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Abstract

Facial expression is temporally dynamic event which
can be decomposed into a set of muscle motions occur-
ring in different facial regions over various time intervals.
For dynamic expression recognition, two key issues, tem-
poral alignment and semantics-aware dynamic representa-
tion, must be taken into account. In this paper, we attemp-
t to solve both problems via manifold modeling of videos
based on a novel mid-level representation, i.e. expression-
let. Specifically, our method contains three key compo-
nents: 1) each expression video clip is modeled as a spatio-
temporal manifold (STM) formed by dense low-level fea-
tures; 2) a Universal Manifold Model (UMM) is learned
over all low-level features and represented as a set of local
ST modes to statistically unify all the STMs. 3) the local
modes on each STM can be instantiated by fitting to UM-
M, and the corresponding expressionlet is constructed by
modeling the variations in each local ST mode. With above
strategy, expression videos are naturally aligned both spa-
tially and temporally. To enhance the discriminative pow-
er, the expressionlet-based STM representation is further
processed with discriminant embedding. Our method is e-
valuated on four public expression databases, CK+, MMI,
Oulu-CASIA, and AFEW. In all cases, our method reports
results better than the known state-of-the-art.

1. Introduction
Automatic facial expression recognition plays an impor-

tant role in various applications, such as Human-Computer

Interaction (HCI) and diagnosing mental disorders. Early

research mostly focused on expression analysis from stat-

ic facial images [20]. However, as facial expression can

be better described as the sequential variation in a dynamic

process, recognizing facial expression from video is more

natural and proved to be more effective in recent research

works [34, 32, 2, 33, 22].
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Figure 1. A schematic illustration of constructing the mid-level

representation – the proposed “expressionlets” (“COV” is short for

“covariance matrix”). Each strip stands for a local ST feature, and

the K feature modes (similar to codewords) are pre-learned and

modeled via GMM.

Among these video-based facial expression recognition

methods, one of the main concerns is how to effective-

ly encode the dynamic information in videos. Currently,

the mainstream approaches of dynamic representation are

based on local spatio-temporal features like LBP-TOP [34],

HOG 3D [14]. These local descriptors extracted in local

cuboid are then pooled over the whole video or some hand-

crafted segments, to obtain a representation with certain

length independent of time resolution. As the low-level fea-

tures possess the property of repeatability, integrating them

with pooling leads to robustness to intra-class variations and

deformations of different expression styles. However, this

kind of technique lacks of consideration of two important

issues: 1) Temporal alignment. Expressions are inherently

dynamic events consisting of onset, apex, and offset phases.

Intuitively, the recognition should conduct matching among

corresponding phases, which thus requires globally tempo-

ral alignment among different sequences. The rigid pool-

ing has inevitably dropped those sequential relations and

temporal correspondences. 2) Semantics-aware dynamic
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Figure 2. The schema of the proposed method. Given an individual video clip, we intend to model it as a Spatio-Temporal Manifold (STM)

spanned by local spatio-temporal features, which however leads to difficulty of aligning different STMs. To statistically unify and thus

facilitate the alignment of STMs, we propose a Universal Manifold Model (UMM), represented as a number of universal local ST modes,

which can be learned by EM-like methods. With UMM constructed, the local modes on each STM can be instantiated by fitting to UMM

and thus aligned mutually, then the corresponding expressionlet is built to model the variations in each local ST mode. Thus we obtain an

expressionlet-based representation of STM. Please note that, for UMM training, we exploit both appearance and spatio-temporal location

information of the local features in order to enforce some degree of locality both spatially and temporally.

representation. Each expression can be decomposed into

a group of semantic action units, which exhibit in differ-

ent facial regions with varying sizes and last for different

lengths of time. Since the manually designed cuboids can

only capture low-level information short of representative

and discriminative ability, they are incapable of modeling

the expression dynamic in higher semantic level.

