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ABSTRACT Decision trees are a popular choice for providing explainable machine learning, since they

make explicit how different features contribute towards the prediction. We apply tools from constraint

satisfaction to learn optimal decision trees in the form of sparse k-CNF (Conjunctive Normal Form) rules.

We develop two methods offering different trade-offs between accuracy and computational complexity: one

offline method that learns decision trees using the entire training dataset and one online method that learns

decision trees over a local subset of the training dataset. This subset is obtained from training examples

near a query point. The developed methods are applied on a number of datasets both in an online and

an offline setting. We found that our methods learn decision trees which are significantly more accurate

than those learned by existing heuristic approaches. However, the global decision tree model tends to be

computationally more expensive compared to heuristic approaches. The online method is faster to train and

finds smaller decision trees with an accuracy comparable to that of the k-nearest-neighbour method.

INDEX TERMS classification, combinatorial optimization, decision tree, explainable AI, machine learn-

ing, weighted MaxSAT

I. INTRODUCTION

E
XPLAINABLE artificial intelligence (XAI) is a family

of methods focusing on the algorithmic transparency

and interpretability of decision procedures [1], [2]. The

ability to explain the decision of a machine learning (ML)

algorithm is a vital component of diagnostic, feedback, and

human-in-the-loop systems [3], [4], [5]. Furthermore, with

increasing statutory restrictions planned on the use of ML

methods in customer-oriented applications, there has been

renewed interest in the field [6], [7].

Transparency in ML algorithms can be achieved in a

number of direct and indirect ways [8]. This work pur-

sues methods whose underlying classification rules are con-

structed from logical clauses of simple operators. The result-

ing decision tree models comprise an enumeration of feature

combinations leading to a positive prediction. At moderate

complexity, tree models can provide an intuitive explanation

of the prediction.

Decision trees are aggregates of classification paths prop-

agating through test nodes or decision nodes. A node repre-

sents a binary test (or "yes/no question") assessing the state

of a single feature, e.g. "Is your monthly income less than

2400¤?". By modelling these nodes as propositional vari-

ables, we can represent a decision tree in propositional logic

as a conjunction of disjunctions of variables. Also known as

k-cnf formulae, such formulae can provide a compact and

interpretable representation of classification rules over a set

of features.

A recent line of work, adapting ideas from Boolean com-

pressed sensing, focuses on learning sparse k-cnf rules via

linear programming, [9], [10], [11]. Following advancements

in SAT-solving, the problem has also been cast into various

maximum-satisfiability (MAX-SAT)-based frameworks [12],

[13], [14]. Other works consider learning decision lists and

decision sets, which are generalizations of k-cnf rules [15],

[16].

This work extends the MAX-SAT-based framework for

learning k-cnf rules proposed in [13]. In particular, we gen-

eralize their framework to non-constant clause weights and

add cardinality constraints for more efficient recovery. While

this allows for finding solutions over much larger datasets,

the global model still suffers from the inherent NP-hardness

of SAT solving. Therefore, we propose a locally weighted

learning approach for query-specific applications [17], [18].
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Similar to lazy decision trees proposed in [19], our local

model constructs a k-cnf rule within the neighbourhood of

a query data point.

We empirically validate our methods on a dataset of Hous-

ing Benefit Applications provided by the Social Insurance

Institution of Finland (Kela). The task is to classify benefit

applications as accepted/rejected. In addition, an explanation

of the decision is provided by the classification rule. We also

consider six publicly available datasets.

II. METHODS

A. OPTIMAL DECISION TREES

a

b

c

0 1

c

1 0

0

Tdnf = (a ∧ ¬b ∧ c)

∨ (a ∧ b ∧ ¬c)

Tcnf = a ∧ (b ∨ c)

∧ (¬b ∨ ¬c)

FIGURE 1. A binary decision tree and corresponding propositional formulae

in CNF and DNF. True assignments are marked as solid edges, False

assignments as dashed. One possible classification path

(a = 1, b = 0, c = 1) is marked in red.

