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Abstract

Behavior which deviates from our normative expectations often appears irrational. A classic exam-

ple concerns the question of how choice should be distributed among multiple alternatives. The

so-called matching law predicts that the fraction of choices made to any option should match the

fraction of total rewards earned from the option. This choice strategy can maximize reward in a

stationary reward schedule. Empirically, however, behavior often deviates from this ideal. While

such deviations have often been interpreted as reflecting ‘noisy’, suboptimal, decision-making,

here we instead suggest that they reflect a strategy which is adaptive in nonstationary and un-

certain environments. We analyze the results of a dynamic foraging task. Animals exhibited

significant deviations from matching, and animals turned out to be able to collect more rewards

when deviation was larger. We show that this behavior can be understood if one considers that
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animals had incomplete information about the environments dynamics. In particular, using compu-

tational models, we show that in such nonstationary environments, learning on both fast and slow

timescales is beneficial. Learning on fast timescales means that an animal can react to sudden

changes in the environment, though this inevitably introduces large fluctuations (variance) in value

estimates. Concurrently, learning on slow timescales reduces the amplitude of these fluctuations

at the price of introducing a bias that causes systematic deviations. We confirm this prediction in

data – monkeys indeed solved the bias-variance tradeoff by combining learning on both fast and

slow timescales. Our work suggests that multi-timescale learning could be a biologically plausible

mechanism for optimizing decisions under uncertainty.

1 Introduction

The matching law constitutes a quantitative description of choice behavior that is often observed

in foraging tasks. According to the matching law, subjects distribute their choices across available

options in the same proportion as the rewards obtained from those options ([19, 20]). This type

of behavior has been observed across a wide range of species including pigeons, rats, monkeys

and humans [19, 20, 16, 17, 52, 11, 28, 29, 45, 36, 37]. Although the matching law provides a

simple and elegant description of behavior, actual choice often deviated from the strict matching.

For example, one common deviation, which is often referred to as undermatching, reveals itself

as a more random choice allocation, because the subjects systematically choose less-rewarding

options more often than the matching law predicts. Such deviations have been sometimes inter-

preted as a failure of the subjects, which could be caused by poor discrimination between options

[3], by noise in the neural mechanisms underlying decision making [50], or by an imbalance in the

learning mechanisms [30].

Here we analyzed an experiment in which monkeys were trained to perform a dynamic foraging

task [52]. In this task, they had to track the changing values of alternative choices through time.

The values (reward rates) changed periodically without any warning. Within each period during

which the values were kept constant, the probabilistic strategy that maximizes cumulative reward

is to follow the matching law [46, 22]. We show, however, that the animals exhibit a significant devi-

ation from the matching law in the form of undermatching. Intuitively, this deviation from matching

behavior should lead to a decreased harvesting performance; but paradoxically we observe that

the overall performance increases as the behavior deviates more strongly from the matching law.

This seemingly paradoxical observation is solved if one recognizes that the reward rate of each

choice changes unpredictably in our task. Under such uncertainty, the animal has to continuously

update the choice values by integrating reward history. In fact, the matching law has been proven

to be the stochastic strategy that maximizes the average reward only when the environment is

stationary [46, 22]. In a non-stationary situation, such as in our task, the animals should properly

weight their past experiences to make a flexible decision, possibly in a way that depends on the

degree of uncertainty or volatility of the environment [5, 35, 21]. Indeed, if the environment is

stable, it is beneficial to consider a large number of past experiences to better estimate the value

of competing alternative choices. If the environment is volatile, then the animal should consider

only a relatively small number of recent experiences, as old ones may no longer be informative
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about the current choice values.

As a consequence there is an optimal way of weighting recent and old experiences. Old experi-

ences, when considered, should introduce a bias away from behavior that optimally follows only

the true current choice values (which are, however, unknown to the subject). This bias contains

information about the long-run average of true choice values. When different choices are equally

rewarded in the long-run, the bias will be toward balanced choices. This in turn means that sub-

jects would choose the options with lower reward rates more often than they should, if they knew

the true rates. In our experiment, this bias translates into undermatching; choice behavior appears

to be more random and exploratory when compared to matching behavior, which would be optimal

for a subject who knew the true reward probabilities. However, the bias is also accompanied by a

reduction in the fluctuations in the estimate of current reward probabilities which are inferred from

finite stochastic observations. This reduction in the fluctuations amply compensates for deviation

from matching behavior. Thus the overall harvesting performance can increase when more old

experiences are taken into account. This simple argument shows that the observed deviations

from the matching law might actually be a consequence of a more sophisticated adaptive strategy

that involves learning over a wide range of timescales.

To test this hypothesis, we estimated the time over which monkeys were integrating the rewards

received for each choice. We found that this integration-time, which turned out to be much longer

than what has normally been studied, varied slowly across days of experiments, and that it cor-

related with undermatching. More specifically, larger deviations from matching behavior were

observed to correlate with longer integration-times, as we predicted. We also observed that longer

integration-times correspond to smaller fluctuations in choice behavior, which reflect a reduced

variance in estimate of the choice value. This reduction in the fluctuations is what explains the

improved overall performance, and indeed, the harvesting performance increases when the fluc-

tuations decrease.

2 Results

2.1 The dynamic foraging task

On each trial, the monkey is free to choose between two color targets by making saccadic move-

ments (see Figure 1a). Rewards are assigned to the two colors randomly, at rates that remain

constant for a certain number of trials (block size: typically 100-200 trials). Once the reward is

assigned to a target, the target is said to be baited, and the reward remains available until the

target is chosen. This means that the probability of being rewarded from a target increases with

the time since the target was last chosen. In a stationary environment under this reward schedule,

matching is known to be the probabilistic strategy that maximizes the average chance of obtaining

rewards. In that sense matching could be considered as “optimal” (see also [31]). However, in this

task the reward rates were periodically modified in a random and unpredictable way.

Nonetheless, the matching law describes fairly accurately the behavior of both monkeys, as al-

ready reported in [52]. Now we plotted the fraction of times the monkeys choose one target versus
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the fraction of times that target was rewarded in Figure 1b. All datapoints are around the diago-

nal (blue). However, there are clear deviations from the matching law, which become even more

evident by comparing a linear fit (red line) of the datapoints to the diagonal. This is a signature

of widely observed undermatching, as the choices of the animals tend to be closer to indifferent

(choice fraction close to 0.5) than what is predicted by the matching law.

There are now two important observations to be made: the first one is that deviation from the

matching law seems to vary over time (see for example deviations estimated over two time intervals

in Figure 1b that are clearly different). One way to express more quantitatively this deviation is to

compute the slope S of the best linear fit and compare it to the unitary slope of the diagonal. More

specifically, we will express the degree of undermatching as 1− S. We observed by analyzing the

data that this quantity varies significantly over time, ranging mostly from 0.1 to 0.4.

The second observation is that the slope changes are accompanied by changes in the overall

performance expressed as harvesting efficiency (the number of rewards that subjects actually ob-

tained divided by the maximum number of rewards that could have been collected). Paradoxically,

the harvesting efficiency increases as the behavior deviates more prominently from the matching

law (see Figure 1c). This observation seems to be incompatible with the statement that matching

behavior is optimal in this task. However, as we will explain in the next section using computational

models, it is actually what we should have expected in a non-stationary environment in which the

reward probabilities change over time.

Note that there is another well-observed deviation from the matching law [3], which we refer to as

color bias. This is a bias toward one of the colored targets, and we express it more quantitatively

as the value of the linear fit at 0.5 reward fraction (see the inner panel of Figure 1b and Method

section). It is important to distinguish the two biases: undermatching and color bias, as these are

independent measures. In what follows we will focus on undermatching.

2.2 The bias-variance tradeoff and the expected changes in matching behavior

Consider the dynamic foraging task that we analyzed. One way of modeling the decision process

is to integrate rewards for each choice over a certain number of trials. As we discussed in the

Introduction, in a non-stationary situation in which the reward probabilities change from time to

time, subjects should properly weight their past experiences, possibly in a way that depends on

the volatility of the environment, which in our case is related to how often the reward probabilities

change. More specifically, in our case the reward probabilities are constant in each block of 100-

200 trials. When the reward probabilities do not change or change rarely, subjects should consider

a large number of past experiences to improve the estimate of the reward probabilities. However,

if reward probabilities change often, then the subjects should consider only the recent experiences

that reflect the current choice values. One simple way of changing the relative weights of recent

and remote experiences is to consider multiple exponential integrators [11], each one integrating

the reward streams for a specific target on a different timescale.

