude surveys, concluded that

no ideal cognitive style or personality type had emerged (Bush & Schkade, 1985).

Inconclusive or contradictory results such as these are common.  For example the

well known Myers-Briggs Type Indicator, a questionnaire designed to measure

psychological types in the ways in which people perceive the world and make

decisions (Myers, 1980/1995), was found to be a poor predictor by Pocius (1991), but

found to be useful by Whitley (1996).  Bishop-Clark (1995) reviewed literature

relating to cognitive styles and personality traits, concluding that results have been

“been both scattered and difficult to interpret”, and suggesting that it may be

important to relate such traits to specific stages of the programming process (problem

representation, planning and design, coding, debugging).  Woszczynski et al. (2004)

explored learning styles described by Krause (2000), concluding that “intuitive

thinkers” tended to perform better than “sensor feelers”, but finding “no other

differences in performance between other paired profiles”.

Other studies have reached firmer conclusions, although in general the predictive

power remains weak.  Hudak & Anderson (1990) administered Kolb's Learning Style

Inventory (Kolb, 1985) to 94 students, finding that learning style – in particular the

absence of a reliance on the “concrete experiences” learning style  – predicted success

in introductory statistics and computer science courses.   In a study of 211 CS1

students Allert concluded:

“Several learning style variables were correlated with outcome.  Reflective and
verbal learning style students achieved top grades more frequently and lower
grades less frequently than their scale opposites (active and visual learners
respectively).”  (Allert, 2004).

White & Sivitanides (2002) explored the topic of “cognitive hemispheric style”,
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where the left hemisphere of the brain has been found to be associated with language,

rational, and objective judgments, and the right hemisphere with intuitive, subjective

judgment, music and spatial skills.  These authors concluded that “the literature has

shown left hemispheric thinking style of learners as another characteristic necessary

for success with procedural programming”.

Attitude and motivation

A further range of factors relating to attitude and motivation have also been explored.

It is not simply the case that those who work hard pass CS1:

“On the other hand -- still contrary to popular belief, time spent on the course
and working with other students correlated negatively with the dependent
variables. [...] These results seem to indicate that though poorer students may
spend much time and ask many questions of their instructors and fellow
students, it won't improve their grade.” (Newstead, 1975).

Our collective experience with our CS1 course is similar.  While completing assessed

laboratory work is a good predictor of success, the amount of effort which goes in to

making good progress is widely variable.  Every year we see students who put in

enormous amounts of work and are completely unsuccessful.

In a multinational study de Raadt et al. (2005) administered the Biggs revised two-

factor Study Process Questionnaire R-SPQ-2F (Biggs, 2001) to 177 CS1 students.

The questionnaire assesses the participant’s attitudes to study, and generates two main

scores, deep approach (DA) and surface approach (SA).  DA, representing the attitude

of seeking a true understanding of material, is a score aggregated from subscales

measuring “deep motive” and “deep strategy”.  SA, representing the attitude of

seeking only a superficial understanding (repeating facts and passing assessment with

minimum engagement), is similarly aggregated from subscales measuring “surface

motive” and “surface strategy”.  This study found that DA had a significant but

modest positive correlation with outcome (CS1 grade), and SA had a significant but

modest negative correlation.

A number of recent studies have found consistent results relating to students’ self
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reports of their expectations, attitudes or responses to their CS1 course.  Rountree,

Rountree & Robins (2002) explored a range of pre-course expectations and

demographic factors, finding that the strongest predictor of success was how well the

student expected to do.  In a study of non-major CS1 students Wiedenbeck (2005)

explored measures of “self-efficacy” (self judgments of capability) taken at the start

of the course (pre-self-efficacy) and during the course (post-self-efficacy), finding

that the post measure was a significant predictor but the pre measure was not3.

Wilson & Shrock (2001) examined twelve factors, finding three that were predictive,

maths background and (post) comfort level with the course (which were positively

correlated with success), and (post) attribution of success/failure to luck (negatively

correlated).  In a series of studies Bergin & Reilly (2005a, 2005b, 2006) found

variously that a student’s (post) perception of their understanding of the material,

“intrinsic motivation” (rather than extrinsic) and (post) “comfort level” were

correlated with success.  In a study covering multiple factors Ventura concluded:

“Cognitive and academic factors such as SAT scores and critical thinking ability
offered little predictive value when compared to the other predictors of success.
Student effort and comfort level were found to be the strongest predictors of
success.”  (Ventura, 2005).

Bennedsen and Caspersen explored the “emotional health and social well-being” of

CS1 students in terms of five variables: perfectionism, self-esteem, coping tactics,

affective states and optimism, concluding that:

“Surprisingly, we found no correlation between emotional health and social
well-being on the one hand and success in computer science as indicated by
course grades on the other. However, in most of the courses, the students who
pass have a statistically significant higher self-esteem than those who do not.”
(Bennedsen & Caspersen, 2008).

Other and multiple factors

One occasional speculation relating to the high CS1 fail rate is demographic in nature.

The suggestion is that CS1 gets a much broader student intake than similarly formal

subjects (mathematics and sciences), because high school experience enables students

                                                  
3 I will use “(post)” to indicate a measure taken after a substantial part of the course has passed.
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to self select in other subjects, but not in computing related fields.  However,

considering the full history of decades of computing aptitude testing in industry, and

the range of different kinds of programming courses (some targeting mature students

or professionals), this explanation does not seem to be general enough in scope.

Furthermore, the picture arising from demographic factors is hardly compelling.

As noted above, most (but not all) studies which explore mathematical background or

ability find that it is a significant but modest predictor.  Other demographic and

background factors have even more mixed results – in a brief review Woszczynski,

Haddad & Zgambo (2005a) note studies which have explored age, gender, ethnicity,

marital status, GPA, mathematics background, science background, ACT/SAT math

scores, ACT composite score, SAT verbal scores, high school rank, and previous

computer experience.  The same authors also note that:

“Although demographic variables have also been gathered, including gender
and age, the results have been mixed, with some studies showing a relationship
between demographic variables and performance, and other studies showing no
statistically significant relationships.”  (Woszczynski, Haddad & Zgambo,
2005b).

Allert (2004) found that, except for involvement with computer gaming (which was

negatively correlated), background familiarity with computers and software was not

highly correlated with CS1 outcome.

While much of the discussion above has been organised around highlighting single

features such as test scores or specific cognitive attributes, it has long been recognised

that a single factor alone was unlikely to account for success or failure.  Mayer &

Stalnaker (1968) present an early review covering the range of factors which had been

explored at that time, see also Pea & Kurland (1984), Curtis (1986), Evans & Simkin

(1989), Wilson & Shrock (2001), Woszczynski, Haddad & Zgambo (2005) and

Ventura (2005).  Studies employing multiple factors and various forms of regression

analysis include Bateman (1973),  Newstead (1975), Wileman, Konvalina & Stephens

(1981), Cronan, Embry & White (1989), Evans & Simkin (1989), Bennedsen &

Caspersen (2005) and Bergin & Reilly (2006).  Rountree et al. (2004) employed a

decision tree classifier to analyse a range of factors, finding various predictive rules
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such as: “background is not science AND not in first year AND under 25 years old

AND no prior mathematics”, which could be used to identify clusters of students with

a (relatively) high probability of failure.

