
The College of Wooster Libraries

Open Works

Senior Independent Study Theses

2015

Learning Emotions: A Software Engine for
Simulating Realistic Emotion in Artificial Agents
Douglas Code
The College of Wooster, dcode15@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

Part of the Artificial Intelligence and Robotics Commons, Computational Neuroscience
Commons, and the Theory and Algorithms Commons

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted

for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact

openworks@wooster.edu.

© Copyright 2015 Douglas Code

Recommended Citation
Code, Douglas, "Learning Emotions: A Software Engine for Simulating Realistic Emotion in Artificial Agents" (2015). Senior
Independent Study Theses. Paper 6543.

https://openworks.wooster.edu/independentstudy/6543

https://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/58?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/58?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/6543?utm_source=openworks.wooster.edu%2Findependentstudy%2F6543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/6543
mailto:openworks@wooster.edu


Learning Emotions: A
Software Engine for
Simulating Realistic

Emotion in Artificial Agents

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree B.A. of Computer Science in the

Department of Mathematics and Computer Science at The
College of Wooster

by
Douglas Code

The College of Wooster
2015

Advised by:

Dr. Denise Byrnes (Computer Science)





c© 2015 by Douglas Code



Abstract

This paper outlines a software framework for the simulation of dynamic emotions

in simulated agents. This framework acts as a domain-independent, black-box

solution for giving actors in games or simulations realistic emotional reactions

to events. The emotion management engine provided by the framework uses a

modified Fuzzy Logic Adaptive Model of Emotions (FLAME) model, which lets

it manage both appraisal of events in relation to an individual’s emotional state,

and learning mechanisms through which an individual’s emotional responses to a

particular event or object can change over time. In addition to the FLAME model,

the engine draws on the design of the GAMYGDALA emotional engine for games.

Evaluations of the model’s behavior over a set of test cases are performed, with a

discussion of the model’s efficacy in different situations.

iii



Acknowledgments

I would like to thank Dr. Byrnes for her help and support through not only the

Independent Study process, but also through my entire time as a student at the

College of Wooster. I would also like to thank Timothy Duhon for acting as a

sounding board for many of my ideas, and Rachel Schwartz for her encouragement

and unwavering support.

iv



Vita

Fields of Study Major field: Computer Science

Minor field: Mathematics

Minor field: English

Specialization: Artificial Intelligence

v



Contents

Abstract iii

Acknowledgments iv

Vita v

Contents vi

List of Figures viii

List of Tables x

List of Listings xi

CHAPTER PAGE

1 Introduction 1
1.1 Simulating Emotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Related Models 16
3.1 OCC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 EMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 WASABI Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 TABASCO Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 GAMYGDALA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 FLAME Model 32
4.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Event Appraisal Models . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 FLAME Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Desirability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Appraising Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Filtering Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Determining Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8.1 Classical Conditioning . . . . . . . . . . . . . . . . . . . . . . . 44

vi



4.8.2 Event Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8.3 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8.4 Social Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Model Design and Implementation 51
5.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Emotional Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Testing and Results 60
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX PAGE

A Software Manual 66

References 76

vii



List of Figures

Figure Page

2.1 Structure of a fuzzy logic system (Zeynep 2006). . . . . . . . . . . . . 7
2.2 Fuzzy sets representing cold, cool, warm, and hot temperatures . . . 7
2.3 Warm AND Cool (A ∩ B). . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Warm OR Cool (A ∪ B). . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Fuzzy output sets clipped according to their membership values. . . 10
2.6 Three rooms that an agent can move between along connecting lines. 11
2.7 Set of rooms with reward in room 5. . . . . . . . . . . . . . . . . . . . 12

3.1 The OCC Model [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The EMA Model [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The TABASCO Architecture [14]. . . . . . . . . . . . . . . . . . . . . . 24

4.1 The emotional component of the FLAME model [5]. . . . . . . . . . . 36

5.1 High-level overview of FLAME model. [5] . . . . . . . . . . . . . . . 51
5.2 Fuzzy system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Centroid estimation using a representative triangle [6]. . . . . . . . . 54
5.4 Full engine architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Model visualization and user interface. . . . . . . . . . . . . . . . . . . 59

A.1 Visualization control menu. . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Agent addition controls. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Agent goal controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.4 Event addition controls. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.5 Event triggering controls. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.6 Motivational state controls. . . . . . . . . . . . . . . . . . . . . . . . . 69
A.7 Agent standards controls. . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.8 Object introduction controls. . . . . . . . . . . . . . . . . . . . . . . . . 71
A.9 Decay controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.10 Information display controls. . . . . . . . . . . . . . . . . . . . . . . . 72
A.11 "Emotions" information display. . . . . . . . . . . . . . . . . . . . . . . 73
A.12 "Goals" information display . . . . . . . . . . . . . . . . . . . . . . . . 73
A.13 "Events" information display . . . . . . . . . . . . . . . . . . . . . . . . 74
A.14 "Motivations" information display . . . . . . . . . . . . . . . . . . . . 74

viii



A.15 "Associations" information display . . . . . . . . . . . . . . . . . . . . 75

ix



List of Tables

Table Page

2.1 Initial Q-Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Updated Q-Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Primary emotions and their PAD values [2]. . . . . . . . . . . . . . . . 22
3.2 Goals in the GAMYGDALA Engine [11]. . . . . . . . . . . . . . . . . . 26
3.3 Goals in the GAMYGDALA Engine [11]. . . . . . . . . . . . . . . . . . 27

4.1 Emotional states produced through appraisal of desirability and
expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Fundamental emotions and the situations from which they arise
(El-Nasr et al., 2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Equations for intensity of expectation and desirability-dependent
emotions. (El-Nasr et al., 2000). . . . . . . . . . . . . . . . . . . . . . . 40

x



List of Listings

Listing Page

3.1 Code to incorporate GAMYGDALA engine into modeling a black-
smith in a role-playing game [11] . . . . . . . . . . . . . . . . . . . . . 30

6.1 Test of appraisal system and social standards. . . . . . . . . . . . . . . 60
6.2 Test of motivational states and classical conditioning. . . . . . . . . . 61
6.3 Test of learning mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



CHAPTER 1
Introduction

In "Affective Computing," [10] Rosalind Picard writes,

Most adults know that too much emotion can wreak havoc on reasoning,

but less known is the recent evidence that too little emotion can also

wreak havoc on reasoning. Years of studies on patients with frontal-lobe

disorders indicate that impaired ability to feel yields impaired ability to

make decisions; in other words, there is no "pure reason." Emotions are

vital for us to function as rational decision-making human beings.

Picard’s insights into the importance of emotion in computing spawned Affective

Computing, a field of Computer Science that has grown quickly with improvements

in hardware and research into intelligent algorithms. Machines that can interpret

and express emotions have applications from robotics, where behaviors can be

chosen based on the perceived emotions of nearby humans, to tutoring software,

where algorithms to detect emotions in a student’s voice or face can adjust lessons

to respond to frustration or confusion.

1



1. Introduction 2

1.1 Simulating Emotion

While a large portion of the research performed on affective computing focuses

on reading and interpreting human emotions through various sensors, another

component of the field is devoted to realistically giving computers and simulated

agents the capacity to act emotionally. With voice recognition software systems like

Google’s Google Now, Apple’s Siri, and Microsoft’s Cortana, many people interact

with software in an increasingly human, conversational way. As these technologies

grow more complex and powerful, the depth of these interactions only increases. A

key part of creating computational systems that are easy to engage and interact with

on a social level is the simulation of emotion. As Picard points out, not only are

emotions a meaningful component of the human condition, they are essential for

decision making in situations where all information relevant to the decision cannot

possibly be known.

Two areas where human interactions are frequently modeled are the social

sciences and gaming. Economic and sociological models frequently rely on attempts

to predict the behavior of humans, a difficult or impossible task without accounting

for emotional responses to events. Many software suites exist for creating agent-

based models (Repast, MASS), and the incorporation of frameworks that enable the

simulation of emotion in artificial agents would provide powerful tools for creating

models and simulations with greater depth and realism.

In a different domain, video games frequently incorporate large numbers of

non-player characters (NPCs). Games increasingly focus on open-world gameplay,

where players are free to move around large worlds as they please. These games

typically seek to create immersive environments that feel real and living to the player.

A key aspect of this realism is programming the game’s NPCs to behave realistically.

However, these behaviors are often scripted ahead of the time, relying on simple

event triggers to initiate a corresponding behavior. By simulating emotion in NPCs



1. Introduction 3

rather than relying on scripted events, game creators can create more dynamic

human ecosystems where emotion acts as an intermediary between the event and

the behavior. In this way, an event triggers emotion, and behavior arises from that

emotion. This allows for more immersive and engaging in-game interactions, as

NPCs can respond dynamically to the events around them and the actions and

emotions of surrounding NPCs.

1.2 Research Goals

The primary goal of this research is to design and implement a software framework

for modeling emotion in artificial agents. A survey of computational models of

emotion is provided, looking at the Ortony, Clore and Collins (OCC) model [9] that

was the basis for many of the compuational models of emotion that followed, as

well as the TABASCO architecture [14], the WASABI model [2], the EMA model

for appraisal [8], and the FLAME model [5]. Particular attention is given to the

FLAME model and its use of fuzzy sets to represent emotion, and fuzzy rules to

map emotions to behaviors. The FLAME model acts as the basis for the developed

software framework, as it extends existing systems with mechanisms for learning

and classical conditioning.

An existing system, GAMYGDALA [11], is also examined. GAMYGDALA is

an emotional engine for games, providing a software framework that is genre-

independent for incorporating realistic emotions into NPCs. The engine was

designed based on research in psychology and neuroscience, with ease of use,

generalizability, and resource-efficiency in mind as key heuristics for success.

This research and the accompanying software use GAMYGDALA as a key

starting point for emotion engine design, and attempts to extend the work of

Popescu et al to incorporate elements of the computational models above. In



1. Introduction 4

particular, this research proposes a modification of the GAMYGDALA engine that

makes use of the fuzzy logic, classical conditioning, and learning mechanisms

proposed by Nasr et al. in their FLAME model.



CHAPTER 2
Theoretical Components

2.1 Fuzzy Logic and Set Theory

In classical logic and set theory, any given proposition falls into one of two truth

values: true or false. Systems like this, where there are exactly two truth values, are

called bivalent [3]. In a bivalent system, an object can only either belong to a set or

not belong to a set. For example, the number 3 belongs to the set of real numbers,

and as such, the statement "3 is a real number" evaluates to true. While classical

logic has broad applications in mathematics, it fails to appropriately represent

systems where propositions can be partially true. Such situations frequently occur

in evaluations of objects and their states, as well as in the semantics of human

language [7]. The statement, "The shirt is red," does not necessarily evaluate directly

to a result of true or false, as shirts can be "reddish" or "very red."

To accommodate this partial truth, fuzzy logic can be used. Where classical

logic could only evaluate to true or not true in regards to membership in a set,

fuzzy logic allows evaluation to values representing differing intermediate states of

truth. These values typically fall somewhere on the interval [0,1], with fuzzy sets

occupying different spaces within this interval. In this case, the shirt may have a

5



2. Theory 6

truth value of 0.9, indicating that the shirt is very red, while a shirt whose truth

value is 0.65 would also be considered red, but less-so than the shirt whose truth

value was 0.9. This "truth-value" can be interpreted as the degree to which the object

in the proposition belongs to the proposed set [3].