The mechanism is described schematically in Figure 2a. Consider the case of two exponential

integrators characterized by two time constants τFast , τSlow . There are two integrators (slow and
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fast) per choice, and each integrator is represented in the figure by a box. The two top ones

integrate the reward stream for the green target, whereas the two bottom ones integrate the reward

stream for the other, red, target. The integrator outputs are basically estimates of the value of a

particular choice based on a certain number of recent experiences, which is determined by the

time constant τFast or τSlow . We define the local income [52] of each target to be a weighted

average of the output of the fast and slow integrators for that target.

The decision is then assumed to be the result of the comparison between the local incomes for

the two targets. Following [52], the choices are stochastic with a probability of choosing the green

target that is given by:

PG =
IG

IG + IR
, (1)

where IG/R is the local income for Green/Red target. While this is not the only way of modeling

decisions that depend on past experiences, it is simple to analyze and it reproduces the animals’

behavior with a reasonable approximation [52, 11]. Note, though, that in the previous analysis only

short timescales (τFast ) have been considered for this model.

The statistics of the decisions generated by the model clearly depend on the timescales τFast and

τSlow . Consider the case in which τFast is short (shorter than the typical block lengths if expressed

in number of trials), and τSlow is very long (longer than the typical block lengths), so that the second

integrator with τSlow integrates the reward streams over multiple blocks of trials. If the weight wFast

of the first exponential integrator is much larger than wSlow (Figure 2b-c), then the average choice

fraction rapidly tracks the recent average reward fraction. Fast learning is especially advantageous

when adapting to a rapid change in the reward contingency at the block transitions (Figure 2b).

However, the disadvantage is that the estimated reward fraction can fluctuate wildly, as it follows

local noise. This is evident in Figure 2b and it is shown for various reward fractions in Figure 2c,

where we plotted the choice fraction vs the reward fraction. In this plot the average (solid line),

is very close to the diagonal, indicating that the model has a behavior that follows the block-wise

matching law, but the fluctuations are very large (shaded area). The case dominated by τSlow ,

which is the other extreme situation, is illustrated in Figure 2d-e. In this case the integrators

estimate the value of each choice over multiple blocks and, as a consequence, the local incomes

are constant and equal. This is because the long-run incomes are approximately balanced on

average by our experimental design. As a result, the choice shows an extreme undermatching

with negligible fluctuations (Figure 2e).

Intermediate situations can be constructed by changing the relative weights of the two integrators.

As expected, this model has an intermediate behavior, shown in Figure 2f,g for a particular choice

of wFast , wSlow . Increasing the weight of the slow integrator wSlow would increase deviation from

the matching law, which is caused by a bias in the choice value estimates, but it would also

decrease the fluctuations. This indicates that the model trades the choice bias (undermatching)

for a reduction in the fluctuations, or the variance, of reward estimates by changing the relative

contributions of fast and slow integrators.

It is natural to ask whether there is an optimal value of the weight wSlow . To address this question,

we analyzed our model analytically in a more general situation in which the degree of volatility

(the block size) is a free parameter (see Supplementary Material section S1 for the calculations).

Figures 3a-c show that there is a wSlow that maximizes the accuracy of the choice value estimate
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(i.e. it minimizes the mean squared error) and its value does indeed depend on the volatility of the

environment (i.e. the number of trials per block). The squared error of the model’s choice value

estimate can be expressed as the sum of two terms: the squared bias and the variance. In Figure

3a we show the squared bias and the variance as a function of wSlow . The variance decreases

and the bias increases as wSlow increases. The mean squared errors of the estimate of the reward

probability vs wSlow is plotted in Figure 2b for two sizes of the blocks of trials in which the reward

fraction was constant. Not surprisingly, for more stable environments (dashed line), the optimal

weight of long timescales is larger. Consequently, the optimal slope of matching behavior changes

according to the volatility (Figure 3c) .

So far we have considered the error on the estimation of the reward probability as a performance

measure. In order to evaluate the actual behavioral consequences (e.g. the harvesting efficiency)

which will be compared to the experimental data, we simulated our model of Figure 2 for different

values of wSlow , using the same conditions as in the experiments on Monkey F. In Figure 3d we

show that undermatching (the bias) is indeed traded off against the amplitude of the fluctuations of

the choice probability estimates. A bias of 0 would indicate that the behavior follows the block-wise

matching law. As wSlow increases, undermatching (1− the slope of matching behavior) becomes

more prominent, causing the behavior to deviate from strict matching. However, also the fluctua-

tions decrease, as indicated by the red line. Thus as seen in Figure 3e, the overall performance,

measured as harvesting efficiency, has a maximum at an intermediate value of wSlow .

In sum, our computational model analysis suggests that the observed changes in matching be-

havior could be accounted for by changes in the relative contribution of a (extremely) slow reward

integrator to decision making. Moreover, these changes might reflect the bias-variance tradoff in

value estimation. In the ideal case, the weight of the fast and slow integrators, wFast and wSlow ,

should be tuned to the volatility of the environment.

2.3 Undermatching observed in the experiments reflects reward history integra-
tion over long timescales.

Our simple model analysis predicts that deviations from matching behavior observed in the ex-

periments should be related to changes in the relative contribution of the slow integrator. To

test this prediction, one could fit the multi-timescale learning model illustrated in Figure 2a to the

data, determine how the relative weights of the integrators change over time, and show that these

changes correlate with undermatching. We performed this analysis by using the model of Figure 2

with three time constants instead of two. We included two time constants that are shorter than the

typical block size, in addition to the one that is significantly longer than the block size. The inclu-

sion of two short time constants, instead of one, was motivated by previous studies on the same

experiments [11], which have shown that integrators with two (short) time constants (∼ 2 and 20

trials) can describe the animals’ transient behavior better than the integrator with one (short) time

constant. Following this finding [11], we set the two short time constants to 2 and 20 trials, and

the third one to 1000 trials, so that it spans multiple blocks of trials. Our additional model-agnostic

autocorrelation analysis, reported in Figure S2, also provides independent support for such a long

time constant (Figure S2b), as well as two short time constants (Figure S2a).
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We were surprised to observe unusually smooth changes of the relative weights (wFast−1 , wFast−2 ,

wSlow ) of the three integrators over sessions (Figure 4b), as we did not impose any smoothness

constraints to our fitting process (i.e. we fitted each session independently). This suggests that

the optimization of relative weights – a type of meta-learning – takes place very slowly, and con-

tinuously, over sessions.

Further, as we predicted, changes in the weight of the slow integrator are correlated with changes

in undermatching (Figure 4c). However, due to a potential confound, this correlation by itself does

not provide conclusive evidence for the hypothesis that undermatching reflects reward history

integration over long (but finite) timescales. Indeed, when the time constant of the slow integrator

is sufficiently long (compared to experimental block length), a higher wSlow primarily amplifies

the overall degree of undermatching over the entire experimental session, while only negligibly

affecting slow adaptive changes in the choice behavior during a session.

To understand why, consider the multi-timescale integrator model with two time constants, one fast

and one much slower, as in Figure 2, in a volatile environment. The fast integrator will generate es-

timates of the current values of the two alternatives, which we call IFast
G and IFast

R respectively. The

slow integrator will generate two additional estimates: ISlowG and ISlowR , which are almost constant

on the timescale of the fast integrator and they act as a bias. Furthermore, because the long-run

incomes of the two targets were balanced on average, for τSlow much larger than experimental

block length, the amount of rewards that animals would receive over this long timescale would

be almost the same for the two choices: ISlowG ≃ ISlowR = b, with b showing negligible changes

over the experimental session. Since the model’s decision policy is described by Equation 1, the

probability of choosing G will be:

PG =
IFast
G + ISlowG

IFast
G + IFast

R + ISlowG + ISlowR

=
IFast
G + b

IFast
G + IFast

R + 2b
.

Assuming that the relative weight of the slow integrator is much smaller than the one of the fast

integrator (IG + IR ≫ 2b, or wFast ≫ wSlow), PG can be expanded:

PG ≃
(

1− 2b

IFast
G + IFast

R

)

IFast
G

IFast
G + IFast

R

+
b

IFast
G + IFast

R

,

or equivalently

PG − 1

2
≃

(

1− 2b

IFast
G + IFast

R

)[

IFast
G

IFast
G + IFast

R

− 1

2

]

.

The factor in parenthesis represents a tilt of the curve representing the matching law. In other

words, the degree of undermatching is proportional to 2b
IFast

G
+IFast

R

, or indeed to b itself. As b is

proportional to the weight of the slow integrator wSlow, we expect a strong correlation between the

fitted weight wSlow and the average degree of undermatching observed in an experimental session.

