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ABSTRACT

A central problem in data integration and data cleansing is
to find entities in different data sources that describe the
same real-world object. Many existing methods for identi-
fying such entities rely on explicit linkage rules which spec-
ify the conditions that entities must fulfill in order to be
considered to describe the same real-world object. In this
paper, we present the GenLink algorithm for learning ex-
pressive linkage rules from a set of existing reference links
using genetic programming. The algorithm is capable of
generating linkage rules which select discriminative proper-
ties for comparison, apply chains of data transformations
to normalize property values, choose appropriate distance
measures and thresholds and combine the results of multi-
ple comparisons using non-linear aggregation functions. Our
experiments show that the GenLink algorithm outperforms
the state-of-the-art genetic programming approach to learn-
ing linkage rules recently presented by Carvalho et. al. and
is capable of learning linkage rules which achieve a similar
accuracy as human written rules for the same problem.

1. INTRODUCTION
As companies move to integrating data from even larger

sets of internal and external data sources and as more and
more structured data is becoming available on the public
Web, the problem of finding entities in different data sources
that describe the same real-world object is moving into the
focus within even more application scenarios.

This problem has been studied extensively in the database
community and is known as entity matching, record linkage,
coreference resolution and deduplication [12, 16, 31].

Many existing methods identify matching entities using
rule-based approaches [22]. Within these methods, linkage
rules [31] specify the conditions that two entities must fulfill
in order to be be considered to describe the same real-world
object. Linkage rules typically compare different proper-
ties of the entities using a set of distance measures. The
resulting similarity scores may be combined using different

aggregation functions. If the data sources use different prop-
erty value representation formats, property values may be
normalized by applying transformations prior to the com-
parison. Writing good linkage rules by hand is a non-trivial
problem as the rule author needs to have detailed knowl-
edge about the source data set and the target data set in or-
der to choose appropriate properties, data transformations,
distance measures together with good thresholds as well as
aggregation functions.

In this paper, we present GenLink, a supervised learning
algorithm which employs genetic programming in order to
learn linkage rules from a set of existing reference links. Gen-
Link is capable of matching entities between heterogeneous
data sets which adhere to different schemata. By employ-
ing an expressive linkage rule representation the algorithm
learns rules which:

• Select discriminative properties for comparison.

• Apply chains of data transformations to normalize
property values prior to comparison.

• Apply multiple distance measures combined with ap-
propriate distance thresholds.

• Aggregate the result of multiple comparisons using lin-
ear as well as non-linear aggregation functions.

Following genetic programming, the GenLink algorithm
starts with an initial population of candidate solutions which
is iteratively evolved by applying a set of genetic operators.
The basic idea of GenLink is to evolve the population by
using a set of specialized crossover operators. Each of these
operators only operates on one aspect of the linkage rule
e.g. one crossover operator builds chains of transformations
while another operator recombines different comparisons.

Contributions. In this paper, we make the following
contributions: (1) We introduce a linkage rule representa-
tion which combines different distance measures non-linearly
and may include chains of data transformations to normal-
ize values prior to comparison. Our linkage rule repre-
sentation is more expressive than previous work and sub-
sumes threshold-based boolean classifiers and linear classi-
fiers. Linkage Rules are represented as an operator tree and
can be understood and further improved by humans. (2) We
propose the GenLink genetic programming algorithm which
uses specialized crossover operators to evolve linkage rules
covering the full expressivity of the introduced representa-
tion. (3) We show that GenLink outperforms the state-of-
the-art genetic programming approach for entity matching
recently presented by Carvalho et. al. [10] and is capable
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of learning linkage rules which achieve a similar accuracy
as human written rules for the same problem. (4) We have
implemented GenLink as part of the Silk Link Discovery
Framework [20]. Silk discovers matching entities within data
sets that are represented as RDF. The main application area
of the framework is to find matching entities within data sets
that are accessible on the Web according to the Linked Data
principles [4]. The Silk Link Discovery Framework1 is avail-
able for download under the terms of the Apache License
and all experiments that are presented in this paper can
thus be repeated by the interested reader.

This paper builds on our previous work published as [19]
and extends it with a formalization of the linkage rule repre-
sentation, a more detailed description of the operators and
a more extensive evaluation.

Paper Organization. The rest of the paper is orga-
nized as follows: Section 2 formalizes the entity matching
problem. Based on that, Section 3 introduces our linkage
rule representation. Section 4 discusses related work. Sec-
tion 5 describes the GenLink algorithm in detail. Section 6
presents the results of the experimental evaluation.

2. PROBLEM DEFINITION
We consider the problem of matching entities between two

data sources A and B. Each entity e ∈ A ∪ B can be de-
scribed with a set of properties e.p1, e.p2, . . . e.pn. For in-
stance, an entity denoting a person may be described by the
properties name, birthday and address. The objective is to
determine which entities in A and B identify the same real
world object.

The general problem of entity matching can be formalized
as follows [15]:

Definition 1 (Entity Matching). Given two data
sources A and B, find the subset of all pairs of entities for
which a relation ∼R holds:

M = {(a, b); a ∼R b, a ∈ A, b ∈ B}

Similarly, we define the set of all pairs for which ∼R does
not hold:

U = (A×B) \M

The purpose of relation ∼R is to relate all entities which
represent the same real world object.

In some cases a subset of M and U is already known
prior to matching. Such reference links can, for instance,
originate from previous data integration efforts. Alterna-
tively, they can be created by domain experts who simply
need to confirm or reject the equivalence of entity pairs from
the data sets. Creating reference links is much easier than
to write linkage rules as it requires no previous knowledge
about similarity computation techniques or the specific link-
age rule format used by the system. In [21], we present an
active learning method to minimize the number of entity
pairs which need to be confirmed or rejected.

Definition 2 (Reference Links). A set of positive
reference links R+ ⊆ M contains pairs of entities for which
relation ∼R is known to hold (i.e. which identify the same
real world object). Analogously, a set of negative reference
links R− ⊆ U contains pairs of entities for which relation

1http://www4.wiwiss.fu-berlin.de/bizer/silk/

∼R is known to not hold (i.e. which identify different real
world objects).

