
2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25–28, 2017, TOKYO, JAPAN

LEARNING EMBEDDINGS FOR SPEAKER CLUSTERING BASED ON VOICE EQUALITY

Yanick X. Lukic, Carlo Vogt, Oliver Dürr, and Thilo Stadelmann

Zurich University of Applied Sciences, Winterthur, Switzerland

ABSTRACT

Recent work has shown that convolutional neural networks

(CNNs) trained in a supervised fashion for speaker identifica-

tion are able to extract features from spectrograms which can

be used for speaker clustering. These features are represented

by the activations of a certain hidden layer and are called em-

beddings. However, previous approaches require plenty of

additional speaker data to learn the embedding, and although

the clustering results are then on par with more traditional ap-

proaches using MFCC features etc., room for improvements

stems from the fact that these embeddings are trained with

a surrogate task that is rather far away from segregating un-

known voices - namely, identifying few specific speakers.

We address both problems by training a CNN to extract

embeddings that are similar for equal speakers (regardless of

their specific identity) using weakly labeled data. We demon-

strate our approach on the well-known TIMIT dataset that

has often been used for speaker clustering experiments in the

past. We exceed the clustering performance of all previous

approaches, but require just 100 instead of 590 unrelated

speakers to learn an embedding suited for clustering.

Index Terms— Speaker Clustering, Speaker Recogni-

tion, Convolutional Neural Network, Speaker Embedding

1. INTRODUCTION

Speaker clustering handles the ”who spoke when” challenge

in a given audio recording without knowing how many and

which speakers are present in the audio signal. It is called

speaker diarization when the task of segmenting the audio

stream into speaker-specific segments is handled simulta-

neously [1]. The problem of speaker clustering is eminent

in digitizing audio archives like e.g. recordings of lectures,

conferences or debates [2]. For their quantitative indexing,

automatic extraction of key figures like number of speakers

or talk time per person is important. This further facili-

tates automatic transcripts using existing speech recognition

procedures, based on the accurate automatic assignment of

speech utterances to groups that each represent a (previously

unknown) speaker.

The lack of knowledge of the number and identity of

speakers leads to a much more complex problem compared to

the related tasks of speaker verification and speaker identifi-

cation, and in turn to less accurate results. One reason is that

well-known speech features and models, originally fitted to

the latter tasks, might not be adequate for the more complex

clustering task [3]. The use of deep learning methods offers

a solution [4]: in contrast to classical approaches (e.g., based

on MFCC features and GMM models [5]), where general fea-

tures and models are designed manually and independently

for a wide variety of tasks, deep models learn hierarchies of

suitable representations for the specific task at hand [6]. Espe-

cially convolutional neural networks (CNNs) have proven to

be very useful for pattern recognition tasks mainly on images

[7], but also on sounds [8]. Previous work [9] has shown that

CNNs are able to learn a voice-specific vector representation

(embedding) suitable for clustering when trained for the sur-

rogate task of speaker identification. The authors report state

of the art results for speaker clustering using an embedding

learned from 590 different speakers.

In this paper, we investigate a novel training approach for

CNNs for speaker clustering that learns embeddings more di-

rectly based on pairwise voice equality information of speech

snippets (i.e., the binary information if the two snippets come

from the same speaker or not). This weak labeling is neither

a fitting to particular individuals, nor depending on hard to

obtain voice similarity measures (i.e., real-valued distances

amongst snippets). For evaluation, we focus on the pure

speaker clustering performance, given its role as a perfor-

mance bottleneck in the complete diarization process [3].

Section 2 reviews related work and introduces our approach.

Section 3 reports on our results that not only reach state of the

art consistently with one approach and improve the clustering

quality in certain scenarios, but also reduce the necessary

amount of pre-training data to 17%. We also report on a

number of experiments in order to give insight on which part

of our system is responsible for the improved results. We

conclude the paper with an outlook in section 4.

2. LEARNING SPEAKER DISSIMILARITY

2.1. Related work

The design of CNNs makes it possible to recognize patterns

in minimally preprocessed digital images or other data with

978-1-5090-6341-3/17/$31.00 c©2017 IEEE

Fig. 1. Our overall speaker clustering process. Shown are the training steps (T1–T4) and the steps for the generation of speaker

representations which are then hierarchically clustered (C1–C4).

two dimensional structure by exploiting local connectivity.

