Learning Embeddings for Transitive Verb Disambiguation by Implicit Tensor Factorization

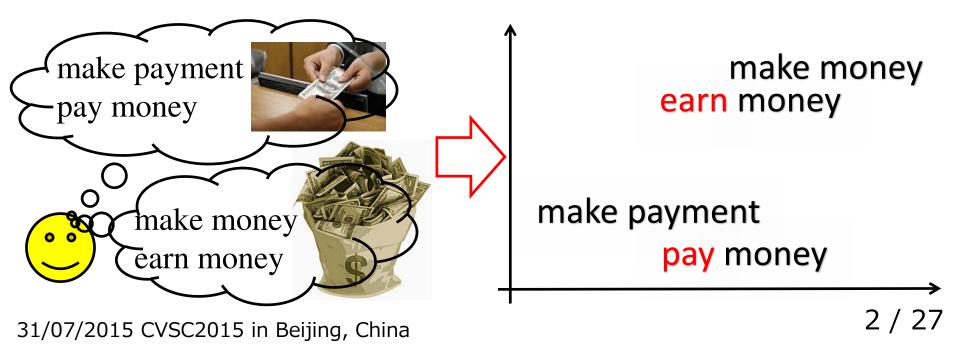
<u>Kazuma Hashimoto</u> Yoshimasa Tsuruoka

University of Tokyo

31/07/2015 CVSC2015 in Beijing, China

Composition: Words \rightarrow Phrases

- Composition models
 - Word embeddings \rightarrow phrase embeddings
- Transitive verbs are good test beds
 - Interaction with their arguments is important!
 - i.e., transitive verb sense disambiguation



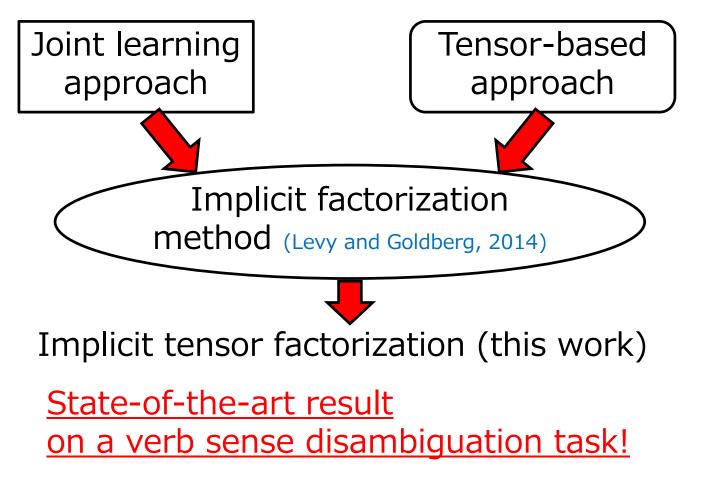
Embeddings of Transitive Verb Phrases

- Tensor-based approaches (Grefenstette et al., 2011; Van de Cruys et al., 2013; Milajevs et al., 2014)
 - Effective in transitive verb disambiguation
 - Composition functions
 - <u>Not learned</u>, but computed in postprocessing
- Joint learning approach (Hashimoto et al., 2014)
 - Word embeddings and composition functions
 - Jointly learned from scratch (*w/o word2vec*!)
 - Interaction between verbs and their arguments
 - Very weak

31/07/2015 CVSC2015 in Beijing, China

An Implicit Tensor Factorization Method

Bridging the gap between tensor-based and joint learning approaches



Today's Agenda

1. Introduction

2. Related Work

- Joint learning and tensor-based approaches
- 3. Learning Embeddings for Transitive Verb Phrases
 - The Role of Prepositional Adjuncts
 - Implicit Tensor Factorization
- 4. Experiments and Results
- 5. Summary