Decision trees (Fig.1) are directed acyclic graphs whose

internal nodes represent propositional variables (e.g., v =
“income < 5000”) and whose edges represent assignments

to source nodes. We use the term literal, e.g., t to denote a

propositional variable v or its negation v. In propositional

logic, decision trees can be modelled as formulae in con-

junctive normal form (CNF) Tcnf =
∧

Tk, where clauses

Tk =
∨

tmk are disjunctions of literals of variables in the

tree and where variables model tests for input features. (Al-

ternatively, a decision tree can be represented in disjunctive

normal form (DNF) as Tdnf =
∨

Tk, where Tk =
∧

tmk
is modelled as a conjunction of literals.) We only consider

binary variables which can either be true or false.

Let T = {{t1k, . . . , t
2L
k } : 1 ≤ k ≤ K} and σ : T →

{0, 1} be a valuation. We define a decision tree (in CNF) in

terms of a valuation σ as

Tσ =
∧

k

∨

σ(tm
k
)=1

tmk (1)

Let D = {xi, yi}
N
i=1 be a dataset with numeric feature

vectors xi ∈ R
M and labels yi ∈ {0, 1}. Such a feature could

be the age of a person or their household income. We quantize

a feature xj using a set of thresholds aj = {a1j , . . . , a
|aj |
j } to

produce |aj | binary features τ aj
= τa1

j
, . . . , τ

|aj |
aj . We will

discuss how to choose the thresholds later in section IV. To

avoid notational clutter, we use l to index threshold al in

{a1, . . . aL} = {a11, . . . , a
|aM |
M }, where L =

∑M
j=1 |aj |.

We classify a data point x over a decision tree Tσ as

Tσ(x) =
∧

k











∨

1≤l≤L

σ(tlk)=1

τal
∨

∨

1≤l≤L

σ(tL+l

k
)=1

τal











(2)

An optimal decision tree over D solves

T ∗
σ ∈ arg min

Tσ∈{0,1}K×2L

{

LD(Tσ) + λ‖Tσ‖1

}

(3)

s.t. |Tk| ≥ 1 1 ≤ k ≤ K (4)

s.t. |T j
k | ≤ 1 1 ≤ k ≤ K, 1 ≤ j ≤ M (5)

with loss function

LD(Tσ) =
1

|D|

∑

(xi,yi)∈D

wiI[Tσ(xi) 6= yi] (6)

The regularization parameter λ trades off prediction accuracy

against sparsity of decision tree. Sparsity is measured as

the number of true literals in clauses in a tree, ‖Tσ‖1 =
∑

Tk∈T |Tk|, where |Tk| measures the number of literals

assigned as True in clause Tk. For example, Tcnf in Fig. 1

has ‖Tcnf‖1 = 1 + 2 + 2. The sparsity of a decision tree

determines its generalization ability. In general, we expect

a sparse decision tree to be less prone to overfitting. The

constraints (4) require clauses Tk to be non-empty while the

constraints (5) exclude implied nodes such as τa and τb for

thresholds a 6= b for feature j (e.g. node ‘income < 500’

implies node ‘income < 700’). The weights wi in (6) are

explained in section III. For now we will assume wi = 1.

B. OPTIMAL DECISION TREES VIA PARTIAL MAX-SAT

Owing to the 0-1 loss function in (6), finding direct solutions

of (3)-(5) is known to be NP-hard [20]. We reformulate (3)-

(5) as a weighted partial MAX-SAT problem, which will

enable the use of specialized solvers.

To this end, let η = {η1, . . . , ηN} and extend σ to σ : T ∪
η → {0, 1}. Let ω : F → R∪{∞} be a mapping associating

non-negative weights with clauses in F (to be defined later in

this section). It will be convenient to reformulate (3) by using

the equivalence min(f) = −max(−f), as

T ∗
σ ∈ arg max

Tσ∈{0,1}K×2L

{

1

|D|

∑

(xi,yi)∈D

wiI[Tσ(xi) = yi]+λ‖Tσ‖1

}

(7)

where T denotes the negation of variables in T . Let

Ωi =
∧

k





∨

X
j

i
≥al

tlk ∨
∨

X
j

i
<al

tL+l
k



 (8)

which lists, for each rule k, the variables matching the

quantized representation of datapoint xi. We can represent
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the weighted indicator function I[Tσ(xi) = yi] by conjoining

the paired constraints

Ni = ηi ω(Ni) = wi 1 ≤ i ≤ N (9)

Di =

{

ηi → Ωi, ω(Di) = ∞ if yi = 1

ηi → ¬Ωi, ω(Di) = ∞ if yi = 0
(10)