Reference links can serve two purposes: Firstly, they can
be used to evaluate the quality of a linkage rule. But more
importantly, they can also be used to infer a linkage rule
which specifies the conditions which must hold true for a
pair of entities to be part of M :

Definition 3 (Linkage Rule). A linkage rule l as-
signs a similarity value to each pair of entities:

l : A×B → [0, 1]

The set of matching entities is given by all pairs for which
the similarity according to the linkage rule exceeds a thresh-
old of 0.5:

Ml = {(a, b); l(a, b) ≥ 0.5, a ∈ A, b ∈ B}

In this paper, we consider the problem of learning a link-
age rule from a set of reference links:

Definition 4 (Linkage Rule Learner). The pur-
pose of a learning algorithm for linkage rules is to learn a
linkage rule from a set of reference links:

m : 2(A×B) × 2(A×B) → (A×B → [0, 1])

The first argument denotes a set of positive reference links,
while the second argument denotes a set of negative refer-
ence links. The result of the learning algorithm is a linkage
rule which should cover as many reference links as possible
while generalizing to unknown pairs.

3. LINKAGE RULE REPRESENTATION
In this section we introduce an expressive linkage rule rep-

resentation. We represent a linkage rule as a tree which is
built from four basic operators:

Property Operator: Retrieves all values of a specific
property p of each entity, such as its label property.

Transformation Operator: Transforms the values of a
set of property or transformation operators ~v according
to a specific data transformation function f t. Exam-
ples of common transformation functions include case
normalization, tokenization and concatenation of val-
ues from multiple operators. Multiple transformation
operators can be nested in order to apply a sequence
of transformations.

Comparison Operator: Evaluates the similarity between
two entities based on the values of two property or
transformation operators va and vb by applying a dis-
tance measure fd and a threshold θ. Examples of com-
mon distance measures include Levenshtein, Jaccard,
or geographic distance.

Aggregation Operator: Due to the fact that, in most
cases, the similarity of two entities cannot be deter-
mined by evaluating a single comparison, an aggre-
gation operator combines the similarity scores from
multiple comparison or aggregation operators ~s into
a single score according to a specific aggregation func-
tion fa. Examples of common aggregation functions
include the weighted average or yielding the minimum
score of all operators.
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Figure 1: Structure of a linkage rule

The linkage rule tree is strongly typed [26] i.e. only spe-
cific combinations of the four basic operators are allowed.
Figure 1 specifies the valid structure of a linkage rule.

Discussion. Our representation of a linkage rule differs
from other representations in record linkage in a number of
ways: First of all, each comparison operator accepts two
value operators allowing the matching of data sets that are
represented using different schemata.

Matching between different schemata is also enabled by
the introduction of transformation operators. For exam-
ple, a data source which uses the FOAF vocabulary [5]
may represent person names using the foaf:firstName and
foaf:lastName properties while a data source using the DB-
pedia ontology may represent the same names using just the
dbpedia:name property. In order to compare entities ex-
pressed in different schemata or data formats, their values
have to be normalized prior to comparing them for similar-
ity. In this example we could achieve this in two ways: We
could concatenate foaf:firstName and foaf:lastName into
a single name before comparing them to dbpedia:name by
using a character-based distance measure such as the Lev-
enshtein distance. Alternatively, we could split the values
of dbpedia:name using a tokenizer and compare them to
the values of foaf:firstName and foaf:lastName by using
a token-based distance measure such as the Jaccard coeffi-
cient.

Another motivation for transformation operators is the
matching of noisy data sets. A common example is data
sources which contain values using an inconsistent letter
case (e.g. “iPod” vs. “IPOD”). A way to address case in-
consistency is to normalize all values to lower case prior to
comparing them.

Finally, we allow aggregation operators to be nested which
enables us to represent non-linear classifiers beyond pure
boolean classifiers. The subsequent related work section will
discuss how our representation can be reduced to existing
approaches.

It is outside of the scope of this paper to present methods
to execute linkage rules which are based on the proposed
representation. A method to efficiently execute such linkage
rules can be found in [19].

Example. Figure 2 shows a simple example of a linkage
rule for interlinking cities. In this example, the linkage rule
compares the labels as well as the coordinates of the enti-
ties. The labels are normalized by converting them to lower
case prior to comparing them with the Levenshtein distance
while allowing for a maximum distance of 1. The similarity
score of the labels is then aggregated with the geographic
similarity score into a single score by using the minimum

Figure 2: Example linkage rule

aggregation i.e. both values must exceed the threshold of
0.5 in order to generate a link.

Semantics. We now define the semantics of the individ-
ual operators: We distinguish between 2 types of operators:
value operators and similarity operators. While value oper-
ators provide a function which yields a discriminative value
for a single entity, similarity operators provide a function
which determines how similar two given entities are.

Given two data sources A and B, a value operator yields
a function which returns a discriminative value for a given
entity e by which it can be compared to other entities. Thus,
it returns a value from the set:2

V := [A ∪B → Σ]

Where Σ denotes a (possibly empty) set of values.
We now introduce two value operators: property operators

and transformation operators:

Definition 5 (Property Op.). A property operator
retrieves all values of a specific property of an entity:

v
p : P → V

p 7→ (e 7→ e.p)

where p denotes the property to be retrieved by the operator.

Definition 6 (Transformation Op.). A transfor-
mation operator transforms the input values according to a
specific data transformation function:

v
t : (V∗ ×F t) → V

(~v, f t) 7→ (e 7→ f
t(v1(e), v2(e), . . . , vn(e)))

~v is a vector of operators: v1, v2, . . . , vn. The transformation
function f t may be any function which transforms the value
sets provided by the operators into a single value set:

f
t : Σn → Σ

Although in general we do not impose any restriction on
the concrete transformation functions which can be used,
Table 1 lists the functions which we employed in our ex-
periments. An example of a transformation operator which
concatenates the first and the last name of entities about
persons is:

v
t((vp(firstName), vp(lastName)), concatenate)

Note that transformations also may be nested.

