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Abstract

Bagging and boosting are two popular ensemble methods that typically achieve better accuracy

than a single classifier. These techniques have limitations on massive data sets, because the size of

the data set can be a bottleneck. Voting many classifiers built on small subsets of data (“pasting

small votes”) is a promising approach for learning from massive data sets, one that can utilize

the power of boosting and bagging. We propose a framework for building hundreds or thousands

of such classifiers on small subsets of data in a distributed environment. Experiments show this

approach is fast, accurate, and scalable.
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1. Introduction

The last decade has witnessed a surge in the availability of massive data sets. These include histori-

cal data of transactions from credit card companies, telephone companies, e-commerce companies,
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and financial markets. The relatively new bioinformatics field has also opened the doors to ex-

tremely large data sets such as the Protein Data Bank (Berman et al., 2000). The availability of

very large databases has constantly challenged the machine learning and data mining community

to come up with fast, scalable, and accurate approaches (Provost and Kolluri, 1999; Fayyad et al.,

1996). As Neal Leavitt notes (Leavitt, 2002, p. 22):

“The two most significant challenges driving changes in data mining are scalability and

performance. Organizations want data mining to become more powerful so that they

can analyze and compare multiple data sets, not just individual large data sets, as is

traditionally the case.”

Very large data sets present a challenge for both humans and machine learning algorithms. Ma-

chine learning algorithms can be inundated by the flood of data, and become very slow in learning

a model or classifier. Moreover, along with the large amount of data available, there is also a com-

pelling need for producing results accurately and fast. Efficiency and scalability are, indeed, the

key issues when designing data mining systems for very large data sets.

The machine learning community has essentially focused on two directions to deal with massive

data sets: data subsampling (Musick et al., 1993; Provost et al., 1999), and the design of parallel

or distributed approaches capable of handling all the data (Chan and Stolfo, 1993; Provost and

Hennessy, 1996; Hall et al., 1999; Chawla et al., 2000). The subsampling approaches build on

the assumption that “we don’t really need all the data.” The KDD-2001 conference (ACM, 2001)

conducted a panel on subsampling, which overall offered positive views of subsampling. However,

given 100 gigabytes of data, subsampling at 10% can itself pose a challenge. Other pertinent issues

with subsampling are: What subsampling methodology to adopt? What is the right sample size? To

do any intelligent subsampling, one might need to sort through the entire data set, which could take

away some of the efficiency advantages. Also, some of the data mining systems are concerned with

identifying interesting patterns in a large database (Hall et al., 2000; Provost and Kolluri, 1999).

In such scenarios, it could be important to have enough instances of each salient case so that the

learner can identify those patterns. A lot of business analysts want to identify interesting customer

patterns in the data sets, so taking a subsample might not help in such a scenario. Dan Graham,

IBM’s director of business-intelligence solutions, notes (Leavitt, 2002, p. 22), “Data mining yields

better results if more data is analyzed.” While subsampling a massive data set can simplify the

learning task, it can also degrade accuracy (Perlich et al., 2003). However, one can essentially build

an ensemble of subsamples and observe an improvement in accuracy (Eschrich et al., 2002).

The second of the two approaches to handling massive data is to bypass the need for loading

the entire data set into the memory of a single computer. Our claim is that distributed data mining

can address, to a large extent, the scalability and efficiency issues presented by massive training

sets. The data sets can be partitioned into a size that can be efficiently managed on a group of

processors. Partitioning the data sets into random, disjoint partitions will not only overcome the

issue of exceeding memory size, but will also lead to creating an ensemble of diverse and accurate

classifiers, each built from a disjoint partition, but the aggregate processing all of the data (Chawla

et al., 2002b,a). This can result in an improvement in performance that might not be possible by

subsampling. Chawla et al. (2002b) show that it is possible to create multiple disjoint partitions of

both small and very large data sets, and approach classification accuracies achievable by popular

ensemble techniques such as bagging, which is normally an approach suited for small data sets.
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In this paper we show that it is also possible to learn an ensemble of classifiers from each of the

random disjoint partitions of data, and combine predictions from all those classifiers to achieve high

classification accuracies; in some cases similar to or better than boosting or distributed boosting

(Lazarevic and Obradovic, 2002). We utilize Breiman’s algorithms for pasting small votes: Ivote

and Rvote (Breiman, 1999). In pasting Rvotes, small random training sets are constructed from

the data set and classifiers are learned. In pasting Ivotes, each subsequent small training set is

constructed by importance sampling based on the quality of classifiers constructed so far. That is,

the misclassified cases are given a higher probability of selection than the correctly classified cases

over the learning iterations. The classifiers learned are then uniformly voted for prediction. These

approaches are sequential in operation, although Rvoting can be easily implemented in a distributed

environment.

We propose a distributed setting for pasting of small votes, which can also be applicable in

scenarios where data is already distributed at sites, and collecting data at one location is a costly

procedure. Our approach is essentially “divide and conquer”: we divide the training set into n

disjoint partitions, and then Rvote or Ivote on each of the disjoint subsets independently. We call

our distributed approaches to pasting Ivotes and Rvotes, DIvote and DRvote respectively (Chawla

et al., 2002a).

The organization of the rest of the paper is as follows. We discuss the related work in Section 2.

We present the distributed paradigm of pasting Ivotes, Rvotes, and experimental details in Sections 3

to 7. We ran the distributed learning experiments on a 24-node Beowulf cluster and the ASCI Blue

Supercomputer (Livermore National Laboratories), using C4.5 release 8 decision tree (Quinlan,

1992) and Cascade Correlation neural network (Fahlman and Lebiere, 1990) as the base classifiers.

We show that DIvote and Ivote give very comparable accuracies, while achieving significantly better

classification accuracies than a single classifier in most cases. One major advantage of DIvote is a

significant reduction in training time as compared with Ivote. Section 7 also includes comparisons

to distributed boosting. Section 8 contains the κ plots to highlight the diversity trends of DIvote

and DRvote. Section 9 includes empirical evidence of applicability of Ivote with a stable method

of learning such as Naive Bayes classifier (Duda et al., 2001; Good, 1965). We present the main

conclusions from our work in Section 10.