The clauses (9) with weights wi ∈ R are selectors of data

points in the training dataset. The clauses (10), in turn,

regulate the correctness of the model’s prediction over the

chosen subset. In particular, with slight abuse of notation, we

have the equivalence

I[Tσ(xi) = yi] = σ(Ni)σ(Di)

Similarly, the cardinality constraint λ‖Tσ‖1 in (7) is incor-

porated into the clauses

Tm
k = tmk ω(Tm

k ) = λ ∀tmk (11)

Lastly, we redefine the cardinality constraints (4) and (5) as

propositional clauses

Ek =
∨

1≤m≤2L

tmk ω(Ek) = ∞ 1 ≤ k ≤ K

(12)

C
j
k = {t

a1
j+1

k , . . . , t
a1
j+|aj |

k }1 ω(Cj
k) = ∞

1 ≤ j ≤ M, 1 ≤ k ≤ K
(13)

where {r1, . . . , rn}1 denotes a 1-out-of-n bound on the num-

ber of literals r ∈ {r1, . . . , rn} which can be set to True. For

efficient encoding of these cardinality constraints, we make

use of the following encoding developed in [21]:

{r1, . . . rn}1 = (r1 ∨ s1)
∧

1<t<n

(rt ∨ st) ∧ (st−1 ∨ st)

∧

1<t≤n

(rt ∨ st−1).

(14)

In practice, writing the clauses Di in CNF for negative

examples (yi = 0) is less straightforward. This difficulty

can be resolved using Tseytin’s transformation. We introduce

new variables s1, · · · sK and set Di = D0
i ∧

∧

k D
k
i where

D0
i = ηi ∨

∨

k sk and Dk
i =

∧

Xm
i

=1(sk ∨ tmk ).
Letting F = Fs ∪ Fh, where Fs = N ∪ T and Fh =

D ∪ E ∪ C, we have the equivalence of (3) and its partial

weighted MAX-SAT form

σ∗ ∈ arg max
σ|=Fh

{

∑

K∈Fs

σ(K)ω(K)

}

(15)

Optimal decision trees Tσ∗ in the form of (1) yield inter-

pretable decision tree classifiers Tσ∗ : {0, 1}M → {0, 1}
over the subset {Xi, yi}σ∗(η) ⊂ Dtrain. Interpretability is

endowed by the semantic interpretation of variables tmk ∈ T
which inherit meaning according to their represented fea-

tures. In this way, the model provides an interpretation of

the dichotomy in the dataset, as well as a justification for

predictions ŷ = Tσ∗(x) made on unseen data.

III. LOCAL DECISION TREES

The number of constraints (10) grows as O(LN) with the

number of data points N and binary features L. As a

consequence, the problem (9)-(13) is unsolvable in practice

for large datasets. This motivates a local learning approach

where (15) is solved locally in a query-oriented fashion.

Let xq ∈ R
M be a real-valued query and τq ∈ {0, 1}2L

its binarisation. We construct Dlocal in the vicinity of xq

by selecting data points {xi, yi}N (xq) in the neighbourhood

N (xq) = {i|d(xi,xq) ≤ δ}. Distance information, in the

feature space, is incorporated into the weights wi in (6)

using a kernel function K(d), where d is a metric in the

(real-valued) feature space. A popular choice is the Gaussian

kernel [22]

K(d) =

{

exp(−d2) if d < δ

0 otherwise
(16)

with cut-off parameter δ (although in practice we include a

fixed number of nearest neighbours).

We will consider the weighted norm

d(xi,xq) =
J
∑

j=1

1

sj
|xj

i − xj
q|. (17)

with sample variances sj over the training dataset.

Classification of a query point xq amounts to solving (9)-

(13) over {xi, yi}N (xq) with weights wi = K(d(xi,xq)) and

classifying ŷq = T ∗
σ (τ q).

IV. EXPERIMENTS

We validate the global and local models of the previous

section on a number of public datasets (Table 1) from the

UCI (University of California Irvine) Machine Learning

Repository.1 As a real-life example, we include a dataset of

Housing Benefit Applications (HBA) provided by the Social

Insurance Institution of Finland. Our experiments were per-

formed using computer resources within the Aalto University

School of Science "Science-IT" project.2 The models were

trained using the UWrMaxSat solver [23] version 1.1.2 with

a timeout of 2 hours.