Formally, the distinction between classical and fuzzy sets can be shown through

their functional mappings. A classical set is the function:

A : U→ 0, 1 (2.1)

for A(x), where x is some element of the universal set, U, and evaluates to either 0

or 1. In contrast, a fuzzy set is the function:

B : U→ [0, 1] (2.2)

for B(x), where x, some element of the universal set, U, evaluates to some value

in the range 0 to 1, inclusive. Here B(x) acts as the truth value, representing the

degree of x’s membership within set B. The fundamental difference between the

two functions is that A(x) can only take the values 0 and 1, while B(x) can take any

continuous value within that range [3].

Figure 2.1 shows the structure of a fuzzy logic system. Inputs are crisp values

that are then fuzzified according to defined fuzzy sets. These fuzzified inputs are

then passed through an inference engine that uses AND and OR rules to determine

fuzzy values for each rule. These rules are then combined to create a fuzzy output

set that maps a fuzzy to each defined output of the system. Finally, these fuzzy

outputs are defuzzified to get a single crisp value for each output.



2. Theory 7

Figure 2.1: Structure of a fuzzy logic system (Zeynep 2006).

Figure 2.2 gives a visual representation of the membership functions for fuzzy

temperature classification sets defined for temperature inputs on the range [0, 100].

As shown by the graph, input values can belong to multiple fuzzy sets at once.

For example, the temperature input of 50 degrees belongs to both the "Cool" and

"Warm" fuzzy sets with a membership value of 0.5 for each.

Figure 2.2: Fuzzy sets representing cold, cool, warm, and hot temperatures

After membership functions over the input are used to convert a crisp input

value to one or more fuzzy values, the fuzzy input set is run through a set of rules

to map the inputs to an output. Fuzzy rules use AND and OR operators on fuzzy

sets in the following form (assuming there are three output sets: low, medium, and

high):



2. Theory 8

If Temp is Cold OR Hot, then Action is High

If Temp is Cool AND Occupied is Low then Action is Low

If Temp is Cool AND Occupied is High then Action is Medium

If Temp is Warm AND Occupied is Low then Action is Low

If Temp is Warm AND Occupied is High then Action is Medium

Here a second input variable, "Occupied", is introduced. The inference engine

lets any number of input variables be mapped to any number of output variables.

In this case, the two input variables, "Temp" and "Occupied", are mapped to a single

output variable, "Action". Lofti Zadeh, the creator of fuzzy logic [16], defines AND

(intersection) and OR (union) as follows:

C = A ∩ B (2.3)

fc(x) = min[ fa(x), fb(x)] (2.4)

Figure 2.3: Warm AND Cool (A ∩ B).

D = A ∪ B (2.5)

fd(x) = max[ fa(x), fb(x)] (2.6)



2. Theory 9

Figure 2.4: Warm OR Cool (A ∪ B).

With these definitions, a fuzzy value for each rule can be calculated. If we

assume that the crisp temperature input had a membership in the "Warm" set of 0.5

and the crisp "Occupied" input had a membership in the "Low" set of 0.3, the fuzzy

value for the rule

If Temp is Warm AND Occupied is Low then Action is Low

can be calculated by taking the maximum (AND) of these two values (0.5). This

maps a "truth" value of 0.5 to the "Low" output set.

Returning to the rules listed above, there are multiple rules mapping to a single

output example. The resulting values for these rules must be combined into a

single fuzzy value for each output so that there are not multiple membership values

for a single ouput set. There are a number of methods for doing this involving

summations and normalization. For this work, the combined value is the maximum

value of all rules mapping to the output in question. For example, if the calculated

value for the rule:

If Temp is Warm AND Occupied is Low then Action is Low

is 0.5, and the calculated value for the rule:

If Temp is Cool AND Occupied is Low then Action is Low



2. Theory 10

is 0.3, the final fuzzy output membership mapped to the "Low" output set is 0.5.

Once the fuzzy input sets are mapped to fuzzy output sets by the inference

engines, the membership values for each fuzzy output set must be combined into

a single, crisp output value for the output variable. This is achieved through

defuzzification. In this paper, centroid defuzzificcation is used. Under centroid

defuzzification, membership sets are "clipped" at the height corresponding to the

fuzzy output value for that set. Figure 2.5 shows the result of this process in red for

a mapping that resulted in a value of 0.7 for the "Medium" output set and 0.3 for the

"Low" output set.

Figure 2.5: Fuzzy output sets clipped according to their membership values.

The center of mass for the determined area is then calculated using the function

[5]):

y f inal =

∫

µcombined(y)ydy
∫

µcombined(y)dy
(2.7)

where µcombined(y) is the new, combined membership function (outlining the red

region in Figure 2.5). This calculation defuzzifies the fuzzy output sets, resulting in

a final, crisp value for the output variable.



2. Theory 11

2.2 Q-Learning

Q-learning is a machine learning technique for learning about the rewards of actions

or sequences of actions. In particular, it lets an agent learn about systems where the

reward for an action may be delayed from the execution of the action. This handles

situations where actions can improve the agent’s likelihood of receiving a reward

after subsequent actions. For example, Figure 2.6 shows three connected rooms,

numbered 1-3.

Figure 2.6: Three rooms that an agent can move between along connecting lines.

If an agent is in room 1, and will be rewarded for entering room 3, it is

advantageous for the agent to move to room 2, as this will allow it access to room 3.

However, there is no immediate reward for entering room 2, presenting the problem

of creating a positive association between the agent and the movement from room

one to two. Q-learning uses a state-action matrix to associate rewards with the

steps that led up to them, with the association decaying as the steps become further

removed from the reward.

Q-learning relies on a recursive maximization function oriented towards max-

imizing the Q-value of the next action taken, where the Q-value is a measure

of the expected reward for the action given the individual’s current state. The

maximization function is as follows [15]:

Q(s, a) = r(s, a) + γmaxa′(Q(s′, a′)) (2.8)



2. Theory 12

Where Q(s, a) is the Q-value for a state-action pair, r(s, a) is the immediate reward

for a state-action pair, and Q(s′, a′) is the Q-value of a state-action pair following

the current action. γ is a decay constant, 0 ≤ γ ≤ 1, that determines how much

the rewards of subsequent actions determine the Q-value of a current action. For

example, if γ = 0.1, the Q-value of moving into room 2 from room 1 will be less

influenced by the reward in room 3 than if γ = 0.8.

The fundamental algorithm behind Q-learning is:

• Choose an action

• Receive a reward (or no reward) for the action

• Determine the Q-value of new state

• Update previous state using equation 2.3

To illustrate how Q-learning works, a short example is provided. The example

operates on the set of rooms shown in Figure 2.7.

Figure 2.7: Set of rooms with reward in room 5.

Each room can be considered to be a state, and the movement between rooms

can be considered an action. For example the state-action pair for being in room 1



2. Theory 13

and moving to room two would be (1, move2). For the example, the reward value

of entering room 5 is 100 and the γ value is 0.5.

The algorithm starts with the individual having an empty matrix of Q values, as

they have no previous examples from which to learn. Table 2.1 shows the initial

matrix.

move1 move2 move3 move4 move5

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

Table 2.1: Initial Q-Values.

The individual’s starting position is randomly assigned as room 2. From here the

individual has three possible actions: move1, move3, and move4. Say the individual

chooses to move to room 4. The Q-value for the state-action pair (2, move4) can

now be updated using equation 2.3:

Q(s, a) = r(s, a) + γmaxa′(Q(s′, a′)) (2.9)

Q(2,move4) = r(2,move4) + 0.5 ∗max(Q(4,move2),Q(4,move5)) (2.10)

Q(2,move4) = 0 + 0.5 ∗max(0, 0) = 0 (2.11)

Since the Q-value of (2, move4) is already 0, nothing needs to be updated. The

updated state of the individual is now 4, giving the actions move2 and move5 as

options. If we choose move5, the Q-value for (4, move5) is calculated as follows:



2. Theory 14

Q(4,move5) = r(4,move5) + 0.5 ∗max(Q(5,move4)) (2.12)

Q(4,move5) = 100 + 0.5 ∗max(0) = 100 (2.13)

The matrix can now be updated with the new value for Q(4, move5), as seen in

Table 2.2.

move1 move2 move3 move4 move5

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 100

5 0 0 0 0 0

Table 2.2: Updated Q-Values.

Now that the goal has been reached, the algorithm can be started again with

the updated Q(s, a) matrix. Let us once again place the individual in room 2 as the

starting room. Our individual, again, chooses to move to room 4. Using equation

2.3, Q(2,move4) is calculated.

Q(2,move4) = r(2,move4) + 0.5 ∗max(Q(4,move2),Q(4,move5)) (2.14)

Q(2,move4) = 0 + 0.5 ∗max(0, 100) = 50 (2.15)

Thus, Q(2, move4) can now be updated to 50 in the matrix. Here, the individual

has learned that there is some value in moving from room 2 to 4, as this sets up a

subsequent action that is rewarded, even though the move from 2 to 4 itself has no

reward.



2. Theory 15

Q-learning’s domain-independence ability to learn about sequences of events

make it useful for modeling emotion, where emotional behaviors are often influ-

enced by an understanding of the results of chains of events following an action.

Given enough iterations, the individual’s Q-values converge to those optimal for

determining actions to take to achieve its goals in a deterministic setting. One issue

presented by the algorithm in the context of emotional modeling is that models

of environments and interacting actors and users are non-deterministic, so the

guarantee of convergence no longer holds [5]. Ways of addressing this are discussed

later in section 4.8.2.



CHAPTER 3
RelatedModels

This section covers three models of emotion: the Ortony, Clore, Collins (OCC)

Model, the WASABI Architecture, and the TABASCO Architecture. The discussion

of these models is intended to give insight into the state and breadth of models of

emotion, as well as illustrating the fundamental ideas behind the FLAME Model

that was used in this project. Following the discussion of these three models, the

GAMYGDALA Emotional Engine is described. GAMYGDALA is an emotional

modeling engine built for use in game development, and serves as an important

inspiration for design decisions when working on implementing a computational

model of emotion.

3.1 The OCC Model

The Ortony, Clore, Collins (OCC) cognitive model of emotions [9] forms the basis

for many of the dominant cognitive and computational models of emotion. In

particular, the GAMYGDALA engine (section 3.4) and the FLAME Model (Chapter

4) are based on the ideas put forth by Ortony et al.

Many predecessors to the OCC Model argued for a basic set of emotions that

form all other emotions through combination. OCC differed from these models

16



3. Related Models 17

by suggesting that there is no clear basic set of emotions. Instead, the OCC Model

describes emotions as responses to the surrounding world that can be differentiated

using variables [1]. Ortony et al. suggest that positive/negative is the most

basic spectrum by which emotions can be differentiated, with other variables like

expectedness and agent responsibility allowing more complex differentiation. From

this approach arises the set of appraisal-based models of emotion. Appraisal-based

models describe emotions as the results of "appraisals" of one’s environment using

a set of variables. For example, a simple emotion differentiation may use only two

variables: desirability and expectation. In this model, the emotion disappointment

would be classified as the result of an expected, desirable event failing.

The OCC Model identifies three fundamental triggers for emotional changes:

events, agents, and objects. Responses to these triggers are correspondingly

determined by goals (events), agents (standards), and attitudes (objects)(Arbib,

1990).

Goals are divided into three subsets:

• Active Pursuit Goals (What an agent wants to achieve)

• Interest Goals (What an agent wants to happen, but does not personally feel

capable of strongly influencing)

• Replenishment goals (Goals that do not go away when they are achieved,

ex: Eating may achieve a goal of not starving, but it does not make the goal

disappear)

Goals are directly tied to events, as an event’s desirability is calculated by how an

event affects an agent’s goals, and to what extent.