On the other hand, because b is approximately constant, a higher wSlow does not necessarily

reflect slow adaptive temporal changes during the session. Indeed, even if undermatching had

nothing to do with slow reward integration (e.g. if it were due to noisy decision making), we can

expect that the fit of our model would nevertheless result in higher wSlow in sessions with stronger

undermatching.
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Therefore, to address our hypothesis, we need a more direct measure of slow integration times,

which does not rely on our model. For this reason, we decided to estimate the lagged correlation

between the reward color bias and the choice color bias over multiple experimental sessions. The

longest lag for which this correlation is significantly larger than zero provides us with a model-

independent (or model-agnostic) estimate of the longest measurable timescale over which the

reward bias is estimated. Indeed, a significant correlation would indicate that the choice of the

monkey is still affected by the reward bias estimated on a number of trials ago, where the number

of trials is determined by the longest lag. Furthermore, this measurement is independent from

undermatching, as color bias and undermatching are defined independently.

To assess the validity of this model-independent measure, the correlation is first estimated for the

simulated data that are generated by our multi-timescale learning model (the model presented in

Figure 2a). Formally, we first estimate reward color bias and choice color bias for each session of

simulated experiments. Then we take lagged correlations between these two bias vectors (Figure

5a). Naturally, such correlations decay as the session lag increases. Then we define the longest

time lag for which the correlation is significant, which we will call the longest measurable integration

timescale (LMIT, see Methods for a more formal definition). For this, we simply fit the correlations

linearly, and take the intercept of the linear fit and the 0 correlation. We then transform this session

lag measure to trials by multiplying it with the mean session size so that the LMIT is expressed in

trials.

The results for our model with different relative weights wSlow of the longest timescale (τSlow = 1000
trials) are plotted as a function of the time lag in Figure 5a. The LMIT is plotted in Figure 5b as a

function of the relative weight wSlow . The LMIT is rather sensitive to changes of wSlow and hence

it is likely that its modifications in time are observable in the behavioral data.

We find that the LMIT indeed covaries with deviation from the matching law. As shown in Figure

5cd for both monkeys, not only the LMIT changes over time (Figure 5c), but it is also correlated with

the degree of undermatching (Figure 5d). This confirms our model’s prediction that undermatching

(bias towards a 1:1 ratio of choices) reflects very slow reward integrations over hundreds of, or

thousands of, trials.

It is important to stress that our predictions did not rely on the details of our computational model

(illustrated in the previous section), such as the exact time constants for reward integrations. We

conducted a model-agnostic analysis, since we found that fits of our model to data can intrinsi-

cally lead to correlation between undermatching and the estimated weight of slow learning. An

additional advantage of this model-agnostic approach is that we can test our predictions without

determining the parameters of our model, and, even better, without assuming any computational

model.

2.4 Deviations from the matching law are accompanied by a change of the har-
vesting performance.

Our multi-timescale learning model (Figure 2a) also predicts that deviation from the matching

law should also be accompanied by changes in the harvesting efficiency, as a result of the bias-

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/141309doi: bioRxiv preprint 

https://doi.org/10.1101/141309


variance tradeoff (see Figure 3e). As the weight of the integrator with the longest timescale in-

creases, the harvesting efficiency should first increase and reach a maximum and then decrease.

Hence if wSlow , or its proxy – the LMIT, change over time, then it should be possible to observe

also changes in the harvesting efficiency. This is indeed the case, as shown in Figure 6a,b.

Our explanation for the change in the harvesting efficiency is related to the bias-variance tradeoff.

Longer integration-times can reduce the variance but increase the bias. This is what we observed

also in the data (see Figure 7a,b). As expected, the bias is negatively correlated with the vari-

ance (Figure 7e). Analogously, the harvesting efficiency (Figure 7c,d) is correlated both with the

variance (negatively) and the bias (positively) as shown in Figure 7f,g respectively. This is further

evidence in support of our model and it explains the seemingly paradoxical effect that monkeys

perform better when deviation from the matching law becomes more prominent.

It is important to notice that in our model the main reason to modify the relative weights of the

integrators is to adapt to the volatility of the environment. In the case of the macaque experiment,

there should be no reason for modifying the weights once the optimal value is found. This is

because the volatility, determined by the block size, was kept relatively constant. Nevertheless,

we found that the relative weights, and analogously the LMIT, changed over the entire course of

the experiment (spanned over many days). Explaining these dynamics is beyond the scope of

our current model, and it is probably due to factors that are not under control in the experiment.

Most likely the weights of the integrators change because of what happens not only during the

experiments but also in the intervals between two consecutive experimental sessions. A partial

evidence for this explanation is that the LMIT changes in a way that can be at least partially

related to the interval between recent experiments and the duration of consecutive experimental

sessions (see Figure 8). Specifically, we found that the LMIT decreased when the mean recent

intervals between experiments (mean recent break length) were long. On the contrary, the LMIT

increased when recent experimental sessions were longer and contained more trials (mean recent

experimental session length). This is also the case for the relative weight of slow learning of our

model that is fitted to data (Figure S5).

3 Discussion

Deviations from the matching law are sometimes interpreted as failures due to limitations of our

cognitive or perceptual systems, such as neural noise. We showed that they may actually reflect

a sophisticated strategy to deal with the variability and unpredictability of non-stationary envi-

ronments. The decisions of the monkeys seem to be based on reward integration on multiple

timescales, some of which are surprisingly long (multiple sessions). The idea of learning on multi-

ple timescales echoes with previous observations on the behavior of primates [11, 14] and pigeons

[2], as well as other computational model studies [54, 26, 21]. Our work also echoes with previous

studies on suboptimal perceptual decisions [56, 4, 1]. Moreover, in the recent years there has been

accumulating evidence that several neural systems – ranging from individual neurons studied in

vitro, to complex neural circuits studied in vivo – have the ability to integrate their inputs, including

those that represent rewards, on multiple timescales [48, 38, 27, 58, 33, 55, 10, 8, 24, 7, 42, 60].

Our results provide new insights into the computational advantage of biological processes that
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operate on multiple timescales.

Integrations over multiple timescales can be implemented in several ways. Although it is difficult

to determine the exact mechanism, we can make some general considerations about the proper-

ties that this mechanism should have. In our model the effective time scale over which rewards

are integrated is modulated by changing the relative weights of multiple integrators that operate

on diverse timescales. We show in the Supplementary Material that a model with a single vary-

ing timescale would be incompatible with the data (Figure S6). This indicates that there must be

processes operating on multiple timescales and that the final choice is the result of non-trivial inter-

actions between these processes. This is not too surprising as there are significant computational

advantages when synapses are endowed with metaplasticity [15, 21, 6], or when memory systems

are partitioned in interacting subsystems that are responsible for preserving memories on differ-

ent timescales (see e.g.[44]). Both of these cases show that multiple timescales are important

for memory consolidation, and memory is certainly a fundamental component when integration

over time is required. In fact, our simulation studies show that the previously proposed model of

synaptic metaplasticity [15, 21] can capture some of the key aspects of our data [23] (See Figure

S7).

We used our simple model to study the effects on decision making of changes in the relative

weights of different integrators that operate on multiple timescales. Here we did not model explicitly

the mechanism which controls and tunes these relative weights, which is a difficult and interesting

problem (see [21], Supplementary Material S2 and Figure S7 for a possible implementation by a

synaptic metaplasticity model). We also did not analyze transients induced by sudden changes in

the statistics of the choice values (which occurs at every block change), as we focused on the effect

of reward history on a timescale that is longer than the block size. We and other researchers have

previously looked specifically at the mechanism which may speed up the convergence to more

accurate estimates when a change in the environment is detected [39, 5, 35, 18, 34, 59, 21, 53,

40, 61]. These mechanisms are probably complementary to those that we studied, and in the

future we will try to combine all these mechanisms in a unified model.

We showed that the harvesting performance of the monkey increases when the relative weights of

the integrators are appropriately modified. This improvement could be significantly larger in other

situations. In a two-choice task the harvesting performance varies in a rather limited range when

the behavior goes from random (or when the monkey responds in any other way that completely

ignores the reward ratios) to optimal. This is a well-known limitation which makes it difficult to

establish how close the behavior is to optimal. In more complex, but perhaps more realistic, tasks

that involve multiple choices and timescales, the situation could be drastically different. Imagine

for example a task in which there are 100 different choices and only one of them is rewarded

with a probability that is significantly different from zero, using a schedule similar to the one of the

two-choice task that we analyzed. The rewarding targets may change time to time; but within a

restricted fraction of targets, say 10 targets, whose locations also change on a slower timescale.

In this case the long timescales contain important information about the possible rewarding targets

that should be considered. Ignoring this information would lead to a significant decrease in the

performance (see Fig. S8).