CNNs and other deep neural network (DNN) architectures

thus have become the standard technique in many percep-

tual tasks [10][11][12][13]. Notable examples on audio data

include Lee et al., who demonstrate how spectrograms can

serve as inputs for a deep architecture in various audio recog-

nition tasks [4]; and van den Oord and colleagues who build

a generative model for sound (speech and otherwise) using a

CNN variant [14]. Salamon et al. show how data augmenta-

tion serves to use CNNs for environmental sound classifica-

tion, having only scarce data [15]. Milner and Hain attempt

speaker diarization by iteratively re-labeling an initial set of

utterances using DNNs per utterance that have been adapted

from a single speaker recognition DNN, and then re-training

the DNNs per resulting segment [16]. McLaren et al. address

speaker recognition by using senone probabilities computed

by a CNN, reaching results on par with an i-vector approach

[17], and Sell et al. use a similar approach for speaker di-

arization [18]. However, previous work in the field of learning

speaker characteristics using neural networks mostly relies on

preprocessed features like MFCCs and doesn’t use the feature

learning capabilities of CNNs [19][20].

Recent advances have shown that it is possible to learn

speaker-specific features from hidden layers of neural net-

works. Yella, Stolcke and Slaney used speaker-specific fea-

tures derived from a 3 layer neural network together with

MFCCs to subsequently feed them into a GMM/HMM system

for speaker clustering [20]. This concept of speaker embed-

dings was further developed by Rouvier et al. through speaker

representations derived from a non-convolutional neural net-

work, using a super-vector obtained from a GMM-UBM as

input vector [21].

It has been shown in [9] that CNNs are able to learn valu-

able features from spectrograms for speaker clustering. The

authors use a single fully connected layer of a trained classi-

fication network to extract speaker embeddings (feature vec-

tors) and subsequently cluster unknown speakers, achieving

state of the art results. In contrast to this approach, we change

the learning process fundamentally in this paper by using pair-

wise constraints instead of relying on a rather unrelated surro-

gate task for the creation of the speaker embeddings. This ap-

proach has been introduced in [22] using the MNIST dataset

and was further developed in [23] to automatically discover

image categories in unlabeled data. The process is similar in

spirit to a siamese architecture [24], but building all possible

pairs of snippets per mini-batch here allows for much more

efficient training.

2.2. Our approach

Our approach consists of two major stages (see Fig. 1): train-

ing (T1–T4) and clustering (C1–C4). The training stage is

based on the work of Hsu and Kira [22]. Training is per-

formed using mini-batch gradient descent, whereas the spec-

trograms are built exactly as in [9]. To attain a high diversifi-

cation of the mini-batch composition (T1), for each member

a random sentence from the training set is selected, and from

this a random snippet of one second is used. A snippet has

dimensionality 128 × 100 (frequency × time). We com-

bine 100 such snippets in a mini-batch and let the network

(T2) compute an output (T3) for each snippet in the mini-

batch. An output consists of the activations of a dense layer.

Then, all possible pairs of these outputs are built, accompa-

nied by weak labels stating whether the two original snippets

Fig. 2. The shown architecture is used for all experiments. In the convolutional layers, F × T corresponds to the dimension of

the applied frequency × time filters.

are equal (same speaker) or not (different speakers) (T4). The

error per pair is calculated by a cost function associated with

the Kullback-Leibler divergence (KL divergence) to minimize

the distance between equal pairs while maximizing the dis-

tance for unequal pairs [22]. This trains embeddings focused

on voice equality and, by implication, similarity.

For a given pair of snippets xp and xq , imagine that the

network f produces the embeddings P and Q of dimension-

ality k, respectively. These can be regarded as two discrete

probability distributions P = f(xp) and Q = f(xq) over

high-level voice-related features, for which the KL divergence

is defined as follows:

KL(P ‖ Q) =
k∑

i=0

Pi log(
Pi

Qi

) (1)

To use the KL divergence in the cost function, two indi-

cator functions Is and Ids are introduced, where Is = 1 if

(xp, xq) is an equal pair w.r.t. voice, and Ids = 1 if it is a dis-

similar pair, otherwise 0. The hyperparameter margin in the

hinge-loss part of the cost function sets the maximum margin

between dissimilar pairs; we set it to 2 as proposed in [22].