A. HOUSING BENEFIT APPLICATION DATASET

The HBA dataset consists of non-identifying data selected

from 6250 housing benefit applications received by the So-

cial Insurance Institution of Finland. A typical application

comprises binary- and multiple-choice questions, numerical

fields (e.g. age, income), and optional text fields. We concern

ourselves with the prediction of whether to accept or reject

such an application based on categorical and numerical fea-

tures.

Specifically, we consider the salient features: income,

#residents, #children, max expenses, housing expenses, de-

ductibles, and calculated expenses. Feature binarisation is

1https://archive.ics.uci.edu/ml/datasets.php
2See https://scicomp.aalto.fi/triton/overview/ for architecture specifica-

tions
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Dataset medi park iono liver pima bank HBA

Size 116 195 351 579 768 1372 6250

#Features 9 22 33 10 8 4 7

TABLE 1. Overview of datasets used in the experiments.

Dataset DT RIPPER K=2 K=3 K=4 K=5

medi
93.44 96.11 90.86 94.12 96.34 97.52
70.41 68.16 71.93 72.76 70.09 69.10

parkinsons
95.34 96.27 98.21 99.98 100.0 99.74
86.23 86.78 87.91 87.11 89.00 87.34

ionosphere
91.26 91.61 89.36 91.87 93.97 94.86
89.53 89.17 87.07 87.95 91.71 92.17

indian liver
71.69 70.04 72.49 69.39 68.42 67.33
70.46 69.10 70.39 66.76 65.74 65.08

pima indian
76.35 75.41 76.23 73.41 72.73 73.65
74.05 74.63 74.97 72.03 71.18 73.65

banknote
99.68 99.21 95.56 97.54 98.91 99.64
98.11 98.15 94.67 96.44 97.91 99.04

HBA
100.0 - 97.52 98.11 98.91 99.91
96.81 - 95.51 95.97 96.81 97.34

TABLE 2. Average training accuracies (above) and test accuracies (below)

over 5-fold CV for heuristic decision trees (DT), decision trees trained using

RIPPER (RIPPER) and optimal decision tree models for K ∈ {2, 3, 4, 5}.

done for a fixed number of thresholds, except for discrete

features (#residents, #children) for which all thresholds aj
are included. After experimenting with a number of ways of

choosing these thresholds, we settled with choosing thresh-

olds aj as in-between values observed in the training data.

In particular, for each feature j, we ordered the training data

in ascending numerical order, took the differences between

all ordered consecutive pairs, and chose a fixed number of

quantiles from these differences.

B. GLOBAL MODEL

We compared the optimal decision tree model of Section

II-B with rule size K against the decision tree algorithms

CART [24] and RIPPER [25]. For CART, we trained deci-

sion trees of both fixed and maximum tree depth using the

DecisionTreeClassifier algorithm in the scikit-learn v0.23.1

Python package. For RIPPER, decision trees were trained

using the Java Weka (v3.9.2) Jrip classifier [26]. In our

optimal decision tree model, we fixed the regularization

parameter λ ∈ [1.0, 0.1, 0.01] and the number of binarisation

thresholds per numerical features at |aj | = 20; except for

the HBA dataset, where we used |aj | = 60. To provide

statistically meaningful measures of accuracy, we report 5-

fold cross validation scores averaged over 100 realizations of

the training set [27].

Table 2 reports the average training accuracies (above) and

test accuracies (below) for each dataset. For the Decision-

TreeClassifier (DT), we report the highest achieved test score

over all fixed-depth and unlimited-depth CART classifiers.

We only considered RIPPER after relinquishing our rights to

the HBA dataset, wherefore its entry is missing for the HBA

dataset.

Increasing the number of thresholds |aj | during the dis-

cretization of a dataset tends to increase the accuracy of the

model. This trend is plotted in Fig. 2 (left) for the HBA

dataset and fixed parameters K = 5 and λ = 10−2. The

regularization parameter λ reflects model sparsity and di-

rectly impacts the overfitting/underfitting of the model during

training. A typical trend for the HBA dataset is plotted in Fig.

2 (right) for K = 5 and |aj | = 60.
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FIGURE 2. Test accuracies of optimal decision tree model for K = 5 on the

HBA dataset for an increasing number of binary features (left) and

regularization parameter (right).