A recent trend in the CSEd literature is the recognition that it may be necessary to

move beyond small scale local studies.  It may be necessary to explore not only

multiple factors, but multiple factors over multiple contexts:

“Research in the comparatively young field of Computer Science Education
(CSEd) consists almost exclusively of small-scale local studies.  Many
individual studies are of high quality and present significant and useful results.
Overall, however, it is probably fair to say that the field of CSEd lacks a
foundation of established theory and methods, is characterised by isolated
findings that are difficult to assemble into a coherent whole, and thus have
varying impact on practice.” (Fincher et al., 2005a).

Fincher et al. argue that large scale “Multi Institutional Multi National” (MIMN)

studies offer several possible advantages, and go on to review several such studies in

the recent CSEd literature.  The advantages described include: increased statistical

power, richer structure (where variation across institutions and cultures constitutes a

“natural laboratory”), a broader exploration of background factors, and the

possibilities of both improved methodology and hypothesis generation.  One such

recent MIMN study explored two possible predictors which are more abstract than

those usually employed, the ability to articulate a search strategy (Fincher et al.,

2005b, Simon et al. 2006a, 2006b), and map drawing style (Fincher et al., 2005b,

Simon et al. 2006a, Tolhurst et al., 2006), finding modest positive correlations with

success in both cases.

2.3  Discussion

In reviewing the literature relating to predicting success in learning a first

programming language, no clear result emerges.  As other recent summaries put it:

“However, even with almost 40 years of study into the factors that predict
success, researchers and educators alike have failed to agree on exactly which
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variables actually predict student success.” (Woszczynski, Haddad & Zgambo,
2005b).

“Despite a great deal of research into teaching methods and student responses,
there have been to date no strong predictors of success in learning to program.”
(Bornat, Dehnadi & Simon, 2008).

Despite our failure to convincingly identify predicting factors, the belief that such

factors must exist seems to be as strong as ever.  Similarly, despite our failure to

convincingly account for the bimodal CS1 distribution, the underlying assumption

still appears to be that the explanation must lie in some preexisting factors which

divide the world into populations who can and can’t learn to program.  In the recently

popular research on threshold concepts, for example, “pre-liminal variation”

(variation which exists before the learning process begins) is regarded as the key to

understanding why students may be effective or ineffective in the learning process

(Meyer & Land, 2003; Rountree & Rountree, 2009).

When considering the partial predictors which have been fairly consistently

identified, such as mathematical ability, two important issues do not appear to have

received much attention.  One of these is that there is little or no attempt (that I am

aware of) to compare the factors associated with success in CS1 with those in other

subjects.  It seems obvious that factors such as mathematical ability, various

personality attributes, attitudes to learning, and feelings of self confidence, will be

moderately associated with success in a wide range of subjects.  Why should any of

these factors be specific to CS1 and the task of learning a first programming

language?  If they are not specific (or nearly specific) to CS1, then how can they form

the basis of an explanation of the CS1 bimodal distribution?

The other seldom discussed issue, as alluded to in the discussion of mathematical

ability in Section 2.2 above, is the extent to which cognitive factors associated with

success in CS1 have any predictive power which is independent of intelligence (IQ).

The literature relating to IQ is huge and diverse, with debate as to whether IQ should

be thought of as single general factor “g”, a few major factors (such as verbal and

spatial intelligence), or multiple factors (such as the logical, linguistic, spatial,

musical, kinesthetic, naturalist, intrapersonal and interpersonal intelligences proposed
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by Gardner (1993)).  One of the most pervasive and general results, however, is that

performance on one standard psychometric test is highly predictive of performance on

other such tests, a phenomenon known as “the positive manifold” (Jensen, 1998) and

sometimes used as an argument for the existence of g.

It is understandable that (apart from some of the early professional aptitude testing)

full IQ tests do not appear to have been used in the CSEd literature.  They take a long

time to administer, and students for various reasons may not consent to participating.

This does however leave very open the question of the explanatory power of the

various cognitive factors which have been observed.  This issue has been confronted

directly by Pea and Kurland, and the earlier authors that they cite:

“Although most studies in which programming aptitude test scores correlated
significantly with programming "success" (generally indicated by grades in
industrial programming training courses or college programming courses)
observed that "general intelligence" (when test scores were available) also
correlated very highly with programming success, this does not seem to have
moved the researchers to go further and ask whether the "programming
aptitude" supposedly linked to programming skill constituted a specific aptitude
factor above and beyond "general intelligence."  We suspect that it may not.  In
fact, one survey (Mayer & Stalnaker, 1968) revealed that many companies use
intelligence tests as their predictors of programmer success.  In a general review
of the computer personnel research presented to ACM Special Interest Group in
Computer Personnel Research, Stalnaker says: "I think that if we have to have a
very concise summary of our current knowledge, it is that the more intelligent
person you can find, the better programmer you can probably get."” (Pea &
Kurland, 1984).

From the review above the situation today appears to be unchanged.  The cognitive

factors which are partial predictors of success in CS1 may have no explanatory power

which is independent of IQ.  Furthermore, intelligence is at least roughly normally

distributed in the population (there is some debate, but it is certainly not the case that

the distribution defines two populations).  Hence, while IQ certainly has some impact

on success, it is not at all obvious how variations in IQ can simply account for the

bimodal CS1 distribution.

This state of affairs leaves us without an obvious explanation for the pattern of

learning outcomes in CS1, and thus creates something of a puzzle.  The bimodal grade
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distribution is a “big effect”.  It is robust across several countries, several decades,

many programming languages, and large numbers of individual teachers and students.

A big, robust effect should have a big robust cause, and we should have found such a

cause over decades of research.  The factors so far examined, however, are moderate

predictors at best, are almost certainly not specific to the task of learning to program,

may well (in most cases) have no explanatory power that is distinct from IQ, and do

not define two obvious populations.  In short, this approach appears to offer little hope

of a satisfactory explanation for the bimodal grade distribution observed in CS1.

It is possible that we have been looking for the explanation in the wrong place.  I

suggest that the “two populations” explanation is incorrect, and that we will not find

the magic factor which distinguishes the programmer from the non-programmer,

because it does not exist.

In the remainder of this paper I will argue that we might consider a very different

kind of explanation for the pattern of learning outcomes in CS1, namely that an

inherent structural bias, arising from the interaction between the way people learn and

the nature of the subject material, acts to drive populations of students towards

extreme outcomes.  This alternative account will be introduced in the following

Section 3 by way of an abstract model which explores some of the factors which

could influence grade distributions.  A preliminary psychological and educational

interpretation of predictions arising from the model is presented in Section 4, with

implications and further research outlined in the Section 5.
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3  A simple grade distribution model

The purpose of this model is to provide a framework for examining the factors which

produce distributions in the simplest possible terms.  I will describe and interpret the

model in language which takes the distributions as representing the grades of a

population of students.  In this abstract world it is possible to identify one simple

effect which turns normal distributions into “anti-normal” bimodal distributions.