Standards describe the social context within which the agent lives. These include

concepts like social norms and conventions, along with social expectations regarding

the role served by the agent. For example, a policeman may have different social



3. Related Models 18

expectations relating to their job than a teacher. Standards are directly tied to

reactions regarding other agents, as these interactions are capable of producing

emotions that rely on norms (shame, guilt, pride)[1].

Attitudes govern how an agent feels about objects independent of the agent’s

goals. This reflects the agent’s natural disposition towards objects in the surrounding

world. For example, an agent may dislike a particular style of furniture, even though

it has no justification for its dislike of the style, and regardless of whether the style

has any influence on one of the agent’s goals. Attitudes also allow for emotional

mechanisms like classical conditioning, a component of the FLAME Model discussed

in section 4.8.1.

Figure 3.1 shows the overall structure of the OCC model.

Figure 3.1: The OCC Model [9].



3. Related Models 19

This shows how the emotions resulting from the OCC Model are highly context-

dependent. The fundamental distinction of events, agents, and objects first deter-

mines the emotional options available, with further distinctions regarding context

allowing for greater variety and complexity of the appraised emotions. For example,

a reaction to an event with undesirable consequences for another agent can result in

gloating or pity, whereas a desirable event in the same situation can result in either

happiness for the other agent or resentment, based on the values of variables used

in the appraisal process.

3.2 EMA Model

Like the OCC Model, The EMA (EMotion and Adaptation) Model, proposed by

Marsella and Gratch [8] is rooted in appraisal theory. A number of prominent

emotional appraisal models from the early 2000s suggest that appraisal occurs in

two processes: fast, memory-based associations and inferences, and longer-term,

conscious reasoning. EMA proposes a less complicated single-process model

for appraisal, with appraisal itself occuring quickly and automatically, and the

representation of the world itself evolving over time [8].

Marsella and Gratch identify a set of core components they deem essential to

any appraisal model:

• Relevance, valence, and intensity: In order to assess events and their emo-

tional responses, an appraisal model must be able to account for the valence

(positive or negative effect) and intensity of results of actions or events.

• Future implications: To manage emotions that are dependent on future events,

appraisal models must provide mechanisms for reasoning about how likely

events are to occur and what the possible consequences of those events may

be.



3. Related Models 20

• Blame and responsibility: The cause of an event plays a crucial role in

appraisal, as events caused by one actor may warrant a drastically different

emotional response than events caused by another actor. As a result, appraisal

models must let the modeled individual assign blame or credit for external

events and actions.

• Power and coping potential: An individual’s feeling of power over a situation

significantly affects appraised emotions. For example, similar events may

elicit fear in an individual who feels powerless and anger in an individual

who feels like they have power over the results of those events. This means

that appraisal models must account for an individual’s feeling of power over

both the external world, and their own internal state.

• Coping strategies: Motivational states, like hunger and pain, can suppress

or enhance emotions and influence an individual’s internal representation of

the surrounding world. Methods for beliefs, desires, intentions, and plans to

change according to coping strategies let appraisal models account for this.

Figure 3.2 shows the overall structure of EMA. The Agent-Environment Relationship

represents the memory of the agent, constituted by the agent’s desires, plans, beliefs,

and perceived probabilities. Probabilities correspond to beliefs, representing the

certainty with which the individual holds the belief. Inferences about the world

coming from both events and changes to the Agent-Environment Relationship can

be mapped back into the Agent-Environment with appropriate modifications to the

agent’s memory.

Emotions that have been run through coping mechanisms can be mapped to

actions, with actions having two primary components: preconditions and effects.

Preconditions are the requirements that must be fulfilled before an action can be

carried out. For example, prior to entering a building, an agent will need to approach



3. Related Models 21

the doors of the building. Effects are the expected state changes occurring after the

execution of an action.

Figure 3.2: The EMA Model [8].

3.3 WASABI Architecture

The WASABI Architecture [2] is designed for accurately modeling emotional changes

and their resulting facial expressions, incorporating relevant research from motion

psychology, neurobiology, and developmental psychology. The architecture is

appraisal-based and relies on the PAD (Pleasure, Arousal, Dominance) Emotional

State Model to represent internal emotional states. The PAD model describes

emotional states as points in three dimensional space with the axes being pleasure

(how pleasant or unpleasant an emotion is), arousal (the emotion’s intensity), and

dominance (whether the emotion is dominant or submissive). For example, the

emotion annoyed has a PAD value of (-50, 0, 100) in the WASABI Architecture, as it



3. Related Models 22

is unpleasant (pleasure value of -50), of neutral intensity (arousal value of 0), and

dominant (dominance value of 100).

WASABI separates emotions into primary and secondary categories. Primary

emotions are defined as base emotional states that are intrinsic to being human.

They are triggered reflexively and quickly, with little conscious consideration

necessary. In contrast, secondary emotions are triggered consciously, arising from

evaluating events against goals and past experiences. The separation of primary and

secondary emotions makes WASABI capable of dealing with simulating emotion in

different ages, as children tend to express primary emotions with little inhibition [2].

Table 3.1 shows the primary emotions in the WASABI Architecture and their PAD

values. The secondary emotions for the model are taken from the "prospect-based"

emotions outlined in the OCC model. Out of the six emotions outlined by Ortony

et al., hope, fears-confirmed, and relief are modeled as secondary emotions in

WASABI.

Emotion PAD Value

Angry (80, 80, 100)
Annoyed (−50, 0, 100)
Bored (0,−80, 100)
Concentrated (0, 0,±100)
Depressed (0,−80,−100)
Fearful (−80, 80, 100)
Happy (80, 80,±100)
Sad (−50, 0,−100)
Surprised (10, 80,±100)

Table 3.1: Primary emotions and their PAD values [2].

WASABI determines which emotions to express through an awareness likelihood

function. The likelihood that an individual will become aware of an emotion and

express it is a function of the distance between the emotion’s PAD value (see Table

3.1) and the current emotional state of the individual. For example, given that the



3. Related Models 23

PAD value for angry is (80, 80, 100), if an individual’s PAD value is (70, 80, 100),

their likelihood of becoming aware of and expressing anger will be greater than if

their PAD value was (30, 80, 100).

Secondary emotions are triggered by the cognitive processes of the agent and

decay over time, always returning to a default intensity of zero unless further

events occur that retrigger a rise in the intensity of the secondary emotion [2]. In

contrast, primary emotions do not decay in intensity over time, as their likelihood

of expression is determined by the current PAD value’s distance from the defined

PAD value for the emotion.

Through the differentiation of primary and secondary emotional states, WASABI

creates "high" and "low" paths of emotion elicitation. The "low" path triggers

non-conscious appraisal and elicitation of primary emotions for situations where

emotions are intrinsically felt. For example, entering a peaceful place may trigger

pleasant emotions without conscious appraisal. The "high" path deals with conscious

appraisal, evaluating an event against the individual’s goals to determine an

appropriate emotional response [2].

3.4 TABASCO Architecture

The TABASCO Architecture [14] is an appraisal-based architecture rooted in reactive

planning. Reactive, or dynamic, planning is an action-planning paradigm that

focuses on real-time responses to events in the environment, allowing dynamic

planning in regards to external changes. Reactive planning systems perform an

evaluation for a particular moment in time, and decide on exactly one plan to

respond to the current external state.

TABASCO works with two systems: appraisal-based emotion generation, and



3. Related Models 24

action planning meant to cope with the results of the generated emotions. Figure

3.3 gives a broad overview of the architecture’s structure.

Figure 3.3: The TABASCO Architecture [14].

The Perception and Appraisal component of the model is divided into three

subcomponents: sensory, schematic, and conceptual. The sensory component deals

with immediate sensations and their pleasantness or unpleasantness. The schematic

component compares inputs against social and self-imposed schema for behavior.

The conceptual component works on the level of learned knowledge and beliefs

about the world, and how these beliefs affect the individual’s desires and intentions.

The sensory, schematic, and conceptual levels of the Perception and Appraisal

mechanism are mirrored in the motor, schematic, and conceptual levels of the Action

mechanism. In the Action mechanism, the motor level triggers physical expressions

of emotion (e.g. smiling), while the schematic and conceptual levels determine

long-term planning and coping methods for the individual based on the output of

the Appraisal Register [14].

The Appraisal Register acts as an intermediary between the Perception and

Appraisal component and the Action component, taking information from all three



3. Related Models 25

levels of the Perception and Appraisal component and using that information to

trigger different levels of the Action component. For example, the Appraisal Register

may first trigger a motor response to the emotional information it received from the

Perception and Appraisal component, then trigger the conceptual level to generate

a long-term planned response based on the conceptual information the Register

received [14].

The Action Monitoring component feeds information from the Action component

back into Perception and Appraisal. This lets the appraisal mechanism know

what actions have been attempted and respond accordingly, allowing for more

comprehensive appraisals. With the incorporation of Action Monitoring, the model

accomodates emotions that are triggered based on previous efforts to solve a problem

(like frustration and hopelessness).

3.5 GAMYGDALA Emotional Engine

GAMYGDALA [11] differs from OCC, TABASCO, and WASABI in that it is an

implementation of a software engine for emotion rather than a model. The stated

goal of GAMYGDALA is to make video games more interesting, entertaining,

and immersive by modeling emotion in non-player controlled (NPC) characters.

GAMYGDALA is a black-box engine rooted in the methods of appraisal described

by the OCC Model. It is intended to be similar in use to physics engines, in that

developers can incorporate the engine into their software and realistically simulate

emotion without needing a deep understanding of the mechanics of emotion. The

engine’s emotional output can then be used by the developer to change the look

of the character’s model or animation in response to their emotional state, or to

determine the behavior of the character based on their emotions. In their pursuit of



3. Related Models 26

an easy-to-use black-box emotional engine, Popescu et al. identify key heuristics

for the creation of an effective engine [11]:

• Psychological Grounding - The engine should be rooted in valid and tested

psychological research

• Modularity - The engine should be modular and easily incorporated into

larger pieces of software

• Efficiency - The engine should be able to operate quickly on a large enough

number of agents to be usable in its intended domain

• Ease of Use - Developers should be able to use the engine effectively in their

software without extensive knowledge of theories of emotion or appraisal

theory

The GAMYGDALA engine operates primarily on goals and beliefs. Goals are

defined as what an individual character wants to achieve or maintain. All goals

are annotated with a name, owner, and utility. Utility can take the value of -1 to 1

inclusive, with -1 indicating that the character does not want the goal to happen to

the greatest degree possible, and 1 indicating that the character wants the goal to

happen to the greatest degree possible. Table 3.2 shows example goals provided by

Popescu et al. and how they would be represented within the engine.

Owner Name Utility

Knight Kill Monster 1
Knight Self Die -1
Knight Princess Die -1
Knight Find Gold 0.5

Table 3.2: Goals in the GAMYGDALA Engine [11].



3. Related Models 27

In addition to goals, beliefs are an essential part of GAMYGDALA’s functions.

Beliefs are events that are represented with the essential information that GAMYG-

DALA needs to process them. The required pieces of information regarding an

event are: event name, likelihood, causal agent (can be left empty in a case where

no agent caused the event), and affected goals. Along with a listing of affected

goals, a congruence value is provided for each goal. Congruence values can take

the value -1 to 1 inclusive, and represent the effect the event has on the likelihood of

a goal being achieved. Table 3.3 shows two beliefs, the princess being attacked by a

monster, and a magic sword being found, and how these beliefs relate to the goals

in Table 3.2.