In this paper, we attempt to take both issues into ac-

count via spatio-temporal manifold modeling based on a

set of mid-level representations, i.e. expressionlets. The

proposed mid-level expressionlet is a kind of modeling that

aims to characterize the variations among a group of low-

level features as shown in Figure 1. The notation “-let”

means that it serves as a local (both spatially and temporal-

ly) dynamic component within a whole expression process,

which shares similar spirit with “motionlet” [27] in action

recognition community. Thus expressionlet bridges the gap

between low-level features and high-level semantics desir-

ably. Specifically, given an individual video clip, we first

model it as a Spatio-Temporal Manifold (STM) spanned by

its low-level features. To conduct spatio-temporal align-

ment among STMs, we build a Universal Manifold Mod-

el (UMM), represented as a number of universal local ST

modes, which can be learned by EM-like methods on all

possible low-level features. By fitting to UMM, the local

modes on each STM can be instantiated respectively and all

of the different STMs are inherently well-aligned to UMM

via these corresponding modes. Finally, our expressionlet

is constructed by modeling each local mode on STM. To

characterize the correlations and variations among low-level

features within each mode, the expressionlet is represent-

ed as the covariance matrix of the feature set in a statistic

manner, which also makes it robust to local misalignment

[25, 11, 29].

To further enhance the discriminative ability of expres-

sionlet, we perform a discriminant learning with these mid-

level representations on all of the STMs. Inspired by [28],

while only considering the “margin” among corresponding

expressionlets, we exploit a graph-embedding [31] method

by constructing partially connected graphs to keep the links

between expressionlets with the same semantics. In the end,

the embedded features are correspondingly concatenated in-

to a long vector as the final manifold (video) representation

for classification. Hence, the proposed expressionlet has

the following characteristics: 1) Flexible spatio-temporal
range. i.e. varying sizes of spatial regions and temporal du-

rations. 2) Variation modeling. It encodes the local vari-

ations caused by expression using a covariance matrix. 3)

Discriminative ability. It is descriptive and contains cate-

gory information for recognition.
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The proposed method is evaluated on four public expres-

sion databases: CK+ [19], MMI [26], Oulu-CASIA VIS

[33], AFEW [6], including both lab-controlled and wild s-

cenarios. The discussion of parameters shows the benefit-

s of considering the two crucial issues mentioned above,

i.e. temporal alignment and semantics-aware dynamic rep-

resentation. All of our results achieve the state-of-the-art.

2. Expressionlet Construction

In this section, we present how to generate the semantic

mid-level representation, i.e. expressionlet, for video repre-

sentation. The whole process is illustrated in Figure 2 and

summarized in Algorithm 1.

2.1. Spatio-Temporal Manifold (STM)

For clarification, we first present the spatio-temporal

manifold (STM) for modeling each video clip. The STM is

spanned by 3D (i.e. spatio-temporal) blocks densely sam-

pled from the video volume, which cover a variety of local

variations in both spatial and temporal space. Instead of

hand-crafted descriptors e.g. LBP-TOP, HOG 3D, we em-

ploy a bank of learned filters to extract low-level features

from the blocks. Such kind of features are directly learned

from data and proved to be more adaptive and generalizable

to the data domain [15].

We adopt K-means on the smaller-scale cuboids dense-

ly sampled from all the training videos. The cluster cen-

troids are used to form a bank of filters to be applied to

the spatio-temporal blocks. To obtain a translation invari-

ant represention, we conduct a 3D convolution followed by

a max-pooling operation over adjacent spatial regions. The

extracted feature is denoted as axyt, where x, y, t are spatio-

temporal index of the block on the STM.

2.2. Universal Manifold Model (UMM) – a statistic
model of STMs

In this work, Universal Manifold Model (UMM) is de-

fined to statistically model the STMs from different people

with different expressions. As a person-independent and

expression-independent model, UMM facilitates the robust

parameterized modeling of the STMs. Inspired by [10, 16],

we employ a Gaussian Mixture Model (GMM) to learn the

UMM by estimating the appearance and location distribu-

tion of all the 3D block features.

