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Abstract

Equivariance and invariance are often desired proper-

ties of a computer vision system. However, currently avail-

able strategies generally rely on virtual sampling, leaving

open the question of how many samples are necessary, on

the use of invariant feature representations, which can mis-

takenly discard information relevant to the vision task, or

on the use of latent variable models, which result in non-

convex training and expensive inference at test time. We

propose here a generalization of structured output SVM re-

gressors that can incorporate equivariance and invariance

into a convex training procedure, enabling the incorpora-

tion of large families of transformations, while maintaining

optimality and tractability. Importantly, test time inference

does not require the estimation of latent variables, resulting

in highly efficient objective functions. This results in a nat-

ural formulation for treating equivariance and invariance

that is easily implemented as an adaptation of off-the-shelf

optimization software, obviating the need for ad hoc sam-

pling strategies. Theoretical results relating to vicinal risk,

and experiments on challenging aerial car and pedestrian

detection tasks show the effectiveness of the proposed solu-

tion.

1. Introduction

In applications such as object detection and object clas-

sification, the output changes in a predictable way to cer-

tain transformations of the input images. For instance, if

the image is rotated then the location output of an object

detector should also move accordingly, i.e. the object loca-

tion is equivariant with the image rotation. On the other

hand, whether an image contains a certain object does not

depend on the image rotation, i.e. the label output of an ob-

ject classifier is rotation invariant. In both cases rotation is a

nuisance factor that, by affecting the appearance of the ob-

ject, complicates extracting the information of interest, the

location or presence of the object.

A common way of handling nuisance transformations

is to explicitly model and estimate them as latent fac-

tors [6, 32]. In our example, this amounts to estimating the

rotation of each object both at training (design) and testing

(application) time. Doing so has two significant drawbacks:

(i) computations are wasted in estimating irrelevant infor-

mation (the object rotation) and (ii) the learning problem

becomes non-convex due to the latent factors [32].

In this paper we develop instead invariant/equivariant al-

gorithms that (i) estimate only the information of interest

(e.g. not rotation) and (ii) are learned by solving a convex

optimization problem. By avoiding the introduction of la-

tent factors, these methods can improve the efficiency of

learning and, more importantly, testing.

In classification problems, the goal is usually to train in-

variant classifiers. There is a large body of literature dealing

with this problem [14]. Invariance has been enforced or en-

couraged at the level of (a) the training data by generating

virtual samples [21] (for example for pose invariant key-

point recognition [15] or for tolerance to lighting and small

pose changes in the case of object detection [13]); (b) the

data representation (tangent distance [26], jittered, tangent,

and invariant kernels [25, 22, 30, 7]); and (c) the learning

objective (vicinal risk minimization [3], invariance in learn-

ing distance functions [12]).

Problems such as object detection, image segmentation,

and image parsing cannot be encoded naturally as classifi-

cation problems. In these cases one may use structured out-

put learning [27, 29], which allows the learning of functions

with complex outputs, such as object poses, segmentations,

and parse trees. In this paper we propose a method to in-

corporate invariance or equivariance [24] into structured

learning problems. For training we utilize a cutting plane

strategy, which efficiently and optimally generates samples

that incorporate desired invariance and equivariance. Our

method can be seen as an extension of [28] to the case of

equivariant learning.

Our approach unites the approaches (a–c) above in a sin-

gle formulation by generalizing structured output regression

learning. For example, in the case (a) of generating virtual

samples, it is not clear a priori how many samples need to

be generated and how dense they should be. The structured
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Figure 1: Illustrative example. We use the structured and invariant SVM to learn a polynomial SVM for the problem of

separating three classes of 2-D dots (red, blue, and green) by sampling a single point (denoted with respectively a circle,

an ‘x’ sign, and a cross) from each class (see the text for the formulation details). We impose invariance to rotations of up

to respectively 0, π/8, π/4, π/2 and π radians. The estimated classes are indicated by the colored areas, the black lines

represent the margin, and the black dots the set of transformed samples added by the cutting plane iterations. Note that the

selection of such “virtual samples” is sparse.

learning formulation deals with this in a principled man-

ner by only generating those samples necessary to optimize

the objective function. Importantly, this benefit is achieved

without necessitating or precluding the use of invariant fea-

ture representations, which may inadvertently discard infor-

mation relevant to the task.