Princess Attacked Magic Sword Found

Likelihood 0.5 1
Causal Agent Monster Knight
Affected Goal (Congruence) Princess Die (0.8) Kill Monster (0.5)

Table 3.3: Goals in the GAMYGDALA Engine [11].

Goals and beliefs are used in the engine’s appraisal process to calculate desir-

ability and likelihood, the two primary appraisal variables used by the engine

to determine an emotional output. For a character, c, a goal, g, and a belief, b,

desirability is defined as

desirability(b, g, c) = congruence(b, g) ∗ utility(g) (3.1)

Similarly, the likelihood of a goal is defined as

likelihood(g) =
congruence(b, g) ∗ likelihood(b) + 1

2
(3.2)



3. Related Models 28

From the desirability of an event, likelihood of a goal, and change in likelihood of

a goal, an emotional response can be determined. The internal emotion definitions

described by Popescu et al. are as follows [11]:

• Hope: a desirable uncertain goal increases in likelihood of success or an

undesirable uncertain goal decreases in likelihood of success

• Fear: an undesirable uncertain goal increases in likelihood of success or a

desirable uncertain goal decreases in likelihood of success

• Joy: a desirable goal succeeds or an undesirable goal fails

• Distress: an undesirable goal succeeds or a desirable goal fails

• Satisfaction: a desirable goal was expected to succeed and it succeeds

• Fears Confirmed: an undesirable goal was expected to succeed and it succeeds

• Disappointment: a desirable goal was expected to succeed and it fails

• Relief: an undesirable goal was expected to succeed and it fails

In addition to internal emotions, a number of social emotions are modeled by

GAMYGDALA:

• Anger: an undesirable event is caused by another NPC

• Guilt: this NPC causes an undesirable event for a liked NPC

• Gratitude: a desirable event is caused by another NPC

• Gratification: this NPC causes a desirable event for a liked NPC

• Happy For: a desirable event happens to a liked NPC

• Pity: an undesirable event happens to a liked NPC



3. Related Models 29

• Gloating: an undesirable event happens to a disliked NPC

• Resentment: a desirable event happens to a disliked NPC

For social emotions, the extent to which one NPC "likes" another NPC is a

function of the net effect of all events caused by that NPC. For example, if NPC1

causes an event that is desirable to NPC2, the amount that NPC2 likes NPC1 will

increase.

Once an emotion is determined by appraisal, intensity can be calculated with

the following equation (for internal emotions):

intensity(e) = |desirability(b, g, sel f ) ∗ ∆Likelihood(g)| (3.3)

or, if it is a social emotion:

intensity(e) = |desirability(b, g, q , sel f ) ∗ ∆Likelihood(g) ∗ like(sel f , q)| (3.4)

where q is the other character, and like(sel f , q) is the numerical representation of how

much the character likes q.

Each NPC is given a set of default emotional states and social stances. These

default states can be used to incorporate a sense of personal history and personality

into the modeled characters. For example, a character who is supposed to have

a cheerful personality may have a default emotional state of joyful. Over time,

characters’ emotions and social stances decay towards their defaults [11]. As such,

a character with a default emotional state of joyful would return to that emotional

state over time in the absence of any new events that move their state back away

from joyful.

Popescu et al. found that GAMYGDALA was able to effectively model emotions

in a wide range of game genres, with the researchers writing implementations of



3. Related Models 30

Pac-Man, a generic role-playing game, a generic real-time strategy game, and a

generic first-person shooter game that used the GAMYGDALA engine to model

character emotions. To illustrate the API to the engine, Popescu et al. provide a

code snippet to illustrate the use of the engine, shown below.

1 EmoBrain brain = new EmoBrain ( )

2 brain . Goal ( " to l i v e " , 0 . 7 f )

3 brain . B e l i e f ( " provides house " , 1 f , " v i l l a g e " )

4 brain . Affec tsGoal ( " provides house " , " l i v e " , 1 f )

5 brain . Update ( )

6 brain . Goal ( " v i l l a g e destroyed " , −1f , " v i l l a g e " )

7 brain . B e l i e f ( " v i l l a g e i s unarmed " , 0 . 7 f )

8 brain . Affec tsGoal ( " v i l l a g e i s unarmed " , " v i l l a g e destroyed " ,

1 f )

9 brain . Update ( )

10 brain . B e l i e f ( " provide weapons " , 1 f , " s e l f " )

11 brain . Affec tsGoal ( " provide weapons " , " v i l l a g e destroyed " , −1)

12 brain . Update ( )

Listing 3.1: Code to incorporate GAMYGDALA engine into modeling a blacksmith in a
role-playing game [11]

Here a new brain is created for the blacksmith, and the blacksmith is given his first

goal, "to live," with a utility of 0.7. A belief then occurs, with the village providing

the blacksmith with a house. The congruence between the village providing a place

for the blacksmith to live and the blacksmith’s goal of living is set to 1. This creates

a positive feeling towards the village by the blacksmith, and triggers the emotion

gratitude on the brain’s update. A new goal is added to the blacksmith, giving him a

strong negative utility to the village being destroyed. A new belief occurs, where

the village is unarmed, with a likelihood of 1 (confirmed). The congruence between

the village being unarmed and being destroyed is set to 1. Since this is a negative



3. Related Models 31

event for the village, and the blacksmith likes the village, pity is triggered on the

brain’s update. Finally, a belief of providing weapons occurs, with the blacksmith

being passed in as the causal agent. The belief is defined to have a strong negative

effect on the goal of the village being destroyed. Since this has a positive effect on

the village, and the blacksmith likes the village, the happy for emotion is triggered.

Additionally, since the blacksmith was the causal agent in a desirable event for the

liked NPC (the village), gratification is also triggered [11].

Popescu et al. find that GAMYGDALA is able to model emotions with a high

level of efficiency. Using a single-core, 3.0 GHz processor, GAMYGDALA was able

to model 5000 NPCs with 5 goals each and 5 new beliefs per iteration in under one

second ( 0.816 s) per iteration [11].



CHAPTER 4
FLAME Model

The Fuzzy Logic Adaptive Model of Emotion, or FLAME, is a computational

model for emotion proposed by Magy Seif El-Nasr, John Yen, and Thomas R. Ioerger

in "FLAME - Fuzzy Logic Adaptive Model of Emotions". This model uses two

event-appraisal models: the OCC model [9] and the model proposed by Roseman,

Spindel, and Jose [13] as a foundation. Likewise it is rooted in the inhibition model

proposed by Bolles and Fanslow [4]. However, FLAME focuses on adaptation and

learning, an aspect the creators feel is lacking in many other emotional models

and computational models of emotion. While other models typically work in

predetermined ways, where event E has effect A on some simulated agent, FLAME

lets simulated agents learn from remembered experiences, adaptively changing the

effect of some event. This approach fits with psychological studies that have found

learning and memory to be highly important to the mechanisms that determine

emotion in humans [5].

4.1 Model Overview

Many emotional models incorporate an agent’s expectation of an event into the

calculation of that agent’s emotional state. While that expectation can be hard-coded

32



4. FLAME Model 33

into a system by the system’s developer, letting expectations change dynamically

with events allows for more adaptive and believable emotional agents, particularly

in systems where a human user is interacting with said agents. One mechanism

by which expectations can dynamically change is classical conditioning, where

some initially neutral stimulus comes to be associated with a particular emotion.

For example, if a dog sees its owner open the closet that contains the dog’s leash

each time the owner takes it for a walk, the dog may come to expect being taken

for a walk whenever the owner opens the closet door. In this case, the door being

opened, originally a neutral stimulus, alters the expectation of the dog, triggering

excitement.

In addition to modeling classical conditioning to create associations between

objects and events, the FLAME model uses machine learning techniques to let

agents develop associations and expectations relating to sequences of events, along

with expectations regarding the behavior of a human user. For sequences of events,

a mechanism is proposed for enabling agents to connect sequences of events to

their final outcome. In terms of expectations of human users, FLAME lets agents

learn from user feedback to create expectations of user response to a given event or

behavior [5]. A more in-depth discussion of the model’s learning mechanisms is

provided later in this section.

The FLAME model is also unique in regard to other computational models of

emotion in its heavy use of fuzzy logic. Fuzzy logic provides an intuitive way to

include intensity value in an internal representation of emotion, along with allowing

smooth transitions between emotional states and mixed intensities of different states,

enabling complex emotions. The natural expressiveness of fuzzy logic also lends

itself well to rulesets that determine behavior based on events and emotions.



4. FLAME Model 34

4.2 Event AppraisalModels

As previously mentioned, FLAME is heavily influenced by event appraisal models,

particularly the model proposed by Roseman, Spindel, and Jose [13] and the OCC

model [9]. Event appraisal models focus on calculating emotion through a number

of assessments an agent makes in regards to an event. These assessments are made

using a number of variables, with the predominant factors being:

• Whether the event is consistent or inconsistent with the agent’s desires and

goals

• Whether the agent in question or another actor, or no one in particular, is

responsible for the event

• The degree to which the agent expects/expected the event to occur

• Whether the event would be followed by a punishment or reward for the

agent in question

• The degree to which the agent feels capable of influencing the outcome of the

event

Emotions are then defined in terms of these factors (and many others, depending

on the appraisal model being used), allowing the determination of emotional state

in response to an event. Table 4.1 shows a number of emotions and their appraisal

variables under the OCC model [9].

In Table 4.1, we see that if an agent has the expectation that an undesirable event

will occur, but that event ends up not occurring, the agent will feel relief. Likewise,

if an agent expects a desirable event to occur, and that event does not occur, the

agent will feel disappointment.

While FLAME is strongly influenced by these event appraisal models, it is

designed to address some common shortcomings of using event appraisal for



4. FLAME Model 35

Emotion Desirability Expectation of Occurrence Event Occurred

Joy Desirable n/a Yes
Relief Undesirable High No
Fear Undesirable High n/a

Disappointment Desirable High No

Table 4.1: Emotional states produced through appraisal of desirability and expectation.

modeling emotion. Event appraisal models do not provide clear mechanisms by

which events are determined to be desirable or undesirable by agents, nor do they

typically have defined methods by which an agent can determine the likelihood of

an event occurring, both of which are crucial to realistically simulating emotion.

Additionally, appraisal-based emotional modeling is focused outward from the

agent, with external factors and events taking the dominant role in the determination

of an agent’s emotional state. This ignores the importance of internal factors such as

memory, experience, personality, and intelligence in emotion. The FLAME model

seeks to address these issues through the incorporation of machine learning, giving

agents the capacity to reason about events, their desirability, and their probability,

based on the past experiences of the agent. The FLAME model also incorporates

components of inhibition models to provide a mechanism for filtering the conflicting

emotions that can sometimes arise from appraisal of events that may have both

desirable and undesirable effects [5].

4.3 FLAME Model Design

There are three main components that make up the FLAME model: the emotional

component, the learning component, and the decision-making component [5]. These

components form a pipeline that results in a decision being made by the agent. The

learning component provides expectations and associations regarding events to

the emotional component, which it uses in conjunction with its current knowledge



4. FLAME Model 36

Figure 4.1: The emotional component of the FLAME model [5].

of the surrounding world to determine an emotional state for the agent. The

decision-making component can then combine information about an event with the

agent’s current emotional state to decide on an action to perform. For example, to

go back to the dog used in a previous example, the learned (learning component)

response to its owner opening the closet door would give the dog a high expectation

of a desirable event, which would be translated into hope (emotional component).