Approaches to Phrase Embeddings

- Element-wise addition/multiplication (Mitchell and Lapata, 2010) $- v(\text{sentnce}) = \sum_{i} v(w_i)$
- Recursive autoencoders
 - Using parse trees (Socher et al., 2011; Hermann and Blunsom, 2013)
 - -v(parent) = f(v(left child), v(right child))
- Tensor/matrix-based methods
 - v(adj noun) = M(adj)v(noun) (Baroni and Zamparelli, 2010)
 - $-M(\text{verb}) = \sum_{i,j} v(subj_i)^{\mathrm{T}} v(obj_j)$ (Grefenstette and Sadrzadeh, 2011)
 - $M(\text{subj, verb, obj}) = \{v(\text{subj})^T v(\text{obj})\} * M(\text{verb})$
 - $v(\text{subj}, \text{verb}, \text{obj}) = \{M(\text{verb})v(\text{obj})\} * v(\text{subj}) (Kartsaklis et al., verb) \}$

2012)

Which Word Embeddings are the Best?

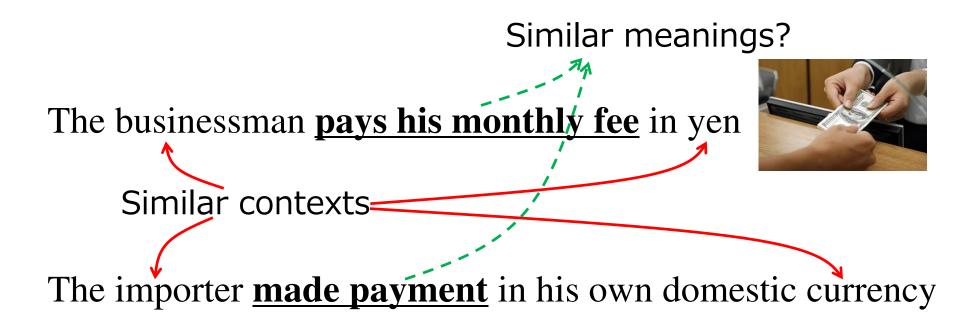
- Co-occurrence matrix + SVD, NMF, etc.
- C&W (Collobert and Weston, 2011)
- RNNLM (Mikolov et al., 2013)
- SkipGram/CBOW (Mikolov et al., 2013)
- vLBL/ivLBL (Mnih and Kavukcuoglu, 2013)
- Dependency-based SkipGram (Levy and Goldberg, 2014)
- Glove (Pennington et al., 2014)

Which word embeddings should we use for which composition methods?

31/07/2015 CVSC2015 in Beijing, China

Co-Occurrence Statistics of Phrases

- Word co-occurrence statistics \rightarrow word embeddings
- How about phrase embeddings?
 - Phrase co-occurrence statistics!

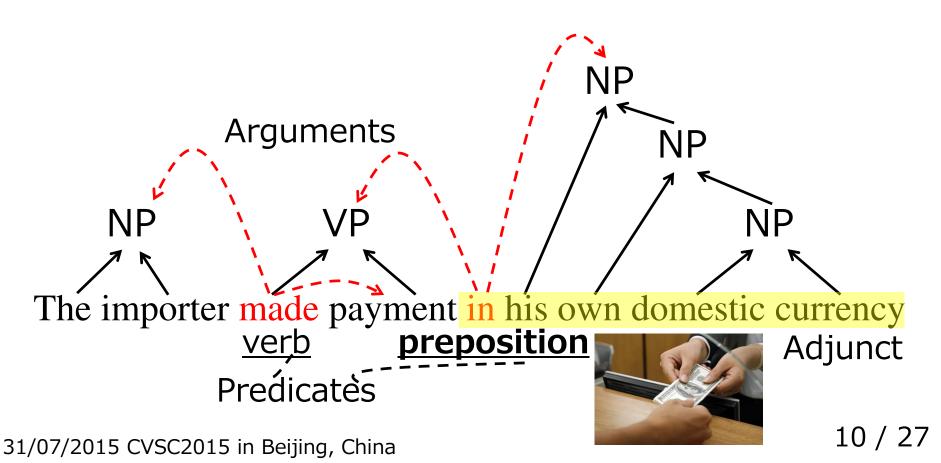


Today's Agenda

- 1. Introduction
- 2. Related Work
 - Joint learning and tensor-based approaches
- 3. Learning Embeddings for Transitive Verb Phrases
 The Role of Prepositional Adjuncts
 - Implicit Tensor Factorization
- 4. Experiments and Results
- 5. Summary