1.1. Regularized risk minimization

Let X denote the input space (e.g. natural images) and Y
the output space (e.g. object locations). In standard struc-

tured output learning, given training data (xi, yi) ∈ X ×Y,
i = 1, . . . , N and a parametric form f(x;w) of the func-

tion X → Y to be estimated (e.g. the object detector), one

minimizes a regularized empirical risk estimate of the form

min
w

1

2
‖w‖2 +

C

N

N∑

i=1

∆(yi, f(xi;w)). (1)

The loss ∆(yi, ŷ) measures how well the prediction ŷ =
f(xi;w) approximates the desired output yi (e.g. the over-

lap error between the estimated and predicted object bound-

ing box [1]). The regularization term ‖w‖2 penalizes overly

complex models and it is traded off with the empirical aver-

age loss (risk) by the parameter C > 0.

In this work, we modify the problem (1) in order to pe-

nalize deviations of f(x;w) from specified invariance or

equivariance requirements. The idea is illustrated in Fig. 1

for the problem of invariant multi-class classification with

hinge loss. Here we learn to discriminate between three dif-

ferent classes Y = {red, green, blue}, which are subsets of

X = R
2. The classes have circular symmetry, but only one

training point is given for each (the red circle, green cross,

and blue x). In the first panel, no invariance is enforced,

and the estimated classes are incorrect. In the second panel,

invariance to rotations t in the range T = [−π/8,+π/8] is

enforced. This is done by maximizing the loss in (1) with

respect to the transformation by considering

min
w

1

2
‖w‖2 +

C

N

N∑

i=1

sup
t∈T

∆(yi, f(txi;w)). (2)

The blue class in the second panel is now roughly circu-

lar. By further increasing the range of invariant rotations

to ±π/4, ±π/2, and ±π radians, circular symmetry is en-

forced more and more accurately (and with a principled

choice of the transformed samples).

The first technical contribution of the paper is to show

that costs such as (2) can be formulated as convex optimiza-

tion problems (Sect. 2.1). In particular, our method extends

previous approaches such as [17, 28] to handle equivariant

transformations affecting the input and the output simulta-

neously. This is a very flexible framework that can be used

to solve a variety of different problems, ranging from op-

timal ranking to object detection (Sect. 3), by the use of

established large-scale optimization techniques (Sect. 2.2).

Representing large transformations of the inputs often

requires the use of non-linear kernels, which are known to

be slow, especially in the context of structured output learn-

ing. Thus in Sect. 3.1 we adopt a class of non-linear joint-

kernels similar to [33], dubbed slot kernels, that are non-

linear and local similar to a Gaussian kernel but are much

more computationally efficient. Finally, in App. A we show

that, by an appropriate choice of the loss function, the pro-

posed formulation has a probabilistic interpretation in term

of vicinal risk minimization [3].

2. Equivariant structured learning

In the following Sect. 2.1 first introduces the equivari-

ant structured learning problem, extending (2) to the case of

equivariant and invariant structured outputs. Then, Sect. 2.2

derives a corresponding equivariant structured SVM formu-

lation, yielding a convex optimization problem, and shows



how standard cutting-plane solvers [11] can be used to effi-

ciently obtain a solution.

2.1. General formulation

Our goal is to learn an equivariant or invariant function

f(x;w). We start by giving a formal definiton of equiv-

ariance. Consider pairs of corresponding transformations

t = (tX , tY) ∈ T of the input tX : X → X (e.g. image

rotations) and of the output tY : Y → Y (e.g. bounding

box rotations). The learned function f(x;w) is equivariant

with T if f(tXx) = tYf(x) for all t ∈ T . For instance, the

object location f(tXx;w) predicted on the rotated image

tXx should be equal to the rotated location tYf(x;w) pre-

dicted from the original image x. As a special case, fixing

tY = 1 to be the identity transformation encodes invari-

ance: f(tXx;w) = f(x;w). In order to simplify notation

the shorthand tx and ty will denote the action of the trans-

formation t ∈ T on the input x and the output y respec-

tively.