A hopeful emotion and the door-opening event could then trigger the dog to take

the action of running to the front door (decision-making component).

The emotional component is composed of 5 core processes: event evaluation,

event appraisals, emotion filtering, behavioral selection, and decay. Figure 4.1

shows how the emotional component translates a perception into an emotional

behavior through these processes. The event evaluation process calls on the learning

component for learned information from past experiences. This information is then



4. FLAME Model 37

used to determine the importance of the agent’s goals, whether an event affects these

goals, and to what extent. Fuzzy logic rules are then used to map this information

to a desirability value for the given event [5]. With the desirability of an event

calculated, the agent can then perform an event appraisal to calculate the intensity of

each emotion available to the agent. The result is a mixture of emotions with varying

intensity, which are then passed through an emotional filtering process, which

inhibits certain emotions in the case of conflicting emotional states to produce a final

emotional state. With a current emotional state determined, behavior selection can

then occur using rules based on the emotional state of the agent and the particular

event that occurs.

Finally, a decay process occurs at the end of each iteration of the emotional

component. The decay process models the natural dissipation of emotions over

time, with an emotional response to an event decaying towards a neutral state as

time since that event increases. This decay process lets the emotional effects of one

event continue into later iterations through the emotional component, with the

lasting effect having decreased influence with each iteration. Decay is achieved

by determining a decay constant for positive emotions and a decay constant for

negative emotions, with the authors suggesting a positive decay constant between

0.1 and 0.3, and a negative decay constant between 0.4 and 0.5. When the decay

process is carried out, the intensity of a negative emotion is multiplied by the

negative decay constant, and the intensity of a positive emotion is multiplied by the

positive decay constant. As such, if the intensity of the fear emotion is 0.8 through

one iteration through the emotional component, the intensity will be 0.4 at the

initialization of the next iteration if the negative decay constant is 0.5 [5].



4. FLAME Model 38

4.4 Calculating Desirability

As discussed previously in relation to event appraisal, it is essential to be able

to calculate the desirability of a particular event to an agent in order to make an

appraisal of the event for that agent and generate a corresponding emotion. In

FLAME, these desirability calculations are performed using fuzzy sets and fuzzy

rules. By representing emotions with fuzzy sets, FLAME allows the mapping of

complex emotional states and interacting goals to behaviors. Due to the ease of

expressing fuzzy rules linguistically, these mappings are easy to understand and

create [5]. Rules to determine the desirability of an event take an if. . . then form, as

shown below:

If Impact(Goal1, Event) is A1

And Impact(Goal2, Event) is A2

. . .
And Impact(Goalk, Event) is Ak

And Importance(Goal1) is B1

And Importance(Goal2) is B2

. . .
And Importance(Goalk) is Bk

Then Desirability(Event) is C

In this way, desirability is calculated using the net impact of the event on one or

more affected goals and the importance of those goals. For example, if an agent has

a goal to win a running race, the event of that agent spraining its ankle has a highly

negative impact on that goal. If winning the race is a moderately important goal for

the agent, then these two factors together will give the event a desirability rating of

moderately undesirable. Using the notation above, this rule takes the form:

If Impact(Winning Race, Spraining Ankle) is Highly Negative
And Importance(Winning Race) is Moderately Important
Then Desirability(Spraining Ankle) is Moderately Undesirable



4. FLAME Model 39

4.5 Appraising Events

Using the desirability level calculated above, an event appraisal can be made to

determine the emotional state resulting from the event. Three key components go

into an appraisal under the FLAME model: the calculated desirability of an event

that occurs, the agent’s expectation that the event would occur, and the learned

effects of previous events. The process by which an agent determines its expectation

for an event to occur is discussed in a later section. A history of previous emotional

states is essential to realistically modeling emotion, as many emotions are dependent

on prior states. For example, if an agent desires an event, but is unsure whether that

event will occur, it will feel hopeful. If the agent then finds out that the event did not

occur, it will then feel disappointment. In this case, the feeling of disappointment is

dependent on the feeling of hope that precedes it. Table 4.2 shows the emotions

modeled by FLAME, which are based on those outlined in the OCC model [9].

Emotion Rule

Joy Occurrence of a desirable event
Sadness Occurrence of an undesirable event
Disappointment Occurrence of a disconfirmed desirable event
Relief Occurrence of a disconfirmed undesirable event
Hope Occurrence of an unconfirmed desirable event
Fear Occurrence of an unconfirmed undesirable event
Pride Action done by the agent and is approved by external standards
Shame Action done by the agent and is disapproved by external standards
Reproach Action is done by other and not approved of by the agent’s standards
Admiration Action is done by other and approved of by the agent’s standards
Anger Complex emotion formed from sadness and reproach
Gratitude Complex emotion formed from joy and admiration
Gratification Complex emotion formed from joy and pride
Remorse Complex emotion formed from sadness and shame

Table 4.2: Fundamental emotions and the situations from which they arise (El-Nasr et al., 2000).

From this table, we see that disappointment must be preceded by hope, as



4. FLAME Model 40

disappointment is the disconfirmation of a desirable event, and prior to that

disconfirmation, there must have been the existence of an uncomfirmed desirable

event (hope). By establishing these relative relationships, a history of emotions

can be used to trigger new emotions. In the example above, if hope was felt in

one iteration, and in the next step that desirable event was disconfirmed, then

disappointment can be triggered as the succeeding emotion, with the prior relevant

emotion affecting the intensity of the new emotion (in this case, a higher intensity

of hope would result in a higher intensity of disappointment when the desirable

event is disconfirmed) [5].

To calculate the intensity of an emotion that is a function of expectation and

desirability, FLAME uses equations determined in Price et. al [12]. The formula for

each relevant emotion is given in Table 4.3.

Emotion Formula for Intensity

Joy Joy = (1.7 ∗ expectation0.5) + (−0.7 ∗ desirability)
Sadness Sadness = (2 ∗ expectation2) − desirability
Disappointment Disappointment = Hope ∗ desirability
Relief Relie f = Fear ∗ desirability
Hope Hope = (1.7 ∗ expectation0.5) + (−0.7 ∗ desirability)
Fear Fear = (2 ∗ expectation2) − desirability

Table 4.3: Equations for intensity of expectation and desirability-dependent emotions. (El-Nasr et
al., 2000).



4. FLAME Model 41

4.6 Filtering Emotions

At the conclusion of each iteration of the event appraisal, the agent has some mixture

of emotions, with an intensity associated with each emotion. At this point, some

filtering process must occur to determine how certain emotions express themselves

more or less when this combination of intensities occurs. For example, in a case

where an agent feels intense fear and moderate joy, the fear will typically inhibit the

feeling of joy until a time when the fear becomes less intense.

One intuitive method for filtering emotions is to make the most intense emotion

inhibit the others. However, this prevents the occurrence of complex emotional

states that combine multiple emotions at different intensities. FLAME addresses

this issue by using motivational states.

Motivational states deal with the most fundamental needs of the agent. These

states are often domain-dependent. For example, Nasr et al. use a simulated dog to

test their model, so their motivational states are hunger, thirst, pain, and fatigue.

However, these motivational states may be much different in a economic model

simulating agents trading stocks. As such, to be generalizable, the model must

provide some mechanism for defining motivational states and how to determine

their intensities.

Each motivational state is given an intensity, represented by a fuzzy set [5].

During the emotional filtering stage of the emotional component, the model assesses

the intensity of the agent’s motivational states and inhibits emotions accordingly.

For example, in a case where the hunger motivational state has a high intensity, any

joy that was calculated during the event appraisal process will be suppressed. In

other cases, emotions may inhibit motivational states. Intense fear tends to inhibit

hunger, thirst, pain, and fatigue in many cases.

In addition to the capability of motivational states and emotions to inhibit each

other, emotions need to be able to inhibit each other too. FLAME takes the approach



4. FLAME Model 42

of having a higher-intensity emotion inhibit a lower-intensity emotion when those

emotions are oppositional to each other. If an agent feels anger at a high intensity

and gratitude at a low intensity, the anger will dominate and suppress the gratitude.

The final mechanism that FLAME uses to filter emotion is mood. In contrast to

some other models, FLAME uses mood as a tool to filter emotions, rather than as an

emotional state itself. Mood is determined by calculating whether the net positive

intensity of these 5 states was greater than or less than the net negative intensity.

This assigns either a positive mood to the agent or a negative mood. The mood

is then used as a filtering mechanism in cases where opposite emotions are felt in

similar intensities. If the agent’s mood is negative, and a negative emotion is felt

at a similar intensity to an opposite positive emotion, the mood of the agent will

influence the negative emotion to inhibit the positive emotion [5].

4.7 Rule-Creation for Determining Behavior

Behavior selection in the FLAME model is performed using fuzzy logic. The ease

with which fuzzy rules are mapped to and from natural language makes for intuitive

rule creation, an important aspect to consider when deciding on a model that will be

used in an emotional engine that is intended to be incorporated into other software

developers’ work. These rules incorporate the agent’s emotional state, a triggering

event, and the agent that triggered the behavior to determine what behavior to

perform. The general form for these rules is provided below [5].



4. FLAME Model 43

If Emotion1 is Intensity1

And Emotion2 is Intensity2

. . .

And Emotionk is Intensityk

And Event is E

And Cause of E is Agent

Then Behavior is F

The ability to consider the intensity of multiple emotions enables the creation of

behaviors based on complex emotional states. By incorporating events and their

causes, the model has the expressive capacity to let agents respond dynamically to

events based on their current emotional state. For example, a person may respond

very differently to an event if they feel guilty as opposed to hopeful. Finally, the use

of event causes in behavior selection rules ensures that behaviors will be properly

directed. An angry behavior in a case where another agent caused the triggering

event will be distinctly different than an angry behavior in a case where the agent

itself caused the event.

4.8 Learning in the FLAME Model

A key component of FLAME is its incorporation of learning mechanisms. In their

research, Nasr et al. found that learning was an essential component of intelligent

behavior. In the testing of their model, they asked test users to evaluate a simulated

dog based on the FLAME model. In situations where the dog’s behavior was

chosen randomly, the participants, on average, rated the overall intelligence of

the dog as 1.143 out of 10. Using only the appraisal component of the model, the

mean overall intelligence score rose to 3.05. Once the learning component was



4. FLAME Model 44

incorporated into the model, the mean overall intelligence score rose to 7.05 out

of 10. Likewise, participants were asked to score the dog’s overall ability to learn

from the environment around it and interactions with the user. Here, the random

case had a mean score of 0.24, while the appraisal without learning case had a mean

score of 1.14. The incorporation of learning improved scores drastically, raising the

mean score to 7.95 out of 10 [5]. Both of these cases illustrate significant benefits

to the perceived realism and intelligence of the simulated agent once learning

is introduced into the emotional model. In FLAME, there are four key learning

mechanisms:

• Associating objects in the environment with events and emotions (classical

conditioning)

• Reasoning about the impact of an event on the individual’s goals

• Reasoning about the likelihood of an event’s occurrence

• Learning about social values from the feedback of others

Each of these components is discussed in greater depth in the following sections.

4.8.1 Classical Conditioning

In the context of emotional modeling, classical conditioning is the pairing of a

neutral stimulus with an emotional response. In the most famous example of

classical conditioning, Russian physiologist Ivan Pavlov began ringing a bell prior

to feeding his dog. With repeated feedings preceded by the bell, Pavlov found that

eventually the dog began to salivate from the bell ringing (neutral stimulus) alone,

without any food needed as a stimulus.