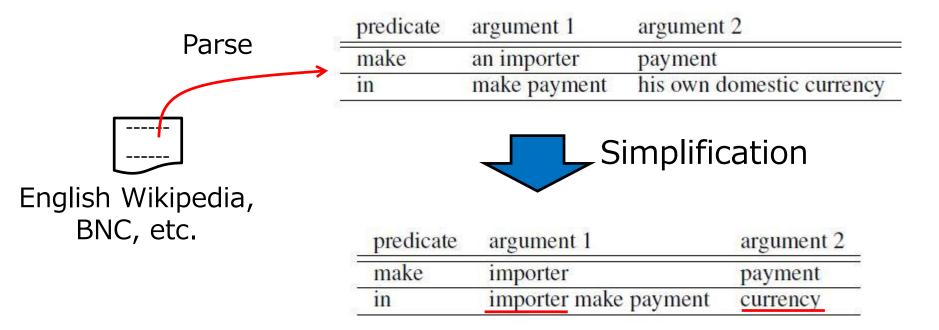
How to Identify Phrase-Word Relations?

- Using predicate-argument structures (Hashimoto et al., 2014)
 - Enju parser (Miyao et al., 2008)
 - Analyzes <u>relations between phrases and words</u>



Training Data from Large Corpora

- Focusing on the role of prepositional adjuncts
 - Prepositional adjuncts complement meanings of verb phrases → should be useful



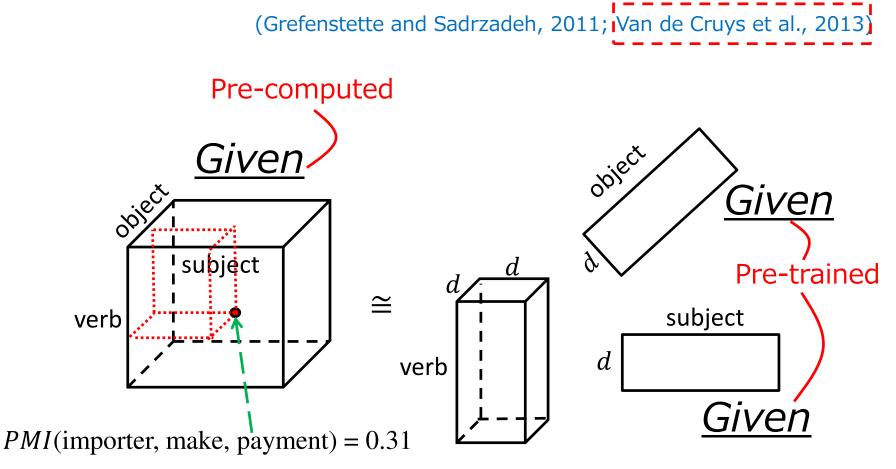
How to model the relationships between predicates and arguments?

Today's Agenda

- 1. Introduction
- 2. Related Work
 - Joint learning and tensor-based approaches
- 3. Learning Embeddings for Transitive Verb Phrases
 The Role of Prepositional Adjuncts
 - Implicit Tensor Factorization
- 4. Experiments and Results
- 5. Summary