As in Sect. 1.1, a way of encouraging equivariance is to

penalize the maximum loss ∆(tyi, f(txi;w)) with respect

to all transformations t ∈ T . To allow weighting the trans-

formations, we generalize this and allow the loss to depend

directly on t and consider instead

sup
t∈T

∆(t, yi, f(txi;w)) (3)

where the dependency on tyi is implicit. In App. A this flex-

ibility is used to give a probabilistic interpretation of (3) in

term of vicinal risk [3]. By substituting the loss (3) into (2)

one obtains the equivariant structured learning problem

min
w

1

2
‖w‖2 +

C

N

N∑

i=1

sup
t∈T

∆(t, yi, f(txi;w)). (4)

The loss can be any function such that ∆ ≥ 0 and

∆(1, y, y) = 0 [11]. Hence (4) is typically non-convex and

very hard to solve. Sect. 2.2 gives its relaxation to a convex

formulation.

2.2. Convex formulation

The first step in deriving a convex variant of (4) is to

choose an appropriate parameterization for f(x;w). As

in a structured output SVM, we define f(x;w) through

a joint feature map Ψ(x, y) to map the input-output pair

(x, y) into a linear feature space (the feature map can be

defined implicitly by a kernel function K(x, y, x′, y′) =
〈Ψ(x, y),Ψ(x′, y′)〉). Then ŷ = f(x;w) is defined as

the output ŷ which maximizes the input-output compatibil-

ity score 〈w,Ψ(x, y)〉, linearly parameterized in the weight

vector w, i.e.

f(x;w) = argmax
ŷ∈Y

〈w,Ψ(xi, ŷ)〉. (5)

For this parameterization, it is easy to derive a convex

upper bound to (3). For any fixed t ∈ T one has

∆(t, yi, f(txi;w)) ≤ ∆(t, yi, f(txi;w))×

[1 + 〈w,Ψ(txi, f(txi;w))〉 − 〈w,Ψ(txi, tyi)〉]

because, due to the maximization in (5),

〈w,Ψ(txi, f(txi;w))〉 ≥ 〈w,Ψ(txi, tyi)〉 and the quantity

in brackets is greater than or equal to 1. By substituting

f(txi;w) with ŷ and by further maximizing the right hand

side with respect to ŷ we obtain the desired upper bound

∆(t, yi, f(txi;w)) ≤ sup
ŷ∈Y

∆(t, yi, ŷ)×

[1 + 〈w,Ψ(txi, ŷ)〉 − 〈w,Ψ(txi, tyi)〉].

Plugging this bound back into (4) yields

min
w

1

2
‖w‖2 +

C

N

N∑

i=1

sup
(t,ŷ)∈T ×Y

∆(t, yi, ŷ)×

[1 + 〈w,Ψ(txi, ŷ)−Ψ(txi, tyi)〉]. (6)

We call this the equivariant structured SVM problem. No-

tice that the standard structured SVM formulation [11] is

recovered by setting T = {1}, where 1 is the identity trans-

formation. Note also that, in contrast to [6, 32], (6) does not

introduce latent factors and remains convex.

Efficient optimization. The convex program (6) can be

converted to the so called one-slack formulation [11], where

the sup operator is translated into a large set (possibly infi-

nite) of linear constraints:

min
w,ξ

1

2
‖w‖2 + Cξ, s.t. ∀ t ∈ T N , ŷ ∈ YN

ξ ≥
1

N

N∑

i=1

∆(ti, yi, ŷi)[1+〈w,Ψ(tixi, ŷi)−Ψ(tixi, tiyi)〉].

(7)

The problem (7) can be optimized using standard off-the-

shelf solvers. These solvers handle the large number of

constraints in (7) by exploiting the fact that, usually, only

a fraction of them is needed to characterize the objective

function around the optimum. For our model, finding these

constraints amounts to identifying a small set of useful vir-

tual samples. The algorithm can be summarized as follows:

1. Solve the problem (7) by considering only a subset S of

constraints (initially this subset is empty). Obtain an esti-

mate w of the model.

2. Given the current estimate w of the model, obtain the

next constraint by solving for each i = 1, . . . , N the prob-
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Figure 2: Aerial car detector. Left: example detections (correct in green, incorrect in red). Middle: precision-recall curves

in the style of the PASCAL VOC challenge [5] for the linear and slot kernel structured SVM detectors and their equivariant

versions. Right: FPPI vs recall curves for the different methods, including the method from [8] denoted as “context”.

lems

(ti, ŷi)
∗ = argmax

t∈T ,ŷ∈Y

∆(t, yi, ŷ)×

[1 + 〈w,Ψ(txi, ŷ)−Ψ(txi, tyi)〉] (8)

Generating this constraint can be interpreted as selecting the

next N most difficult virtual samples.