In the FLAME model, classical conditioning is a learning technique that allows

simulated individuals to associate objects with an emotional response. For example,



4. FLAME Model 45

a neutral object that is present for repeated fearful experiences will eventually elicit

fear through its presence alone. The model takes into account the frequency and

severity of the conditioning. As such, objects that are frequently presented with a

particular emotion elicit a strong response, as do objects that are presented with an

emotion of high intensity. FLAME determines the intensity of the elicited emotion

with the following equation [5],

(Intensity(Emotion)|Object) =

∑

events(i) Ii(Emotion)

NumEventsObject
. (4.1)

Here we see that the intensity of the elicited emotion, given that the object has

been presented (Intensity(Emotion)|Object), is determined by taking the intensity of

the emotional response (Ii(Emotion)) to all past events involving the object (
∑

events(i))

and dividing by the total number of events involving the object (NumEventsObject).

As such, the intensity of the response is the average of all previous emotional

responses involving the emotion and object in question.

Through the classical conditioning mechanism, the model can bypass the emo-

tional process and elicit emotional states without appraisals. For example, happiness

can be triggered directly by the classical conditioning mechanism described above

rather than the emotional component discussed in section 4.3.

4.8.2 Event Impacts

A key component of an appraisal model’s ability to determine an appropriate

emotional response is the ability to reason about how an event will impact the

agent’s goals. While some events have an immediate impact on an agent’s goals,

cases frequently occur where an event or action triggers a set of subsequent events

or actions that eventually affect the agent’s goals. In cases like this, the agent is

able to recognize that the initial event or action played a role in the final result, as



4. FLAME Model 46

opposed to assigning all responsibility to the final event in the chain [5]. Q-learning,

discussed in Section 2.2, is used by the FLAME model to let the agent learn about the

long-term effects of events. As discussed in this section, the fundamental equation

that drives Q-learning is,

Q(s, a) = r(s, a) + γmaxa′(Q(s′, a′)). (4.2)

Where Q(s, a) is the Q-value for a state-action pair, r(s, a) is the immediate reward

for a state-action pair, and Q(s′, a′) is the Q-value of a state-action pair following

the current action, and γ is a decay constant between 0 and 1 that determines how

much the rewards of subsequent actions determine the Q-value of a current action.

While Q-learning is proven to converge to the optimal decision-making values

in a deterministic system, FLAME models a non-deterministic system, where the

results of an action taken from a particular state are not necessarily the same each

time that action is executed in that state. To address this, El-Nasr et al. incorporate

conditional probability into the Q-learning algorithm, with more likely results

affecting the final value more than less likely results. The modified equation is

shown below [5],

Q(s, a) = E[r(s, a)] + γ
∑

s′

P(s′|s, a)maxa′(Q(s′, a′)). (4.3)

Two changes are made in the new equation. First, the reward for the state-action

pair (s, a) is changed to the expected value of the reward for the state-action pair

(s, a), which is the average of all previous rewards for this pair. Second, the Q-value

is now modified by the probability that the state s′ will result from the state-action

pair (s, a). This results in a summation across all possible resulting states from this

pair, based on the agent’s past experiences.

For example, if the agent experiences two different states as a result of taking



4. FLAME Model 47

action a in state s, the new Q-value is determined as follows. We call the first

resulting state s1 and the second resulting state s2, with the maximum Q-value for s1

being 2, and the maximum Q-value for s2 being -1. If s1 is the result of taking action

a from state s for twenty percent of past experiences, and s2 was the result for eighty

percent of past experiences, the expected Q-value can be calculated:

∑

s′

P(s′|s, a)maxa′(Q(s′, a′)) = (4.4)

P(s1|s, a)maxa′(Q(s1, a
′)) + P(s2|s, a)maxa′(Q(s2, a

′)) = (4.5)

(0.2)(2) + (0.8)(−1) = −0.4. (4.6)

In addition to incorporating conditional probability to account for the non-

determinism inherent in the modeled situations, FLAME uses the agent’s current

mood to influence how the agent perceives the value of certain actions. When the

agent is in a positive mood, it expects more positive results from its actions, and

likewise, when the agent is in a negative mood, it expects more negative results from

its actions. This is achieved by using a β value to increase the Q-value for actions

that result in a state whose perception matches the agent’s mood. For example, with

a β value of 0.25 and an agent in a positive mood, actions resulting in a positive state

are favored as more likely by a factor of 1.25 compared to their original probabilities.

Likewise, states that do not match the current mood are modified to be seen as less

likely by an α value computed with the following equation [5],

α =
1

∑

nonMatch

(1 − (1 + β)
∑

Match

P(s′|s, a)). (4.7)

These modifications result in a final Q-value update equation for the modified

Q-learning algorithm implemented by FLAME,



4. FLAME Model 48

Q(s, a) = E[r(s, a)] + γ
∑

Match

(1 + β)P(s′|s, a)maxa′(Q(s′, a′))+

γ
∑

nonMatch

αP(s′|s, a)maxa′(Q(s′, a′)). (4.8)

4.8.3 Determining Expectations

In the emotional models discussed in Chapter 3, the individual’s expectation for an

event to occur is typically input into the system as a hardcoded value. For example,

a user of GAMYGDALA may input a belief and specify that there is a likelihood of

0.6 that the belief will occur. FLAME attempts to create more dynamic expectations

by letting the modeled agent determine the likelihood of an event on its own based

on past events using conditional probability.

To calculate the conditional probability of an event occurring, a record of past

event sequences must be kept. To do this, an event sequence length must be chosen.

A short memory of events may not let the agent establish important relationships

between events in a sequence, but increasing the lengths of sequences in memory

drastically increases the total number of sequences the individual must manage.

For their simulation, the authors chose to do sequences of maximum length 3. If

three events, X, Y, and Z, are defined, then a three-dimensional table can be kept

to keep track of all past events. Each time the sequence of events X, Y, Z occurs,

the corresponding entry in the table is incremented. This lets the table represent

the total number of times any sequence of three events has occurred. From this,

the conditional probability that event Z will occur given that events X and Y have

occurred can be calculated as follows:

P(Z|X,Y) =
C[X,Y,Z]
∑

i C[X,Y, i]
(4.9)



4. FLAME Model 49

Here the probability of Z occurring given that X and Y have occurred is the count of

occurrences of the sequence X, Y, Z, divided by the total number of occurrences of

sequences that began with X, Y.

In cases where the agent doesn’t have enough prior experience to effectively

assess longer chains of sequences, a single prior event can be used to determine

expectation:

P(Z|Y) =

∑

i C[i,Y,Z]
∑

j

∑

i C[i,Y, j]
(4.10)

In cases where the expected event has never occurred after the preceding sequence,

the expectation for the event is the average probability of all events in the table:

P(Z) =

∑

i, j C[i, j,Z]
∑

i, j,k C[i, j, k]
(4.11)

4.8.4 Social Values

The learning methods described above rely on reinforcement learning, where an

agent learns from previous rewards and uses those experiences to try to maximize

future rewards. All of these learning systems focus only on how the agent itself is

rewarded. To increase the complexity and flexibility of the model, emotions based

on the desires of others must also be modeled. This lets individuals assess how

events and the individual’s actions fit into value systems imposed by other agents

or a user.

Social values are tracked as an average of all external feedback for previous

actions. This relies on the incorporation of a feedback system, where one agent, or

the user, can perform different feedback actions to another agent. Each of these

feedback actions has an associated value, with values greater than one representing

positive feedback and values less than one representing negative feedback. For an



4. FLAME Model 50

action, a, the expected social value of the action can be calculated with the following

equation:

value(a) =
1

|A|

∑

e∈A

f eedback(e + 1) (4.12)

where e + 1 is the external response to the event following the action. Using this

expected social value, social emotions like pride, shame, reproach, and admiration

can be modeled in a learned setting.



CHAPTER 5
Model Design and Implementation

5.1 Purpose

This chapter describes the implementation of the software portion of this research.

The implementation provides a domain-general emotional engine based on the

FLAME model. Figure 5.1 shows the general structure of the model.

Figure 5.1: High-level overview of FLAME model. [5]

51



5. Model Design and Implementation 52

The externally visible components of the software are limited to the Decision-

making Component shown in figure 5.1. As such, the engine maps external events

in the environment to actions based on an agent’s internal emotional state. For

example, an agent in a simulated farming community may serve a feast (action) due

to their relief (emotional state) over a large harvest (event). Changing the event to a

poor harvest changes the emotional state (disappointment, fear), and the consequent

action is changed as a result. In this way, the software allows dynamic emotional

states and behaviors to emerge from events occurring in a simulated world.

The engine itself is written in JavaScript, with the intention of being a an easy-

to-use library for emotional modeling in web apps, particularly in-browser games

and social science simulations. Interactions with the engine are performed through

an API that requires minimal user knowledge of the workings of the engine or

emotional modeling in general.

5.2 Software Overview

5.2.1 Fuzzy Logic

The engine relies heavily on fuzzy logic for rule definitions. A basic implementation

of a JavaScript fuzzy logic library facilitates this. The class diagram for this system

is shown in Figure 5.2.

Figure 5.2: Fuzzy system architecture.



5. Model Design and Implementation 53

New fuzzy variables are created by instantiating a FuzzyVar object. All fuzzy

sets in the system have triangular membership functions. At creation, all needed

components for the variable are provided to the constructor in the form,

1 var temperature = new FuzzyVar ( variableName , setNames ,

se tValues ) ;

where variableName corresponds to the name of the fuzzy variable, setNames is an

array of the variable’s fuzzy set names, and setValues is an array of arrays containing

the three x values of the membership function’s leftmost point, apex, and rightmost

point. To create a fuzzy variable relating to temperature, where inputs will fall

between 0 and 100 degrees fahrenheit, the user enters,

1 var name = " Temperature "

2 var s e t s = [ " Cold " , " Cool " , "Warm" , " Hot " ]

3 var values = [ [ −1 , 0 , 4 0 ] , [ 3 0 , 4 5 , 6 0 ] , [ 5 0 , 6 0 , 7 0 ] ,

[ 6 0 , 1 0 0 , 1 0 1 ] ;

4 var temp = new FuzzyVar ( name , se t s , values ) ;

To create a full fuzzy system that maps one or more crisp inputs to a crisp output, a

FuzzySystem object must be created. This is achieved with the code,

1 var fuzzy = new FuzzySystem ( inputSets , outputSets , r u l e s )

where inputSets is a list of fuzzy input variables, outputSets is a list of fuzzy output

variables, and rules is an array of mappings from input variables to output variables.

Rules are entered as strings of the form,

"InputVar SetName Operator ... THEN OutputVar SetName"

The system supports both OR and AND operators. To enter the fuzzy rules discussed

in the example in chapter 2, which mapped temperature and room occupancy to

the action of a heating/cooling system, the following are the entered rules.



5. Model Design and Implementation 54

["Temp Cold OR Temp Hot THEN Action High",

"Temp Cool AND Occupied Low THEN Action Low",

"Temp Cool AND Occupied High THEN Action Medium",

"Temp Warm AND Occupied Low THEN Action Low",

"Temp Warm AND Occupied High THEN Action Medium"]

The fuzzy system uses a defuzzification process proposed by Ginart and Sanchez

[6]. The process estimates the centroid of a region by creating a single triangle with

approximately the same mass distribution as the region, then taking the centroid of

the triangle. Figure 5.3 shows the calculated triangle (dotted line) overlaid on the

region it estimates.

Figure 5.3: Centroid estimation using a representative triangle [6].