We provide an example 3-clause classification rule ex-

tracted by our method on the HBA dataset below.

expenses < 550 or housing exp < 700

and deductibles < 1040 or child exp. < 970

and expenses < 80 or income < 1460

(18)

For decision trees larger than K = 3, the 2 hour timeout

was consistently reached. In comparison, the CART and

RIPPER methods trained within milliseconds.

C. LOCAL MODEL

The second experiment considered query-based classifica-

tion: each query (housing benefit application) was classified

on a local dataset of N data points closest to the query.

That is, for each query point in the test dataset Dtest, we

subsampled a training dataset Dtrain of N nearest data points

in Ddatabse based on (17). We then trained the model on

Dtrain, as described in Section III, and used it to classify

the query point.

Since the model was query-based, we fixed a randomly

chosen test set, |Dtest| = 1250, for each experiment and

chose Ddatabse from the remaining 5000 data points. We

again fixed the model parameters λ = 0.1 and |aj | = 10 and

chose N = 100 nearest neighbours. Since the training dataset

was restricted to a small neighbourhood around the query

point, we considered shallow decision trees with K = 2
and K = 3. The resulting model was compared against the

Nearest Neighbourhood algorithm (we used the scikit-learn

0.23.1 Python package with default settings). We repeated the

experiment over 100 realizations of the dataset.

Fig. 3 (top) shows the median classification accuracies and

10th/90th percentiles (shaded) of the models when |Ddatabse|
is increased. Fixing |Ddatabse| = 5000, we also plot the

dependencies of our model’s classification accuracy on the

size of the training dataset (left) and on the number of feature

thresholds (right).

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3041040, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1000 1500 2000 2500 3000 3500 4000 4500 5000
Size of query database

0.95

0.96

0.97

0.98

0.99

1.00

Pr
ed

ict
io

n 
ac

cu
ra

cy

ODT K=2
ODT K=3
100-NN

50 75 100 125 150 175 200 225 250

Size of neighbourhood
0.95

0.96

0.97

0.98

0.99

1.00

Pr
ed

ict
io

n 
ac

cu
ra

cy

ODT K=2
ODT K=3

5 10 15 20 25 30 35 40

Number of thresholds per feature
0.95

0.96

0.97

0.98

0.99

1.00

Pr
ed

ict
io

n 
ac

cu
ra

cy

ODT K=2
ODT K=3

FIGURE 3. Test accuracies for number of neighbours (left), and number of

binary features (right).

As expected, increasing the size of the database leads

to more accurate models. The local decision tree model

performs best on small neighbourhood sizes (∼100) and

does not require a large number of thresholds aj . Average

runtimes were around 30 seconds for K = 2 and 5 minutes

for K = 3 respectively.

V. CONCLUSIONS

A. CONCLUSIONS

We have generalized existing methods for constructing

weighted optimal decision trees in the form of k-cnf rules

via MaxSAT. We also translated this framework into a lazy

learning scheme where decision trees are constructed locally

in a query-oriented fashion.

Our empirical study (Table 2) supports the belief that

optimal methods can be significantly more accurate than

heuristic approaches, at the cost of computational efficiency.

Our lazy-learning method (Section III) shows performance

comparable to that of the k-nearest-neighbour method (Fig.

3). The method finds optimal decision trees with two clauses

(K = 2) and small neighbourhood sizes (δ), which allows

for particularly fast training.

The explanations (18) are in the form of clauses in a

decision tree. It might require additional work to translate

these mathematical explanations into proper justifications of

decisions on social benefit applications. It is difficult, even

impossible, to base required legal reasoning of a benefit

decision on the mathematical explanation provided. In spite

of this, we believe that these methods could provide sufficient

transparency in other applications.

B. FUTURE WORK

A key restriction for learning optimal decision trees is the

exponential growth of data constraints. Specializing MAX-

SAT solvers to the subclass of problems described by (9)-(13)

can make searching more efficient. Furthermore, we expect

that exploiting symmetries can help guide the search for

candidate solutions. In fact, during our experiments, we made

an attempt at introducing symmetry constraints explicitly, but

this had an adverse effect of slowing down the solver. We

leave it for future work to address both solver specialization

and symmetry constraints.
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