2. Related Work

One popular approach towards tackling very large training sets is “divide and conquer”, which can

be set up in a distributed learning paradigm. An advantage of this approach is that the partition

size of the learning task can be adjusted to fit the available computational resources. One can

easily imagine a divide and conquer approach in which a data set is divided across a group of

processors and a classifier is learned on each processor concurrently. The classifiers are transmitted

to a central processor. The central processor can then process the predictions of the independent

classifiers learned. It has been shown that combining classifiers learned on random (smaller) disjoint

partitions of data can achieve the classification accuracies of the popular ensemble technique of

bagging (Chawla et al., 2002b).

Domingos (1996) describes how a specific-to-general rule induction system (RISE) was sped

up by applying it to disjoint training sets. This allowed the time required for learning to become

linear in the number of examples. The resulting rule based classifiers were voted (with weighting)

in an approach similar to bagging. The major difference was that the size of each training data set
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was much smaller than the original. On a set of 7 data sets from the UCI repository using disjoint

partitions of between 100 and 500 examples, they found that the resulting classification accuracy

was generally as good or better than applying RISE to all the data.

Street and Kim (2001) built an ensemble of classifiers from training data treated as a stream.

Each classifier is trained on a fixed amount of data from the stream. The size of the ensemble is

fixed at 25 classifiers. Classifiers “compete” for entry into the ensemble based on accuracy and

diversity. This approach allows an ensemble of classifiers to be built from an unlimited amount

of training data. It also facilitates the building of an ensemble of classifiers on data with temporal

dependencies, where the concept to be modeled may vary over time. In their experiments the en-

semble of classifiers was usually slightly less accurate than a single classifier built with as much

data as the current ensemble used.

Chawla et al. (2000) studied various partition strategies and found that an intelligent partitioning

methodology — clustering — is generally better than simple random partitioning, and generally

results in a classification accuracy comparable to learning a single C4.5 tree on the entire data

set. They also found that applying bagging to the disjoint partitions, and making an ensemble of

many C4.5 decision trees on each partition, can yield better results than building a decision tree by

applying C4.5 on the entire data set.

Bagging, boosting, and their variants have been shown to improve classifier accuracy (Freund

and Schapire, 1996; Breiman, 1996; Bauer and Kohavi, 1999; Dietterich, 2000; Latinne et al., 2001).

According to Breiman, bagging exploits the instability in the classifiers, since perturbing the training

set produces different classifiers using the same algorithm. However, creating 30 or more bags of

100% size can be problematic for massive data sets (Chawla et al., 2002b). We observed that for

data sets too large to handle practically in the memory of a typical computer, a committee created

using disjoint partitions can be expected to outperform a committee created using the same number

and size of bootstrap aggregates (“bags”). Also, the performance of the committee of classifiers can

be expected to exceed that of a single classifier built from all the data (Chawla et al., 2002b).

Latinne et al. (2001) proposed a combination of bagging and random feature subsets: “Bagfs”.

They generated bootstrap replicates (B) of a given training set, and for each such bag they randomly

chose features without replacement F times, resulting in F feature subsets. Thus, they had B×F

new learning sets. Using the McNemar test of significance they found that Bagfs never performed

worse than bagging and Multiple Feature Subsets (MFS).

Boosting (Freund and Schapire, 1996) also creates an ensemble of classifiers from a single data

set by utilizing different training set representations of the same data set, focusing on misclassified

cases. Boosting is essentially a sequential procedure applicable to data sets small enough to fit in

a computer’s memory. Lazarevic and Obradovic (2002) proposed a distributed boosting algorithm

to deal with massive data sets or very large distributed homogeneous data sets. In their framework,

classifiers are learned on each distributed site, and broadcast to every other site. The ensemble of

classifiers constructed at each site is used to compute the hypothesis, h j,t , at the jth site at iteration

t. In addition, each site also broadcasts a vector with a sum of local weights, reflecting its prediction

accuracy. Each site j maintains the local distribution ∆ j,t and local weights w j,t . They try to emulate

the global distribution Dt by communicating the sums of weights from each site. Each site also

maintains a local copy, D j,t , of the global distribution Dt , and its local distribution ∆ j, for each

boosting iteration t. The training set at site j, for each boosting iteration, is sampled according

to D j,t . At the end of all boosting iterations, hypotheses h j,t from different sites are combined

into a final hypothesis h f n. They achieved the same or slightly better prediction accuracy than

424



LEARNING ENSEMBLES FROM BITES

standard boosting, and they also observed a reduction in the costs of learning and the memory

requirements for their data sets (Lazarevic and Obradovic, 2002). In Section 7, we compare DIvote

with distributed boosting.

3. Pasting Votes

Breiman (1999) proposed pasting votes to build many classifiers from small training sets or “bites”

of data. He proposed two strategies of pasting votes: Ivote and Rvote. In Ivote, the small training

set (bite) of each subsequent classifier relies on the combined hypothesis of the previous classifiers,

and the sampling is done with replacement. The sampling probabilities rely on the out-of-bag error,

that is, a classifier is only tested on the instances not belonging to its training set. This out-of-

bag estimation gives good estimates of the generalization error (Breiman, 1999), and is used to

determine the number of iterations in the pasting votes procedure. Ivote is, thus, very similar to

boosting, but the “bites” are much smaller in size than the original data set. Thus, Ivote sequentially

generates training sets (and thus classifiers) by importance sampling.

Rvote creates many random bites, and is a fast and simple approach. Breiman found that Rvote

was not competitive in accuracy to Ivote or Adaboost. The detailed algorithms behind both the

approaches are presented in Section 4 as part of DIvote and DRvote.