How and why animals show matching behavior has been of great interest in psychology, eco-

nomics and neuroscience [43, 32, 47, 31]. While the matching law was classically studied in
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stationary environments [19], matching has been shown to be a good description of behavior even

in non-stationary environments [52, 28] when one considers relatively short timescales. In fact,

if one fits a reward integrator model characterized by a single timescale to the data that we ana-

lyzed, the estimated timescale would be approximately the optimal one [52]. Additional analysis,

however, has suggested that at least two, relatively short, timescales (approximately 2 and 20

trials) are required to characterize the reward integrators. The mechanism that we studied op-

erates on much longer timescales and probably complements those that have been analyzed in

the past. The integration timescales that can be detected with the LMIT analysis are surprisingly

longer than what have normally been considered (including in [52, 11]), and they vary over time

on even longer timescales. Our analysis cannot determine whether the LMIT changes because

the relative weights of different integrators are modified [11, 15, 21, 6], or because the intrinsic

time constants of the integrators change. This is because the timescale that we consider is ex-

tremely long. It is very possible that both types of models of the LMIT can accurately describe

the data and capture the correlations between the LMIT and undermatching. Moreover, it is dif-

ficult to study the interaction between the mechanisms that we studied and those that determine

the optimal short integration timescales. It is possible that the long timescales make the effective

timescales of the fast integrators longer, but it is also possible that the mechanisms implementing

the two types of integrators are completely independent and that they both contribute to the final

harvesting efficiency.

The idea of bias variance tradeoff that we discussed in this paper has been extensively studied

in machine learning [13]. When fitting a model to data, the ideal model should both accurately

capture the observed data, and also generalize to unseen data. One way of improving this problem

is to introduce a prior belief about the data into the model, so that the model’s estimate does not

entirely rely on the current observation. This idea echoes with our present findings in monkeys, as

learning over a long timescale can naturally be interpreted as building a prior (see Supplementary

Material S1 for more mathematical discussions).

Our results also provide a new insight into well-documented, suboptimal, exploratory choice be-

haviors in animals, in relation to what is often refereed to as the exploitation-exploration tradeoff

[9, 12]. It has been reported that animals often fail to exploit the optimal choice but instead show

matching-like, more random, behavior in simple armed bandit tasks (e.g. [41]). Computationally,

this has been often accounted for by adding noise to the value computations or decisions. Our

current study, however, suggests that such apparent sub-optimal exploration behaviors can be

driven by a very slow learning, or reward memory on a very long timescale. Thus our model pre-

dicts that such exploratory behavior can be manipulated by changing the reward statistics on a

long timescale, and possibly by directly stimulating the neural circuits that are responsible for the

reward learning on a long timescale [25, 24, 10].
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Figure 1: (a). Behavioral protocol: the animal had to fixate the central cross, and after a short delay

(Delay), it could make a saccadic eye movement toward one of the color targets (Go). If the chosen target

was baited, a drop of water was delivered (Return). A delivery of reward resets the target to be empty, until

it is baited again, which was stochastically determined with different baiting rates for different targets. The

overall maximum baiting rate was set at about 0.35 rewards per trial. The relative baiting rates changed at

the end of blocks (about every 100 trials) with no signal. The Ratio of baiting rates in each block was chosen

unpredictably from the set (8:1, 6:1, 3:1, 1:1). In this setup if the ratio is fixed, the matching law is known

to approximate the optimal stochastic choice behavior. (b). Deviation from the matching law: the fraction

of choices allocated to one target is plotted as a function of the fraction of rewards that were obtained from

the same target for different experimental days (top left Monkey F day 1-4, bottom left: day 21-24, top right

Monkey G day 1-3, bottom right: day 21-24). Each data point represents an estimate in a given block of

trials, the solid line is a linear fit to the data. The matching law corresponds to a line with a slope equal to

1 (dashed line), while the observed behavior, with a slope < 1, is called undermatching. Undermatching

indicates that animals had a tendency to explore choices more (or, put simply, appear to be more random)

than what the matching law would predict. For both monkeys the behavior deviates from the matching law,

and the degree of undermatching (measured by the slope) changes over time. Note that undermatching is

different from color bias, which is indicated by the filled circle in the inner panel (bottom right). The color

bias is defined by the intercept of the fitted matching slope and the reward fraction of 0.5. (c). Paradoxically,

the harvesting efficiency, which indicates how well the monkeys collected rewards, positively correlates

with the degree of undermatching: the larger choice behavior deviates from the matching law, the higher

the harvesting efficiency. The harvesting efficiency is defined as the number of rewards that monkeys

actually obtained divided by the maximum number of rewards that could have been collected. Hence it

varies between 0 and 1. The monkeys almost always undermatched, the degree of which shows a wide

distribution over sessions.
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Figure 2: Explaining how deviation from the matching law can improve performance. (a) Scheme of a

simple decision-making model that is known from previous works to reproduce the behavior observed in the

experiment. The model integrates reward history over two timescales (τFast , τSlow ) to estimate the expected

income for each choice (red or green). These incomes are then combined together to generate stochastic

decisions, where PG (PR = 1− PG) is the probability of choosing the green (red) target. While the previous

models focused on the integration timescales that are shorter than the block size [52, 11], here we assume

that the long timescale τSlow is much longer than the block size, while the short timescale τFast is still shorter

than the block size. The model weights differently the incomes estimated over the two timescales. More

specifically wFast is the relative weight of the fast integrator (τFast ) and wSlow the weight of the slow one

(wFast + wSlow = 1). (b,c) Fast integration (wFast ≫ wSlow ). If the weight of the fast integrator is much

larger than the slow one, the model relies only on the recent reward history estimated over an interval that

is approximately τFast to make a decision on the choice. As a consequence, the estimated incomes largely

and rapidly fluctuate. This noisy estimation leads to large fluctuations in the choice probability PG (red).

Despite the fluctuations, the mean of such choice probability follows the matching law (indicated by the

solid red line in (c)). However, the fluctuations of PG are rather large, as indicated by the broad shaded

area, which denotes the standard deviation of PG. (d,e) Slow integration (wFast ≪ wSlow ). If the weight

of the slow integrator is much larger than the fast one, the model now integrates rewards only on the long

timescale τSlow . This eliminates entirely the fluctuations in the choice probability; however, the probability of

choosing any of the two target is constant at 0.5, because the estimated incomes are balanced on average

when multiple blocks of trials are considered. As such, the choice probability becomes independent from

the recent reward history, causing a strong (exploratory) deviation from the matching law (e). Note the the

actual choice probability is determined by the overall reward-color bias in the task (0.5, if no bias). (f,g)

Mixed integration: (wFast ≃ wSlow ). If the two integrators are almost equally weighted, both deviation from

the matching law (undermatching) and the amplitude of the fluctuations are intermediate. This matches with

observed data, and manifests a computational tradeoff between bias (long integrator; undermatching) and

variance (short integrator; fluctuations). Parameters were set to be τFast = 5 trials, τSlow = 10, 000 trials,

wSlow = 0.3 for (f,g). Note that our results do not rely on the specific choice of τFast and τSlow .
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Figure 3: The bias-variance trade-off and the optimal choice behavior under uncertainty. (a,b,c) Analytical

model results for two different volatility conditions. All the solid (dashed) lines refer to the results for a less

(more) volatile task with a block size of 100 (10,000 trials). (a) Squared bias (blue) and variance (orange) in

the reward rate estimates show a tradeoff as a function of the relative weight of the slow integrator (wSlow ).

(b). The squared error, which is simply the sum of the squared bias (blue in (a)) and the variance (orange

in (a)), is plotted against wSlow for different volatility conditions. Intuitively more volatile environments (solid

curve) require faster integrators, and hence a smaller relative weight of the slow integrator. Indeed, the

optimal relative weight wSlow for the volatile environment (solid vertical line) is smaller than that for the

stable environment (dotted vertical line) (c) The deviation from the matching law (here simply shown as

the slope of block-wise choice fraction vs reward fraction) also covaries with the relative weight of the

slow integrator, and also with the volatility condition. (d,e). Model simulation results on the same reward

schedule as in the matching experiment. (d) Our model simulation also predicts the clear tradeoff between

the bias (undermatching) and the fluctuations of choice probability, as a function of the relative weight of

slower learning wSlow . (e) Simulation results of harvesting efficiency as a function of the relative weight of

the slow integrator wSlow . As a result of the bias-variance trade-off, the curve takes an inverted U-shape,

with a maximum at the optimal relative weight, which is determined by the volatility of the experiment. For

panel (d), we computed the fluctuation of Monkey’s choice as follows. First, monkey’s choice time series

was smoothed via two half-gaussian kernels with standard deviations of σ = 8 trials and σ = 50 trials, with

a span of 200 trials. This gave us two time series: a fast one with σ = 8 and a slow one with σ = 50, which

we used to compute the bias and variance. We defined the fluctuation as the standard deviation of the fast

one over the slow one. The bias was defined by 1− the slope of block-wise matching behavior. For panels