3.1  The model and its interpretation

The basic version of the grade distribution model M0 is shown in Figure 3.  The outer

loop repeats for a specified number of “runs” (in this paper fixed at 10,000).  Each

repetition / run generates a single score and increments a counter for that score, thus

over all runs producing a distribution of scores.  The score is generated by the inner

loop, which repeats for a certain number of “chunks” (in this paper 10).  Each

repetition may or may not increment the value of the score, hence the score produced

by the inner loop is an integer in the range 0 to 10 (inclusive).

To interpret this as a distribution of grades, each run can be thought of as a

“student” going through a process and emerging with a score.  The process (the inner

loop) represents some course or programme of study made up of ten chunks, where

chunks represent topics or concepts, or weeks work, or units of some kind.  In this

simple model the student achieves or does not achieve each chunk and gets one score

increment for every chunk achieved, hence a final score of 0 to 10.  Student

performance for each chunk is represented by a random number.  If the value (in the

range 0 to 1) exceeds a threshold (for example 0.5) the chunk is considered to be

achieved / passed and the value of the score increments.

Clearly this is a trivially simple model when compared to real students, real

courses and the real world.  The purpose of the model is just to explore the factors

which produce grade distributions in the most abstract possible terms.  With the

parameter settings described above (10 chunks each with threshold = 0.5) M0
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produces a normal distribution as shown in Figure 4(a).  With threshold = 0.3 (each

chunk is easier to pass) it produces a normal distribution skewed towards higher

grades as in Figure 4(b).  The lowered threshold could be interpreted as representing

various educational phenomena, for example a skilled teacher facilitating student

learning so that each chunk is easier to pass, or an institutional decision to mark more

leniently.  Having illustrated this effect all remaining simulations use threshold = 0.5.

3.2  The assumption of independence

The model embodies assumptions both explicit and implicit.  In this section I want to

explore a variation on just one of the assumptions, namely that performance on each

chunk is independent of the other chunks.  This assumption is currently implicit in the

fact that nothing (in the current version of the model M0) represents any kind of

interaction between chunks.

If chunks are not independent, how might they interact?  One obvious possibility is

that success or failure one chunk could have an impact on success or failure on the

next.  The impact of such an effect can be explored by introducing a slight variation

into the model.  The model version M1 is configured such that that passing one chunk

lowers the threshold for passing the next, and (symmetrically) that failing a chunk

raises the threshold for the next one.  M1 is constructed by replacing the kernel of M0

(the contents of the inner loop, currently a single “if” statement) with the new kernel

shown below:

where the variable offset is declared and initialised with the set up variables above the

loops.  Performance of M1 with offset = 0.0 is equivalent to M0.  Performance for

offset = 0.03 is shown in Figure 4(c).  Creating a degree of dependence between the

chunks has – compared with the basic distribution in Figure 4(a) – slightly “squashed”

the distribution, lowering the height of the central maximum and raising the height of

if (rand.nextDouble() > threshold) {
score++;
threshold -= offset;

} else {
threshold += offset;

}
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the extremes.  With offset = 0.06 this effect is even more pronounced as shown in

4(d).  With offset = 0.18 scores have been pushed almost completely to the extremes

as shown in 4(e).  I will call this an “anti-normal” distribution.

3.3  The momentum effect

The dependencies between chunks created by the offset parameter in M1 result in a

kind of learning momentum effect (the cumulative effects of previous learning /

chunks passed or not).  Success on one chunk makes the next one easier, failure

makes the next one harder.  As the dependence between chunks which causes the

momentum increases in strength (in M1 the value off the offset) it turns a normal

distribution into a bimodal / anti-normal distribution.

The momentum effect has been presented as implemented in M1 because it is the

simplest possible variation on M0, but it in educational terms it is unrealistic.  In

particular, there are no limits to the impact of repeated offsets on the threshold, so that

if the threshold falls below 0.0 then every subsequent chunk (for that run) will be

passed, and likewise if it rises above 1.0 every subsequent chunk will be failed.  In an

educational context it hardly seems plausible that the threshold can fall infinitely low,

and there are various modifications which could be implemented to prevent it.  Again

presenting the simplest possibility, as a minor variation within M1 when can alter the

kernel shown above by, after the statement “threshold -= offset;”, adding a further

statement “if (threshold < lowerBound) threshold = lowerBound;” (where lowerBound is

declared and initialised with the other set up variables).   In other words, by replacing

the simple offset increment with an “offset function” we can set a lower bound for the

threshold.

Figure 4(f) shows the distribution produced with offset = 0.18 and lowerBound =

0.14.  Obviously an equivalent change could be made to produce a symmetrical

distribution showing the same limit effect for the low end of the grade distribution.

However, as discussed in Section 4 below, the distribution as shown in Figure 4(f)

looks remarkably like the distribution of grades in a typical introductory programming
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course (for example Figure 2).  I will refer to it as a “simulated CS1 distribution”.

3.4  Richer models

The momentum effect, arising from varying one assumption in a simple grade

distribution model, turns normal distributions into anti-normal distributions, and can

easily be tuned to produce a simulated CS1 distribution.  From my preliminary

exploration it appears that any reasonable function which implements a form of

momentum (such as a “Zeno” offset function which always halves the distance from

the current threshold to a lower or upper bound) produces similar outcomes.  In short,

the general principle of the momentum effect is robust.

There are many ways in which the model can be varied and extended to make it

more realistic and provide a framework for exploring other phenomena.  As already

described, different parameter settings will produce different distributions.  For M1

different offset values for the success and fail conditions (of the kernel if..else) could

be used so that the effects of achieving or not achieving a chunk are not necessarily

symmetrical.  The addition or subtraction of fixed offset values can be replaced with

more complex offset functions, such as the lower bounded offset function described

above.  More realistic offset functions could be implemented, though as noted above

the momentum effect does not appear to rely on any particular implementation.

Further extending the model allows a richer range of issues to be explored.  For

example, in the current M1 there is no way to model chunks which have different

thresholds, because the threshold is being used to represent the cumulative effects of

previous learning (chunks acquired / passed or not).  Version M2 has been constructed

so as to represent momentum as a separate named term.  Momentum can be added to

terms representing student performance (in the model so far the random number

generator) or equivalently it can be subtracted from the threshold.  The code shown

below illustrates the former.  Specifically, M2 can be constructed by replacing the

kernel of M0 with the version shown below:
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where the variable offset is declared and initialised with the set up variables above the

loops, and momentum is declared and initialised to 0.0 inside the outer loop with

score.  Note that in M2 we are now adding offsets in the success condition to

represent positive momentum (instead of subtracting them as in M1), and vice versa

in the fail condition.  Positive momentum in M2 is equivalent to the lowered threshold

of M1.