Using CART, Breiman found that pasting Ivotes gave an accuracy comparable to running Ad-

aboost on the whole data set (Breiman, 1999). Pasting Ivotes does not require the entire data set

to be in memory for learning; instances are drawn from the pool of training data to form much

smaller training sets. However, sampling from the pool of training data can entail multiple random

disk accesses, which could swamp the CPU times. So Breiman proposed an alternate scheme: a

sequential pass through the data set. In this scheme, an instance is read and checked to see if it will

make the training set for the next classifier in the aggregate. This is repeated in a sequential fashion

until all N instances (size of a bite) are accumulated. The terminating condition for the algorithm is

a specified number of trees or epochs, where an epoch is one sequential scan through the entire data

set. However, the sequential pass through the data set approach led to a degradation in accuracy

for a majority of the data sets. Breiman also pointed out that this approach of sequentially reading

instances from the disk will not work for highly skewed data sets. Thus, one important component

of the power of pasting Ivotes is random sampling with replacement.

The memory requirement to keep track of which instance belongs in which small training set

and the number of times the instance was given a particular class is 2JNB bytes, where J is the

number of classes and NB is the number of instances in the entire data set. Let us assume we have a

data set of 108 records(NB), 1000 features (equivalent to 4 bytes each), the training set of size 105,

and J = 2 (Breiman, 1999). The memory requirement will be close to a gigabyte, as follows:

A = 2∗ J ∗NB = 2∗2∗108 = 0.4 gigabytes;

B = 1000 features at 4 bytes each for 105records

= 1000∗4∗105 = 0.4 gigabytes;

C = memory required by trees stored in memory in megabytes.

Total = A+B+C ≈ 1 gigabytes.
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In our distributed approach to pasting small votes, we divide a data set into T disjoint subsets,

and assign each disjoint subset to a different processor. On each of the disjoint partitions, we follow

Breiman’s approach of pasting small votes. We randomly sample with replacement, as we can load

the entire disjoint subset of data in a processor’s memory. Thus, the number of disjoint partitions

can be dictated by the amount of memory available on each processor. We combine the predictions

of all the classifiers by majority vote. Again, using the above framework of memory requirement, if

we break up the data set into T disjoint subsets, the memory requirement will decrease by a factor

of 1/T , which is substantial. So, DIvote can be more scalable than Ivote in memory. One can

essentially divide a data set into subsets easily managed by the computer’s main memory.

4. Pasting DIvotes and DRvotes

The procedure for DIvote is as follows:

1. Divide the data set into T disjoint subsets.

2. Assign each disjoint subset to a unique processor.

3. On each processor build the first bite of size N by sampling with replacement from its subset,

and learn a classifier.

4. Compute the out-of-bag error, e(k), and the probability of selection, c(k), as follows (Breiman,

1999):

e(k) = p× e(k−1)+(1− p)× r(k).

p = 0.75. We used the same p value as used by Breiman.

k = number of classifiers in the aggregate or ensemble so far.

r(k) = error rate of the kth aggregated classifiers on a T disjoint subset.

c(k) = e(k)/(1− e(k)), probability of selecting a correctly classified instance.

5. For the subsequent bites on each of the processors, an instance is drawn at random from the

resident subset of data. If this instance is misclassified by a majority vote of the out-of-bag

classifiers (those classifiers for which the instance was not in the training set), then it is put in

the subsequent bite. Otherwise, put this instance in the bite with a probability of c(k). Repeat

until N instances have been selected for the bite (Breiman, 1999).

6. Learn the (k +1)th classifier on the bite created by step 5.

7. Repeat steps 4 to 6, until the out-of-bag error estimate plateaus, or for a given number of

iterations, to produce a desired number of classifiers. We ran our experiments for a given

number of iterations.

8. After the desired number of classifiers have been learned, combine their predictions on the

test data using a voting mechanism. We used simple majority voting.

Pasting DRvotes follows a procedure similar to DIvotes. The only difference is that each bite

is a bootstrap replicate of size N. Each instance through all iterations has the same probability of
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being selected. DRvote is very fast, as the intermediate steps of DIvote — steps 4 and 5 in the

above algorithm — are not required. However, DRvote does not provide the accuracies achieved by

DIvote. This agrees with Breiman’s observations on Rvote and Ivote.

Pasting DIvotes or DRvotes has the advantage of not requiring any communication between

the processors, unlike the distributed boosting approach by Lazarevic and Obradovic (2002). Thus,

there is no time lost in communication among processors, as trees are built independently on each

processor. Furthermore, dividing the data set into smaller disjoint subsets can also mitigate the need

for larger memories. Also, if the disjoint subset size is small compared to the main memory on a

computer, the entire data set can be loaded in the memory. This will speed up the sampling from

the data sets. Lastly, DIvote reduces the data set size on each processor, hence less examples must

be tested by the aggregate classifiers during training, which also reduces the computational time.

5. Experimental Setup

We evaluated DIvote and DRvote by experiments on six small to moderate sized data sets, and two

large data sets. We performed 10-fold cross-validation for almost all of our data sets, and used two-

tailed paired-t-tests at the 95% confidence level to evaluate statistical significance of our results,

where applicable. We also provide error bars (accuracy +/- standard error) for the Ivote, DIVote,

Rvote, and DRvote in the plots. The y-axis in the plots indicates the accuracy, and the x-axis

indicates the number of iterations. Please note that the number of iterations does not necessarily

equate to number of classifiers. For the distributed approaches, there are n*iterations classifiers,

where n is the number of disjoint partitions. For the sequential approaches, the number of iterations

is equal to the number of classifiers in the ensemble.

5.1 Data Sets

The size of these data sets is summarized in Table 1. DNA, satimage, LED, pendigits, letter,

waveform and covtype are available from the UCI repository. We used three of the four Statlog

(D. Michie and Taylor, 1994) project data sets — DNA, satimage, and letter — used by Breiman

(1999). We did not use the shuttle data set, as 10-fold cross-validation with C4.5 already gives

accuracies of around 99.5%, and any improvement on it will be miniscule. Moreover, we have

previously observed that simple disjoint partitioning is able to achieve that accuracy (Chawla et al.,

2000). We used a subset of 60 features (features 61 — 120) for the DNA data set (D. Michie and

Taylor, 1994).