3. Add the new one-slack constraint to S and repeat from 1

until convergence.

[11] gives strong guarantees on the efficiency (in terms of

number of iterations) and accuracy of this method. As any

structured output learning method, the overall efficiency de-

pends on the cost of computing the maximum (8), which de-

pends on the nature of the data and the structure of the trans-

formations. Many methods exist for performing efficient in-

ference for a number of special cases of structured predic-

tion [1, 6, 8, 10, 27, 29]. The maximization in (8) is no more

expensive than a structured SVM or latent SVM at training

time, but the resulting test time inference is much more effi-

cient as there is no inference of a latent factor. Furthermore,

this method supports continuous classes of transformations,

e.g. through gradient ascent methods, which can be handled

only approximately by generating virtual samples.

3. Experiments

3.1. Rotation invariant object detection

We use the equivariant (rather than invariant) structured

SVM formulation to incorporate invariance to arbitrary im-

age rotations to an object detector in the style of [1]. The

input to the structured SVM ŷ = f(x;w) is an image x ∈ X
and the output ŷ is either the 2D location of the object of in-

terest, or a flag indicating that the object is not contained

in the image. Additionally, we require that the prediction

ŷ = f(x;w) is consistent with arbitrary rotations of the im-

age. This is encoded as a equivariance requirement: if the

object is found at location y in image x, then the same ob-

ject must be found at the rotated location ty in the rotated

image tx.

Note that the rotation of the object is not of interest here,

and in fact the detector will avoid estimating it; neverthe-

less, the location should be correctly determined regardless

of the orientation of the object, which still affects its appear-

ance.

Aerial car detection. As an example application, we con-

sider the task of aerial car detection proposed in [8] (Fig. 2).

The data consists of 30 aerial images with cars annotated

(for a total of more than 1,000 cars with varying rotations).

The performance of the detectors is measured according to

the PASCAL criterion [5] (average precision-recall) and the

criterion used in [8] (number of false positives per image)

for a direct comparison. As low-level image features we

use the HOG [4] implementation of [6] with cells of 5 × 5
pixels. A car is described by a block of 7× 7 HOG cells.

We consider as transformations t ∈ T the set of rota-

tions in the range [0, 2π). t acts on the image x and on

the object location y by rotating them by the same amount,

so that they stay “aligned”. The SVM kernel is the restric-

tion kernel proposed by [1]. In term of joint feature maps,

this kernel is given by a function φ(x, y) that returns the

HOG descriptor of a block of 7 × 7 HOG cells extracted

at location y. With this choice of the feature map, evalu-

ating the structured SVM f(x;w) = argmaxy〈w, φ(x, y)〉
is similar to running a sliding window detector based on

a linear SVM and HOG features [4]. The loss function

∆(t, yi, ŷ) ∈ {0, 1} is also similar to [1] and is equal to

zero if the predicted location ŷ is close enough to the trans-

formed ground truth location tyi, or if yi and ŷ agree that

no object is contained in the image.

Slot kernels. A linear HOG model is not sufficient to

capture arbitrary object rotations. These could be handled

by switching to a non-linear kernel such as a Gaussian,

but non-linear kernels slow down structured SVMs signif-

icantly. Even approximated feature maps for the Gaussian

kernel such [31, 16, 23] are slow for object detection as they

require projecting each candidate image patch on a large set

of basis of vectors.

This motivates us to utilize slot kernels, which are local



as the Gaussian kernels but are much more efficient. Let

q(φ(x, y)) ∈ {1, . . . , Q} be a function that assigns one out

of Q discrete labels to the local HOG descriptor φ(x, y).
For efficiency we implement q with a KD-tree and we de-

sign the Q partitions using k-means. Then the slot kernel

is given by the feature map Ψ(x, y) = eq(φ(x,y)) ⊗ φ(x, y),
where eq is the q-th element of the canonical basis of RQ.

The feature map Ψ(x, y) is a collection of Q linear models,

only one of them being active at a time as indicated by the

function q (this makes the kernel local). This idea is similar

to a mixture of experts and, in the context of kernel learning,

to [33, 20]. In our experiments we set Q = 18.