(d,e) the model with different wSlow was simulated on Monkey F’s reward schedule. We set τFast = 2,

τSlow = 1000 trials. Note that our results do not rely on the specific choice of τFast and τSlow (please also

see Figure S1).
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Figure 4: Fitting the multi-timescale model of Figure 2 to the data. (a). A model with three timescales

(τFast−1 = 2 trials, τFast−2 =20 trials, and τSlow = 1000 trials) is fitted to the data by tuning the weights

wFast−1 (black), wFast−2 (brown), and wSlow (red) of the different integrators for each session independently

(wFast−1 + wFast−2 + wSlow = 1). (b) The weights of different timescales change over consecutive experi-

mental sessions. The short timescales are dominant in early sessions, but the longer timescale becomes

progressively more influential. The opposite trend is observed around session 160 of monkey F, probably

due to the shortening of experimental sessions and longer inter-experimental-intervals (see Figure S5 for

more details). (c) Deviation from the matching law is correlated with the weight of the reward integration

on a long timescale. Undermatching, computed over the last 50 trials of each block to ignore transients,

is plotted against the fitted value of wSlow , the weight of the longest reward integration timescale. Both

monkeys show significant correlations between undermatching (1−slope) and wSlow . We found, however,

this model-based analysis inconclusive, as the correlation is expected from the model structure (please see

the text).
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Figure 5: Estimating the longest measurable integration timescale (LMIT) in the model and in the experi-

mental data, and showing how it correlates with undermatching. (a). Estimating LMIT in the multi-timescale

learning model. Lagged correlation between choice color bias and reward color bias are plotted for different

relative weights of the slow integrator wSlow . Note that these color biases are different from undermatch-

ing. The correlation decays as the time-lag between the choice bias and the reward bias increases. The

correlation is fitted by a weighted linear regression (dotted lines), and the LMIT is defined by the point at

which the fitted line crosses the zero correlation (red filled circles). The correlations are the mean of over

50 simulations and the error bars indicate the standard deviations. The model was simulated over the same

reward schedule as Monkey F. The timescales are assumed to be τFast = 5 trials and τSlow = 1000 trials,

though the specific choice of timescales is not essential for the results. (b). The estimated LMIT shows

a clear positive correlation with the relative weight of the long timescale wSlow . The LMIT is expressed in

trials, by converting from sessions using the mean session size. This strong monotonic relationship be-

tween wSlow and the LMIT suggests that we can use the LMIT estimate as a proxy for the wSlow estimate,

when analyzing experimental data (see Fig.4 for a direct wSlow estimation). (c). Experimental data: both

LMIT (red) and deviation from the matching law (black) vary over time for both monkeys. In the small insets

we show four samples of the lagged correlation between choice and reward color bias (the same plot as

the one in panel (a), but now for the real data). The degree of undermatching seems to be correlated with

the LMIT, as predicted by the theory. This impression is confirmed by the analysis in panel (d), where we

plotted the degree of undermatching as a function of the LMIT. The correlations between the two quantities

are highly significant for both monkeys (conservative piece-wise permutation test: p < 10−3 for monkey F

and p < 10−5 for monkey G). See the main text for the details of the permutation test. See also Figure S3.
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Figure 6: LMIT is also correlated with harvesting efficiency in data, as predicted by our model. (a) Changes
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harvesting efficiency show a significant positive correlation for both monkeys, as predicted by our model
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Figure 7: Monkeys show the predicted tradeoff . (a,b,c,d) Changes in bias (undermatching), fluctuation

and harvesting efficiency over experimental days. (e,f,g) Monkeys show the bias-variance tradeoff. (e)

The bias (1− the slope of matching behavior) and the fluctuation (the square root of variance of monkeys

choice probability) are significantly correlated negatively [permutation test: p < 10−8 for Monkey F and

p < 10−8 for Monkey G]. This means that the monkeys trade off the bias (undermatching) against the

variance of estimation, as predicted by our model. (f) By reducing fluctuations of estimation, monkeys

improved their harvesting performance. The harvesting efficiency is significantly negatively correlated with

choice fluctuation [permutation test: p < 10−8 for Monkey F and p < 10−5 for Monkey G]. (g) Although

increasing bias itself should be harmful, the benefit of accompanied reductions in the choice fluctuations

lead to a mild increase in the harvesting efficiency [permutation test: p < 0.07 for Monkey F and p < 0.01
for Monkey G].

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/141309doi: bioRxiv preprint 

https://doi.org/10.1101/141309


0 1000 2000 3000 4000
0

1000

2000

3000

r=0.29, p<0.025

0 2 4 6
0

1000

2000

3000

4000
r=-0.59, p < 10-6

Mean recent experimental day 

length (Trial)

0 1000 2000 3000
0

1000

2000

3000

4000

5000
r=0.41 ,p<0.004

Mean recent break length (Day)

0 20 40 60
0

1000

2000

3000

4000

5000
r=-0.47, p<10-5

L
M

IT
 (

T
ri
a
l)

a b

c d

Monkey F Monkey F

Monkey G Monkey G

Figure 8: Data shows that the LMIT is affected by the intensity of recent consecutive experimental sessions.

(a,c) LMIT increases as the monkeys completed more trials in recent days. The LMIT and the mean recent

experimental day length (how many trials monkeys completed in one experimental day) show a significant

positive correlation [permutation test: p < 0.025 for Monkey F and p < 0.004 for Monkey G]. (b,d) LMIT

decreases as monkeys recently have had longer holidays (characterized by the mean recent break length,

which is defined by the mean inter-experimental-interval). The LMIT and the mean recent break length

show a significant negative correlation [permutation test: p < 10−6 for Monkey F and p < 10−5 for Monkey

G]. The LMIT is computed in the same way as the previous figures with sliding windows, and both the mean

recent experimental day length and the mean recent break length are the average of past 12 experimental

days of each data point. Please see Figure S4 for the time course of changes in these variables, and also

Figure S5 for the correlations with wSlow , instead of LMIT.

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/141309doi: bioRxiv preprint 

https://doi.org/10.1101/141309


Methods

Subjects and the task

As the full details of the experimental protocols are reported in [52, 11], here we only provide a

brief description. We used two adult male rhesus monkeys (Macaca mulatta) weighing 7 and 12

kg. To initiate a series of trials, the animals had to fixate a black central fixation cross for a period

of 300 ms. This was followed by a presentation screen, consisting of the black central fixation

cross and two choice targets at a pair of mirror symmetric locations in opposite hemifields – a

green circle and a red circle. The animals had to fixate a central point during this period (1-2

s). The location of the red target and the green target was counter balanced across trials. At

the end of this delay period, the fixation cross became white (Go cue), signaling that the animal

should indicate its choice with an eye movement to one of the two choice targets within a 1 s grace

period. The animal was required to maintain its gaze on the chosen target for a further variable

hold period of 300-600 ms. If the chosen target was ‘baited’ at the time of the animal’s choice,

a fixed magnitude fruit juice reward was delivered during this hold period. At the end of the hold

period the presentation screen reappeared, cueing the animal to return its gaze to the fixation

cross within a grace period of 1 s in order to trigger the onset of the next trial. Trials continued as

long as the animal maintained its gaze within a 2-degree spatial window centered on the location

of the fixation cross or chosen target. A failure of maintaining a gaze lead to a 2-4 sec of a timeout

period, before the animal was once again given the opportunity to fixate the central cross.

The sum of the reward-baiting probabilities on the two colored targets was set constant at ap-

proximately 0.35 rewards per trial. An empty target was baited with the given baiting probability.

When a target was baited, a reward was delivered if the animal chose the target. This made the

target empty, with no reward available for the target, until the target became baited. The relative

reward-baiting probabilities on the two colors were set constant for a block of trials and changed

without a signal between blocks of trials. The typical block size was about 100 trials. On each

block the relative baiting probabilities on the two colors was chosen unpredictably from a subset of

the ratios (though not all experiments used all ratios). Each session consisted of multiple blocks

of trials, and animals performed typically several sessions per an experimental day. Experimental

days were separated in a non-systematic way.

Throughout the experiments, a “changeover delay” (COD) was imposed. This is a common ma-

nipulation necessary to ensure matching behavior by discouraging simple alternating strategies

[52]. We implemented a COD by delaying delivery of programmed rewards following switches

between colors until the second consecutive choice of the new color. Monkeys learned the COD:

they chose the new color twice in a raw with a probability of over 95%. As second choices after

switches were imposed by the COD, we excluded those choice from our analysis. We called the

remaining choice as ‘free choice’. In practice, this was achieved by treating the first two choices

that mark a switch between colors as a single choice.
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Defining and measuring undermatching

There are two different choice biases that we used in our analysis: the undermatching and the

color bias.