We procured the training and testing set partitions of waveform, LED and covtype from Lazare-

vic and Obradovic (2002) to allow direct comparisons. One of our large data sets comes from the

problem of predicting the secondary structure of proteins (Jones, 1999). The “train and test set

one” were used in developing and validating, respectively, a neural network that won the CASP-3

(Livermore National Laboratories, 1999) secondary structure prediction contest. The Protein data

set (called the “Jones data set” in the rest of the paper) contains 209,529 elements in the training set

and 17,731 elements in the testing set. Each amino acid in a protein can have its structure labeled

as helix (H), coil (C), or sheet (E). The features for a given amino acid are twenty values in the

range -17 to 17, representing the log-likelihood of the amino acid being any one of twenty basic

amino acids. Using a window of size 15 centered around the target amino acid, and an extra bit

per amino acid to signify where the window spans either the N or C terminus of the protein chain,

gives a feature vector of size 315 (Jones, 1999). The testing set is specially constructed to avoid
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Data Set Data Set Size Classes Number of Attributes

DNA 3,186 3 60

Satimage 6,435 6 36

LED Training = 6,000; Testing = 4,000 10 7

Pendigits 10,992 10 16

Letter 20,000 26 16

Waveform Training = 40,000; Testing = 10,000 3 21

Covtype Training = 149,982; Testing = 431,030 7 21

Jones Training = 209,529; Testing = 17,731 3 315

Table 1: Data set sizes, number of classes, and attributes.

any homology to the training set; this makes it a hard prediction problem for the classifier, and an

appropriate test for the new protein secondary structure predictions.

We performed 10-fold cross-validation for seven of our data sets: DNA, satimage, pendigits,

letter, waveform, LED, and the Jones data set. For the waveform and LED data sets, we combined

the training and testing sets to perform 10-fold cross-validation. We combined the training and

testing sets to increase the overall data set size for the learning procedures. For the Jones data set

the 10-folds were constructed per-chain from the training set, so that non-homogenity is maintained

between our 10-fold training and testing sets. This maintained the level of difficulty for the learning

algorithm. For the other large data set, covtype, we only ran on the separate training and testing

sets of sizes 149,982 and 431,030, respectively, as done by Lazarevic and Obradovic (2002). The

size of the entire covtype data set was too large (581,102) to perform a 10-fold cross-validation in a

reasonable time, given the number of approaches and classifiers.

5.2 Base Classifiers and Computing Systems

We used the C4.5 release 8 decision tree, the Cascade Correlation neural network, and Naive Bayes

classifiers for our experiments. The sequential Rvote and Ivote experiments were run on a 1.4 GHz

Pentium 4 Linux workstation with two gigabytes of memory, and an 8-processor Sun-Fire-880 with

32 gigabytes of main memory. We ran most of our DIvote and DRvote experiments on a 24-node

Beowulf cluster. Each node on the cluster has a 900 MHz Athlon processor and 512 megabytes of

memory. The cluster is connected with 100Bt ethernet. We also ran some of our DIvote experiments

on the ASCI Blue Supercomputer. There are 1296 compute nodes on the ASCI Blue. The 4-CPU

nodes have: 1.5 gigabyte memory, 332 MHz PowerPC 604e chip, 83 Mhz memory bus, and a

compute node peak performance of 2.6 GFLOP/s (Livermore National Laboratories).

6. Experiments with the C4.5 Decision Tree Learning Algorithm

We ran 10-fold cross-validation experiments using C4.5 decision trees for all the small and moderate

sized data sets. Section 6.1 contains the results on the small and moderate data sets. For the large

data sets, we used separate training and testing splits. However, for one of the large data sets–Jones–

we also report the 10-fold cross-validation result. Section 6.2 contains the results on the large data

sets. We also present a timing analysis and comparison between DIvote and Ivote in Section 6.3.
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Figure 1: C4.5 Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for DNA.

6.1 Small and Moderate Sized Data Sets

We partitioned our small and moderate sized data sets, with the exception of DNA, into four disjoint

partitions and used bites of size 800 to learn classifiers. Due to the smaller size of DNA, we parti-

tioned it into three disjoint partitions and used bites of size 400. We used unpruned trees for all de-

cision tree experiments as the ensemble of classifiers will override the overfitting (Breiman, 1999).

Figures 1 to 5 show the 10-fold accuracy trends for six of our data sets. Each of the distributed

approaches is comparable in its classification accuracy to its sequential counterpart. DIvote/Ivote

achieve significantly higher classification accuracies than a single C4.5 classifier, and the simplistic

approaches of DRvote/Rvote. LED is an exception, as all the approaches are comparable to each

other. We believe that DIVote/IVote could be a victim of the feature noise present in the LED data

set, as each feature has a 10% probability of having its value inverted (Blake and Merz, 1998).

The letter data set differed from other data sets as both DRvote and Rvote achieved significantly

worse classification accuracies than C4.5. However, for letter also, DIvote and Ivote were compa-

rable, and significantly better than Rvote, DRvote, and C4.5, in their classification accuracies. The

letter data set has 26 classes with 16 dimensions; each 800 sized bite will contain an average of 30

instances (on an average) for each class. Thus, the 30 training instances may not mimic the real dis-

tribution of the data set. To test this model, we created 100% bags on each disjoint partition (Chawla

et al., 2000) of the letter data set, and found that the classification accuracy increased significantly

as compared to DRvote or Rvote, but was still not better than DIvote and Ivote. This shows that

100% random bags constructed on each disjoint partition of the letter data set are introducing more

coverage, better individual classifiers, and diversity1 compared to the DRvote bites (800 instances).

1. We visit the diversity issue in Section 8.
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Figure 2: C4.5 Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for LED.
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Figure 3: C4.5 Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for satimage.

Since DIvote and Ivote sample heavily from misclassified instances, after each iteration or series of

iterations they focus on potentially different instances.