2[X → Y ] denotes Y X i.e. the space of all functions X → Y
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Transformations
lowerCase Converts all values to lower case
tokenize Splits all values into tokens
stripUriPrefix Strips the URI prefixes (e.g. http://

dbpedia.org/resource/)
concatenate Concatenates the values from two

value operators

Table 1: Transformations used in all experiments

Distance Measures
levenshtein Levenshtein distance
jaccard Jaccard distance coefficient
numeric The numeric difference
geographic The geographical distance in meters
date Distance between two dates in days

Table 2: Distance functions used in all experiments

A similarity operator returns a function which assigns a
value from the interval [0,1] to each pair of entities:

S := [A×B → [0, 1]]

We consider two types of similarity operators: comparison
operators which compare the result of two value operators
and aggregation operators which aggregate multiple similar-
ity operators.

Definition 7 (Comparison Op.). Given two value
operators va and vb, a comparison operator is defined as:

s
c : (V × V × Fd × R) → S

(va, vb, f
d
, θ) 7→

(

(ea, eb) 7→

{

1− d
θ

if d ≤ θ

0 if d > θ

)

with d := f
d(va(ea), vb(eb))

fd defines the distance measure which is used to compare the
values of both value operators:

f
d : Σ× Σ → R

Table 2 lists the distance functions which we employed
in our experiments. An example of a comparison operator
which compares the name of the entities in the first data set
with the lower cased labels of the entities in the second data
set using the Levenshtein distance is:

s
c(vp(name), vt((vp(label)), lowerCase), levenshtein, 1)

Definition 8 (Aggregation Op.). Given a set of
similarity operators s an aggregation operator is defined as:

s
a : (S∗ × N

∗ ×Fa) → S

(~s, ~w, f
a) 7→ ((ea, eb) 7→ f

a(se, w))

with se := (s1(ea, eb), s2(ea, eb), . . . , sn(ea, eb))

~w denotes the weights which are used by the aggregation
function fa to combine the values:

f
a : Rn × N

n → R

The first argument contains the similarity scores returned by
the operators of this aggregation while the second argument
contains a weight for each of the operators.

Aggregations
max f t(s, w) := max(s)
min f t(s, w) := min(s)

wmean f t(s, w) :=
∑

n

i=1
wisi∑

n

i=1
wi

Table 3: Aggregation functions used in all experi-

ments

Table 3 lists the aggregation functions which we employed
in our experiments. Note that aggregations can be nested
i.e. non-linear hierarchies can also be expressed.

4. RELATED WORK
Many approaches suitable for learning binary classifiers

have been adapted for learning linkage rules [22]. This sec-
tion introduces the most popular approaches and discusses
how they compare to our approach.

Naive Bayes. Based on the original Fellegi-Sunter sta-
tistical model [15] of record linkage, methods from Bayesian
statistics such as Naive Bayes classifiers have been used to
learn linkage rules [32]. Compared to our approach, Naive
Bayes is not capable of expressing data transformations. It
has been shown to perform worse than other approaches for
entity matching such as support vector machines and deci-
sion trees [27].

Linear Classifiers. Arasu et. al. [1] categorize widely
used approaches for representing linkage rules as threshold-
based boolean classifiers and linear classifiers. Using the
introduced representation, we define linear classifiers as:

Definition 9 (Linear Classifier). Given a vector of
comparison operators ~s and a vector of weights ~w, a linear
classifier is defined as:

s
a(~s, ~w,wmean) = (ea, eb) 7→

∑n

i=1 wisi(ea, eb)
∑n

i=1 wi

Our representation subsumes linear classifiers and extends
them in 3 ways:

1. It includes data transformations.

2. It generalizes the aggregation function i.e. allows func-
tions other than wmean.

3. It allows aggregations to be nested.

The most popular method to model linear classifiers are
support vector machines (SVM) [7]. A SVM is a binary
linear classifier which maps the input variables into a high-
dimensional space where the two classes are separated by
a hyperplane via a kernel function [3]. One popular appli-
cation of SVMs to entity matching is MARLIN (Multiply
Adaptive Record Linkage with INduction) [2], which uses
SVMs to learn linear classifiers. While SVMs can be ex-
tended to model non-linear classifiers, they are not suitable
to learn data transformations.

Threshold-based Boolean Classifiers. We first de-
fine threshold-based boolean classifiers:

Definition 10 (Threshold-based Boolean Cl.).
Given a vector of comparison operators ~s, where each
comparison operator compares a pair of properties us-
ing a specific distance measure fd and a threshold θ, a
threshold-based boolean classifiers is defined as:

s
a(~s,min) = (ea, eb) 7→ min{si(ea, eb) : 1 < i ≤ n}
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Note that using the minimum function is equivalent to the
conjunction of all comparisons.

Our representation subsumes threshold-based boolean
classifiers and extends them in 2 ways:

1. It includes data transformations.

2. It generalizes the aggregation function i.e. allows func-
tions other than min and max.

In literature, threshold-based boolean classifiers are usu-
ally represented with decision trees. A major advantage of
decision trees is that they provide explanations for each clas-
sification and thus can be understood and improved manu-
ally. Active Atlas [28, 29] learns mapping rules consisting
of a combination of predefined transformations and similar-
ity measures. TAILOR [11] is another tool which employs
decision trees to learn linkage rules.

Genetic Programming. Genetic programming (GP)
is an extension of the genetic algorithm [17] which has been
first proposed, in tree-based form, by Cramer [8]. As genetic
programming represents candidate solutions as trees, linkage
rules can be directly represented.

Genetic programming algorithms usually start with a ran-
dom population and evolve the population using three com-
mon genetic operations [24]:

Reproduction copies an individual without modification.

Crossover recombines two individuals.

Mutation applies a random modification to an individual.

These operations are applied to individuals in the population
which have been selected based on a fitness measure which
determines how close a specific individual is to the desired
solution. The evolution of the population stops as soon as
either the configured maximum number of iterations or the
maximum F-measure is reached.

To the best of our knowledge, genetic programming for
learning linkage rules has only been applied by Carvalho et.
al. so far [9, 6, 10]. Their approach uses genetic program-
ming to learn how to combine a set of presupplied pairs of
the form <attribute, similarity function> (e.g. <name,
Jaro>) into a linkage rule. These pairs can be combined by
the genetic programming method to a linkage rule tree by
using mathematical functions (e.g. +, -, *, /, exp) and con-
stants. Carvalho et. al. show that their method produces
better results as the state-of-the-art SVM based approach by
MARLIN [10]. Their approach is very expressive although
it cannot express data transformations. On the downside,
using mathematical functions to combine the similarity mea-
sures does not fit any commonly used linkage rule model [14]
and leads to complex and difficult to understand linkage
rules.