To consider the manifold structure information, for

all the blocks we augment the appearance features

with their spatio-temporal coordinates, i.e. f =
{axyt, x/w, y/h, t/l}, where axyt is the appearance feature

of the block located at {x, y, t}, and w, h, l are the number-

s of blocks on width, height and time length direction on

the STM. Simply we train a GMM with spherical Gaussian

components, i.e.,

P (f |Θ) =

K∑
k=1

wkG(f |μk, σ
2
kI), (1)

where Θ = (w1, μ1, σ1, ..., wK , μK , σK); K is the num-

ber of Gaussian mixture components; I is identity matrix;

wk, μk, σk are the mixture weight, mean, and diagonal co-

variance of the k-th Gaussian component G(f |μk, σk).
We use typical Expectation Maximization (EM) algorith-

m to estimate the paremeters of GMM by maximizing the

likelihood of the training feature set. After training the UM-

M, each Gaussian component builds correspondence of a

group of block features from different STMs, which consti-

tute a local ST mode universally.

Algorithm 1 : Expressionlet Construction
Input:

Low-level feature sets of each STM: F 1, ..., FN

Output:
Experssionlet sets of each STM: E1, ..., EN

1: Initialize GMM parameter: Θ = {(ωk, μk, σk)}
2: Use EM algorithm to learn optimal GMM parameters:

Θ∗ = argmaxΘ

∑
i,b,k ωkG(f i

b |μk, σ
2
kI)

3: for i:=1 to N do
4: for k:=1 to K do
5: Find top T block features F i

k = {f i
kt
}Tt=1 with the

largest T probabilities on Gk:

G(f i
kt
|μ∗

k, (σ
∗
k)

2I) > G(f i
kt+1

|μ∗
k, (σ

∗
k)

2I)

6: Calculate k-th expressionlet of F i as:

Ci
k = 1

T−1

∑T
t=1(f

i
kt

− f i
k)(f

i
kt

− f i
k)

T

7: end for
8: Ei = {Ci

1, C
i
2, ..., C

i
K}

9: end for
10: return Θ∗, E1, ..., EN

2.3. Expressionlet Modeling

The UMM learned above can be regarded as a container

with K-components GMM. Then, given any STM, we aim

to formulate it as a parameterized instance of the UMM.

For this purpose, our basic idea is assigning some of the

local ST features of the STM into the K Gaussian ”buckets”

and further modeling the distribution of the local features in

each Gaussian bucket with their covariance matrix.

Formally, an expression manifold M i can be presented

as block feature set F i = {f i
1, ..., f

i
Bi
}, where Bi is the

number of features on M i. For the k-th Gaussian compo-

nent, we can calculate the probabilities of each f i
b in F i as

P i
k = {pk(f i

b) | pk(f i
b) = wkG(f i

b |μk, σ
2
kI)}Bi

b=1. (2)
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We sort the block features f i
b in descending order of P i

k,

and the features with the largest T probabilities are selected

for the k-th local model construction, which can be repre-

sented as F i
k = {f i

k1
, ..., f i

kT
}.

Considering the correlations and variations among the

features in a local model, we calculate the covariance matrix

of set F i
k as the representation of an expressionlet:

Ci
k =

1

T − 1

T∑
t=1

(f i
kt

− f i
k)(f

i
kt

− f i
k)

T , (3)

where f i
k is the mean of the block features in set F i

k. The

diagonal entries of Ci
k represent the variance of each indi-

vidual feature, and the non-diagonal entries are their respec-

tive correlations. As the expressionlets are globally aligned

via UMM, the covariance modeling can provide a desirable

locally tolerance to spatial-temporal misalignment.

In the end, the manifold M i is represented as a set of ex-

pressionlets, i.e. Ei = {Ci
1, C

i
2, ..., C

i
K}. An overall proce-

dure is summarized in Algorithm 1.

2.4. Discussion

In this section, we compare our “Expressionlets” with

two well-known works: Action Units (AU) [7] and Bag-of-

Visual-Words (BoVW) [4].