cost(P ‖ Q) = Is(xp, xq) ·KL(P ‖ Q)

+ Ids(xp, xq) ·max(0,margin−KL(P ‖ Q))
(2)

The total cost L for the pair (xp, xq) is calculated sym-

metrically via:

L(P,Q) = cost(P ‖ Q) + cost(Q ‖ P) (3)

In the clustering stage, the trained network (C1) is then

used to generate embeddings from given speech utterances of

unknown speakers (segments in C2). Utterances are split into

non-overlapping 1s long snippets, then an embedding (C3) is

extracted per snippet from one of the hidden layers (specified

below) by using the activations of this layer. An embedding

per utterance is formed by averaging over all embeddings of

its snippets. Finally, as in [9], agglomerative hierarchical

clustering (C4) with complete linkage is performed using the

cosine distances between these mean embeddings of each ut-

terance. We use the misclassification rate (MR) as defined by

Kotti et al. [25] to evaluate the clustering performance in a

way comparable to related work: A MR of 0 confirms perfect

assignment (all utterances of the same speaker in one cluster)

and a MR of 1 means that all utterances are assigned wrongly

(falsely separated or mixed up in non-pure clusters). The MR

is defined as follows:

MR =
1

N

Nc∑

j=1

ej . (4)

N corresponds to the total number of utterances to be

clustered, Nc to the number of speakers (=clusters) and ej
to the number of incorrectly assigned utterances of speaker j.

The reported MR for an experiment corresponds to the lowest

MR reached by varying the cutting point of the agglomerative

hierarchical clustering manually (we thus ignore the problem

of optimal cut point detection to focus on the task of cluster-

ing in an optimal order in accordance with [3]). The reported

confidence intervals are calculated using Wilson method for a

binomial probabilities with 2 · N observations and MR · N
successes.

Note that the proposed clustering method is not learned

completely end-to-end. However, the surrogate task (learn-

ing to produce similar distributions for speech snippet pairs

from the same speaker, based on short utterances) of the CNN

is much closer to the final clustering task as compared to

when training a standard speaker identification model to ex-

tract speaker embeddings (where the surrogate task is to clas-

sify specific voices, thus focusing on the characteristics of the

concrete speakers x1..xNc
). The learned embeddings there-

fore should be more suitable for clustering.

The architecture of our CNN is derived from [9] (com-

pare Fig. 1, T2 and C1). We enhance it by using batch norm

layers [26] after each convolutional layer and the first dense

layer, and by changing the cost function as described above.

Apart from that, the architecture stays the same. The detailed

modified architecture is shown in Fig. 2.

3. EXPERIMENTAL SETUP AND RESULTS

All experiments are carried out on the TIMIT dataset using

the exact experimental setup as in previous work to be com-

parable [9][3]. Especially data splits and the used subsets of

speakers for training and clustering follow these provisions

closely. This means that when we perform clustering of Nc

speakers, we have overall 2·Nc utterances in our data set: two

per speaker, where one is composed of the first 8 sentences of

the speaker (lexicographically ordered by filename), and the

other from the remaining two sentences, yielding an average

utterance lengths of 20 and 5 seconds, respectively.

We carry out two major experiments: First, we test in a

minimal setup whether it is possible to learn the distances

(w.r.t. voice equality) between spectrograms. Second, we

evaluate clustering performance on up to Nc = 80 speakers,

using our network pretrained on Nt = 100 unrelated training

speakers.

3.1. Feasibility of KL divergence-related cost

To assess whether our approach is able to learn the KL

divergence-related cost function for two snippets, we train

a network with Nt = 10 speakers and then cluster Nc = 5
and Nc = 10 unrelated speakers on the activations of all

layers separately. Thereby we can ascertain that the network

is able to learn from the given constraints. Additionally, we

can observe whether this cost formulation provides an advan-

tage for speaker embedding extraction for clustering over the

approach in [9]. We thus replicate as much of the training

procedure from there (except the cost function) as possible,

including training by stochastic gradient descent (SGD) with

Nesterov momentum.