The results on the small data sets are encouraging as for almost all the data sets, DIvote is

similar to Ivote in its classification accuracy, while surpassing a single C4.5 decision tree learned on
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Figure 4: C4.5 Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for pendigits.
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Figure 5: C4.5 Accuracy comparisons of DIvote, Ivote, Rvote, DRvote, and C4.5 for letter.
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Figure 6: C4.5 Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for waveform.

the entire data set. DIvote is also significantly better than DRvote. Another important observation

is that for almost all the data sets, 100 iterations of DIvote or Ivote achieve close-to-maximum

accuracies, and after that the increase in accuracy is very slow compared to the addition of iterations.

Given the small bite size, 100 iterations are very fast using any algorithm as the training set size is

only 800 (or 400).

6.2 Large Data Sets

Due to the distinct nature of analysis on both the large data sets, we treat them separately in the

subsequent subsections.

6.2.1 JONES DATA SET

We set up two different experiments on the Jones data set. One evaluates the DIvote, Ivote, DRvote,

and Rvote approaches by learning and testing on the provided train and test sets. The other, 10-fold

cross-validation experiment, was to understand and report statistical differences between DIvote

and Ivote.

We divided the training set into 24 random disjoint partitions, as we had 24 nodes of the Beowulf

cluster available for this experiment. To understand the effect of bite size on DIvote for this data

set, we also set up bites at sizes 1/256 (818 instances), 1/128 (1636 instances) and 1/64 (3272

instances) of the entire training set size of 209,529. Figure 7 shows the classification accuracies

of the various approaches using the given train/test split. As is evident from the figures, all the

distributed approaches more accurate than the sequential approaches.

We also observe that increasing the bite sizes has no major effect on the classification accuracies

of the ensemble. The experiment with increasing bite sizes is computationally cheap, as the bite size

432



LEARNING ENSEMBLES FROM BITES

0 50 100 150 200 250

52

54

56

58

60

62

64

66

68

70

Jones dataset with C4.5

# iterations

A
c
c
u

ra
c
y
 %

Single C4.5
DIvote (24); Bite size = (1/256)Jones
DIvote; (24) Bite size = (1/128)Jones
DIvote (24); Bite size = (1/64)Jones
Ivote; Bite size = (1/256)Jones
Rvote; Bite size = (1/256)Jones
DRvote (24); Bite size = (1/256)Jones
Average of 24 Disjoint Voting

Figure 7: Accuracy comparisons of DIvote, Ivote, Rvote, DRvote, and C4.5 for the Jones data set.

remains very small (from approximately 800 to 3200). In addition, we also show the classification

accuracy achieved by voting classifiers learned on each of the random disjoint partitions. Note

that adding a meta-layer of DIvote on the disjoint partitions provides an absolute improvement

of at least 4% in accuracy. We would also like to point out the accuracy achieved by learning

a single C4.5 decision tree on the entire data set: 52.2%. It is remarkable that all the ensemble

approaches, reported in the Figure 7, provide an absolute gain of at least 12% on this data set. The

non-homologous nature of the testing set makes it a particularly hard problem for C4.5 with its axis

parallel splits (Chawla et al., 2001). The decision tree overfits the training set, achieving a very high

resubstitution accuracy of 96.7%. The ensemble of decision trees counters the effect of overfitting

and improves generalization, which is very important for the protein domain (Eschrich et al., 2002).

It is also interesting to note that the average accuracy of a decision tree learned on bites of size

1/256th of the Jones data set (for DIvote) is below 50%, and the aggregate of all the not-so-good

classifiers gives a performance in the range of 66% to 70% for 50 or more learning iterations. A

classifier, learned on 1/256th of the entire training set, with an accuracy of < 50% is not very

surprising when juxtaposed with the accuracy of the single classifier learned on the entire training

set. Figure 8 shows the accuracy trends for 4800 decision trees learned in the DIvoted ensemble

for the Jones data set. These plotted accuracies are sorted in an increasing order, and are not in the

same order as the construction of bites.

To further evaluate the behavior of DIvote and Ivote for the large Jones data set, we report the

10-fold averaged cross-validation results in Figures 9 and 10. As with the previous experiment, we

divided each training fold into 24 random disjoint partitions. Let us examine Figure 9 first. DIvote

achieves significantly higher classification accuracies than Ivote for 200 iterations. However, a point

of contention could be that DIvote is constructing 200*24 (4800) classifiers versus 200 classifiers

for Ivote, albeit in less time (which is an advantage in itself of DIvote). So, on the ASCI Blue
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Figure 8: Individual performances on the Jones data set.

supercomputer, we let Ivote run up to 1200 iterations or six hours (per fold) of allowed compute time

on a node. We then ran 50 (1200/24) iterations of DIvote, taking only six minutes (per fold), which

means that we constructed only 50 decision tree classifiers on each of the 24 disjoint partitions. This

gave us an ensemble size of 1200 (50*24), which is equivalent to Ivote. On performing a two-tailed

paired-t-test at 95% confidence interval, we find that an ensemble of 1200 classifiers of Ivote is

significantly better (in classification accuracy) than the ensemble of 1200 classifiers of DIvote.

Now, the ensemble of DIvote classifiers is really under-constructed this time, and we can still

use the hours of compute time utilized by Ivote to construct the ensemble. For instance, consider

Figure 10, if we compare 200 DIvote classifiers that took 30 minutes and 1200 (maximal possible,

given the computation bottleneck) Ivote classifiers that took six hours, we observe that DIvote and

Ivote are comparable to each other. This highlights the significant advantage of DIvote in terms of

time spent on computation.

6.2.2 COVTYPE

Our second large data set, covtype, contains 149,982 instances in the training set. This data set also

has a very high skew in its class distribution as reported in Table 2. We divided the training set into

eight disjoint partitions, as done in the distributed boosting paper. We ran DIvote, Ivote, Rvote, and

DRvote experiments using a bite size of 800. Figure 11 shows one of the results on this data set.

Each of the ensemble approaches for covtype results in significantly worse classification accuracy

than learning a single C4.5 decision tree on the entire training set. This is contrary to our previous

observations. We believe the high skew in the class distribution is coming into play, as each of the

classes is, possibly, not getting a sufficient representative coverage and interaction in the bites.