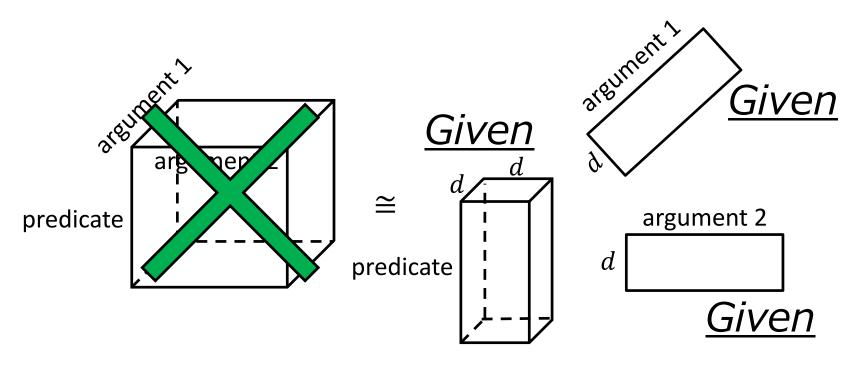
Tensor-Based Approaches

- Tensor/matrix-based approaches (Noun: vector)
 - Transitive verb: matrix



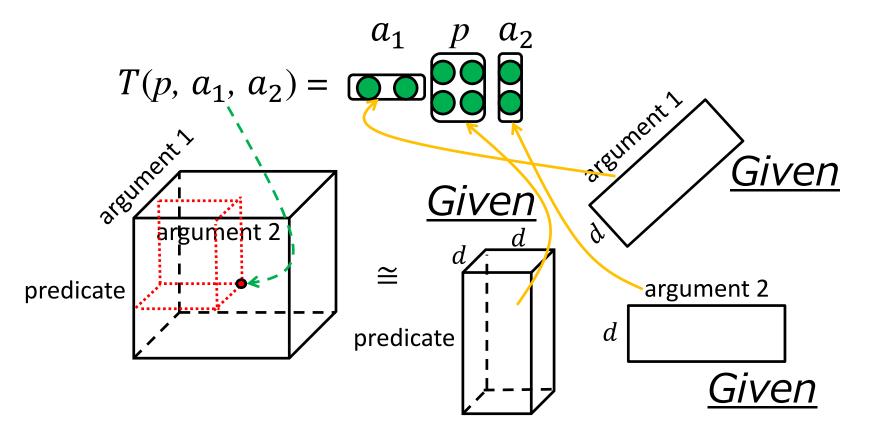
Implicit Tensor Factorization (1)

- Parameterizing
 - Predicate matrices and argument embeddings
 - Similar to an implicit matrix factorization method for learning word embeddings (Levy and Goldberg, 2014)



Implicit Tensor Factorization (2)

- Calculating plausibility scores
 - Using predicate matrices & argument embeddings



Implicit Tensor Factorization (3)

- Learning model parameters
 - Using plausibility judgment task
 - Observed tuple: (p, a_1, a_2)
 - Collapsed tuples: (p', a_1 , a_2), (p, a_1' , a_2), (p, a_1 , a_2')

- Negative sampling (Mikolov et al., 2013)

Cost function

Larger Smaller

$$-\log \sigma(T(p, a_1, a_2)) - \log(1 - \sigma(T(p', a_1, a_2)))$$

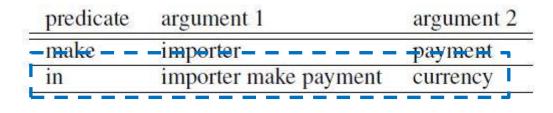
 $-\log(1 - \sigma(T(p, a_1', a_2)))$
 $-\log(1 - \sigma(T(p, a_1, a_2)))$

31/07/2015 CVSC2015 in Beijing, China

16 / 27

Example

• Discriminating between observed and collapsed ones



 $(p, a_1, a_2) = (in, importer make payment, currency)$ $(p', a_1, a_2) = (on, importer make payment, currency)$ $(p, a_1', a_2) = (in, child eat pizza, currency)$ $(p, a_1, a_2) = (in, importer make payment,$ *furniture*)Smaller Larger $-\log \sigma(T(p, a_1, a_2)) - \log(1 - \sigma(T(p', a_1, a_2)))$ $-\log(1 - \sigma(T(p, a_1', a_2)))$ $-\log(1 - \sigma(T(p, a_1, a_2')))$