Performing the clustering experiment using Nc = 5 un-

known speakers we achieve a MR of 0.0 on all layers. How-

ever, when looking at the t-SNE [27] (with cosine metric) plot

per snippet in Fig. 3, we observe that the first dense layer L7

provides a much better visual clustering than the third dense

layer L11. This is substantiated when performing the cluster-

ing experiment with Nc = 10 unknown speakers: clustering

on the third dense layer performs worse (MR of 0.3) than

on the activations of both other dense layers, where a MR of

0.1 is achieved. Thus, our speaker embeddings using the new

similarity-based training regime clearly work, and seem to do

so better if we extract them from lower dense layers.

3.2. Improved optimization to cluster more speakers

When increasing the complexity of the experiment by naively

training a bigger network (Nt = 100 speakers) and cluster-

ing more speakers (Nc = 40 speakers), the clustering per-

formance decreases significantly (MR = 0.375). Hence, we

try different additional optimization approaches using Adam

[28], Adadelta [29] and, for reasons of comparability, also

SGD without any momentum. We choose the algorithms’

Fig. 3. Clustering quality visualization using t-SNE plots for

embeddings extracted from the third dense layer L11 (left)

and the first dense layer L7 (right). Different colors corre-

spond to different speakers.

hyperparameters based on preceding experiments as follows:

SGD with learning rate 0.001; Nesterov with learning rate

0.001 and momentum 0.9; Adam with learning rate 0.001,

β1 = 0.9, β2 = 0.999 and ǫ = 10−8; Adadelta with learn-

ing rate 1.0, ρ = 0.95 and ǫ = 10−6. All resulting networks

are trained for 10′000−30′000 mini-batches (with mini-batch

size B = 100). The results for the clustering set of Nc = 40
speakers are shown in Tab. 1.

SGD results in high MR values, while Nesterov momen-

tum performs better. More complex optimizers like Adam

and Adadelta reach even better results. Additionally, they

still show an upward trend after 10K mini-batches. There-

fore, we train these for additional mini-batches including all

validation data. While Adam starts to show a performance

decrease, Adadelta still improves for additional 10K mini-

batches before leveling off on the best performing dense layer

(L7).

3.3. Embeddings of lower layers for better generalization

Fig. 4. Achieved MRs for the different training stages (num-

bers of mini batches) of the Adadelta-trained network.

The MRs during training using Adadelta are shown in

Table 1. Estimates and 0.95 Wilson-Confidence intervalls of MRs for all training methods for Nc = 40 unknown speakers

Mini-batches → 10K 15K 20K 30K

Layer ↓ SGD Nesterov Adam Adadelta Adam Adadelta Adadelta Adadelta

L7 0.8+0.17
−0.1 0.6+0.21

−0.11 0.1+0.13
−0.05 0.08+0.12

−0.04 0.13+0.15
−0.056 0.08+0.12

−0.04 0.05+0.102
−0.03 0.05+0.102

−0.03

L10 0.8+0.18
−0.10 0.38+0.21

−0.01 0.2+0.17
−0.07 0.18+0.17

−0.07 0.35+0.2
−0.1 0.08+0.12

−0.04 0.2+0.17
−0.07 0.13+0.15

−0.06

L11 0.8+0.17
−0.1 0.6+0.21

−0.11 0.5+0.21
−0.11 0.55+0.21

−0.11 0.7+0.2
−0.11 0.38+0.21

−0.1 0.5+0.21
−0.11 0.68+0.20

−0.11

Fig. 4. Interestingly, this network shows a performance de-

crease after 20K mini-batches on the third dense layer L11:

That is the same point where the performance on the first

dense layer L7 becomes constant; and where the performance

on the second dense layer L10 exhibits increased fluctuations

without decreasing dramatically. We conjecture that this

worsening performance of the higher layers is due to only the

dense layers (as opposed to the convolutional layers) over-

adapting to the training data and the specific voices contained

therein. A speaker representation directly built from the out-

put of the last convolutional layer thus shouldn’t be much

affected by this, and lower dense layers only in weakened

form. The same phenomenon is also observable when using

Adam: while using higher layers for creating the embeddings

significantly worsens the performance by 50% (L10) and

27% (L11) after additional 5K mini-batches, performance on

the first dense layer L7 only degrades by 17%.