We further investigated the coverage issue by increasing the bite size for DIvote and Ivote. As

one would do in subsampling (Provost et al., 1999), we tried the following different bite sizes: 800,

434



LEARNING ENSEMBLES FROM BITES

50 100 150 200
0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

A
c
c
u
ra

c
y
%

# iterations

Jones 10−fold with C4.5; Bite size = 800

Ivote
DIvote

Acc. +− Std. Error for DIvote 

Acc. +− Std. Error for Ivote 

Figure 9: 10-fold averages of up to 200 iterations of Ivote and DIvote.
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Class 3 670

Class 4 2,414

Class 5 4,544

Class 6 5,433

Class 2 8,971

Class 0 54,433

Class 1 73,517

Table 2: Class distribution for the covtype data set, in ascending order.
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Figure 11: Covtype data set with C4.5.
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Figure 12: Effect of varying bite sizes on the covtype data set for Ivote and DIvote.

1600, 3200, 6400, 9600, 12800. We would like to point out that the bite size of 12,800 is still less

than 10% of the training set of size 149,982. In the sequential domain, when searching for a single

appropriate subsample of a given data set, the error (or accuracy) curve at varying subsample sizes

is constructed, where each (x,y) on the curve signifies the error y at a particular subsample size x.

So in the ensemble setting, each (x,y) represents the voted accuracy, y, of the ensemble constructed

from subsamples (bites) of size x. This allowed us to make an accuracy (or error) curve for the

improvement observed with varying bite sizes. Figure 12 summarizes the result. We constructed

300 classifiers at each bite size. Increasing the bite size improves the coverage for the classes, and

leads to a significant improvement in the prediction accuracy for both DIvote and Ivote. However,

Ivote achieves higher classification accuracies than DIvote for this data set, and also surpasses the

accuracy achieved by the single C4.5 decision tree — 93.2%. The discrepancy in Ivote and DIvote

performance is possibly arising from the limited coverage of classes in each bite from the 8 disjoint

partitions; for example, each disjoint partition has, on an average, only 83 examples of class 3.

6.3 Timing

Table 3 shows the timing (user and system time during training) ratios of DIvote to Ivote, and

DRvote to Rvote on the Beowulf cluster for some of our data sets using C4.5 decision trees. We

report times for some of our small and large data sets, and with only C4.5, as the rest should follow

similar trends. The experimental parameters were: number of iterations = 100; bite size N = 800 for

the small data sets, and bite size N = (1/256) * (Jones data set size) for the Jones data set.

The time taken for DIvote and DRvote reflects the average of the time taken for 100 iterations

on each of the T (T = 4 for the small data sets; T = 24 for the large data set) nodes of the cluster.

For fair timing comparisons to DRvote and DIvote, we also ran 100 iterations of Ivote and Rvote on

a single cluster node. It is noteworthy that we are able to build T *100 DIvote classifiers simultane-
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Data Set DIvote/Ivote DRvote/Rvote

Satimage 0.36 0.91

Pendigits 0.29 0.95

Letter 0.23 0.89

Jones 0.048 0.90

Table 3: Ratio of time taken by DIvote to Ivote, and DRvote to Rvote, on a cluster node.

ously. One significant advantage of the proposed DIvote approach is that it requires less time than

Ivote, particularly for very large data sets. Since we divide the original training set into T disjoint

subsets, during training the aggregate DIvote classifiers on a processor test many fewer instances

than aggregate Ivote classifiers (for the Jones data set each disjoint partition has only 8730 instances,

compared to 209,529 in the entire data set). Also, a reduction in the training set size implies that

the data set can be more easily handled in main memory. This is a big gain as the multiple random

disk accesses can then be avoided during sampling. We pointed out earlier that Breiman found that

sequential disk access was not giving as good a classification accuracy as multiple random disk

access. So, to maintain the advantage of random sampling, each processor can load the relatively

smaller training set partition into its main memory. Table 3 shows that as the overall training data

set size increases, the ratio of DIvote time to Ivote time decreases. That is, Ivote becomes more

computationally expensive than DIvote as the data set increases.

It is not surprising that the timings for DRvote and Rvote are very similar, as both the approaches

essentially build many small bags from a given training set, without the intermediate book-keeping.

Nevertheless, DRvote builds T times as many Rvote classifiers in less time.

We would like to note that the same software performs DIvote and Ivote, except that for the

distributed runs we wrote an MPI program to load our pasting votes software on different nodes of

the cluster, and collect results. So, any further improvement of the software would be applicable

across the board, although it might decrease the ratios of time taken by DIvote to time taken by

Ivote. Nonetheless, it is fair to assume that Ivote will hit a memory bottleneck (with an increasing

data set size) faster than DIvote irrespective of the implementation.

7. Experiments with the Cascade Correlation Neural Network

To investigate whether our results generalize to other sorts of classifiers, we performed 10-fold

cross-validation experiments on the small to moderate sized data sets using the Cascade Correla-

tion (CC) neural network. We also compared the DIvote approach with the distributed boosting

algorithm, which is presented in Section 7.2.

7.1 10-fold Cross-Validation Experiments

Figures 13 to 18 summarize the results of 10-fold cross-validation with CC. Using two-tailed paired-

t-tests at the 95% confidence interval, we find that DIvote and Ivote are significantly better than

DRvote, Rvote for satimage, letter, waveform, and pendigits, and comparable for DNA. DIvote and

IVote are significantly better than a single CC for DNA, satimage, letter, waveform, and pendigits.

DIvote and Ivote achieve comparable accuracies (no significant difference) for all the data sets,
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Figure 13: CC Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for DNA.

but for pendigits. DIvote is significantly better than Ivote for pendigits. LED, again, provides an

exception: all approaches are similar to each other in their classification accuracies.

We required fewer learning iterations with CC than with C4.5. Moreover, we observe that with

CC, 40 to 50 iterations are sufficient, and the accuracy increases very slowly, if at all, thereafter.