Results. Fig. 2 compares the various methods. The stan-

dard linear structured SVM detector performs relatively

poorly. Adding equivariance to rotations improves perfor-

mance significantly (+14% Average Precision), and using

the non-linear slot kernel in place of the linear one is even

better (+20% AP). However, the largest benefit by far is

obtained by combining the non-linear kernel with rotation

equivariance (+35% AP), illustrating the importance of be-

ing able to correctly handle image transformations and the

need for using a non-linear representation to do so. We

also note that this detector performs significantly better than

the detector proposed originally by [8], despite the fact

that their approach makes use of a sophisticated contextual

model to aid discrimination.

3.2. Learning to rank with invariance

Learning to rank is a popular application of structured

output SVMs [10, 2]. In these experiments we evaluate a

structured SVM that simultaneously optimizes ranking and

is invariant to a class of transformations of the input. We

begin by first deriving an invariant binary SVM formulation

that does not incorporate ranking.

Invariant binary SVM. The input to the binary SVM ŷ =
f(x;w) is an object x ∈ X and the output ŷ ∈ {−1,+1} is

its label. The quality of the prediction is measured in term

of the standard 01-loss ∆(t, yi, ŷ) = (1− yiŷ)/2. The goal

is to perform consistently well up to a class of transforma-

tions T of the input (the transformations do not affect the

output here). Let φ(x) be a feature of the input x and define

the joint feature map Ψ(x, y) = y/2
[
φ(x)⊤, B

]⊤
, where

B > 0 is a constant used as bias [11]. From (5), evaluating

this structured SVM is the same as evaluating a standard bi-

nary SVM: f(x;w) = sign (〈wX , φ(x)〉+ wbiasB) , where

w =
[
w⊤

X , wbias

]⊤
. The learning problem (7) is thus spe-

cialized to

min
w,ξ

1

2
‖w‖2 + Cξ, s.t. ∀ : t ∈ T N , ŷ ∈ YN

ξ ≥
1

N

∑

i

1− yiŷi
2

(1− yi(〈wX , φ(tixi)〉+ wbiasB)).

Invariant rank SVM. The input to the rank optimizing

SVM is a sequence (x1, . . . , xN ) ∈ XN of N data points

and the output is a permutation that ranks positive points

first [9]. Permutations are encoded as binary matrices ŷ ∈
YN ⊂ {−1,+1}N×N where ŷij = +1 means that xi is

ranked before xj . The loss function ∆(t, y, ŷ) is defined

to be one minus the area under the ROC curve. [10] shows

that optimizing this loss is the same as minimizing the num-

ber of incorrectly swapped pairs in the ranking. By adding

transformation invariance, one gets the problem

min
w,ξ

1

2
‖w‖2 + Cξ, s.t. ∀t ∈ T N , ŷ ∈ YN

ξ ≥
1

N2

∑

ij:yij>0

1− ŷij
2

(1− 〈w, φ(tixi)− φ(tjxj)〉).

Note that the bias term is not needed since it is irrelevant for

ranking. [10] shows that computing a maximally violated

constraint for this problem can be done efficiently by sorting

the samples by the score 〈w, φ(tx)〉.

Pedestrian detection. We evaluate the invariant binary and

rank SVMs on the DaimlerChrysler pedestrian classifica-

tion benchmark [19]. The data consists of three training

subsets with 800 positive 18 × 36 images (pedestrian) and

5000 negative ones (clutter) each and two analogous sub-

sets for testing. While the DaimlerChrysler data includes

virtual samples as well, these are discarded. Performance is

measured in term of equal error rates (see [19] for details on

the evaluation protocol).

As feature φ(x) we use the HOG-like descriptor of [18]

that is suitable for small images. As transformations T we

consider horizontal flipping and translation by one pixel in

the eight directions, for a total of 18 transformations.

Motion as natural transformations. The DaimlerChrysler

pedestrian instances are obtained from video tracks. While

this technique yields cheaply a large quantity of training in-

stances, it also results in a number of highly correlated data

clusters, one for each tracked object. This breaks the funda-

mental i.i.d. assumptions on which most machine learning

techniques rely. A way to solve this problem is to regard

such a cluster as a single data point, and interpret its many

members as natural transformations of the same object. As

pedestrian movement is cyclic, this has an interesting in-

terpretation as a local estimate of the manifold structure of

pedestrian appearance. Our equivariant learning framework

can then be used to incorporate invariance to this manifold.