5. APPROACH
This section describes the GenLink approach in detail.

The pseudocode of GenLink is given in Algorithm 1.
The algorithm starts by generating an initial population

of candidate linkage rules according to the method described
in Section 5.1.

After the initial population has been generated it is it-
eratively evolved. In each iteration, a new population is
generated by creating new linkage rules from the existing
population until the population size is reached.

Algorithm 1 Pseudocode of the GenLink algorithm. The
specific parameter values used in our experiments are listed
in Section 6.1.

P ← generate initial population
while(maximum iterations nor full F−measure reached) {

P ′ ← ∅
while(|P ′| < populationsize) {

r1, r2 ← select two linkage rules from P
op ← select random crossover operator
p ← random number from interval [0,1]
if (p < mutationprobability) {
rr ← generate random linkage rule
P ′ ← P ′ ∪ op(r1, rr)
} else {

P ′ ← P ′ ∪ op(r1, r2)
}
}
P ← P ′

}
return best linkage rule from P

A new linkage rule is generated according to the following
steps: First, two linkage rules are selected from the popu-
lation according to the selection method described in Sec-
tion 5.2. In addition, a random crossover operator is se-
lected from the set of available operators. The basic idea
of our approach is to provide a specific crossover operator
for each aspect of the linkage rule. For instance, the thresh-
old crossover operator only modifies the threshold of the
specific comparison while the transformation crossover op-
erator combines the transformations of both linkage rules.
The set of provided crossover operators is described in Sec-
tion 5.3. The selected operator is used to either mutate one
of the selected linkage rules or to combine both linkage rules
into a new linkage rule.

The algorithm stops when either a predefined number of
iterations is reached or when one linkage rule in the popu-
lation reaches the full F-measure. The best linkage rule in
the final population is returned by the algorithm.

5.1 Generating the Initial Population
In genetic programming the initial population is usually

generated randomly. Previous work has shown that starting
with a fully random population works well on some record
linkage data sets [6]. Two circumstances increase the search
space (i.e. the set of all possible linkage rules) consider-
ably: Firstly, data sets with a high number of properties.
Secondly, if data sets which are represented using different
schemata are to be matched the search space includes all
possible property pairs from the source and target data set.
In order to reduce the size of the search space, we employ a
simple algorithm which preselects property pairs which hold
similar values: Before the population is generated, we build
a list of property pairs which hold similar values as described
below. Based on that, random linkage rules are built by se-
lecting property pairs from the list and building a tree by
combining random data transformations, comparisons and
aggregations.

Finding Compatible Properties. The purpose of this
step is to generate a list of pairs of properties which hold sim-
ilar values. For each possible property pair, the values of the
entities referenced by a positive reference link are analyzed.
This is done by tokenizing and lowercasing the values and
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generating a new property pair of the form (p1, p2,measure)
if there is a distance measure in a provided list of func-
tions according to which 2 tokens are similar given a certain
threshold θd. In our experiments, we only used the leven-
sthein distance with a threshold of 1. The pseudocode is
given in Algorithm 2.

Algorithm 2 Find compatible properties given a set of ref-
erence links R+ and a distance threshold θ

pairs ← ∅

for all (ea, eb) ∈ R+ {
for all properties ea.pi and eb.pj {

for all distance functions fd {
va ← tokenize(lowerCase(ea.pi))
vb ← tokenize(lowerCase(eb.pj))

if (fd(va, vb) < θd) add (pi, pj, fd) to pairs
}}}
return pairs

Figure 3 illustrates a simple example with two entities. In
this example, the following two property pairs are generated:
(label, label, levensthein) and (point, coord, geographic).

Figure 3: Finding compatible properties

Generating a Random Linkage Rule. A random link-
age rule is generated according to the following rules: First
of all, a linkage rule is built consisting of a random aggre-
gation and up to two comparisons. For each comparison a
random pair from the pre-generated list of compatible prop-
erties is selected. In addition, with a possibility of 50%, a
random transformation is appended to each property.

Note that although the initial linkage rule trees are very
small, this does not limit the algorithm from growing bigger
trees by using the genetic operators.

5.2 Selection
Starting with the initial population, the genetic algorithm

breeds a new population by evolving selected linkage rules
using the genetic operations. The linkage rules are selected
from the population based on two functions: The fitness
function and the selection method.

The purpose of the fitness function is to assign a value to
each linkage rule which indicates how close the given linkage
rule is to the desired solution. A disadvantage of using the
F-measure as fitness function is that it may yield skewed
results if the number of positive and negative reference links
is unbalanced as it only takes the true negative rate into
account. We use Matthews correlation coefficient (MCC)
as fitness measure. Matthews correlation coefficient [25] is
defined as the degree of the correlation between the actual
and predicted classes:

MCC =
ntp × ntn − nfp × nfn

√

(ntp + nfp)(ntp + nfn)(ntn + nfp)(ntn + nfn)

ntp, ntn, nfp and nfn denote the number of true positives,
true negatives, false positives and false negatives which are

computed based on the provided reference links (ignoring
the remaining part of the data set). In order to prevent
linkage rules from growing indefinitely, we penalize linkage
rules based on their number of operators: fitness = mcc−
0.05 ∗ operatorcount.
Based on the fitness of each linkage rule, the selection

method selects the linkage rules to be evolved. As selection
method we chose tournament selection as it has been shown
to produce strong results in a variety of GP systems [23] and
is easy to parallelize.

5.3 Crossover Operators
Instead of using subtree crossover, which is commonly

used in genetic programming, we use a set of specific
crossover operators which are tailored to the structure of a
linkage rule. For each crossover operation, an operator from
this set is selected randomly and applied to two selected
linkage rules. We reduce mutation to a crossover operation
with a randomly generated new linkage rule. This is known
as headless chicken crossover. If the root node is selected
as the crossover point in the first linkage rule this results in
the complete replacement of the given linkage rule with a
randomly generated linkage rule.