For the same parameters M2 is equivalent to M1.  With offset = 0.0 it produces the

distribution in Figure 4(a).  With offset 0.18 it produces Figure 4(e).  With offset 0.18

and an upper bound on momentum of 0.36 (equivalent to a lower bound on threshold

of 0.14 in M1) M2 produces Figure 4(f).  Java code for this version of M2 is shown in

Figure 5.  However, while M2 can be equivalent to M1, it also creates a more flexible

framework.  With further modification the threshold is now free to vary for each

chunk, and further terms could be added to the threshold that represent other aspects

of the learning context.  Asymmetric or different offset values or bounds could be set

for different chunks or for different students, and further terms could be also be added

to represent other aspects of student performance.  Similarly an overall momentum

function which is more powerful than the current simple random walk (perhaps a non-

stationary Markov chain) might allow for richer or more accurate predictions.

3.5  Summary

The model described above allows us to explore some of the factors that affect

simulated grade distributions.  It seems unlikely that the specific parameter settings or

implementation details are of any particular significance, rather I am interested in the

general effects, principles and predictions that it enables us to investigate.

if (rand.nextDouble() + momentum > threshold) {
score++;
momentum += offset;

} else {
momentum -= offset;

}
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When chunks are independent the model generates normal distributions.  Chunks

can be made dependent, so that success in acquiring one chunk tends to make

acquiring the next chunk easier, and failure makes the next one harder.  This results in

a self-reinforcing momentum effect in learning.  Weak momentum flattens the normal

distribution.  Strong momentum drives grades to the extremes, producing an “anti-

normal” distribution.  In short, varying one assumption in the model introduces a

momentum effect, and a strong momentum effect can easily be tuned to produce a

simulated bimodal CS1 distribution.
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4  A psychological and educational account

Producing a simulated grade distribution is all well and good as an abstract exercise,

but to make the case that this has anything useful to say about the real world the

effects illustrated by the model must be able to be interpreted in terms of real learning

mechanisms.

In this section I will relate the simulated momentum effect to known psychological

phenomena, and attempt to thus provide a plausible educational account.  The main

issues to be addressed are: (a) what does dependency between concepts created by the

offset term in the model correspond to in educational terms; (b) how would such

dependency give rise to momentum (both positive and negative) in learning; and (c)

why is the effect of learning momentum so pronounced in CS1?  I will argue that all

that is needed to answer these questions is to simply take seriously two factors that are

already well known and well accepted: firstly that the concepts involved in

programming languages are tightly integrated; and secondly that we learn at the edges

of what we already know.  These factors combine to create learning edge momentum

as novices learn to program, the real world equivalent of the momentum effect in the

model.

4.1  Programming concepts are tightly integrated

I believe that there would be widespread agreement with the claim that the concepts

involved in a programming language are well defined and densely connected

(possible methods of substantiating this claim are discussed in Section 5.2 below).

They are well defined because the elements that make up a programming language

(almost always) have a precise syntax and semantics, these are not ambiguous or a

matter of interpretation.  They are densely connected because the concepts form an

(almost) closed and highly self-referential system.  It is very difficult to describe or

understand one concept / language element (such as a for loop) independent of

describing or understanding many others (flow of control, statements, conditions,

boolean expressions, values, operators), which themselves involve many other
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concepts, and so on.  In short, a programming language is an example of a domain of

tightly integrated concepts.

We can see the consequences of this tight integration in various features of the

pedagogy of the field.  There is no agreement among CS educators on the correct

order in which to teach topics in a given language.  Even the very basic choice of

“objects early” or “objects late” is still a matter of active debate.  It is seldom that two

textbooks on a language have the same ordering of subject material.  There is no

general agreement on the “right place to start” teaching a language, because every

topic seems to depend on something else.  Even the simplest Java program, for

example, necessarily involves so many concepts (“public static void main (String [ ]

args)”) that it cannot be fully explained until well into a course of study.  The

influential ACM curriculum guidelines openly acknowledge this state of confusion:

“Throughout the history of computer science education, the structure of the
introductory computer science course has been the subject of intense debate.
Many strategies have been proposed over the years, most of which have strong
proponents and equally strong detractors.  Like the problem of selecting an
implementation language, recommending a strategy for the introductory year of
a computer science curriculum all too often takes on the character of a religious
war that generates far more heat than light.

In the interest of promoting peace among the warring factions, the CC2001 Task
Force has chosen not to recommend any single approach.  The truth is that no
ideal strategy has yet been found, and that every approach has strengths and
weaknesses.”  (ACM, 2001).

The reason that these debates persist is that there are no right answers to the questions.

There is, I suggest, no right place to start, and no correct ordering of topics, because a

programming language is a domain of tightly integrated concepts, where almost every

concept depends on many others.

4.2  We learn at the edges of what we know

The second major factor to be considered in this account is that we learn at the edges

of what we already know.  Almost by definition, understanding (on a short time scale)
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and learning (over a longer period) depends on fitting new material into the context of

existing knowledge.  This basic feature of human learning and its consequences have

been explored in the literature of several different fields.

Cognitive psychologists, for example, have shown that new information is stored,

retrained and retrieved most effectively when it is integrated into existing knowledge.

The richer and more elaborate the links between new and old knowledge the more

effective learning appears to be.  Thus effective learning depends on giving new

information a “meaningful interpretation”, processing it in a “deep and meaningful

way”, or elaborating / embellishing it with further meaningful details (Anderson,

2005).  Note that elaborative processing is typically most effective when the

elaborations are generated by the learner (rather than provided), and when they are

related to or in some way constrain the new material (Reder, 1982; Anderson, 2005).

The active role of existing knowledge in assisting new learning is highlighted by

literatures relating to analogy in cognition and transfer in learning and skill

acquisition.  Analogical reasoning is generally taken to involve the transfer of

structural information from a known domain (the “source” or “base” domain) to the

new domain to be explained or understood (the “target” domain) (Vosniadou &

Ortony, 1989).  Clearly the source domain must already exist in memory, with a

known structure, in order to be able to evaluate and select source analogues, and to

apply them to the target.  “Analogy, in its most general sense, is [the] ability to think

about relational patterns” (Holyoak, Gentner & Kokinov, 2001), it lies at “the core of

cognition” (Hofstadter, 2001).

The literature on transfer in learning, particularly skill transfer, explores related

concepts.  Much of this work focuses on practical and vocational issues relating to

training, performance and the factors involved in achieving good transfer from a

training task to a real world situation (Robins, 1996).  However transfer in general

refers to any use of past learning when learning something new, and is “the very

foundation of learning, thinking and problem solving” (Haskell, 2001).  As further

discussed by Haskell: “When learning is viewed as transfer, the primary factor

influencing learning is the knowledge the individual brings into and uses in the
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particular learning situation” (Voss, 1977).

The dependence of new learning and new capabilities on old is also stressed, albeit

at a very different time scale, in the developmental literature.  The whole concept of a

sequence of stages of development (as briefly discussed above) is built on the

assumption that cognition at some given level depends on, and cannot develop

without, the capabilities of prior levels.  Several influential ideas arose from the work

of early psychologist Lev Vygotsky (for an overview see Rieber & Robinson (2004)).