The centroid calculation is performed using the equation,

xt = xmax +
1

3
(bR − bL) (5.1)

where xmax is the x value of the point in the region with the maximum membership,

and bR and bL are the distances along the x axis from xmax to the right and leftmost

nonzero values, respectively. This calculation is computationally efficient, requiring

a single loop over the sets, and shows better error results than competing Mean of

Maximum (MoM) and Bisector methods for centroid estimation [6].



5. Model Design and Implementation 55

5.2.2 Emotional Engine

The Engine class drives all of the emotional engine’s functions, and acts as the entry

point for all interactions between the user and the engine. From this class, each

module in learning and emotional components is triggered. Figure 5.4 shows the

overall class structure for the engine.

Figure 5.4: Full engine architecture.

To add emotional processing to an agent, the user constructs an Engine object

for that agent with the command,

1 var brain = new Engine ( id , decayConstant ) ;

where id is a string identifier for the agent, and decayConstant is a decimal value

greater than zero and less than one. The decay constant is used in the decay()

function as a multiplier for emotional intensities, simulating their decay over time.

The following calls the decay() function on the agent’s emotional state:

1 brain . decay ( ) ;



5. Model Design and Implementation 56

To add a goal definition to the agent, the user invokes the command,

1 brain . addGoal ( name , importance ) ;

where name is a string identifier for the goal, and importance is a floating point

value between 0 and 1 indicating the importance of achieving the goal for the agent.

To add an event definition to the agent, the user invokes the command,

1 brain . addEvent ( name , impacts ) ;

where name is the name of the event, and impacts is an array of goal-impact pairings.

This array alternates between goals and impacts, taking the form,

1 impacts = [ goalName , impact , goalName , impact , . . . ] ;

Impacts are floating-point variables between -1 and 1, inclusive. Negative

impacts indicate that the event makes a goal less likely to be achieved, and positive

impacts indicate that the event makes a goal more likely to be achieved.

Once an event is added, it can be triggered with the command,

1 brain . t r i g g e r E v e n t ( name , o b j e c t s ) ;

where name is the name used for the event in the addEvent(name, impacts) call

that defined the event. Objects is an array of strings representing the names of

objects that the agent should associate with this occurrence of the event. These

associated objects are used in the classical conditioning mechanism to produce

associations between objects and emotions. These associations can be activated by

introducing the object to the agent, triggering any emotions the agent associates

with the introduced object. This is achieved with the command,

1 brain . in t roduceObjec t ( objectName ) ;

where objectName is a string representing the name of the introduced object.

Motivational states are a key part of the model’s determination of emotional

state. New motivational states are created using the command,



5. Model Design and Implementation 57

1 brain . se tMot ivat ion ( motivation , value ) ;

where motivation is a string representing the name of the motivational state, and

value is the initial intensity of the state. The setMotivation command can also be

used to set an existing motivational state to a particular value. Relative changes to

motivational states are performed with the command,

1 brain . changeMotivation ( motivation , change ) ;

where change is a number. Positive values increase the intensity of the motivational

state and negative values decrease the intensity of the motivational state.

Filtering rules use motivational states to influence the emotions of the agent.

New filtering rules are added using the command,

1 brain . a d d F i l t e r ( r u l e ) ;

where rule is a string representing the rule. Rule strings must be of the form,

1 r u l e = " motivation r e l a t i o n a l O p e r a t o r value AND/OR motivation

r e l a t i o n a l O p e r a t o r value AND/OR . . . THEN emotion " ;

where motivation is a motivational state, relationalOperator is either ==, >, <, >=, <=,

or ! =, value is a number, and emotion is the emotion that should be inhibited if the

conditions evaluate to true. For example, the command,

1 var r u l e = " Hunger > 30 THEN Joy " ;

2 brain . a d d F i l t e r ( r u l e ) ;

inhibits the emotion Joy when the intensity of the motivational state Hunger is

greater than 30.

Social standards are a key part of emotional response in the model. Social

standards are rooted in behavior feedback, which is achieved with the command,

1 brain . provideFeedback ( behavior , feedback ) ;



5. Model Design and Implementation 58

where behavior is a string representing the name of the behavior for which feedback

is being provided, and feedback is a number representing the type and strength of the

feedback. For example a feedback value of -2 provides strongly negative feedback

for a behavior, while a feedback value of 0.2 provides weakly positive feedback for a

behavior. Emotional responses to behaviors carried out by the agent themself or

other agents are carried out with the command,

1 brain . t r i g g e r B e h a v i o r ( behavior , agentName ) ;

where behavior is the name of the behavior and agentName is the name of the agent

who carried out the behavior. If the agent carried out the behavior themself, their

own name should be used as the agentName.

5.3 Visualization

A web app was created with WebGL and the Three.js JavaScript library to visualize

the workings of the engine. The app allows the creation of new agents by clicking

inside a window. This creates a colored cylinder on-screen representing the created

agent, with different colors representing different emotional states. Additional

information on the agent’s state is accessible through menus in the GUI. Figure 5.5

shows the web app’s interface to the engine, with the screen populated with agents.



5. Model Design and Implementation 59

Figure 5.5: Model visualization and user interface.

The commands discussed in section 5.2.2 can be passed to the engine’s API

through a GUI in the web app, with the on-screen agents updating in response to

the issued commands.



CHAPTER 6
Testing and Results

This chapter examines the operation of the engine through a series of tests. Each

test is focused on illustrating a different mechanism of the engine. The code below

demonstrates the core appraisal process of the engine.

1 brain = new Engine ( " William " , 0 . 4 ) ;

2 brain . addGoal ( " f i n d S h e l t e r " , 0 . 7 5 ) ;

3 brain . addEvent ( " fog " , [ " f i n d S h e l t e r " , −0 . 3 ] ) ;

4 brain . t r i g g e r E v e n t ( " fog " , [ " " ] ) ;

5 brain . decay ( ) ;

6 brain . decay ( ) ;

7 brain . decay ( ) ;

8 brain . addEvent ( " findMap " , [ " f i n d S h e l t e r " , 0 . 7 ] ) ;

9 brain . t r i g g e r E v e n t ( " findMap " ) ;

10 brain . provideFeedback ( " explor ing " , 1 . 2 ) ;

11 brain . decay ( ) ;

12 brain . addEvent ( " findRoad " , [ " f i n d S h e l t e r " , 0 . 7 ] ) ;

13 brain . t r i g g e r B e h a v i o r ( " explor ing " , " William " ) ;

14 brain . t r i g g e r E v e n t ( " findRoad " , [ " " ] ) ;

Listing 6.1: Test of appraisal system and social standards.

60



6. Testing and Results 61

After line 4, William’s emotional state is a mixture of sadness and fear (intensity

1.01) due to the expectation and occurrence of the Fog event, which has a negative

impact on his goal of finding shelter. Over time, these feelings decay due to

the decay() calls, leaving the intensity of both emotions at 0.06 after line 7. The

introduction of the positive event, finding a map, and its subsequent occurrence

trigger Joy and Hope (intensity 1.78) as expected after line 9. Fear also increases to

0.68 due to the fact that William still has some expectation that the negative Fog

event will occur again. While sometimes appropriate, one unintuitive aspect of the

current implementation is that events do not have a cool-down period, so the next

occurence is still hoped for or feared immediately after the initial occurrence of an

event.

It is also of note that with so few experiences to learn from, the learning

mechanisms are not very active yet, making Joy/Hope and Sadness/Fear have equal

intensities. This is due to the fact that there are not enough experiences in the

system to meaningfully modify the event expectations from their initial values. The

implication for the engine is that, like most learning-dependent algorithms, its full

efficacy is not revealed until a large number of training experiences have occurred.

After line 14, William feels pride and gratification (intensity 1.20) due to his

performance of a behavior that was positively reinforced in the past (line 10), and

the fact that his behavior was followed by a positive result (finding the road). These

responses are intuitive and of a reasonable intensity.

Overall, the test shows realistic emotional responses to both positive and negative

events, as well as social standards.

1 brain = new Engine ( " Timothy " , 0 . 4 ) ;

2 brain . addGoal ( " f i n d S h e l t e r " , 0 . 7 5 ) ;

3 brain . addEvent ( " findMap " , [ " f i n d S h e l t e r " , 0 . 7 ] ) ;

4 brain . se tMot ivat ion ( " Hunger " , 50) ;



6. Testing and Results 62

5 brain . a d d F i l t e r ( " Hunger > 30 THEN Joy " ) ;

6 brain . t r i g g e r E v e n t ( " findMap " , [ " compass " ] ) ;

7 brain . changeMotivation ( " Hunger " , −30) ;

8 brain . in t roduceObjec t ( " compass " ) ;

Listing 6.2: Test of motivational states and classical conditioning.

This test focuses on motivational states and classical conditioning. Timothy is

given some of the same goals and events as William was in the first test. However,

the motivational state Hunger is introduced in line 4, with a filter added in line

5 that inhibits Joy when Hunger’s intensity is greater than 30. The effects of this

are seen after line 6, where Timothy feels hope from the "findMap" event, but

the Joy he should also feel is inhibited, leaving him with a Joy intensity of zero

due to the fact that his Hunger is greater than the limit set in the inhibition rule.

While this works as expected, one issue with this implementation is that emotions

are inhibited completely, whereas a system that only partially inhibits (multiplies

by some constant between zero and one) emotional intensities would be more

expressive.

The effects of classical conditioning are seen in line 8, where a decrease in Hunger

has ended the inhibition of Joy. When the compass is introduced, Timothy’s Joy

intensity rises from 0 to 1.51 as a result of his association between the compass

and finding the map. Like the inhibition, this behaves as expected based on the

model, but could be made more expressive by making associations build in intensity

over time, so that objects don’t have such strong associations without repeated

occurrences of associated positive or negative events.

1 brain = new Engine ( " Rachel " , 0 . 4 ) ;

2 brain . addGoal ( " f i n d S h e l t e r " , 0 . 7 5 ) ;

3 brain . addEvent ( " event1 " , [ " f i n d S h e l t e r " , 0 . 3 ] ) ;

4 brain . addEvent ( " event2 " , [ " f i n d S h e l t e r " , 0 . 3 ] ) ;



6. Testing and Results 63

5 brain . addEvent ( " event3 " , [ " f i n d S h e l t e r " , 0 . 3 ] ) ;

6 f o r ( var runs = 0 ; runs < 5 ; runs++) {

7 brain . t r i g g e r E v e n t ( " event1 " , [ " " ] ) ;

8 brain . t r i g g e r E v e n t ( " event2 " , [ " " ] ) ;

9 brain . t r i g g e r E v e n t ( " event3 " , [ " " ] ) ;

10 }

11 brain . t r i g g e r E v e n t ( " event1 " , [ " " ] ) ;

12 brain . t r i g g e r E v e n t ( " event2 " , [ " " ] ) ;

13 brain . t r i g g e r E v e n t ( " event2 " , [ " " ] ) ;

14 brain . t r i g g e r E v e n t ( " event1 " , [ " " ] ) ;

15 brain . t r i g g e r E v e n t ( " event2 " , [ " " ] ) ;

Listing 6.3: Test of learning mechanism.

This test focuses on the agent’s ability to learn from past experiences to predict what

events are likely to occur in the future. Since this test focuses on triggering enough

events to give the learning mechanism enough information to use, generic events

event1, event2, and event3 are used. The sequence event1 then event2 then event3

is triggered repeatedly, with one occurrence of an altered sequence, event1 then

event2 then event2, occurring in lines 11-13. Event1 and event2 are then triggered.