This assumed robustness of the convolutional layers to

overadaptation is confirmed in an additional experiment:

in this experiment, some of the speakers used to train the

network (known speakers) are also used in the subsequent

clustering alongside the usual unknown speakers that the net-

work didn’t encounter during training. The experiment is

conducted using the Adadelta 20K network that we deem

overadapted to speaker identities encountered during train-

ing. While the results on the second (L10) and the third dense

layer (L11) are better for the known speakers, the results on

the first dense layer (L7) reach similar results for both known

and unknown cases, indicating that convolutional layers are

really less adapted to the particular identity of a speaker.

3.4. Training on a more suitable task for more epochs to

reach state of the art

Overall, the best networks (Adadelta 20K-30K) achieve a

MR of 0.00 and 0.05 for Nc = 20 and Nc = 40 speakers,

respectively. This improves the results from [9] on the clus-

tering set of 20 speakers by 10 percentage points and matches

those of 40 speakers. We account this to the fact that training

a network by learning distances between snippets corresponds

closer to the actual clustering task than training on a surrogate

classification task. Therefore better results are achieved with

significantly less training data (100 vs. 590 speakers in the

training set) than in the previous work of [9].

Table 2. Estimates and 0.95 Wilson-Confidence intervalls of

MRs for our best-performing models

Method Nc = 20 40 80

Adadelta 20K 0+0.09
−0 0.05+0.10

−0.03 0.18+0.12
−0.05

Adadelta 30K 0.0+0.09
−0 0.05+0.10

−0.03 0.14+0.11
−0.05

CNN [9] 0.1+0.2
−0.06 0.05+0.10

−0.03 -

ν-SVM [3] - 0.06 -

GMM/MFCC [3] 0.0 0.13+0.15
−0.06 -

Tab. 2 gives a comparison of our best results (Adadelta

20K-30K) with other methods from the literature that use

the same experimental setup. Going beyond the state of the

art in clustering more than 40 speakers indicates that effec-

tive training happens even beyond the point of the leveling off

of the objective function: the Adadelta 30K network clearly

outperforms the one trained for only 20K mini-batches when

clustering 60 (not shown) or even 80 speakers. Regarding

computational performance, all methods except the ν-SVM

approach of [3] perform clustering ca. in real-time (after off-

line training).

4. CONCLUSIONS AND FUTURE WORK

This paper proposes to perform speaker clustering based on

embeddings extracted from the lowest dense layer of a CNN,

trained to learn a distance between speech snippets with re-

spect to voice equality using only binary pairwise constraints

(same/different speaker) on pre-training snippets. In terms of

misclassification rate, our approach is on par with the state

of the art in clustering performance for 40 speakers [9] and

20 speakers [3]. However, our model is more robust in the

sense that it (a) achieves this result with 83% less pre-training

data as compared to the other deep learning approach [9], and

(b) reaches state of the art consistently for both speaker set

sizes, with a single approach. It goes beyond the state of

the art in also clustering 60 and 80 speakers reasonably well

(MR = 0.13) on the TIMIT task, which to our best knowl-

edge has never been reported before.

Future work will investigate how to explicitly learn to

cluster speakers given only utterances and therefore develop

our approach to become an entirely end-to-end learning task

without a downstream agglomerative hierarchical clustering

process. On the short run, using an explicit embedding layer

as in [21] could grant better results. Also, the convolutional

filters of the network show many duplicates; therefore the

model could likely be improved by reducing the network size

or by reinitializing the duplicate filters throughout the train-

ing with noise. Finally, the effect of more diverse background

speaker data on the number of clusterable speakers seems

worth exploring.

5. REFERENCES

[1] Beigi, Fundamentals of speaker recognition, Springer

Science & Business Media, 2011.

[2] Anguera, Bozonnet, Evans, Fredouille, Friedland, and

Vinyals, “Speaker diarization: A review of recent re-

search,” IEEE Trans. ASLP, vol. 20, no. 2, pp. 356–370,

2012.

[3] Stadelmann and Freisleben, “Unfolding speaker clus-

tering potential: a biomimetic approach,” in Proc. ACM

Multimedia, 2009, pp. 185–194.

[4] Lee, Pham, Largman, and Ng, “Unsupervised fea-

ture learning for audio classification using convolutional

deep belief networks,” in Adv. NIPS, 2009, pp. 1096–

1104.