Vygotsky noted that there was a distance between children’s developmental level as

determined by their independent performance, and their potential level as determined

by performance when assisted.  Vygotsky called this space, within which children are

capable of learning and making progress, the “zone of proximal development” (ZPD).

The ZPD is generally assumed to be the most effective level to target instruction and

assistance, and Vygotsky’s prediction that teaching input would mostly occur at the

edge of the ZPD was supported by McNaughton & Leyland (1990).

The educational literature combines cognitive, developmental, practical and social

perspectives.  Once again the theme of existing knowledge forming the context for

new understanding and learning appears in many forms.  Bereiter and Scardamalia,

for example (influenced by Vygotsky and the ZPD) explore concepts such as

“progressive problem solving” and “working at the edge of one’s competence”

(Bereiter & Scardamalia, 1993).  Bereiter (1985) raises the issue of “how progress

toward higher levels of complexity and organization is possible without there already

being some ladder or rope to climb on”, and explores possible mechanisms of

“bootstrapping” which might address this.  While bootstrapping is a general concept,

some accounts specifically set out mechanisms for integrating new learning:

“We can conceptualize such a bootstrapping process as a series of local repairs
of a knowledge structure.  Local repairs require simple mechanisms such as
adding links, deleting links, reattaching links, and so forth. The critical
condition for local repairs is that the student recognizes that the repairs are
needed, by reflecting on the differences between his or her existing knowledge
and new knowledge.” (Chi & Ohlsson, 2005).

Other authors have focused on the ladder eschewed by Bereiter.  The concept of
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“scaffolding” (also heavily influenced by Vygotsky) emphasises the role of the

teacher in learning, and the dynamic process of providing support for learning where

it is needed and withdrawing it as learning is secured.  Effective scaffolding provides

“support at the edge of a child’s competence” (Gaskins et al., 1997).  Finally,

“Constructivism” the broad and influential educational theory of knowledge arising

from the work of Piaget, stresses that as humans we construct our own understanding

of the world, generating knowledge and meaning from our experiences, and that we

learn by integrating new knowledge into knowledge that we already have.

4.3  Learning edge momentum

As just explored, a wide range of converging evidence stresses the fundamental

importance of the learning edge, the boundaries of existing knowledge which form

the context into which newly learned concepts (information, understanding and skills)

must be integrated.  This fact is widely understood and accepted, and the basis of

many sound pedagogical practices.  Building on this foundation, I suggest that it is

also useful to explore two emergent issues which appear to have received less

attention, namely the ways in which the processes of the learning edge might unfold

over time, and the ways in which they might interact with the structure of the target

domain of new concepts to be learned.

In particular, I propose a new mechanism, learning edge momentum, which is that

over time the effects of either successful or unsuccessful learning become self-

reinforcing.  When combined with the observation that a programming language is a

domain of tightly integrated concepts, a new of account of CS1 learning outcomes

emerges.

The central claims of the learning edge momentum (LEM) hypothesis can be

generally stated as follows.  Given some target domain of new concepts to be learned,

any successful learning makes it somewhat easier to acquire further related concepts

from the domain, and unsuccessful learning makes it somewhat harder.  Thus when

learning a new domain the successful acquisition of concepts becomes self-
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reinforcing, creating momentum towards a successful outcome for the domain as a

whole, and similarly the failure to acquire concepts becomes self-reinforcing, creating

momentum towards an unsuccessful outcome.  This LEM effect varies in strength

depending on the properties of the target domain.  In particular, momentum strength

varies in proportion to the extent to which the concepts in the domain are either

independent or integrated.  When the target domain consists of tightly integrated

concepts the momentum effect (positive or negative) will be strong.

Why should learning one concept from a domain make learning further concepts

easier, and why should the strength of this effect vary with the degree of integration in

the domain?  The answers to these questions will be found in the various fields which

study the learning process, as reviewed above.  The learning of a programming

language, however, provides an interesting case study at one extreme end of the

spectrum, and I propose the following initial suggestions.  The multiple strong

relationships between concepts in a programming language mean that a given subset

of learned concepts has rich and well defined edges, creating strong constraints on

where new concepts can be added.  There is a “right place” for each new concept to

fit4.  Adding a new concept in its correct place creates richer edges and further

constraints which (while leaving considerable flexibility in the order of the sequence)

make adding the next concept easier, and so on.  Furthermore, the multiple

relationships between concepts afford multiple opportunities for the learner to process

a newly learned concept deeply and elaborate it with meaningful connections that

constrain and anchor it.  Finally, the well defined structures and conceptual

relationships within a programming language afford multiple possibilities for

identifying patterns and base analogues that allow analogical reasoning to assist

learning, and that facilitate transfer of learning between different parts of the domain5.

The equivalent negative side of this story is easy to tell.  If we fail to acquire some

concepts from a given domain we lack the structure within which to set further

concepts, and learning becomes harder.

                                                  
4 For example the concept of modulus division might be new to a learner, but there is only one “place”
it can fit, it must behave like other arithmetic operators.
5 For example the concept of boolean expressions may be new, but they behave in a lot of ways like
arithmetic expressions, with operators, operands, precedence and values.



32

By analogy, we can think of learning as adding pieces to an existing structure of

some kind.  For the target domain of a new programming language, this process is

like adding pieces to a growing jigsaw puzzle.  The edges of the puzzle pieces are

sharply defined, there is only one correct place that each new piece can fit.  Higher

order structure in the puzzle’s picture also provides constraints which assist the

process.  As the puzzle grows the emerging edges and structures provide so many

constraints that adding each new piece becomes easier.  If we have not successfully

begun to build the puzzle, however, new pieces have no where to fit, and if they are

lost or placed at random the task quickly becomes impossible.  Where the target

domain is less tightly integrated than a programming language the task is more akin to

building a tower out of blocks.  There is no single correct place for any given block,

and there is probably considerable flexibility in the range of exact forms that an

acceptable finished tower might take.  Placing blocks does not necessarily get any

easier, so that placing the last block may not be any easier or any harder than placing

the first.

If the LEM hypothesis is correct then the explanation for the pattern of learning

outcomes in introductory programming becomes clear.  The CS1 distribution arises

because of an inevitable interaction between the way that we learn and the nature of

the material to be learned.  The game is rigged, creating an inherent bias towards

extreme outcomes.

4.4  Simulated and real effects

The principle of the LEM mechanism was introduced by way of a model in Section 3.

That abstract account can now be anchored in the psychological and educational

context described above.  Using the language of the M2 version of the model, the

chunks to be learned represent the concepts of the target domain of a given

programming language.  The dependency between chunks encoded by the offset term

in the model represents the magnitude of the contribution that a given concept makes

to learning other related concepts (or in other words represents the extent to which the
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concepts in the target domain tend to be either independent or integrated).  Passing

some chunk results in a positive offset being added to the momentum term in the

model, this represents the fact that successfully learning a given concept assists in

learning related concepts.  The momentum term itself in the model represents an

overall measure of the success (or failure) of learning so far.  An overall positive

momentum term in the model increases the learner’s performance (or equivalently

lowers the threshold) for the next concept, representing a positive LEM effect in the

cognitive processes of learning.