Each operator learns one aspect of the linkage rule. The
contribution of the proposed operators to the learning per-
formance over subtree crossover is evaluated experimentally
in Section 6.3.

For evolving linkage rules, we propose the following oper-
ators:

Function Crossover. This crossover operator is used to
find the best distance, transformation or aggregation func-
tion. Function crossover selects one operator at random in
each linkage rule and interchanges the functions. For ex-
ample, it may select a comparison with the Levenshtein dis-
tance function in the first linkage rule and a comparison with
the Jaccard distance function in the second linkage rule and
then interchanges these two functions. The pseudocode for
function crossover is given in Algorithm 3.

Algorithm 3 Function Crossover

def cross (r1: Rule, r2: Rule) = {
nodeType ← select random type from {Transformation,

→֒ Comparison, Aggregation}
cmp1 ← random node of nodeType from r1
cmp2 ← random node of nodeType from r2

return r1 with cmp1.fd ← cmp2.fd

}

Operators Crossover. As a linkage rule usually needs
to combine multiple comparisons, this operator combines
aggregations from both linkage rules. For this, it selects two
aggregations, one from each linkage rule and combines theirs
comparisons. The comparisons are combined by selecting
all comparisons from both aggregations and removing each
comparison with a probability of 50%. For example, it may
select an aggregation of a label comparison and a date com-
parison in the first linkage rule and an aggregation of a label
comparison and a comparison of the geographic coordinates
in the second linkage rule. In this case the operator replaces
the selected aggregations with a new aggregation which con-
tains all 4 comparisons and then removes each comparison
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with a probability of 50%. Note that the comparisons are
exchanged including the complete subtree i.e. the distance
functions as well as existing transformations are retained.
The pseudocode is given in Algorithm 4. Figure 4 illustrates

Algorithm 4 Operators Crossover

def cross (r1: Rule, r2: Rule) = {
agg1 ← random aggregation from r1
agg2 ← random aggregation from r2

ops ← ∅
for all operators o in agg1 and agg2 {

p ← random number from interval [0,1]
if (p > 0.5)
add o to ops

}

return r1 with agg1.operators ← ops
}

a simple operators crossover on two linkage rules.

Figure 4: Operators Crossover

Aggregation Crossover. While for some data sets it is
sufficient to use pure linear or boolean classifiers, for other
data sets the accuracy can be improved by allowing non-
linear aggregations (see Section 6.3). In order to learn ag-
gregation hierarchies, the aggregation crossover operator se-
lects a random aggregation or comparison operator in the
first linkage rule and replaces it with a random aggrega-
tion or comparison operator from the second linkage rule.
This way, the operator builds a hierarchy as it may select
operators from different levels in the tree. For example, it
may select a comparison in the first linkage rule and replace
it with a aggregation of multiple comparisons from the sec-
ond linkage rule. Note that Aggregation Crossover is similar
to subtree crossover but only operates on aggregation and
comparison nodes. The pseudocode is given in Algorithm 5.
Figure 5 illustrates a simple aggregation crossover on two

Algorithm 5 Aggregation Crossover

def cross (r1: Rule, r2: Rule) = {
o1 ← random aggregation or comparison from r1
o2 ← random aggregation or comparison from r2

return r1 with o1 replaced by o2
}

linkage rules.

Transformation Crossover. This operator is used to
recombine the transformations of two linkage rules. By com-
bining the transformation operators of both linkage rules,

Figure 5: Aggregation Crossover

it can build up chains of transformations. In both link-
age rules, transformation crossover randomly selects an up-
per and a lower transformation operator. The next step is
to recombine the paths between the upper and the lower
transformation by executing a two point crossover. Finally,
duplicated transformations are removed. The pseudocode is
given in Algorithm 6. Figure 6 illustrates a transformation

Algorithm 6 Transformation Crossover

def cross (r1: Rule, r2: Rule) = {
t1upper, t1lower ← random transformations from r1
t2upper, t2lower ← random transformations from r2

return r1 with:
t1upper replaced by t2upper
t2lower.~v replaced by t1lower.~v

}

crossover. In this example, the tokenize operator was se-

Figure 6: Transformation Crossover

lected as both upper and lower transformation in the first
linkage rule. In the second linkage rule, the tokenize opera-
tor was selected as upper transformation while the stem op-
erator was selected as lower transformation. The tokenize

operator in the first linkage rule is then replaced by the path
between the upper and the lower transformation in the sec-
ond linkage rule.

Threshold Crossover. This crossover operator com-
bines the distance thresholds of both linkage rules. For this,
one comparison operator is selected at random in each link-
age rule. The new threshold is then set to the average of
both comparisons. The pseudocode is given in Algorithm 7.

Weight Crossover. This crossover operator combines
the weights of both linkage rules analogous to the threshold
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Algorithm 7 Threshold Crossover

def cross (r1: Rule, r2: Rule) = {
agg1 ← random comparison from r1
agg2 ← random comparison from r2

return r1 with (agg1.θ ← 0.5 · (agg1.θ + agg2.θ))
}

Parameter Value
Population size 500
Maximum iterations 50
Selection method Tournament selection
Tournament size 5
Probability of Crossover 75%
Probability of Mutation 25%
Stop Condition F-measure = 1.0

Table 4: Parameters

crossover. For this, it selects a comparison or aggregation
operator in each linkage rule and updates the weight in the
first operator to the average of both.

6. EVALUATION
In this section we evaluate our approach experimentally:

Section 6.1 describes the experimental setup. The overall
learning results for several real world data sets are presented
in Section 6.2. Finally, Section 6.3 evaluates the contribu-
tion of specific parts of our algorithm to the accuracy of the
learned linkage rules.

6.1 Experimental Setup
The GenLink algorithm has been implemented in the Silk

Link Discovery Framework which can be downloaded from
the project homepage3. The Silk Link Discovery Frame-
work supports users in discovering relationships between
data items within different Linked Data sources. All exper-
iments have been executed using Version 2.5.3 of the Silk
Link Discovery Framework.