Expressionlets vs. Action Units (AU) Action Units

(AU) are fundamental actions of individual or groups of fa-

cial muscles for encoding facial expression based on Facial

Action Coding System (FACS). Similarly, our expression-

lets are designed to model expression variations over local

spatio-temporal regions in the same spirit as AUs. How-

ever, there are two differences between expressionlets and

AUs. 1) AUs are manually defined concepts that are in-

dependent of person and category, while expressionlets are

some mid-level representations extracted from data using

learning scheme. 2) According to FACS, each expression

is encoded by a certain number of AUs. Instead of the bi-

nary coding manner, in our method, an expression can be

represented by various expressionlet patterns which provide

more flexible and rich information.

Expressionlets vs. Bag-of-Visual-Words (BoVW) In

our method, we extract dense local ST features and con-

struct a codebook (by GMM), in which each codeword can

be considered as a representative of several similar local

features. Both of the two operations are typical steps in

BoVW framework. In pooling stage, BoVW estimates his-

togram(s) of occurrences of each codeword over the whole

image or separated regions. However, in our method, dif-

ferent from simply counting the number, we make use of

the second-order statistics by estimating the covariance of

all the local features (augmented with location information)

falling into each bucket (codeword). In this way, the local

features are pooled to keep more variations, under the con-

straint of expressionlet. In addition, in our method, by lim-

iting the number (T in Algorithm 1) of local features falling

into each bucket, not all local features are necessarily taken

into account by the second-order pooling, which is also d-

ifferent from traditional BoVW methods. We believe such

a strategy can alleviate the influence of unexpected noise or

signal distortions (e.g. caused by occlusion).

3. Discriminant Learning with Expressionlets
In this section, we attempt to enhance the discriminative

power of expressionlets. As the expressionlet possess the

property of spatio-temporal locality, an effective way is to

consider the “margin” among corresponding expressionlets

instead of globally. By utilizing the graph-embedding [31]

framework, we formulate our learning scheme as follows.

. . . 

. . . 

. . . 

G1 G2 GK 

Edges in intrinsic graph 
Edges in penalty graph 

Figure 3. The adjacency relationships of the intrinsic and penal-

ty graphs for the discriminative learning with expressionlets (Gi

represents the i-th component of GMM).

In the overall expressionlet set E, given the m-th expres-

sionlet, which corresponds to the p-th mode on M i, denot-

ed as Ci
p and the n-th expressionlet, which corresponds to

the q-th mode on M j , denoted as Cj
q (if all STMs are or-

dered, we can denote m = (i − 1) ∗ K + p and similarly

n = (j − 1) ∗ K + q. The indices m and n are used for

better illustration), with the class label li, lj for Mi,Mj re-

spectively, the intrinsic graph Ww and penalty graph Wb

can be defined as (See Figure 3):

Ww(m,n) =

{
1, if li = lj , and p = q

0, otherwise
(4)

Wb(m,n) =

{
1, if li �= lj , and p = q

0, otherwise
(5)

We aim to learn an embedding function φ to maximize

the discriminative power while simultaneously preserve the
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correspondence of expressionlets from the same Gaussian

component. According to Ww and Wb, the within-class s-

catter Sw and between-class scatter Sb can be defined as:

Sw =
∑
m,n

Dis(φ(Ci
p), φ(C

j
q ))Ww(m,n), (6)

Sb =
∑
m,n

Dis(φ(Ci
p), φ(C

j
q ))Wb(m,n), (7)

where Dis(φ(Ci
p), φ(C

j
q )) denotes the distance between

two embedded expressionlets φ(Ci
p) and φ(Cj

q ). Here

the expressionlets Ci
p, C

j
q are Symmetric Positive Definite

(SPD) matrices (i.e. nonsingular covariance matrices), lie

on a Riemannian manifold. We exploit a Log-Euclidean

Distance (LED) [1] to project these points to Euclidean vec-

tor space, where standard vector learning methods are ripely

studied, as advocated in [29].