17 / 27

31/07/2015 CVSC2015 in Beijing, China

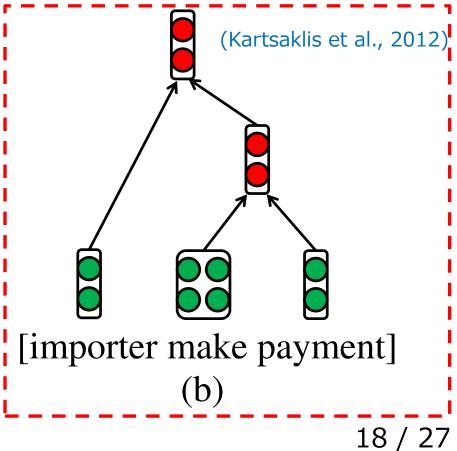
How to Compute SVO Embeddings?

- Two methods:
 - (a) assigning a vector to each SVO tuple
 - (b) composing SVO embeddings

- Parameterized matrices
- Parameterized vectors
- Composed vectors

[importer make payment] (a)

31/07/2015 CVSC2015 in Beijing, China



Today's Agenda

- 1. Introduction
- 2. Related Work
 - Joint learning and tensor-based approaches
- 3. Learning Embeddings for Transitive Verb Phrases
 The Role of Prepositional Adjuncts
 - Implicit Tensor Factorization
- 4. Experiments and Results
- 5. Summary

Experimental Settings

- Training corpus (English Wikipedia)
 - SVO data: 23.6 million instances
 - SVO-preposition-noun data: 17.3 million instances
- Parameter initialization
 - Random values
- Optimization
 - Mini-batch AdaGrad (Duchi et al., 2011)
- Embedding dimensionality
 - 50

How do we tune the parameters? For more details, please come to see the poster session!

Examples of Learned SVO Embeddings

• Composing SVO embeddings

	Nearest neighbor verb-object phrases
make money	make cash, make dollar, make profit, earn baht, earn pound, earn billion
make payment	make loan, make repayment, pay fine, pay amount, pay surcharge, pay reimbursement
make use (of)	use number, use concept, use approach, use method, use model, use one

Capturing the changes of the meaning of "make"

Multiple Meanings in Verb Matrices

• The learned verb matrices capture multiple meanings

verb		nearest neighbors	
run	27th col.	operate, execute, insert, hold, grid, produce, add, assume, manage, render	– Different usage
	34th row	release, operate, create, override, govern, oversee, distribute, host, organize	
	all	operate, start, manage, own, launch, continue, establish, open, maintain	Mixed (Similar to word embeddings)
encode	28th row	denature, transfect, phosphorylate, polymerize, subtend, acid	_
	39th row	format, store, decode, embed, concatenate, encrypt, memorize	
	all	concatenate, permute, phosphorylate, quantize, composite, transfect, transduce	

Verb Sense Disambiguation Task

- Measuring semantic similarities of verb pairs taking the same subjects and objects (Grefenstette and Sadrzadeh, 2011)
 - Evaluation: Speaman's rank correlation between similarity scores and human ratings

Verb pair with subj&obj	Human rating
student write name student spell name	7
child show sign child express sign	6
system meet criterion system visit criterion	1

Results

State-of-the-art results on the disambiguation task
 – Prepositional adjuncts improve the results

Method	Spearman' s rank correlation score
This work (only verb data)	0.480
This work (verb and <i>preposition</i> data)	0.614
Tensor-based approach (Milajevs et al., 2014)	0.456
Joint learning approach (Hashimoto et al., 2014)	0.422

Т

For more details, please come to see the poster session!

Today's Agenda

- 1. Introduction
- 2. Related Work
 - Joint learning and tensor-based approaches
- 3. Learning Embeddings for Transitive Verb Phrases
 - The Role of Prepositional Adjuncts
 - Implicit Tensor Factorization
- 4. Experiments and Results
- 5. Summary

Summary

- Word and phrase embeddings are jointly learned using large corpora parsed by syntactic parsers
 - Tensor-based method is suitable for verb sense disambiguation
 - Adjuncts are useful in learning verb phrases
- Future directions:
 - improving the embedding methods
 - applying them to real-world NLP applications
 - What kind of information should be captured?