Because genetic algorithms are non-deterministic and may
yield different results in each run, all experiments have been
run 10 times. For each run the reference links have been
randomly split into 2 folds for cross-validation. The results
of all runs have been averaged and the standard deviation
has been computed. For each experiment, we provide the
evaluation results with respect to the training set as well as
the validation set. All experiments have been run on a 3GHz
Intel(R) Core i7 CPU with 4 cores while the Java heap space
has been restricted to 1GB.

Parameters. Table 4 lists the parameters which have
been used in all experiments. As it is the purpose of the
developed method to work on arbitrary data sets without
the need to tailor its parameters to the specific data sets
that should be matched, the same parameters have been
used for all experiments.

Data sets. For evaluation, we used six data sets from
three areas: (1) We evaluate the learning performance on
two well-known record linkage data sets and compare the
performance with an existing state-of-the-art genetic pro-
gramming approach. (2) We evaluate our approach with

3http://www4.wiwiss.fu-berlin.de/bizer/silk/

Entities Reference Links
|A| |B| |R+| |R−|

Cora 1879 1617 1617
Restaurant 864 112 112
SiderDrugbank 924 4772 859 859
NYT 5620 1819 1920 1920
LinkedMDB 199 174 100 100
DBpediaDrugbank 4854 4772 1403 1403

Table 5: The number of entities in each data set as

well as the number of reference links.

Properties Coverage
|A.P | |B.P | CA CB

Cora 4 0.8
Restaurant 5 1.0
SiderDrugbank 8 79 1.0 0.5
NYT 38 110 0.3 0.2
LinkedMDB 100 46 0.4 0.4
DBpediaDrugbank 110 79 0.3 0.5

Table 6: The total number of properties in each data

set as well as the percentage of properties which are

actually set on an entity.

two data sets from the Ontology Alignment Evaluation Ini-
tiative4 and compare our results to the participating sys-
tems. (3) We compare the learned linkage rules with linkage
rules created by a human expert for two data sets.

The first two data sets are frequently-used record link-
age data sets while the following 4 sets are RDF data sets.
While the record linkage data sets are already adhering to a
consistent schema, the RDF data sets are split into a source
and a target data set which adhere to different schemata.

Table 5 lists the used data sets together with the number
of entities as well as the number of reference links in each
data set. As only positive reference links have been provided
by the data set providers, we generated the negative refer-
ence links. For two positive links (a, b) ∈ R+ and (c, d) ∈ R+

we generated two negative links (a, d) ∈ R− and (c, b) ∈ R−.
For the Cora and Restaurant data set this is sound as the
provided positive links are complete. Since the remaining
data sources are split into source and target data sets, gen-
erating negative reference links is possible as entities in the
source and target data sets are internally unique.

Table 6 shows the number of properties in the source and
target data sets and their coverage i.e. the percentage of
properties which are actually set on an entity on average.
The following section will provide more detailed information
for each data set.

6.2 Overall Results
In this section we compare the overall performance of Gen-

Link on all 6 data sets.

Frequently Used Record Linkage Datasets

A number of data sets have been used frequently to eval-
uate the performance of different record linkage approaches.
Following this practice, we compared the overall learning
performance of our approach with the approach proposed
by Carvalho et. al. [10]. In their experiments, Carvalho et.
al. report to produce better results than the state-of-the-art
SVM based approach by MARLIN. The related work section

4http://oaei.ontologymatching.org
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provides more details about how their approach compares to
ours technically.

We chose 2 data sets which are also used by Carvalho
et. al.: the Cora data set and Restaurant data set. The
Cora data set contains citations to research papers from the
Cora Computer Science research paper search engine. For
each citations it contains the title, the author, the venue
as well as the date of publication. The Restaurant data
set contains a set of records from the Fodor’s and Zagat’s
restaurant guides. For each restaurant it contains the name,
address, phone number as well as the type of restaurant. For
both data sets, we used the XML version5 which is provided
by Draisbach et. al.

Table 7 summarizes the cross validation results for the
Cora data set. On average, our approach achieved an F-

Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)
0 5.5 (0.7) 0.880 (0.030) 0.877 (0.031)
10 28.6 (2.7) 0.949 (0.018) 0.945 (0.021)
20 60.1 (4.1) 0.965 (0.005) 0.962 (0.005)
30 93.6 (6.1) 0.968 (0.003) 0.965 (0.004)
40 129.4 (9.7) 0.968 (0.002) 0.965 (0.004)
50 185.8 (26.7) 0.969 (0.003) 0.966 (0.004)
Ref. - 0.900 (0.010) 0.910 (0.010)

Table 7: Results for the Cora data set. The last

row contains the best results of Carvalho et. al. for

comparison.

measure of 96.9% against the training set and 96.6% against
the validation set and needed about 3 minutes to perform
all 50 iterations on the test machine. The learned linkage
rules compared by title, author and venue. Figure 7 shows
an example of a learned linkage rule which reached the top
F-measure. For the same data set, Carvalho et. al. report

Figure 7: Cora: Learned linkage rule

an F-measure of 90.0% against the training set and 91.0%
against the validation set [10]. We suspected the main rea-
son for the better performance of our method on this data set
to be found in the inclusion of data transformations in our
learning approach. To confirm this claim we re-executed our
method with one limitation: No data transformations were

5http://www.hpi.uni-potsdam.de/naumann/projekte/
dude_duplicate_detection.html

allowed to be used in a linkage rule. With this limitation,
the performance of our methods declined to an F-measure
of 91.2% against the training set and 90.5% against the vali-
dation set approximately matching the numbers of Carvalho
et. al.. Figure 8 shows a learned linkage rule without trans-
formations.

Figure 8: Cora: Learned linkage rule without trans-

formations

Table 8 summarizes the cross validation results for the
Restaurant data set. On average, our approach achieved

Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)
0 0.4 (0.1) 0.953 (0.038) 0.951 (0.039)
10 2.0 (0.9) 0.996 (0.004) 0.992 (0.006)
20 3.1 (1.9) 0.996 (0.004) 0.993 (0.006)
30 4.1 (3.0) 0.996 (0.004) 0.993 (0.006)
40 5.2 (4.0) 0.996 (0.004) 0.993 (0.006)
50 6.3 (5.3) 0.996 (0.004) 0.993 (0.006)
Ref. - 1.000 (0.000) 0.980 (0.010)

Table 8: Results for the Restaurant data set. The

last row contains the best results of Carvalho et. al.

for comparison.

an F-measure of 99.6% against the training set and 99.3%
against the validation set. For the same data set, Carvalho
et. al. report an F-measure of 100.0% against the training
set, but only 98.0% against the validation set [10].