Given two covariance matrices Ci
p, C

j
q , the LED metric

between them is defined as:

dLED(Ci
p, C

j
q ) = ||log(Ci

p)− log(Cj
q )||F . (8)

Let C = UΣUT be the eigen-decomposition of SPD

matrix C, its log can be computed by

log(C) = Ulog(Σ)UT . (9)

Thus we can obtain a vector representation xm of the

m-th expressionlet, i.e. Ci
p, where xm is a vector spanned

by log(Ci
p). Now let us return to the embedding function,

simply consider a linear projection v, we can reformulate

the embedded features and the distance between them in

classical Euclidean space as

φ(Ci
p) = vTxm, φ(Cj

q ) = vTxn, (10)

Dis(φ(Ci
p), φ(C

j
q )) = ||vTxm − vTxn||2. (11)

Accordingly, we only need to learn the projection v in-

stead of φ, by maximizing the between-class scatter Sb

while minimizing the within-class scatter Sw:

vopt = argmax
vTX(Db −Wb)X

T v

vTX(Dw −Ww)XT v
, (12)

where Dw and Db are diagonal matrices with diagonal el-

ements Dw(m,m) =
∑

n Ww(m,n) and Db(m,m) =∑
n Wb(m,n). Let Lw and Lb be the Laplacian matrices

of two graph Ww and Wb. The columns of an optimal v are

the generalized eigenvectors corresponding to the l (l = 100
in this paper) largest eigenvalues in

XLbX
T v = λXLwX

T v. (13)

With the learned embedding function φ, the

K expressionlets from Mi can be represented as

{φ(Ci
1), ..., φ(C

i
K)}. These K features are concate-

nated as a long vector for the final expression manifold

(video) representation. In the end, we use multi-class linear

SVM implemented by Liblinear [8] for classification.

4. Experiments
Our method is evaluated on four databases. The experi-

mental details are shown and analyzed in this section.

4.1. Databases and protocols

CK+ Database.The CK+ database [19] consists of 593 se-

quences from 123 subjects, which is an extended version

of Cohn-Kanade (CK) [13] database. The image sequence

vary in duration from 10 to 60 frames and incorporate the

onset (neutral face) to peak formation of the facial expres-

sion. The validated expression labels are only assigned to

327 sequences which are found to meet the criteria for 1 of 7

discrete emotions (Anger, Contempt, Disgust, Fear, Happi-

ness, Sadness, and Surprise) based on Facial Action Coding

System (FACS). Based on the subject ID in the database,

we constructed 10 person-independent subsets by sampling

in ID ascending order with a step size of 10 to adopt 10-fold

cross-validation as in several previous work [24, 9, 35, 18].

MMI Database. The MMI database [26] includes 30 sub-

jects of both sexes and ages from 19 to 62. In the database,

213 sequences have been labeled with six basic expressions,

in which 205 sequences were captured frontal view. Each of

the sequence reflects the whole temporal activation patterns

(onset → apex → offset) of a single facial expression type.

In our experiments, all of these data were used as in [22, 35]

and also a person-independent 10-fold cross-validation was

conducted in the same way with CK+. Compared to CK+,

MMI is thought to be more challenging for the subjects pose

expressions non-uniformly and usually wear some acces-

sories (e.g. glasses, moustache).

Oulu-CASIA VIS Database. The Oulu-CASIA VIS

database [33] is a subset of the Oulu-CASIA NIR-VIS

database, in which all the videos were taken under the vis-

ible (VIS) light condition. We evaluated our method only

on the normal illumination condition (i.e. strong and good

lighting). It includes 80 subjects between 23 and 58 years

old, with six basic expressions (i.e. anger, disgust, fear, hap-

piness, sadness, and surprise) of each person. Each video

starts at a neutral face and ends at the apex of expression as

the same settings in CK+. Similar to [33] and [9], we adopt-

ed person-independent 10-fold cross-validation scheme on

the total 480 sequences.

AFEW Database. For further validation, we apply our

method to a much more difficult wild scenario. The Acted

Facial Expression in Wild (AFEW) [6] database has been

collected from movies showing close-to-real-world condi-

tions, which depicts or simulates the spontaneous expres-

sions in uncontrolled environment. Some exemplar images

are shown in Figure 4. According to the protocols defined

in Emotion Recognition in the Wild Challenge (EmotiW

2013) [5], the database is divided into three sets: training,

validation and test. The task is to classify each video clip

into one of the seven expression categories (six basic class-
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Figure 4. Exemplar images from AFEW database, which contains

large variations in pose, facial expression, illumination, etc.

es plus a neutral class). As the ground truth of test set still

remains unreleased, here we only report our results on vali-

dation set for comparison.