Undermatching, or deviation from matching behavior, was defined by 1 minus the slope of block-

wise matching behavior. The slope of block-wise matching behavior was estimated by regressing

a block-by-block fraction of choice allocated to the green target to the fraction of rewards collected

from the target in a corresponding block.

While the undermatching was defined as a bias in slope, the color bias was defined by the intercept

of matching behavior. Specifically, we defined the choice bias in color as the value of the fitted

line at a reward fraction of 0.5. We used this bias when estimating a long timescale of reward

integration (see below). For simplicity, we call ‘1-slope’ as bias or under-matching, while intercept

as intercept or color bias.

Description of the model and its simulations

We extended a previously introduced model [52] in which the income for each target (IG and IR,

for the green and red target respectively) was integrated on a single timescale. In our model we

consider multiple timescales as follows. The probability of choosing the red target is:

PR =
IR

IR + IG
(2)

In [52], the local incomes are assumed to be computed on a single timescale. Here we assume

that the incomes are computed on multiple timescales in parallel:

ItR,i =

(

1− 1

τi

)

It−1
R,i +

1

τi
rt−1, (3)

where ItR,i is the local income from target R on trial t (t = 1, 2, 3, ...) computed over the timescale

of τi, and rt−1 is 1 (0) when the target was rewarded (no-rewarded) at t− 1. The local income is a

weighted sum of different timescales:

ItR =

m
∑

i=1

wiI
t
R,i, (4)

where the weights wi’s are normalized so that w1 + w2 + .. = 1. In the model simulated in Figure

2, the parameters were m = 2, τ1 = τFast = 5 trials, τ2 = τSlow = 10, 000 trials.

We computed the fluctuation of Monkey’s choice in Figure 3d as follows. First, monkey’s choice

time series was smoothed via two half-gaussian kernels with standard deviations of σ = 8 trials

and σ = 50 trials, with a span of 200 trials. This gave us two time-series, a fast one with σ = 8
and a slow one withσ = 50, which we used to compute the bias and variance. We defined the

fluctuation as the standard deviation of the fast one over the slow one. The bias was defined by

1− the slope of block-wise matching behaviors. In Figure 3de, the model with different wSlow was

simulated in Monkey F’s reward schedule. τFast = 2, τSlow = 1000 trials.
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The longest measurable integration timescale (LMIT)

The aim is to determine whether past biases in rewards could affect the present choice of the

animal. We computed the lagged cross correlation between reward bias and choice bias. The

reward bias over N trials is defined as RG−RR

N , where RG (RR) is the total number of rewards

that were collected from Green (Red) and N is the total number of trials. The choice bias is the

intercept y with x = 0.5 of the linear fit of matching behavior. Then we took a sliding reference

window of 25 sessions. For each sliding window, we computed the correlation between choice bias

computed over 25 sessions and the reward bias computed over a 25 sessions lagged in time (lag

= 0,−1,−2,−3,−4,−5 sessions). These correlations were fitted by weighted least squares S =
∑

wir
2
i with weights wi = γi, where i = 0, 1, 2.. was the lag, as the correlations were more reliable

for smaller lags. We used γ = 0.5 but we found that our results were robust against changes

in γ. We defined the point in which the fitted line crosses the time lag axis (or 0 correlation) as

the raw maximum correlation lag. Then the LMIT was then expressed as this lag multiplied by

the mean session length (in trials) of 25 sessions in the reference window. The significance of

the correlation between under-matching and the LMIT was determined by a conservative piece-

wise permutation test which supposedly destroys the original correlations. More specifically, we

considered blocks of 5 consecutive sessions and shuffled the order of blocks without perturbing

the order of sessions within each block. This allowed us to create shuffled data with the original

long timescale correlations. This was because observed LMITs were normally within 5 sessions.

Figure 5c is smoothed by computing a moving average of 10 windows but figure 5d is raw data.

First 25 sessions were excluded in order to discard potential effects due to training.

————————————————————
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Supplementary Information

S1 Probability estimation of binary sequence over blocks of trials

Here we illustrate our analytical results of the probability estimation by a model that learns inputs

over multiple timescales. For this, consider the following statistical estimation task. An observer (a

monkey statistician) observes the time series, st, of the (conditionally) independent drops of a coin

(heads s = 1, tails s = 0), where the head probability, p, is constant over each block of T coin drops

(trials), while the probability changes on the first trial of each block to a new p, by independently

sampled from a distribution, π(·), on the interval [0, 1] (For now, our default choice will be the

uniform distirbution on [0, 1]). The observer’s goal is to estimate the current head probability, p,

by collecting/integrating the observations over trials, over a flexible combination of two, fixed, time

scales. More precisely the current estimate, vt, of p, at time t, is given by

vt = (1− wSlow)v1,t + wSlowv2,t (5)

where 0 ≤ wSlow ≤ 1, and v1,t and v2,t are leaky integrations of the recent history of st over the

time scales τ1 (fast) and τ2 (slow), respectively, i.e.

vi,t = (1− qi)vi,t−1 + qist (6)

where the learning rates, qi, are defined by the inverse of time constants 1/τi. Solving (in steady

state, i.e. after many blocks) we have

vi,t = qi

∞
∑

n=0

(1− qi)
nst−n. (7)

We assume that the time-scales, q1 and q2, are fixed, perhaps reflecting a form of hardware con-

straints, but we consider wSlow to be flexible. We want to find the optimal wSlow leading to the

minimum possible average square error for the estimator vt, i.e. the wSlow that minimizes the

long-time average of (vt − p)2, given the knowledge of block size T and the internal time-scales,

τi.

We will adopt the following index notation. We use t as the trial index, n as the trial lag (into the

past), and k as the block index. We denote the current block by k = 0, with k = 1, 2, . . . indicating

past blocks (so k > 0 indicates the block-lag into the past). Thus p0 is the head probability of the

current block, p1 that of the previous block, and so on. We choose the time origin such that the

first trial of the current block (k = 0) has t = 1, with trials in past blocks having zero or negative t’s.

We also adopt the following averaging notations. We denote the average of a quantity, conditional

on knowing the full sequence of block-probabilities p0:∞ , by 〈·〉, i.e.

〈Xt〉 ≡ E[Xt|p0:∞ ]. (8)

We indicate averaging over p0:∞ by [·]π, i.e.

[X]π ≡
∫

Xt(p0:∞)

∞
∏

k=0

dπ(pk). (9)
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Finally we indicate averaging over the duration of a block by a bar:

X ≡ 1

T

T
∑

t=1

Xt (10)

Thus we set out to calculate the long-run average square error, which in the above notation is

given by

[〈(vt − p0)2〉]π (11)

and then find the optimal wSlow that minimizes this cost.

We start by evaluating
〈

(vt − p0)
2
〉

which can be decomposed in the standard way, into the vari-

ance of the estimator and its squared bias, i.e.

〈

(vt − p0)
2
〉

=
〈

(vt − 〈vt〉)2
〉

+ (〈vt〉 − p0)
2 (12)

=
〈

δv2t
〉

+ (〈vt〉 − p0)
2. (13)

In model-fitting and parameter estimation, variance generally quantifies the degree to which an

estimator is sensitive to noise in the data (the noise in {st}, in our case), in other words it quantifies

how much it can fit noise, i.e. over-fit, while the bias normally quantifies how rigid or inflexible a

model is (its inability to conform to and capture certain aspects of the data, hence creating biases).

Generally speaking, the more complex a model, the more flexible it is, and the lower is its bias and

higher its variance (it is prone to over-fitting). One way of reducing the variance and estimator-

flexibility is to introduce a prior (which could represent past experience), making the estimator

not rely entirely on currently observed data but also on prior knowledge (or past experience). In

our case, the integrator with the slow time-scale, v2,t serves this purpose; it represents the prior

knowledge acquired over long time scales (previous blocks), and is less altered by observations in

the current block (it has a smaller learning rate). But by that virtue it is less flexible and retains its

bias longer and is slow in adapting to the present value of p in the current block.

To summarize

• bias = prejudice = rigidity = low model complexity = slow time scale,

• variance = open-mindedness = flexibility = high model complexity = fast time scale.

A good model/observer must balance the two.