Ontology Alignment Evaluation Initiative

The Ontology Alignment Evaluation Initiative (OAEI) is
an international initiative aimed at organizing the evalua-
tion of different ontology matching systems. In addition to
schema matching, OAEI also includes an instance matching
track since 2009 which regularly evaluates the ability to iden-
tify similar entities among different Linked Data sources.

The SiderDrugBank data set was selected from the
OAEI 2010 data interlinking track6. We chose this data set
amongst the other drug related data sets because it was the
one for which the participating systems ObjectCoref [18] and
RiMOM [30] performed the worst. This data set contains
drugs from Sider, a data set of marketed drugs and their
side effects, and DrugBank, containing drugs approved by
the US Federal Drugs Agency. Positive reference links are
provided by the OAEI.

6http://oaei.ontologymatching.org/2010/im/index.
html
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The NYT data set was selected from the OAEI 2011 data
interlinking track7. Amongst the 7 data sets from this track,
we chose the data set for which the participating systems
performed the worst on average: Interlinking locations in the
New York Times data set with their equivalent in DBpedia.
Besides other types of entities, the New York Times data
set contains 1920 manually curated locations where for each
location a link to the same location in DBpedia is set.

For both data sets, we compared our results with the re-
sults of the participating systems in the instance matching
track of the OAEI. In the OAEI, the systems where asked
to identify similar entities in a data set without being al-
lowed to employ existing reference links for matching. Note
that as the OAEI only compares unsupervised systems and
does not consider supervised systems (i.e. systems which are
supplied with existing reference links), our approach has an
advantage over the participating systems. For that reason,
we used the official OAEI results merely as a baseline for
our approach.

Table 9 summarizes the cross validation results for the
SiderDrugBank data set. After 30 iterations, our approach
reached an F-measure of 97.2% for the training set and
97.0% for the validation set. ObjectCoref and RiMOM
achieved only around 50% percent which indicates the diffi-
culty in matching this data set.

Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)
0 21.7 (0.3) 0.840 (0.018) 0.837 (0.018)
10 38.8 (2.4) 0.943 (0.025) 0.939 (0.030)
20 83.1 (11.1) 0.970 (0.007) 0.969 (0.008)
30 147.2 (20.9) 0.972 (0.006) 0.970 (0.007)
40 215.6 (28.0) 0.972 (0.006) 0.970 (0.007)
50 301.5 (39.0) 0.972 (0.006) 0.970 (0.007)

Reference System F1
ObjectCoref 0.464 [18]
RiMOM 0.504 [30]

Table 9: Results for the SiderDrugBank data set.

Table 10 summarizes the cross validation results for the
NYT data set. After 50 iterations, our approach reached
an F-measure of 97.7% for the training set and 97.4% for
the validation set. With an F-measure of 92%, Zhishi.links
achieved the best result of the participating systems.

Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)
0 85.2 (1.7) 0.703 (0.064) 0.709 (0.048)
1 107.7 (11.0) 0.803 (0.037) 0.803 (0.036)
5 260.7 (76.8) 0.844 (0.048) 0.846 (0.048)
10 344.5 (86.2) 0.854 (0.052) 0.854 (0.053)
20 496.7 (95.0) 0.907 (0.074) 0.906 (0.074)
30 652.8 (108.1) 0.927 (0.069) 0.928 (0.067)
40 804.8 (132.4) 0.965 (0.039) 0.963 (0.041)
50 975.4 (141.1) 0.977 (0.024) 0.974 (0.026)

Reference System F1 [13]
AgreementMaker 0.69
SEREMI 0.68
Zhishi.links 0.92

Table 10: Results for the NYT data set.

7http://oaei.ontologymatching.org/2011/instance/
index.html

Comparison With Manually Created Linkage Rules

In addition, we evaluated how the learned linkage rules
compare to linkage rules which have been manually created
by a human expert for the same data set. For this we se-
lected 2 data sets: A data set about movies and a complex
life science data set.

LinkedMDB: An easy to understand data set about
movies which is non-trivial as the linkage rule cannot just
compare by label (different movies may have the same
name), but also needs to include other properties such as
the date or the director. For evaluation we used a manually
created set of 100 positive and 100 negative reference links.
Special care was taken to include relevant corner cases such
as movies which share the same title but have been produced
in different years.

Table 11 summarizes the cross validation results for the
LinkedMDB data set.

Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)
1 4.2 (1.2) 0.981 (0.011) 0.959 (0.023)
10 19.6 (2.1) 0.998 (0.001) 0.921 (0.007)
20 40.3 (3.3) 1.000 (0.000) 0.974 (0.004)
30 59.2 (4.2) 1.000 (0.000) 0.999 (0.002)
40 74.2 (7.2) 1.000 (0.000) 0.999 (0.002)
50 99.7 (12.8) 1.000 (0.000) 0.999 (0.002)

Table 11: Results for the LinkedMDB data set.

In all runs, the learning algorithm needed no more than
12 iterations in order to achieve the full training F-measure.
The learning algorithm learned linkage rules which compare
movies by their title and their release date just as the orig-
inal human-created linkage rule did.

DBpediaDrugBank: While the vast majority of linkage
rules commonly used in the Linked Data context are very
simple, a few of them employ more complex structures. In-
terlinking drugs in DBpedia and DrugBank is an example
where the original linkage rule which has been produced by
humans is very complex. In order to match two drugs, it
compares the drug names and their synonyms as well as a
list of well-known and used identifiers (e.g. the CAS num-
ber8) which are provided by both data sets but are missing
for many entities. In total, the manually written linkage rule
uses 13 comparisons and 33 transformations. This includes
complex transformations such as replacing specific parts of
the strings. All 1,403 links which have been generated by
executing the original linkage rule have been used as positive
reference links.