The larger the offset term (the more integrated the concepts in the target domain)

the stronger the momentum effect, which flattens and broadens the normal

distribution.  An unusually high offset term (such as I have suggested applies in the

tightly integrated domain of programming) produces an anti-normal distribution.

Adding one further realistic constraint (that positive momentum cannot become

indefinitely large) results in a simulated bimodal distribution which closely resembles

the actual grade distributions observed in a typical CS1 course.

In all probability the model is only useful as a way of exploring very general

principles.  It is not likely that the specific implementation details and parameter

values have any particular cognitive significance.  The model as so far presented also

contains many simplifying assumptions, such as for example that the offsets for

success and failure are symmetrical (in real learning the momentum costs for failing

to acquire a concept are probably higher than the momentum benefits of success).  In

short the model may crudely capture some of the effects that occur in human learning,

but it tells us nothing about the subtle and complex processes that underlie those

effects.

4.5  Discussion

If the arguments presented above are correct then the long underlying assumption that

there are two populations, those who can program and those who cannot, is incorrect

(there is no programmer gene!).  CS1 students are much like any others, and they
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succeed or fail for reasons which are idiosyncratic and complex, although in

programming (as in other subjects) factors such as IQ, attitude and certain aspects of

prior experience can affect the probability of success.  The CS1 distribution arises not

because our students are different, but because our subject is different (probably

falling at one end of a natural continuum, as further discussed below).

In short, the pattern of CS1 learning outcomes arises because of an interaction

between the learner and the learned.  There is a big cause which gives rise to the big

robust effect of the bimodal CS1 distribution.  It turns out to be the only factor that is

unique CS1 students – that they are all engaged in the task of learning a programming

language.  At one level this is of course stating the obvious, but it is also drawing

attention to the impact of the nature of the material to be learned, rather than the

nature of the learners.  While as noted in Section 1 it would seem difficult to argue

that a programming language is simultaneously both hard and easy to learn, the

account presented here suggests that something close to this is in fact the truth.

During the process of a typical CS1 course, a programming language does effectively

become both harder and easier to learn for two different emerging groups of learners.
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5  Discussion

5.1  Further work

Conceptual integration

The argument presented in this paper depends in general terms on there being a factor

which is particular to programming languages, and which has an impact on learning

such that a momentum effect emerges.  I have argued that the relevant factor is the

degree of integration of concepts in the subject material – the extent to which

concepts are related to each other, are defined in terms of each other, or can only be

understood properly or used properly if other related concepts are also understood.

(In some sense the concepts of a programming language are highly parallel

knowledge which gets forced through the serial pipe of a CS1 curriculum.)  How

might we go about investigating the claim that programming languages are tightly

integrated knowledge6?

In Section 4.1  I argued that circumstantial evidence could be found in the lack of

agreement among CS educators on the structure of the CS1 curriculum (compared to

other disciplines with widely agreed paths through their curricula, or where the

ordering of topics is not crucial).  One approach to providing more concrete evidence

is to explore measures generated by experts.  Consider a measure collected from

educators which attempts to characterise the material in the courses that they teach at

first year tertiary level.  One such useful characterisation would be a “mind map” (a

loose form of semantic network popularised by Buzan & Buzan (1996), in simple

terms a connected graph made up of concepts / nodes and links representing

connections between concepts).  Are programming mind maps more densely

connected than those of other subjects?  Do they contain more and tighter self-

referential loops?  Are there more crucial concept bottlenecks?

                                                  
6 Clearly these suggestions relate to the concept of intrinsic cognitive load (Sweller, 1994), and

exploring this connection may yield further insights and directions for future work.
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A similar kind of measure, but more objective, might be generated using the

statistical tools of corpus linguistics (see for example Manning & Schütze (1999)) to

analyse text relating to different subjects, such as course text books or related general

literature.  Do proximity relationships between key concept terms vary across

subjects?  If so, are measures derived from programming related material indicative of

more than usual conceptual density, complexity or dependency?

Similar attempts could be made to measure students’ perceptions.  Certainly there

is plenty of anecdotal evidence relating to perceptions of complexity and negative

momentum.  Students in our CS1 course frequently comment that the material quickly

“builds on itself” or “snowballs”, and that falling behind means disaster as it is

difficult to catch up.  More speculatively, research reviewed above showing that

growing confidence and levels of comfort with the subject material are correlated with

success in CS1 may reflect students’ reactions to the subjective experience of a

positive momentum effect.

One of the further possibilities which could be explored with such methods is the

extent to which the domain of programming concepts is, in addition to being tightly

integrated internally, also isolated from other general knowledge.  If programming is a

comparatively self contained island (with few connections to the mainland) then this

would also act to increase the significance of internal conceptual connections during

learning.

Interdisciplinary comparison

In terms of supporting or refuting the proposed mechanism of LEM an experimental

exploration could be based on comparing groups of subjects learning artificially

constructed domains (with known and provably different degrees of conceptual

integration).  Whether the mechanism has any practical utility, however, will probably

best be established by exploring the properties of grade distributions across different

subject areas.

If it makes any sense to claim that a domain such as programming is characterised
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by tightly integrated concepts, then of course other subject areas will have other

varying degrees of integration.  It follows that different subject areas must define a

natural continuum from independent to tightly integrated subject material.  In short, if

CS1 is different, it is different not in kind, but only in degree.  We would expect to

find other subjects with bimodal or somewhat bimodal distributions, as the same

interactions between subject material and basic mechanisms of learning would give

rise to LEM effects of varying strength.  Correlations between measures of conceptual

integration and the strength or robustness of bimodal outcomes would support the

LEM hypothesis.

Consider, for example, that as quoted in Section 1, Hudak & Anderson (1990) note

that bimodal distributions are also observed in statistics courses.  In my own

institution a preliminary investigation of recent data suggests that other first year

subjects (such as languages, music, and some science subjects) also have, at least on

some occasions, bimodal grade distributions.  How robust are these tendencies within

a given subject area and across multiple institutions?  What kind of continuum do

bimodal subjects lie along?  Is it, as suggested here, the continuum of the degree of

conceptual integration, or is it something else?

Prior knowledge

Another topic which deserves further exploration is the role of prior programming

language experience in CS1 outcomes.  The LEM hypothesis would seem to suggest

that any prior programming experience would be extremely useful, providing a richer

base of existing knowledge within which to integrate and elaborate the new concepts

encountered in CS1 – a flying head start of positive momentum.  But the studies

reviewed above are ambiguous.  Some show a modest positive impact of prior

experience, and some show none.  Does this disprove the LEM hypothesis?

More detailed exploration of this issue is required.  In most of the studies reviewed

methods and results are reported only briefly, we do not know what kinds of questions

were asked of participants, and consequently a lot of crucial information is missing.