This is noteworthy as although neural networks are slower to learn when compared to decision

trees, they require even fewer learning iterations. Essentially, an important conclusion to be drawn

from all these experiments is that using importance sampling not only mitigates the need for many

iterations but also limits the amount of data needed for learning.

7.2 Comparison to Distributed Boosting

We ran experiments on the four publicly available data sets used by Lazarevic and Obradovic (2002)

to facilitate direct comparisons. We divided the training sets of covtype, LED and waveform into

four disjoint partitions and the training set of pendigits into 6 disjoint partitions as done by Lazarevic

and Obradovic (2002). We learned an ensemble of CC classifiers by running 100 iterations of DIvote

with a bite size of 800 for each of the data sets. We evaluate the ensemble on the separate testing

sets to compare with the distributed boosting approach.

Table 4 reports the accuracies achieved by DIvote and distributed boosting on the separate test-

ing sets. We report the distributed boosting accuracy for the “Simple Majority” voting scheme using

p = 0 directly from (Lazarevic and Obradovic, 2002). The table shows that using neural networks

we can achieve accuracies comparable to (or better than) the distributed boosting algorithm. The

inherent and compelling advantage of the DIvote approach is that it requires no inter-processor com-

munication during learning. Although with DIvote we are learning hundreds of classifiers, we never

need to learn a single classifier on a complete given partition of data. The bite size always remains
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Figure 14: CC Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for LED.
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Figure 15: CC Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for satimage.
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Figure 16: CC Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for pendigits.
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Figure 17: CC Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for letter.
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Figure 18: CC Accuracy comparisons for DIvote, Ivote, DRvote, and Rvote for waveform.

Data Set DIvote Distributed Boosting (Lazarevic and Obradovic, 2002)

Pendigits 96.4% 96.5%

LED 74.0% 73.4%

Waveform 87.2% 87.0%

Covtype 78.2% 72.6%

Table 4: Classification accuracy comparisons for DIvote and distributed boosting.

very small compared to the size of the entire training set or even the size of the disjoint partition.

Thus, given any partition size, the learning task for a single classifier always remains small.

8. Diversity of Classifiers in the Ensemble

The diversity of classifiers in an ensemble is considered a key issue in the design of an ensemble

(Kuncheva and Whitaker, 2003). Classifiers are considered diverse if they disagree on the exam-

ples for which they err. Diversity, thus, is a property of a group of classifiers with respect to a

data set. The classifiers might be reporting similar accuracies, but be disagreeing on their errors.

Diversity is an important aspect of the ensemble techniques — bagging, boosting, and randomiza-

tion (Dietterich, 2000). There has been a significant amount of research on defining measures for

diversity, and evaluating the reasons behind the success of ensemble techniques (Giacinto and Roli,

2001; Kuncheva and Whitaker, 2003; Kuncheva et al., 2000; Skalak, 1996; Ho, 1998; Banfield et al.,

2003). Diversity is an important metric in addition to accuracy when evaluating and constructing

an ensemble of classifiers. Breiman notes that the success of random forests lies in the interplay
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of the ”strength2” and ”correlation3” of classifiers. Ideally, one wants lower correlation and higher

strength of classifiers Breiman (2001). To understand the behavior of our ensemble of classifiers,

we implemented the κ metric given by Dietterich (2000), and defined by

Θ1 =
∑T

i=1Cii

m
,

Θ2 =
T

∑
i=1

(
T

∑
j=1

Ci j

m
.

T

∑
j=1

C ji

m
),

κ =
Θ1 −Θ2

1−Θ2

.

T is the number of classes, C is the T ∗T square array, such that Ci j signifies the number of examples

assigned to class i by the first classifier and to class j by the second classifier. Θ1 gives the degree

of agreement, and Θ2 is the degree of agreement expected at random. κ is the statistic measuring

diversity. κ equals zero when the two classifiers agree only by chance and κ equals one when the

two classifiers agree for every example. Dietterich (2000) produced a scatter plot of κ and mean

error of a pair of classifiers to show the spread of κ values against error. The κ plots are constructed

by plotting the κ value against the mean error (or accuracy) of the n random pairs of decision tree

classifiers. Each classifier in an ensemble (or a random subset of the ensemble) is combined with

every other classifier to compute the mean pair-wise error and κ value. The lower the κ values, the

higher the disagreement amongst the classifiers.

We built κ plots for C4.5 decision tree ensembles constructed by DIvote and DRvote. We wished

to shed some light on the classification accuracy improvements observed with DIvote by virtue of

more diversity in the design of the ensemble of classifiers. We only show the κ plots for two of

the data sets: letter and Jones. Figure 19 shows the κ plots for C4.5 decision trees constructed with

DIvote and DRvote for the letter data set. We get a broader range of κ values and mean error with

DIvote, compared to DRvote, thus implying that DIvoted classifiers are essentially more diverse

with each other than the DRvoted classifiers. This ties in with our observation that the ensemble

constructed via DIvote is more accurate than the ensemble constructed via DRvote.

Figure 20(a) shows the diversity plots for DIvote on the Jones data set. We randomly chose 600

decision trees from the ensemble of 4800 decision trees for constructing the κ plots; the bite size was

1636 or 1/128th of the Jones data. We chose only 600 trees due to the computational infeasibility

of doing pairwise comparisons for all 4800 decision trees. As is evident from the figures, the

DIvoted classifiers produce a lower κ value, that is, there is a higher disagreement in the classifiers’

predictions. Thus, DIvote is able to boost the classification accuracy of a multiple classifier system

of weak and unstable classifiers, by inducing a high diversity amongst the classifiers. Figure 20(b)

shows the diversity plot for DRvote on the Jones data set. We again selected 600 trees at random

from our ensemble of 4800 decision trees constructed from bites of size 1636. As shown in the

Figure 20(b), there is a high degree of disagreement amongst the classifiers, but there is still a more

compact set of points in the plot as compared to the DIvoted scatter plot. There is a broader range

in error as well as κ values for the DIvote classifiers. We observed that the ensemble constructed

2. Strength is the accuracy of the individual classifiers.

3. Correlation is the dependence amongst classifiers.
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Data Set Single Naive Bayes Classifier 300 Ivote 300 Rvote 50 Bags

Letter 65.58% 68.82% 67.02% 66.1%

Pendigits 81.1% 91.29% 81.36% 81.04%

Table 5: Naive Bayes classifier on the letter and pendigits data sets. The highest accuracy is given

in bold.

with DRvote classifiers is able to provide an accuracy boost of at least 14% over learning a single

decision tree classifier (see Figure 7). Thus, the high diversity amongst the classifiers aids the voting

ensemble.