4.2. Discussion of Parameters

For preprocessing, all the faces images are normalized

to 48x48 pixels based on the locations of two eyes. In the

STM construction step, we learned 100 spatio-temporal 3D

filters with the size of 9x9x3 pixels (See Figure 5). The low-

level 3D blocks are 16x16x3 pixels samples with a stride of

4 pixel in spatial dimension and 1 frame in temporal dimen-

sion. Adopted convolution and 4x4 spatial pooling oper-

ations, each 3D block yields a 2x2x100-dimension vector.

As the estimation of covariance may be inaccurate when the

dimension is much larger than the number of samples T , we

first reduce the dimension of block features from 403 to 100

via PCA. And the dimension of covariance (i.e. expression-

let) is reduced to l = 100 after discriminant learning.

Figure 5. Examples of the spatio-temporal filters. For ease of vi-

sualization. we ignore the temporal dimension and only show the

middle frame.

To evaluate the effectiveness of the proposed expression-

let, we compared our complete framework which has ex-

pressionlet learning scheme (denoted as “STM-ExpLet”)

with our baseline method which used the single global co-

variance matrix over the whole STM as feature (denoted as

“STM”). Two key parameters in the expressionlet construc-

tion step were also studied: 1) The number of components

K in GMM, which is also the number of expressionlets used

to represent a video clip. 2) The number of low-level fea-

tures T used to calculate covariance matrix for each expres-

sionlet. The relations between recognition performance and

each of the two parameters are presented in Figure 6 and

Figure 7 respectively. As for validation purpose only, we
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Figure 6. Recognition accuracy with different number of compo-

nents K in GMM. (a) CK+ database. (b) MMI database.
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Figure 7. Recognition accuracy with different number of low-level

features T to construct an expressionlet. (a) CK+ database. (b)

MMI database.

conduct such experiments on one fold of CK+ and MMI.

In Figure 6, the red curves are the mean accuracy and s-

tandard deviation with respect to the number of components

K in GMM, where for a certain choice of K, the mean and

standard deviation are calculated by varying T . As shown,

as the number of GMM component K increases, the recog-

nition accuracy gradually improves and the standard devia-

tion also decreases accordingly. Similarly, the mean accu-

racy and its standard deviation with respect T is shown in

Figure 7 (the mean and standard deviation are calculated by

varying K under each certain T). We can also observe a ris-

ing trend of the curve as T increases. This demonstrates the

benefits brought from both the global temporal alignmen-

t by GMM and local variation modeling by expressionlet.

We tuned K and T according to the validation results in all

the experiments of four databases. The typical settings of

these parameters are K = 176, T = 30 in CK+, MMI,

Oulu-CASIA VIS, and K = 88, T = 50 in AFEW.

We also conduct comparisons with four popular local

spatio-temporal descriptors: LBP-TOP [34], 3D SIFT [23],

HOG 3D [14], HOE [27]. All the experiments were con-

ducted using their released code and the parameters are

tuned to better-adapt to our task. For LBP-TOP, we divid-

ed the spatial image into non-overlapping 6x6 blocks (i.e.

4326



each block is 8x8 pixels), the local features from each block

(i.e. volume in spatio-temporal space) were concatenated to

create one feature vector. For 3D SIFT, the video was di-

vided into five equal volumes according to temporal length,

in each volume, four interested points were sampled to cal-

culate the feature. All the features from 4x5 points were

concatenated to one vector. For HOG 3D and HOE, we first

divided the video into 6x6x4 volumes, then each volume

was further divided into 2x2x2 grids. The descriptors were

applied on each grids by computing histogram of orient-

ed gradient, where the orientation are quantized into 8 bins.

Similar to the others above, the overall feature vector can be

obtained by concatenating all these local features. In classi-

fication stage, we used a multi-class linear SVM by feeding

all these comparative features as well as our proposed fea-

tures (“STM” and “STM-ExpLet”) to the classifier.