This has two advantages: (i) it reestablishes statistical inde-

pendence of the samples and (ii) it significantly reduces the

size of the training data, leaving the cutting plane algorithm

to select a small number of representative points.

In order to explore this idea for the DaimlerChrysler

dataset, we use agglomerative clustering to recover the se-

quences of tracked pedestrians (normally this information
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Figure 3: Pedestrian dataset. (1–4) examples of pedestrian groups (motion cycles) of increasing size. Groups define natural

transformations. (a) ROC curves for the DaimlerChrysler benchmark data without transformation invariance, with invariance

to flipping, and with invariance to flipping and translation (invariant binary SVM). (b) Classification accuracies versus number

of data samples used by the cutting plane optimization for a standard SVM, the ROC-optimizing (rank) structured SVM, and

the variants incorporating invariance. The horizontal axis is the degree of grouping of the training data (see Sect. 3.2). Larger

groups cause only a fraction of the original data samples to be selected for training. However, only the structured rank SVM

can deal properly with the resulting unbalanced training problem and maintain good performance.

would be provided as part of the dataset and this step would

be unnecessary). We use four grouping thresholds, num-

bered from 1 to 4, resulting in larger and larger clusters.1

Grouping 1 is the finest possible and corresponds to training

with the unaltered data (Fig. 3.1–4). Each cluster is treated

as a single data point modified by a set of transformations.

Hence t ∈ T selects first an element in a group and then

applies one of the 18 transformations as before.

Results. Fig. 3a-c shows the relative performance of the

various SVMs on the DaimlerChrysler dataset. In Fig. 3a

the equal error rate (EER) of the baseline binary SVM is

14% without any jitter, and improves to 13% when invari-

ance to flipping is added, and to 11% when all eighteen

transformations are considered (Fig. 3a). While here we

are mostly interested in the relative improvement, we note

that the performance reaches the state of the art (within sta-

tistical limits) for this setting [19].

Fig. 3b-c show the effect of natural transformations. The

baseline invariant and the rank invariant SVMs use only one

representative pedestrian per group. As the groupings get

1These clusters effectively recover sequential frames corresponding to

individual pedestrians (Figure 3) and will be made available at the time of

publication.

larger, the number of positive samples available for training

decreases quickly by a factor of ten. The performance also

drops (+6% EER), although not too dramatically, illustrat-

ing the redundancy of the instances within groups. Then,

information is added back, this time in terms of invariance

to natural transformations. This is shown in Figure 3 by the

“binary natural” and “ranking natural” results. The number

of samples used increases slightly, but is still far less than

the overall number of samples, while performance increases

significantly. In particular, the performance of the invari-

ant rank SVM with natural transformations is virtually the

same as using the entire dataset for training but only uses a

fraction of the training samples. The advantage of the rank

SVM is due in part to the fact that the data becomes more

unbalanced with increasing group size (due to the reduced

number of positive samples).

4. Conclusions

In this work we have introduced a novel formulation for

the incorporation of equivariance and invariance in struc-

tured output SVM regressors. This is achieved by optimiz-

ing a convex upper bound to a regularized risk functional

for structured outputs. The resulting optimization has the
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Figure 4: Construction (11) of ∆(t). In this example, the vicinal risk loss ∆vr(t) ∈ [0, 1] has two triangular peaks at -1 and

3/2 (blue curve). The distribution dP (t) is a Gaussian of variance 1/2 (shaded area). The monotonic family U of bounding

functions consists of the step functions of the type µq,δ(t) = χR−(−q,q)(t) for all q ≥ 0 and arbitrary 0 ≤ δ ≤ 1 (red curves).

From left to right, the functions µ0,0, µ−1,1/2, and µ3/2,1 upper bound ∆vr(0) = 0, ∆vr(−1) = 1/2 and ∆vr(3/2) = 1 at

t = 0,−1, 2/3 respectively. Among such curves, the one with largest expected value (11) is µ−1,1/2 (middle one), and this

expected value upper bounds the expected value of ∆vr(t).

structured output SVM as a special case by setting the set

of equivariant transformations to the identity. By appropri-

ately incorporating invariance into compatible definitions of

joint feature functions and loss functions, we are able to ef-

ficiently optimize equivariant functions with available opti-

mization software.