S1.1 Variance

We will first look at the long-run average variance
[〈

δv2t
〉]

π
. From Eq. (5), the conditional variance

is given by

〈

δv2t
〉

= (1− wSlow)
2
〈

δv21,t
〉

+ w2
Slow

〈

δv22,t
〉

+ 2wSlow(1− wSlow) 〈δv1,tδv2,t〉 (14)
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where δvi,t ≡ vi,t−〈vi,t〉. From Eq. (7), vi,t is a linear combination of independent random variables,

st (the latter are independent only when conditioning/fixing p0:∞), thus its variance is the sum of

the variances of the terms in this sum. The variance of st−n in block k is given by

〈

δs2t−n

〉

= pk(1− pk), k = −
⌊

t− n− 1

T

⌋

≡ k(t− n). (15)

Thus
〈

δv2i,t
〉

= q2i

∞
∑

n=0

(1− qi)
2n p

k(t−n)
(1− p

k(t−n)
). (16)

Similarly

〈δv1,tδv2,t〉 = q1q2

∞
∑

n=0

(1−Q)n p
k(t−n)

(1− p
k(t−n)

), (17)

where we defined

1−Q ≡ (1− q1)(1− q2). (18)

Since [p
k
(1− p

k
)]π is the same in all blocks, hence independent of k(t−n), we can readily calculate

the variance averaged over p0:∞, by summing the infinite geometric series, obtaining

[〈

δv2i,t
〉]

π
=

1

2τi − 1
[p(1− p)]π , (19)

[〈δv1,tδv2,t〉]π =
1

τ1 + τ2 − 1
[p(1− p)]π . (20)

where we used q2i
∑∞

n=0(1− qi)
2n =

q2
i

1−(1−qi)2
= qi

2−qi
= 1

2τi−1 and q1q2
∑∞

n=0(1−Q)n = q1q2
1−(1−Q) =

q1q2
q1+q2−q1q2

= 1
τ1+τ2−1 . In particular,

[〈

δv2t
〉]

π
is time independent:

[〈

δv2t
〉]

π
=

[〈

δv2t
〉]

π
= [p(1− p)]π

[

(1− wSlow)
2

2τ1 − 1
+

w2
Slow

2τ2 − 1
+

2wSlow(1− wSlow)

τ1 + τ2 − 1

]

. (21)

S1.1.1 Variance conditional on p0: transient behavior

For completeness, we will also calculate the variance conditional on p0 as well, obtaining its full

transient behavior throughout the block. That is, here we will only average over p1:∞, but not over

t and p0. Going back to Eq. (16), we rewrite it by decomposing the sum into sums over blocks:

〈

δv2i,t
〉

= q2i







t−1
∑

n=0

(1− qi)
2np0(1− p0) +

∞
∑

k=1

pk(1− pk)
t+kT−1
∑

n=t+(k−1)T

(1− qi)
2n







(22)

It helps to rewrite this in the form

〈

δv2i,t
〉

= q2i







∞
∑

n=0

(1− qi)
2np0(1− p0) +

∞
∑

k=1

[pk(1− pk)− p0(1− p0)]
t+kT−1
∑

n=t+(k−1)T

(1− qi)
2n







(23)
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where the first term pretends that the probability was p0 in the entire past, and the second term

corrects for this by adding the difference of the variances accumulated over previous blocks con-

tributed by the true probability, pk, and the current one, p0, respectively. By the geometric series

formula the sum over block k is given by

t+kT−1
∑

n=t+(k−1)T

(1− qi)
2n = (1− qi)

2t+2(k−1)T
T−1
∑

n=0

(1− qi)
2n (24)

= (1− qi)
2t+2(k−1)T 1− (1− qi)

2T

1− (1− qi)2
(25)

= (1− qi)
2t 1− (1− qi)

2T

1− (1− qi)2
(1− qi)

2T (k−1). (26)

Using
q2
i

1−(1−qi)2
= qi

2−qi
= 1

2τi−1 , we then have

〈

δv2i,t
〉

=
1

2τi − 1

{

p0(1− p0) + (1− qi)
2t
(

1− (1− qi)
2T
)

∞
∑

k=0

(1− qi)
2Tk [pk+1(1− pk+1)− p0(1− p0)]

}

=
1

2τi − 1

{

p0(1− p0) + (1− qi)
2t

∑∞
k=0(1− qi)

2Tk [pk+1(1− pk+1)− p0(1− p0)]
∑∞

k=0(1− qi)2Tk

}

(27)

Similarly for 〈δv1,tδv2,t〉 we have

〈δv1,tδv2,t〉 = q1q2







∞
∑

n=0

(1−Q)np0(1− p0) +
∞
∑

k=1

[pk(1− pk)− p0(1− p0)]
t+kT−1
∑

n=t+(k−1)T

(1−Q)n







(28)

=
1

τ1 + τ2 − 1

{

p0(1− p0) + (1−Q)t
(

1− (1−Q)T
)

∞
∑

k=0

(1−Q)Tk [pk+1(1− pk+1)− p0(1− p0)]

}

=
1

τ1 + τ2 − 1

{

p0(1− p0) + (1−Q)t
∑∞

k=0(1−Q)Tk [pk+1(1− pk+1)− p0(1− p0)]
∑∞

k=0(1−Q)Tk

}

where we used q1q2
1−(1−Q) = q1q2

q1+q2−q1q2
= 1

τ1+τ2−1 . Averaging over p1:∞ and summing the infinite

geometric series over blocks, combining contributions as in Eq. (14), and using Eq. (21), we then

obtain

[〈

δv2t
〉

|p0
]

π
=

p0(1− p0)

[p(1− p)]π

[〈

δv2t
〉]

π
(29)

+([p(1− p)]π − p0(1− p0))× (30)
[

(1− q1)
2t (1− wSlow)

2

2τ1 − 1
+ (1− q2)

2t w2
Slow

2τ2 − 1
+ (1− q1)

t(1− q2)
t 2wSlow(1− wSlow)

τ1 + τ2 − 1

]

Here, the first line gives the steady state value of the variance in the current block if it was infinitely

long, and the second and the third line gives the transient memory of variance from previous

trials, which wears off for t ≫ τ2. It starts from a value equal to the average variance
[〈

δv2t
〉]

π
=

[p(1− p)]π

[

(1−wSlow)2

2τ1−1 +
w2

Slow

2τ2−1 + 2wSlow(1−wSlow)
τ1+τ2−1

]

at t = 0 and eventually (given an infinitely long

current block) relaxes to its steady-state value based on the current p0 as opposed to the average,

i.e. to p0(1− p0)
[

(1−wSlow)2

2τ1−1 +
w2

Slow

2τ2−1 + 2wSlow(1−wSlow)
τ1+τ2−1

]

.
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S1.2 Squared bias

First let us calculate 〈vi,t〉. Using the notation of Eq. (15), from Eq. (7) we have

〈vi,t〉 = qi

∞
∑

n=0

(1− qi)
n p

k(t−n)
(31)

Again we can decompose this over blocks:

〈vi,t〉 = qi







t−1
∑

n=0

(1− qi)
np0 +

∞
∑

k=1

pk

t+kT−1
∑

n=t+(k−1)T

(1− qi)
n







(32)

and again it helps to rewrite this as

〈vi,t〉 = qi







∞
∑

n=0

(1− qi)
np0 +

∞
∑

k=1

(pk − p0)

t+kT−1
∑

n=t+(k−1)T

(1− qi)
n







. (33)

Noting that qi
∑∞

n=0(1− qi)
n = 1, for the bias component, bi,t ≡ 〈vi,t〉 − p0, we obtain

bi,t ≡ 〈vi,t〉 − p0 = qi

∞
∑

k=1

(pk − p0)
t+kT−1
∑

n=t+(k−1)T

(1− qi)
n (34)

= qi(1− qi)
t

∞
∑

k=0

(pk+1 − p0)(1− qi)
Tk

T−1
∑

n=0

(1− qi)
n (35)

= (1− qi)
t
[

1− (1− qi)
T
]

∞
∑

k=0

(pk+1 − p0)(1− qi)
Tk (36)

= (1− qi)
t

∑∞
k=0(1− qi)

Tk(pk+1 − p0)
∑∞

k=0(1− qi)Tk
(37)

= −(1− qi)
tδp0 + (1− qi)

t

∑∞
k=0(1− qi)

Tkδpk+1
∑∞

k=0(1− qi)Tk
(38)

= −(1− qi)
tδp0 + (1− qi)

t
[

1− (1− qi)
T
]

∞
∑

k=0

(1− qi)
Tkδpk+1 (39)

where we defined

δpk ≡ pk − [p]π . (40)

Note that we can write the bias, Eq. (39), in the form

bt ≡ 〈vt〉 − p0 =
∞
∑

k=0

Ak(t) δpk (41)

where we defined

A0(t) ≡ −
[

(1− wSlow)(1− q1)
t + wSlow(1− q2)

t
]

(42)

Ak(t) ≡ (1− wSlow)B1,k(t) + wSlowB2,k(t) (k > 0). (43)
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and