9. Stable Classifier and Ivote/DIvote

So far, we have shown that DIvoting/Ivoting unstable classifiers, such as decision trees and neural

networks, achieves better classification accuracies than learning a single unstable classifier on the

entire data set. Ensemble methods have been usually cited to work better with unstable classifiers

due to the sensitivity of the unstable classifiers to the data presented for learning. We believe that the

core issue in generating a diverse set of classifiers is how you generate the ensemble, not the base

classification method. For instance, boosting has been shown to work well with a stable classifier

like Naive Bayes (Bauer and Kohavi, 1999).

We saw in the diversity plots in the previous section, that DRvote and Rvote produce a compact

set of κ values in spite of being constructed from unstable classifiers. And DIvote and Ivote pro-

duced a bigger spread of κ values. Hence, it is the importance sampling in DIvote or Ivote, which is

helping the learned ensemble. To show this we used a stable method of learning a classifier, Naive

Bayes4, in conjunction with Ivote, Rvote, and bagging. For comparison purposes, we evaluated

the sequential versions — Ivote, Rvote and bagging — with Naive Bayes on two of our data sets:

pendigits and letter. We used the separate training and testing sets, since we were more interested in

comparing the diversity trend between importance sampling and random sampling methodologies

than in statistical validation of accuracies’ improvement.

Table 5 shows the classification accuracies obtained from learning Naive Bayes classifiers on

the letter and pendigits data sets. Figures 21 to 22 highlight the κ results on both the pendigits and

letter data sets. As is evident from the figures, Ivoted classifiers are more diverse (and accurate) than

both Rvoted and bagged classifiers. This result is not very surprising, as Ivote/DIvote classifiers are

learned on bites derived from importance sampling, and each of these bites can look very different

due to the heavier sampling from more difficult examples. Although a spread of κ values is observed

for Rvote with the pendigits data set, this spread is prevalent at 0.7 ≤ κ ≤ 1.0. Higher κ values

indicate a higher degree of agreement between the different pairs of classifiers.

10. Conclusion

We proposed a distributed framework for pasting Ivotes by dividing a training set into n disjoint

partitions and building hundreds of classifiers (using very small training sets) on each disjoint par-

tition. The main conclusion of our work is that pasting DIvotes is a promising approach for very

4. The source code was downloaded from http://fuzzy.cs.uni-magdeburg.de/∼borgelt/software.html.
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Figure 19: a) κ Plot for DIvote with C4.5 on the letter data set. b) κ Plot for DRvote with C4.5 on

the letter data set.

(a) (b)

Figure 20: a) κ plot for DIvote and Jones data set. b) κ plot for DRvote and Jones data set.
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Figure 21: a) κ plot for Naive Bayes and Ivote on the letter data set. b) κ plot for Naive Bayes and

Rvote on the letter data set. c) κ plot for Naive Bayes and bagging on the letter data set.
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Figure 22: a) κ plot for Naive Bayes and Ivote on the pendigits data set. b) κ plot for Naive Bayes

and Rvote on the pendigits data set. c) κ plot for Naive Bayes and bagging on the

pendigits data set.
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large data sets. Data sets too large to be handled practically in the memory of a typical computer

are appropriately handled by simple partitioning into disjoint subsets, and adding another level of

learning by pasting DIvotes or DRvotes on each of the disjoint subsets. We show that for almost

all the data sets, using decision trees and neural networks, DIvote achieves classification accuracy

comparable to Ivote (sometimes better), and almost always better than learning a single classifier.

We evaluated DIvote and Ivote on data sets coming from various domains, and for almost all the

cases they achieve significantly better classification accuracies than a single classifier.

DIvote is scalable as it never requires the learning set size to be greater than a very small pro-

portion of the entire training set. Each processor works independently, without requiring commu-

nication at any stage of learning. The end result is an ensemble of hundreds of DIvote classifiers.

We also conclude that pasting DIvotes is more accurate than pasting DRvotes. We believe that the

combined effects of diversity, good coverage, and importance sampling are helping DIvote and Iv-

ote. It is significant that DIvote does much better than the simplistic version of pasting small votes

in a distributed scenario. Moreover, we observe that with DIvote and Ivote, the accuracy grows

fast initially during learning, and then slowly plateaus. Particularly, with neural networks fewer

iterations of DIvoting are needed to vastly improve over learning a single classifier from the entire

training set. Neural networks, particularly, can get slowed down significantly in the training phase

when learning from very large data sets. DIvote is a promising approach to reduce the learning time

with neural networks even on very large data sets.

Using κ (diversity) plots, we support the theory that given an ensemble of diverse classifiers, an

improvement in the accuracy can be observed. We note that DIvote provides the most significant

improvement of almost 18% (relative improvement of 34%) in the difficult, non-homogeneous Pro-

tein Prediction problem over learning a single classifier using C4.5. Thus, the ensemble of diverse

DIvote classifiers counters the effect of overfitting and improves the generalization.

Another important contribution of our work is comparison to the distributed boosting approach.

We conclude that DIvote achieves classification accuracies similar to the distributed boosting ap-

proach, with no inter-processor communication at any stage of learning.

The DIvote framework is naturally applicable to the scenario in which data sets for a problem

are already distributed. At each of the distributed sites multiple classifiers can be built, and the only

communication required is the learned classifiers at the end of training. Inter-processor communica-

tion can become a bottleneck if an exchange of data is required across various nodes or processors.

Moreover, one can easily conceptualize the applicability of DIvote on a cluster of workstations in a

lab, where each workstation independently works on a part of the problem in its main memory.
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