We have shown significant improvement over the base-

line method on a challenging pedestrian dataset, and our

proposed method is statistically tied with the state-of-the-

art, which uses a different image representation [19]. Ad-

ditionally, we have improved upon the state of the art for

aerial car detection by incorporating rotation invariance into

a discriminatively trained structured output detector. This

indicates the framework’s flexibility in learning invariance

even with non-invariant kernels. Interestingly, use of the

natural transformation manifold enabled a large reduction

in the number of samples used without a corresponding de-

crease in performance.

In general, we propose that our algorithm be used in

place of ad hoc sampling strategies or latent variable mod-

els to incorporate invariance and equivariance in computer

vision. This has both practical and theoretical implications.

From a computational perspective, the application of a cut-

ting plane optimization strategy results in a large reduction

in the number of generated samples to achieve the same per-

formance. From the perspective of regularized risk, we have

shown that the algorithm optimizes a convex upper bound

of a natural extension of the regularized risk functional em-

ployed in classic structured output regression. This gives

a principled foundation and an expectation of good gener-

alization performance, as we have observed in our experi-

ments.
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A. Probabilistic interpretation as vicinal risk

Vicinal risk minimization of Chapelle et al. [3] endows

the transformation space T with a probability measure

dP (t) and minimizes the regularized vicinal risk:

min
w

1

2
‖w‖2 +

C

N

N∑

i=1

∫
∆vr(tyi, f(txi;w)) dP (t). (9)

Compared to our equivariant learning formulation (4), vici-

nal risk (9) considers the average rather than maximum er-

ror w.r.t transformations. We show next that it is possible to

choose ∆ in (4) so that the equivariant learning objective is

an upper bound to (9).

For brevity of notation, define

∆vr(t) = ∆vr(tyi, f(txi;w)), ∆(t) = ∆(t, yi, f(txi;w)).

A sufficient condition for the equivariant risk (4) to upper

bound the vicinal risk (9) is that
∫

∆vr(t) dP (t) ≤ sup
t

∆(t). (10)

An obvious choice that satisfies (10) is ∆(t) = ∆vr(t), as

the average of a function cannot be larger than its supre-

mum. However, such a bound is typically quite loose, as it

does not account for any locality imposed by dP (t). Much

tighter bounds, particularly useful when dP (t) is concen-

trated, can be obtained by considering an auxiliary family

of bounding functions:

Lemma 1. Let U be a family of functions µ : T → R that

(i) is monotonic (i.e. for any µ, µ′ ∈ U it is either µ ≤ µ′ or

µ′ ≤ µ), and (ii) for any transformation t ∈ T and scalar

ρ ∈ R it has a member µt,ρ such that ρ ≤ µt,ρ(t). Then the

loss

∆(t) =

∫
µt,∆vr(t)(q) dP (q) (11)

satisfies the relation (10).



Proof. For simplicity, we give the proof in the case in which

T is a finite set of transformations, so that dP (t) is a dis-

crete measure (see also Fig. 4). Let P (t) denote the proba-

bility of t. By contradiction, suppose that (10) is false, i.e.

that there exists a t∗

∑

q

∆vr(q)P (q) > ∆(t∗) =
∑

q

µt∗,∆vr(t∗)(q)P (q).

Since the expected value of ∆′
i(t) is larger than the one

of µt∗,∆′

i
(t∗), there must be a point t0 such that P (t0) >

0 and ∆′
i(t0) > µt∗,∆′

i
(t∗)(t0). But then for property

(ii) of U there is a function µt0,∆′

i
(t0)(t0) ≥ ∆′

i(t0) >
µt∗,∆′

i
(t∗)(t0). Since µt0,∆′

i
(t0) is strictly larger than

µt∗,∆′

i
(t∗) at t0, for the monotonicity property (i) it must

be µt0,∆′

i
(t0) ≥ µt∗,∆′

i
(t∗) everywhere. But then the ex-

pected value of µt0,∆′

i
(t0) is at least as large as the one of

µt∗,∆′

i
(t∗), and in fact strictly larger since µt0,∆′

i
(t0)(t0) >

µt∗,∆′

i
(t∗)(t0) and P (t0) > 0. But this contradicts the fact

that the expected value of µt∗,∆′

i
(t∗) is the largest for all

t.
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