After line 15, Rachel expects event3 with a measure of 0.8 and expects event2 with a

measure of 0.2. This is intuitive, as the event1, event2, event3 sequence occurred

much more frequently than the event1, event2, event2 sequence. As such, it is

expected and reasonable for Rachel to expect event3 with a much higher probability

than event2.



6. Testing and Results 64

6.1 FutureWork

El Nasr et. al demonstrated with FLAME that the addition of learning algorithms to

emotional models drastically increases the believability of the emotions generated

by the model. Future computational models of emotion that incorporate more

comprehensive learning mechanisms can address FLAME’s deficits, particularly

in its focus on probabilistic models that don’t necessarily correspond with human

decision-making.

One major shortcoming of the current engine implementation is the isolation

of a single instance of the model within each agent, with no overarching control

structure between agents. This approach doesn’t allow large-scale operations that

work with multiple agents at a time, unless the developer of the surrounding

software implements their own methods for tracking and operating on batches of

individuals. GAMYGDALA is one example of such an implementation, with an

individual "brain" for each individual encapsulated within a listing of all individuals

managed by the engine.

While the FLAME model and this engine implementation take social standards

into account, neither contain fine-grained management of social relationships. In

the current implementation and model, an individual’s emotional response to an

action or event is the same regardless of the individual’s relationship to the agent

that performed the action or caused the event. Some management of relationships is

achieved through the behavior selection module, which enables different behaviors

to be chosen based on the individual that caused the event. However, this occurs

after event appraisal and emotional filtering, meaning that the emotions of the

individual are not changed based on the event’s cause, only the resulting behavior.

The introduction of mechanisms that alter appraisal based on social relationships

would allow more dynamic and realistic social interactions.



6. Testing and Results 65

6.2 Conclusion

The implementation of the FLAME model discussed in this work demonstrates

that it is possible to create emotional agents that are realistic and adaptive to the

world around them. Agents modeled using the engine can be given intuitive

and surprisingly complex emotions with ease due to the abstraction provided by

the engine. As cognitive models of emotion continue develop, more advanced

computational models of emotion will follow. While the discussed engine relies

almost exclusively on the FLAME model, future adaptations can incorporate aspects

of various models to increase emotional realism. In particular, more advanced

learning mechanisms and models that incorporate social systems with more depth

offer promising results to future engines.



APPENDIX A
SoftwareManual

This section provides instructions for the use of the visualization created for the

engine. To view the visualization, open the provided index.html file. All controls are

in the menu at the top-right corner of the browser window, while the agents are

visualized in the black windows that covers the rest of the screen. Figure A.1 shows

the control menu.

Figure A.1: Visualization control menu.

Clicking on any portion of the menu opens that section of controls. Clicking the

heading again collapses the controls. The Add Agent section is shown in Figure A.2.

66



A. Software Manual 67

Figure A.2: Agent addition controls.

In this section, the user can enter a name for a new agent that will be used as

an identifier in other control sets. Clicking the Add Agent button puts the software

into agent entry mode. In this mode, the user can click anywhere on the screen

to place the new agent, represented by a cylinder. Once the agent is placed, the

software automatically exits agent entry mode, letting the user continue clicking on

the screen without placing more agents until the Add Agent button is clicked again.

The Add Goal section is shown in Figure A.3.

Figure A.3: Agent goal controls.

In this section, the user is able to select an agent from a dropdown menu that

dynamically updates as new agents are added. This is the agent who the goal

will be added to. The Goal Name field lets the user enter a name to be used as the

identifier of the goal, and the Importance slider informs the engine how important



A. Software Manual 68

the goal is (on a scale from 0 to 1) to the agent. Once the desired parameters are

chosen, clicking the Add Goal button gives the selected agent the described goal.

The Add Event section is shown in figure A.4.

Figure A.4: Event addition controls.

This section contains a Name field, where the identifier for the new event is

provided. Additionally, the Goal Impacts field lets the user describe how the event

influences various goals. Entries in this field must take the form:

goalName, impact, goalName, impact, ...

where goalName is the (case sensitive) name of a defined goal, and impact is a

value between -1 and 1 describing how the event affects the preceding goal. High,

negative numbers reflect a strong negative impact on the achievement of the goal,

whereas high, positive numbers reflect a strong positive impact on the achievement

of the goal. Selecting the Add Event button adds the event to the system, but does

not trigger it.

The Trigger Events section is shown in figure A.5.



A. Software Manual 69

Figure A.5: Event triggering controls.

This section lets the user select an event defined in the Add Event section to be

triggered. The Associated Items field takes a comma-separated list of objects that the

agents should associate with that instance of the event for classical conditioning.

The Motivations section is shown in figure A.6.

Figure A.6: Motivational state controls.

The Motivations section is divided into two parts. The top section allows the

creation and management of motivational states. The Motivation Name field provides

the name for the motivational state to be modified, while the Motivation Value field

provides the intensity of the motivational state. Entering a new Motivation Name



A. Software Manual 70

creates a new motivational state when the Set Motivation value is clicked. To modify

an existing state, enter the existing state’s name and the new intensity for the state,

then click the Set Motivation button.

In the Inhibition Rule field, the user can enter inhibition rules for the chosen agent.

These rules take the form,

MotivationalState RelationalOperator Value AND/OR ... THEN InhibitedEmotion

For example, the rule,

Hunger > 30 AND Thirst > 20 THEN Joy

inhibits the emotion Joy when the Hunger motivational state rises above 30 and the

Thirst motivational state rises above 20. Clicking the Add Rule button adds the new

inhibition rule to the system.

The Standards section is shown in Figure A.7.

Figure A.7: Agent standards controls.

The Standards section is divided into two parts, with the top section devoted

to providing social feedback, and the bottom section devoted to letting the agent



A. Software Manual 71

respond to the actions of themself or others. The Behavior field lets the user specify

what behavior the feedback applies to, while the Value field specifies the nature of

the feedback. For example, entering "HoldingDoor" as the Behavior and 0.4 as the

Value provides slightly positive feedback to the agent, making them more likely

to perceive holding the door positively when they do it themself or when others

hold the door. Clicking the Provide Feedback button sends this feedback to the agent

selected in the Agent Name menu.

The Behavior Actor menu lets the agent respond to their own and others’ behaviors.

The agent chosen in the Agent Name menu is the agent who responds, and the

agent chosen in the Behavior Actor menu is the agent who performs the action. For

example, if the agent has learned to perceive holding the door positively through

feedback, they will feel pride when they are chosen as the Behavior Actor for the

HoldDoor Behavior and the Trigger Behavior button is pressed.

The Objects section is shown in Figure A.8.

Figure A.8: Object introduction controls.

This section uses classical conditioning to trigger responses to objects by an

agent. The agent is chosen with the Agent Name menu, and the Object Name menu is

automatically populated with any objects entered during event triggering. Selecting

the Introduce Object button triggers any classically conditioned response the chosen

agent has to the chosen object.



A. Software Manual 72

The trigger button for Decay is shown in figure A.9.

Figure A.9: Decay controls.

The Decay button decays all emotions by a constant proportion each time it is

pressed. This lets the user simulate emotions decaying in intensity over time.

The Info section is shown in Figure A.10.

Figure A.10: Information display controls.

This section lets the user view different pieces of information about the internal

states of agents. The Agent Name menu determines which agent’s information is

displayed, and the Info Type menu determines what type of information is shown.

Info Type can take five types: Emotions, Goals, Events, Motivations and Associations.

Figures A.11 through A.15 show examples of the information displayed for each

type.



A. Software Manual 73

Figure A.11: "Emotions" information display.

Figure A.12: "Goals" information display



A. Software Manual 74

Figure A.13: "Events" information display

Figure A.14: "Motivations" information display



A. Software Manual 75

Figure A.15: "Associations" information display



References

1. Arbib, M.A. “The cognitive structure of emotions.” Artificial Intelligence 54, 1-2:
(1992) 229–240. 17, 18

2. Becker-Asano, Christian. WASABI: Affect Simulation for Agents with Believable
Interactivity. IOS Press, 2008. x, 3, 21, 22, 23

3. Belohlavek, Radim, and George J. Klir. Concepts and Fuzzy Logic. MIT Press,
2011. 5, 6

4. Bolles, Robert C., and Michael S. Fanselow. “A perceptual-defensive-
recuperative model of fear and pain.” Behavioral and Brain Sciences 3, 02:
(1980) 291–301. 32

5. El-Nasr, Magy Seif, John Yen, and Thomas R. Ioerger. “FLAME-Fuzzy Logic
Adaptive Model of Emotions.” Autonomous Agents and Multi-Agent Systems 3, 3:
(2000) 219–257. viii, 3, 10, 15, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 51

6. Ginart, Antonio, Gustavo Sanchez, I. Links, and G. Back. “Fast defuzzification
method based on centroid estimation.” Applied Modelling and Simulation . viii, 54

7. Jamshidi, Mohammad, Nader Vadiee, and Timothy Ross. Fuzzy Logic and Control:
Software and Hardware Applications. Pearson Education, 1993. 5

8. Marsella, Stacy C., and Jonathan Gratch. “EMA: A process model of appraisal
dynamics.” Cognitive Systems Research 10, 1: (2009) 70–90. viii, 3, 19, 21

9. Ortony, Andrew, Gerald L. Clore, and Allan Collins. The Cognitive Structure of
Emotions. Cambridge England; New York: Cambridge University Press, 1990.
viii, 3, 16, 18, 32, 34, 39

10. Picard, R. W. Affective Computing. 1995. 1

11. Popescu, A., J. Broekens, and M. van Someren. “GAMYGDALA: An Emotion
Engine for Games.” IEEE Transactions on Affective Computing 5, 1: (2014) 32–44.
x, xi, 3, 25, 26, 27, 28, 29, 30, 31

76



References 77

12. Price, Donald D., James E. Barrell, and James J. Barrell. “A quantitative-
experiential analysis of human emotions.” Motivation and Emotion 9, 1: (1985)
19–38. 40

13. Roseman, Ira J., Martin S. Spindel, and Paul E. Jose. “Appraisals of emotion-
eliciting events: Testing a theory of discrete emotions.” Journal of Personality and
Social Psychology 59, 5: (1990) 899–915. 32, 34

14. Staller, Alexander, and Paolo Petta. “Introducing emotions into the computa-
tional study of social norms: A first evaluation.” Journal of artificial societies and
social simulation 4, 1: (2001) U27–U60. viii, 3, 23, 24, 25

15. Watkins, Christopher J. C. H., and Peter Dayan. “Q-learning.” Machine Learning
8, 3-4: (1992) 279–292. 11

16. Zadeh, L. A. “Fuzzy algorithms.” Information and Control 12, 2: (1968) 94–102. 8




	The College of Wooster Libraries
	Open Works
	2015

	Learning Emotions: A Software Engine for Simulating Realistic Emotion in Artificial Agents
	Douglas Code
	Recommended Citation


	Abstract
	Acknowledgments
	Vita
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Simulating Emotion
	Research Goals

	Theory
	Fuzzy Logic
	Q-Learning

	Related Models
	OCC Model
	EMA Model
	WASABI Architecture
	TABASCO Architecture
	GAMYGDALA

	FLAME Model
	Model Overview
	Event Appraisal Models
	FLAME Design
	Desirability
	Appraising Events
	Filtering Emotions
	Determining Behavior
	Learning
	Classical Conditioning
	Event Impacts
	Expectations
	Social Values


	Model Design and Implementation
	Purpose
	Software Overview
	Fuzzy Logic
	Emotional Engine

	Visualization

	Testing and Results
	Future Work
	Conclusion

	Software Manual
	References