4.3. Results Comparisons

We demonstrate the proposed method for expression

recognition on four databases: CK+, MMI, Oulu-CASIA

VIS, and AFEW. As shown in Table 1,2,3,4, we separate the

results into three categories with horizontal lines. The first

block shows the experimental results of four local spatio-

temporal descriptors, which are obtained by using exactly

the same data and protocols with ours. The second block

shows the state-of-the-art results directly cited from their

publications. The third block lists two methods proposed in

this paper: “STM” and “STM-ExpLet”.

Method Accuracy(%)

3D SIFT [23] 81.35

HOE [27] 82.26

LBP-TOP [34] 88.99

HOG 3D [14] 91.44

ITBN [30] (15-fold) 86.3

CERT [17] 87.21

MCF [3] (LOSO) 89.4

MSR [21] 91.4

TMS [12] (4-fold) 91.89

Cov3D [22] (5-fold) 92.3

Ours STM 91.13
Ours STM-ExpLet 94.19

Table 1. Experimental Results on CK+ Database.

For CK+ (Table.1), many state-of-the-art methods adopt-

ed different protocols on the same data. ITBN [30] per-

formed a 15-fold cross subject validation; CERT [17] only

took a subset of the database for evaluation; MCF [3] adopt-

ed a Leave-One-Subject-Out (LOSO) cross-validation; TM-

S [12] adopted a 4-fold cross-validation; and Cov3D [22]

adopted a 5-fold cross-validation. For MMI (Table.2), ADL

[24], CPL [35], and CSPL [35] conducted the experiments

Methods Accuracy(%)

HOE [27] 54.15

LBP-TOP [34] 59.51

HOG 3D [14] 60.89

3D SIFT [23] 64.39

ADL [24] 47.78

HMM [30] 51.5

ITBN [30] 59.7

CPL [35] 49.36

CSPL [35] 73.53

Ours STM 65.37
Ours STM-ExpLet 75.12

Table 2. Experimental Results on MMI Database.

Methods Accuracy(%)

3D SIFT [23] 55.83

HOE [27] 61.25

LBP-TOP [34] 68.13

HOG 3D [14] 70.63

AdaLBP [33] 73.54

Atlases [9] 75.52

Ours STM 68.96
Ours STM-ExpLet 74.59

Table 3. Experimental Results on Oulu-CASIA VIS Database.

Methods Accuracy(%)

HOE [27] 19.54

3D SIFT [23] 24.87

LBP-TOP [34] 25.13

HOG 3D [14] 26.90

EmotiW [5] 27.27

Ours STM 29.19
Ours STM-ExpLet 31.73

Table 4. Experimental Results on AFEW Database.

using the same data (i.e. 205 sequences) and same proto-

cols (i.e. person-independent 10-fold cross-validation) with

ours. However they only considered several manually se-

lected apex frames for recognition, which need more ground

truth information compared to our settings. HMM [30] and

ITBN [30] both adopted 20-fold cross subject validation for

classification based on whole sequence. For the last two

database, i.e. Oulu and AFEW, the same evaluate proto-

col was used for all comparison methods and the results are

shown in Table 3 and Table 4 respectively. We can see that

on all the databases “STM” outperforms most of the hand-

crafted local descriptors. As the mid-level representation,

i.e. expressionlet, provides more accurate feature corre-

spondence and more effective local appearance encoding,

the proposed “STM ExpLet” achieves even more convinc-

ing results on all the databases.
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5. Conclusion
In this paper, we propose a new method for dynamic fa-

cial expression recognition. By considering two critical is-

sues of the problem, i.e. temporal alignment and semantics-

aware dynamic representation, a kind of variation modeling

is conducted among well-aligned spatio-temporal region-

s to obtain a group of expresssionlets, which serve as the

mid-level representations to bridge the gap between low-

level features and high-level semantics. As evaluated on

four state-of-the-art facial expression benchmarks, the pro-

posed expressionlet has shown its superiority over tradition-

al methods for video based facial expression recognition.

As the framework is quite general and not limited to the

task of expression recognition, an interesting direction in

the future is to exploit its applications in other video related

vision tasks, such as action recognition and object tracking.
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