Table 12 summarizes the cross validation results for the
DBpediaDrugBank data set. The learned linkage rules yield
an F-Measure of 99.8% for the training data and 99.4%
for the validation data. From the 30th iteration the gen-
erated linkage rules on average only use 5.6 comparisons
and 3.2 transformations and the parsimony pressure suc-
cessfully avoids bloating in the subsequent iterations. Thus,
the learned linkage rules use less than half of the compar-
isons and only one-tenth of the transformations of the hu-
man written linkage rules.

6.3 Detailed Evaluation
While the previous section focused on the evaluation of the

performance of the overall algorithm this section focuses on

8A unique numerical identifier assigned by the ”Chemical
Abstracts Service”
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Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)
1 67.5 (2.2) 0.929 (0.026) 0.928 (0.029)
10 334.1 (157.4) 0.994 (0.002) 0.991 (0.003)
20 1014.1 (496.8) 0.996 (0.001) 0.988 (0.010)
30 1829.7 (919.3) 0.997 (0.001) 0.985 (0.016)
40 2685.4 (1318.9) 0.998 (0.001) 0.994 (0.002)
50 3222.2 (1577.7) 0.998 (0.001) 0.994 (0.002)

Table 12: Results for the DBpediaDrugBank data

set.

Boolean Linear Nonlin. Full
Cora 0.900 0.896 0.898 0.965
Restaurant 0.954 0.959 0.951 0.992
SiderDrugBank 0.931 0.956 0.966 0.970
NYT 0.714 0.716 0.724 0.916
LinkedMDB 0.973 0.986 0.987 0.997
DBpediaDrugBank 0.990 0.981 0.991 0.993

Table 13: Representations: F-measure in round 25

evaluating specific parts of our approach. One of the main
claims of this paper is that using the expressive linkage rule
representation presented in Section 3 allows the algorithm
to learn rules with higher accuracy. We evaluate this claim
by comparing the performance of learned linkage rules using
the proposed representation versus common representations
in record linkage. After that, we show how our approach
to generate the initial population improves the average ac-
curacy of the initial linkage rules. Finally, we evaluate how
the proposed specialized crossover operators improves the
learning performance over subtree crossover.

Comparison With Other Linkage Rule Representations

We presented an approach which uses a linkage rule rep-
resentation which is more expressive than other represen-
tations used in record linkage. Our model includes chains
of transformations and is also able to represent non-linear
classifiers.

In order to measure the effect of this extended represen-
tation, we evaluated the learning performance of 4 represen-
tations:

• Boolean: Boolean classifiers without transformations

• Linear: Linear classifiers without transformations

• Non-linear: Non-linear classifiers without transfor-
mations

• Full: Our Approach with full expressivity

Table 13 shows the F-measure on the validation set after
25 iterations. We now review how the introduction of non-
linearity and transformations in our approach improves the
learning performance: (1) For the record linkage data sets
Cora and Restaurant, the introduction of non-linearity did
not improve the learning performance. But, as these data
sets are generally rather noisy, the introduction of trans-
formations improved the performance considerably. (2) For
the Linked Data sources the non-linear classifiers yield bet-
ter results than either boolean or linear classifiers. The use
of transformations further improves the performance.

Seeding

In this experiment we evaluated if our approach of gen-
erating the initial population improves over the completely
random generation of linkage rules which is usually used in

Random Seeded
Cora 0.849 (0.045) 0.865 (0.018)
Restaurant 0.963 (0.010) 0.985 (0.012)
SiderDrugBank 0.624 (0.181) 0.848 (0.013)
NYT 0.178 (0.164) 0.701 (0.072)
LinkedMDB 0.719 (0.175) 0.975 (0.008)
DBpediaDrugBank 0.702 (0.217) 0.957 (0.013)

Table 14: Seeding: Initial F-measure

10 Iterations Subtree C. Our Approach
Cora 0.943 (0.015) 0.951 (0.013)
Restaurant 0.997 (0.004) 0.997 (0.004)
SiderDrugBank 0.919 (0.013) 0.963 (0.013)
NYT 0.814 (0.015) 0.834 (0.016)
LinkedMDB 0.985 (0.012) 0.991 (0.009)
DBpediaDrugBank 0.992 (0.002) 0.994 (0.002)

25 Iterations Subtree C. Our Approach
Cora 0.959 (0.007) 0.967 (0.003)
Restaurant 0.997 (0.004) 0.997 (0.004)
SiderDrugBank 0.974 (0.004) 0.987 (0.003)
NYT 0.814 (0.005) 0.916 (0.006)
LinkedMDB 0.996 (0.007) 0.998 (0.003)
DBpediaDrugBank 0.994 (0.001) 0.997 (0.002)

Table 15: Crossover experiment

genetic programming. Table 14 compares the average F-
measure of the linkage rules in the initial population for
each data set. The table shows that for data sets with only
a few properties, such as the Cora and the Restaurant data
set, the seeding does not yield a significant improvement.
However, for data sets with many properties, the improve-
ment over the complete random generation is significant and
increases the average F-measure of the linkage rules in the
population considerably.

Crossover Operators

Subtree crossover is the de-facto standard in genetic pro-
gramming. We evaluated the actual contribution to the
learning performance of using specialized crossover opera-
tors instead as described in Section 5.3. Table 15 compares
the performance of both configurations after executing 10
iterations and again after 25 iterations.

In all data sets our approach either matches the subtree
crossover results or outperforms them. In addition, the spe-
cialized crossover operators in our approach have the ad-
vantage that each operator only covers a specific aspect of a
linkage rule. Thus, the operators can be selectively enabled
to control which aspects of a linkage rule are learned.

7. CONCLUSION
We presented the GenLink algorithm for learning expres-

sive linkage rules using genetic programming. GenLink em-
ploys a linkage rule representation which is more expressive
than previous work and is able to represent non-linear rules
and may include data transformations which normalize the
values prior to comparison. The experimental evaluation
shows that this extended representation allows GenLink to
generate linkage rules with a higher accuracy as could be
achieved with boolean and linear linkage rules. It further
shows that the proposed algorithm outperforms the state-
of-the-art genetic programming approach for record linkage
presented by Carvalho et. al. [10].
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We have implemented the GenLink algorithm as part of
the Silk Link Discovery Framework. The algorithm can thus
directly be used by Linked Data publishers and consumers
to set RDF links pointing into other data sources.
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