In order to explore this issue properly we need to know, for example, how recent the



38

prior experience was.  Given that newly learned information is forgotten if it is not

actively used and maintained, and especially that detail is lost quickly (Anderson,

2005), it may be the case that the time frame within which prior experience is useful

to CS1 is short.  (Anecdotally, my colleagues teaching CS2 sometimes remark that

our students seem to have forgotten everything that they learned in CS1!).  It would

also be useful to know whether students’ prior experience of programming was

successful or unsuccessful.  There is no reason to expect that previous unsuccessful

attempts will be beneficial in CS1.

Details such as the paradigm of the prior language may also be important.  Carey

& Shepherd (1988) found “both positive and negative transfer effects” for

programmers learning their first language in a new paradigm, and the damaging

impact of incorrect prior assumptions in general have also been highlighted (see for

example Bonar & Soloway (1989)).  Reflecting the complexity of this issue, some

authors have argued that it is easier to move from an object oriented language to a

procedural one (Kölling, 1999), while some have argued the opposite (Hu, 2004).  In

a recent review Lister et al. (2006) found that there was “not a consensus in the

research literature as to whether the objects first approach or the imperative approach

is harder to learn”.

Our own previous study including prior experience as a factor (Rountree, Rountree

& Robins, 2002) explored none of these issues, and I suspect that this is typical of

broad studies of predictors in general.  There has however been some research which

has focused on prior experience specifically and in more depth (see for example

Scholtz & Wiedenbeck (1993), Morrison & Newman (2001)).  The LEM hypothesis

suggests that it would be useful to build on such foundations and explore the impact

of previous programming language experience in a richer and more systematic way.

Individual differences

In proposing the mechanism of LEM as a general account of the pattern of learning

outcomes in CS1 I do not mean of course to suggest that it tells the whole story.

While momentum compounds the effects of early success or failure and drives results
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towards extremes, it doesn’t tell us anything about why the crucial early success or

failure occurs in the first place.  The reasons for any given individual’s success or

failure remain as opaque as ever, and it remains the case that even seemingly major

factors such as IQ have only a moderate predictive value.  What starts one student

down the path to a positive outcome, and the other down a negative path?  The answer

is not predetermined, or we would have found our two populations by now.  The

answer must lie in factors which are variable, idiosyncratic and situational.  If a useful

answer can be found amidst the complexity of human motivation and behaviour, it

may require the large scale methodologies outlined by Fincher et al. (2005a) to find it.

Similar points have no doubt been made by many authors over many years.  The

following comments from Leither & Lewis (1978), for example, foreshadow some of

the suggestions made in this paper, and outline some of the individual variation that is

of particular interest:

“It is evident from teaching computer science to this large and diverse group of
students that the varieties in their experience are numerous. The most
experienced or quantitatively facile students learn quickly and easily; the most
passive or negligent students discover too late how much they have to make up.
In between are two groups which are more interesting from the standpoint of
both pedagogy and cognitive psychology: Those who are mystified for weeks,
and eventually make a quantum leap in understanding; and those who, despite
extraordinary diligence and time-consuming effort, never succeed in making
this transition.  We do not support the somewhat common attitude that many
individuals simply do not have the "aptitude" for learning computer science.”
(Leither & Lewis, 1978).

Other topics

In general terms there are several open questions which may be worth further

investigation.  Can grade distribution modeling be used to explore other factors that

shape the learning outcomes for various populations?  What are the factors which

influence the significance of the LEM effect across different individuals?  Are there

other significant effects arising from the interaction between the mechanisms of

learning and the specific subject material of the target domain?

Finally, if the LEM hypothesis and the proposed importance of the learning

mechanisms which underlie it are correct, can we teach students to use the tools of
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positive momentum?  By focusing pedagogy on highlighting the connections between

concepts, ways of a elaborating concepts, and various opportunities for analogy and

transfer, perhaps by explicitly describing these mechanisms and their importance, can

we achieve a substantially enhanced positive momentum effect and an improvement

in CS1 learning outcomes?  What are the further specifics of the processes that occur

at the learning edge to integrate new and existing knowledge, and can understanding

them provide any practical guidelines to educators or to learners?  How do these

cognitive effects interact with other factors such as personality and motivation?  For

example, are there complementary self-reinforcing reward and motivation effects that

arise from the subjective experience of LEM?

5.2  Pedagogical implications

If the LEM hypothesis is correct, it implies that the very early stages of learning a

programming language are critical to the outcome of the process.  Once negative

momentum is established it is very hard to overcome.  Ideally positive momentum

should be established right from the start.

In the context of CS1 this suggests a focus on the start of the course.  From early

analysis of our unpublished study in progress, we (S. Fincher, J. Tennenberg and I)

believe that the first one or two weeks are crucial, and that certainly by the third week

momentum effects are well under way.  Laboratory attendance records as early as

Week 1, and the quality of students’ answers to diagnostic questions administered in

weeks 3 and 5 (“What happens when you compile a program?” and “What is an

object in a Java Program?”) are highly predictive of final grade in the course.

What practical steps can be taken?  Everything possible should be done to ensure

that the start of the course runs smoothly, and to facilitate learning during this critical

time.  Extra support such as increased access to  tutors / demonstrators should be

provided.  Students showing signs of disengagement (missing labs or tutorials, failing

to submit work) should be followed up vigorously and immediately, as early as Week

1.  Students could be told the reasons that early weeks are critical, as this “meta-

knowledge” may increase engagement and motivation.  Students should absolutely be

encouraged to seek immediate help at the first sign of difficulty with the material –
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keeping up with the flow of newly introduced concepts is vital.

Particular attention should be paid to the presentation of concepts and the

connections between them in the early stages of CS1.  Good pedagogical practice

already links newly introduced concepts to the foundation of existing knowledge, but

there may be further opportunities to understand and exploit the mechanisms of

elaboration, analogy and transfer.  As a community we may be able to arrive at some

agreed best practice methods in this respect.

It is likely, however, that an even more significant intervention would be to break

this overarching constraint of a single fixed flow (rate and path of progression)

through the curriculum.  One size does not, and never will, fit all.  There is absolutely

no point in expecting a student to acquire a new layer of complex concepts when the

foundation simply does not exist.  This can only be addressed by introducing some

flexibility into the delivery of the curriculum, so that students are more able to work

and learn in ways that allow them to make sustainable progress.

While options for achieving flexibility are resource intensive, it is worth outlining

at least some of the possibilities.  CS1 could be offered in multiple streams which

progress at different rates (some streams would of course cover more material than

others).  Students could self select streams, or move between them, possibly as

advised by an early (Week 3?) diagnostic test of some kind.  “Recovery streams”

could be offered at certain points in the course for students who want to backtrack and

revise.  For maximum flexibility the whole concept of a stream (though which all

students progress at the same rate) could be abandoned, with all learning being self

paced.  For example, some universities have offered CS courses consisting of just

resource materials and a sequence of exercises.  Passing a certain number of exercises

(which students could attempt at any time) would result in a passing grade (at which

point a student could choose to stop), and passing subsequent exercises would raise

the grade.