[5] Reynolds, “Speaker identification and verification using

gaussian mixture speaker models,” Speech Communica-

tion, vol. 17, no. 1, pp. 91–108, 1995.

[6] Bengio, Courville, and Vincent, “Representation learn-

ing: A review and new perspectives,” IEEE Trans.

PAMI, vol. 35, no. 8, pp. 1798–1828, 2013.

[7] LeCun, Bengio, and Hinton, “Deep learning,” Nature,

vol. 521, no. 7553, pp. 436–444, 2015.

[8] Yu and Deng, Automatic Speech Recognition, Springer,

2012.

[9] Lukic, Vogt, Dürr, and Stadelmann, “Speaker identi-

fication and clustering using convolutional neural net-

works,” in Proc. IEEE MLSP, 2016, pp. 1–6.

[10] Schmidhuber, “Deep learning in neural networks: An

overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[11] Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan,

Vanhoucke, and Rabinovich, “Going deeper with con-

volutions,” in Proc. IEEE CVPR, 2015, pp. 1–9.

[12] Krizhevsky, Sutskever, and Hinton, “Imagenet classifi-

cation with deep convolutional neural networks,” in Adv.

NIPS, 2012, pp. 1097–1105.

[13] LeCun and Bengio, “Convolutional networks for im-

ages, speech, and time series,” The handbook of brain

theory and neural networks, vol. 3361, no. 10, pp. 1995,

1995.

[14] van den Oord, Dieleman, Zen, Simonyan, Vinyals,

Graves, Kalchbrenner, Senior, and Kavukcuoglu,

“Wavenet: A generative model for raw audio,” CoRR,

vol. abs/1609.03499, 2016.

[15] Salamon and Bello, “Deep convolutional neural net-

works and data augmentation for environmental sound

classification,” IEEE Signal Processing Letters, vol. 24,

no. 3, pp. 279–283, 2017.

[16] Milner and Hain, “Dnn-based speaker clustering for

speaker diarisation,” in Proc. Interspeech, 2016, pp.

2185–2189.

[17] McLaren, Lei, Scheffer, and Ferrer, “Application of

convolutional neural networks to speaker recognition in

noisy conditions.,” in Proc. INTERSPEECH, 2014, pp.

686–690.

[18] Sell, Garcia-Romero, and McCree, “Speaker diarization

with i-vectors from dnn senone posteriors,” in Proc. In-

terspeech, 2015, pp. 3096–3099.

[19] Chen and Salman, “Learning speaker-specific charac-

teristics with a deep neural architecture,” IEEE Trans.

Neural Networks, vol. 22, no. 11, pp. 1744–1756, 2011.

[20] Yella, Stolcke, and Slaney, “Artificial neural network

features for speaker diarization,” in IEEE SLT Work-

shop. IEEE, 2014, pp. 402–406.

[21] Rouvier, Bousquet, and Favre, “Speaker diarization

through speaker embeddings,” in Proc. EUSIPCO.

IEEE, 2015, pp. 2082–2086.

[22] Hsu and Kira, “Neural network-based clustering us-

ing pairwise constraints,” CoRR, vol. abs/1511.06321,

2015.

[23] Hsu, Lv, and Kira, “Deep image category discovery

using a transferred similarity function,” CoRR, vol.

abs/1612.01253, 2016.

[24] Chen and Salman, “Extracting speaker-specific infor-

mation with a regularized siamese deep network,” in

Adv. NIPS, 2011, pp. 298–306.

[25] Kotti, Moschou, and Kotropoulos, “Speaker segmenta-

tion and clustering,” Signal Processing, vol. 88, no. 5,

pp. 1091–1124, 2008.

[26] Ioffe and Szegedy, “Batch normalization: Accelerat-

ing deep network training by reducing internal covariate

shift,” CoRR, vol. abs/1502.03167, 2015.

[27] van der Maaten and Hinton, “Visualizing data using t-

sne,” JMLR, vol. 9, no. Nov, pp. 2579–2605, 2008.

[28] Kingma and Ba, “Adam: A method for stochastic opti-

mization,” CoRR, vol. abs/1412.6980, 2014.

[29] Zeiler, “Adadelta: An adaptive learning rate method,”

CoRR, vol. abs/1212.5701, 2012.