I suspect that some disciplines learned these lessons in practical terms long ago,

and the mastery model of learning (see for example Block (1971)) is the result.  The
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mastery model is a practical approach to teaching and learning based on the premise

that learning is a function of time, not ability, and that given time (and appropriate

learning conditions) all learners should be able to achieve.  Learners do not progress

to the next level until they have demonstrated mastery of the current one.  The

approach has its origins in the tradition of apprenticeships (and possibly musical

training).  It grew into a method which has been widely used in schools at varying

times since the 1920s, and has also been used by some tertiary institutions.  Although

it is difficult to see how the mastery model can be adapted to large numbers in CS1, it

may be worth further exploring this approach and its emphasis on self paced student

learning.  Perhaps the process of joining the programming community of practice is

best regarded as an apprenticeship.

5.3  Summary

What causes the characteristic bimodal CS1 grade distribution, and ultimately what if

anything can we do to smooth the path of learning and raise the pass rates for

introductory programming?  This paper has explored two possible explanations for

the bimodal phenomenon.

The first explanation is embodied in the long standing assumption that there must

be two different populations of people, those who can learn to program and those who

cannot.  Despite decades of extensive research, however, it has not proved possible to

identify the factor or factors which characterise these two hypothetical groups.

Aptitude tests are not reliable predictors of success, and have not identified any

cognitive capacity which is especially significant for learning to program.  Evidence

relating to predictors such as educational or demographic background, cognitive

development or style, or a range of other factors, is also ambiguous or weak.  On

balance some factors (such as mathematical background / ability, or self ratings of

confidence / comfort as the course progresses) emerge as moderately correlated with

success.  But such attributes and correlations are far from the robust explanation that

was sought.  They are almost certainly not specific to the task of learning to program,

they are hard to distinguish from the effect of IQ, and they do not define two obvious
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populations of learners.  In short, this approach has not so far offered any realistic

hope of providing an explanation for the CS1 bimodal grade distribution.  I suggest

that the hypothesis that learners are inherently divided into two populations can now

be regarded as highly doubtful, and that if it is to be supported then significantly new

directions will need to be explored.

The main contribution of this paper has been to propose an alternative account of

the pattern of CS1 outcomes, the learning edge momentum (LEM) effect.  LEM is

grounded in the principle, well accepted in the psychological and educational

literature, that we learn at the edges of what we know.  Building on this foundation, I

suggest that it is also useful to explore two naturally emergent issues, namely the

ways in which the processes of the learning edge might unfold over time, and the

ways in which they might interact with the structure of the material to be learned.

The central claim of the LEM hypothesis is that, given some target domain of new

concepts to be learned, any successful learning makes it somewhat easier to acquire

further related concepts from the domain, and unsuccessful learning makes it

somewhat harder.  Depending on the strength of this effect, early success or failure to

acquire concepts can become self-reinforcing, creating momentum towards extreme

outcomes.  The LEM effect varies in strength depending on the properties of the

target domain, in particular it is dependant on the extent to which the concepts in the

domain are either independent or integrated.  I have further argued that the concepts

involved in a programming language are unusually tightly integrated, thus resulting in

a stronger than average LEM effect.  In short, the interaction between the way people

learn and the nature of the CS1 subject material creates an inherent structural bias

which acts to drive populations of students towards extreme outcomes.

The failure to identify populations of programmers and non-programmers suggests

that CS1 students are much like any others.  Factors such as IQ and attitude have an

impact, but ultimately students succeed or fail for reasons which are idiosyncratic,

complex and situational.  The LEM hypothesis suggests that the CS1 distribution

arises not because our students are different, but because our subject material is

different.  In pedagogical terms this account highlights the crucial significance of the
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early stages of learning, where progress in acquiring initial concepts begins to

establish momentum towards successful or unsuccessful final outcomes.  By

understanding and adapting to this effect, by focusing resources on the early stages of

CS1, by identifying and exploiting the mechanisms of successful learning, or ideally

by adapting the way in which the curriculum is offered, it may be possible to

significantly raise the rate of successful learning outcomes in CS1.
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Figure 1: Failure rates in CS1 courses from 67 institutions as reported in Bennedsen
& Caspersen (2007).  This data aggregates different kinds of failure, such as dropping
out of the course, or completing but not achieving a passing grade.

Figure 2:  Final grade distribution in an example CS1 course (average of four years
of data 2005 to 2008).  E and D are fail grades.  Percentage scores 0 - 39%
correspond to the letter grade E, 40 - 49% to D, 50 - 64% to C, 65 - 79% to B and 80 -
100% to A.
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(a)

(b)

Figure 3: Version M0 of the model with various example parameter values.  Part (a)
is a description in Java code.  The variables declared above the loops are called the
“set up variables”.  The contents of the inner loop are referred to as the “kernel” of the
model.  Part (b) is a description in pseudocode for the same parameters.  Further
versions of the model (some of which require threshold to be initialised within the
outer loop as shown) can be created as variations of M0 as described in the text.

Random rand = new Random();
int chunkMax = 10;
int [ ] scoreFrequency = new int[chunkMax + 1];

for (int run = 0; run < 10000; run++) {
double threshold = 0.5;
int score = 0;

for (int chunk = 0; chunk < chunkMax; chunk++) {
if (rand.nextDouble() > threshold) {

score++;
}

}
scoreFrequency[score]++;

}

for (10000 repetitions to generate 10000 scores) {
threshold = 0.5
score = 0

for (10 repetitions representing “chunks”) {
if (random_number_0-1 > threshold) {

add one to score
}

}
add one to frequency of score

}
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(a)  (b)

(c)  (d)

(e)  (f)

Figure 4:  Distributions created by the model with various settings.  In each case the x
axis represents the score, and the y axis represents the frequency of that score over
10,000 runs.  (a) M0 with threshold = 0.5, (b) M0 with threshold = 0.3, (c) M1 with
threshold = 0.5 and offset = 0.03, (d) M1 with threshold = 0.5 and offset = 0.06, (e)
M1 with threshold = 0.5 and offset = 0.18, (f) M1 with threshold = 0.5 and bounded
offset function as described in the text, and M2 as described.
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Figure 5:  Version M2 of the model (in Java code) with various example parameter
values and a success condition offset function that implements an upper bound on
momentum.  This code generates the distribution shown in Figure 4(f).

// set up variables
Random rand = new Random();
int chunkMax = 10;
int [ ] scoreFrequency = new int[chunkMax + 1];
double threshold = 0.5;
double offset = 0.18;
double upperBound = 0.36;

// population loop
for (int run = 0; run < 10000; run++) {

// run variables
int score = 0;
double momentum = 0.0;

// individual score loop
for (int chunk = 0; chunk < chunkMax; chunk++) {

// “kernel” of the model
if (rand.nextDouble() + momentum > threshold) {

// success condition
score++;
momentum += offset;
if (momentum > upperBound) momentum = upperBound;

} else {
// fail condition
momentum -= offset;

}

}
scoreFrequency[score]++;

}