Bi,k(t) ≡ (1− qi)
t
[

1− (1− qi)
T
]

(1− qi)
T (k−1) (k > 0, i = 1, 2). (44)

The bias squared is then given by

b2t =
∞
∑

k=0

∞
∑

j=0

Ak(t)Aj(t) δpkδpj =
∞
∑

k=0

A2
k(t) δp

2
k +

∑

k 6=j

Ak(t)Aj(t) δpkδpj . (45)

Since δpk are zero-mean independent variables, averaging over them kills the second, off-diagonal

term (this is true even if we don’t average over p0) in the above expression. The bias squared

averaged over pk in the previous blocks (but not on p0) is thus given by

[

b2t |p0
]

π
= δp20A

2
0(t) +

[

δp2
]

π

∞
∑

k=1

A2
k(t) (46)

= (p0 − [p]π)
2
[

(1− wSlow)(1− q1)
t + wSlow(1− q2)

t
]2

(47)

+
[

δp2
]

π

∞
∑

k=1

[

(1− wSlow)
2B2

1,k(t) + w2
SlowB

2
2,k(t) + 2wSlow(1− wSlow)B1,k(t)B2,k(t)

]

(48)

Now we have

∞
∑

k=1

B2
i,k(t) = (1− qi)

2t
[

1− (1− qi)
T
]2

∞
∑

k=0

(1− qi)
2Tk (49)

= (1− qi)
2t

[

1− (1− qi)
T
]2

1− (1− qi)2T
(50)

= (1− qi)
2t 1− (1− qi)

T

1 + (1− qi)T
(51)

and (using 1−Q ≡ (1− q1)(1− q2))

∞
∑

k=1

B1,k(t)B2,k(t) = (1−Q)t
[

1− (1− q1)
T
] [

1− (1− q2)
T
]

∞
∑

k=0

(1−Q)Tk (52)

= (1−Q)t
[

1− (1− q1)
T
] [

1− (1− q2)
T
]

1− (1− q1)T (1− q2)T
(53)

yielding

[

b2t |p0
]

π
= (p0 − [p]π)

2
[

(1− wSlow)(1− q1)
t + wSlow(1− q2)

t
]2

(54)

+
[

δp2
]

π

[

(1− wSlow)
2 1− (1− q1)

T

1 + (1− q1)T
(1− q1)

2t + w2
Slow

1− (1− q2)
T

1 + (1− q2)T
(1− q2)

2t(55)

+2wSlow(1− wSlow)

[

1− (1− q1)
T
] [

1− (1− q2)
T
]

1− (1− q1)T (1− q2)T
(1−Q)t

]

, (56)

for the transient behavior of conditional average bias squared in the current block.
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Averaging over p0 yields

[

b2t
]

π
= 2

[

δp2
]

π

[

(1− wSlow)
2 1

1 + (1− q1)T
(1− q1)

2t + w2
Slow

1

1 + (1− q2)T
(1− q2)

2t (57)

+2wSlow(1− wSlow)
1− (1−q1)T+(1−q2)T

2

1− (1− q1)T (1− q2)T
(1− q1)

t(1− q2)
t

]

. (58)

Finally, to average over t ranging over the block, we use

1

T

T
∑

t=1

(1− qi)
2t =

(1− qi)
2

T

1− (1− qi)
2T

1− (1− qi)2
=

1− (1− qi)
2T

T [(1− qi)−2 − 1]
(59)

1

T

T
∑

t=1

(1−Q)t =
1−Q

T

1− (1−Q)T

1− (1−Q)
=

1− (1−Q)T

T [(1−Q)−1 − 1]
(60)

to obtain

[

b2t
]

π
=

[

δp2
]

π

[

(1− wSlow)
2 1− (1− q1)

T

T
2 [(1− q1)−2 − 1]

+ w2
Slow

1− (1− q2)
T

T
2 [(1− q2)−2 − 1]

+2wSlow(1− wSlow)
2− (1− q1)

T − (1− q2)
T

T [(1−Q)−1 − 1]

]

. (61)

In the regime where q2 ≪ T−1 ≪ q1 ≪ 1 (or τ2 ≫ T ≫ τ1 ≫ 1), we have approximately

(1 − q1)
T ≈ 0, (1 − q2)

T ≈ 1 − q2T and
[

(1− qi)
−2 − 1

]

≈ 2qi and
[

(1−Q)−1 − 1
]

≈ q1 + q2,
yielding

[

b2t
]

π
=

[

δp2
]

π

[

(1− wSlow)
2 τ1
T

+ w2
Slow + 2wSlow(1− wSlow)

(

τ1
T

+
τ1
τ2

)]

, (62)

and in the limit τ2, T → ∞:
[

b2t
]

π
=

[

δp2
]

π
w2
Slow. (63)

S1.3 Average squared error, optimal wSlow, and undermatching

The long-run average squared error is the sum of average variance and average bias squared and

thus from Eqs. (21) and (61) is given by

[〈(vt − p0)2〉]π =
[〈

δv2t
〉]

π
+

[

b2t
]

π
= C1(1− wSlow)

2 + C2w
2
Slow + 2C3wSlow(1− wSlow) (64)

where we defined

C1 =
[p(1− p)]π
2τ1 − 1

+
[

δp2
]

π

1− (1− q1)
T

T
2 [(1− q1)−2 − 1]

(65)

C2 =
[p(1− p)]π
2τ2 − 1

+
[

δp2
]

π

1− (1− q2)
T

T
2 [(1− q2)−2 − 1]

(66)

C3 =
[p(1− p)]π
τ1 + τ2 − 1

+
[

δp2
]

π

2− (1− q1)
T − (1− q2)

T

T [(1− q1)−1(1− q2)−1 − 1]
. (67)
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Figure S1: Plots of analytical results: block-averaged undermatching slope, Eq. (88) (top panels),

variance Eq. (21) and average squared bias Eq. (61) (middle panels) and average squared error

Eq. (64) (bottom panels). For the plots on the left, we used τ1 = 10, τ2 = 100000, and T = 1000,

and for those on the right we used τ1 = 10, τ2 = 1000 and T = 100. The dashed lines show the

optimal weight wSlow∗ , Eq. (72), in each case. Here we took the distribution π(p) to be the uniform

distribution on [0.1, 0.9], yielding [p]π = 1
2 and

[

δp2
]

π
≃ 0.0427 (choosing a uniform distribution on

[0, 1] instead, would have yielded
[

δp2
]

π
= 1

12 ≃ 0.0833, thus putting more emphasis on squared

bias and shifting the minimum of bottom plots, i.e. the optimal wSlow, further to the left).
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Here, in each line the first term is the contribution of the variance and the second is the contribution

of the average squared bias. Note that in general

[p(1− p)]π = [p]π (1− [p]π)−
[

δp2
]

π
. (68)

In particular, for the case where π(·) is the uniform distribution on [0, 1], we have

[

δp2
]

π
=

[

(p− 1

2
)2
]

π

=
1

12
(69)

[p(1− p)]π =
1

4
−

[

δp2
]

π
=

1

6
. (70)

To find the optimal wSlow we have to set the derivative of Eq. (64) w.r.t. wSlow to zero. The latter is

proportional to

C1(wSlow − 1) + C2wSlow + C3(1− 2wSlow), (71)

and setting it equal to zero yields

wSlow∗ =
C1 − C3

C1 + C2 − 2C3
. (72)

We can use Eq. (62), to simplify Eq. (65) in the regime q2 ≪ T−1 ≪ q1 ≪ 1 (or τ2 ≫ T ≫ τ1 ≫ 1),
obtaining1

C1 ≈ [p(1− p)]π
2τ1 − 1

+
[

δp2
]

π

τ1
T

(73)

C2 ≈ [p(1− p)]π
2τ2 − 1

+
[

δp2
]

π
(74)

C3 ≈ [p(1− p)]π
τ1 + τ2 − 1

+
[

δp2
]

π

(

τ1
T

+
τ1
τ2

)

. (75)

We see that the largest contribution to average error, which is O(1), comes from the bias squared

contributed by the slow time scale (the second term in C2). After that we have the contribution

of the fast time scale to variance (first term in C1) which is O(τ1
−1) and smaller. For this reason,

for realistic underlying time-scales, the optimal wSlow’s will turn out to mainly optimize the squared

bias, and hence will be small.

It is much easier to derive these results in the extreme limit τ2, T → ∞ (keeping τ2 ≫ T ). Firstly, in

this case, given that v2 is a very long-term average of st, its value is always very close to the long

term average of p, i.e. [p]π, with small fluctuations, δv2, of the order of 1/
√
τ2. Thus we can ignore

the latter and safely write

v2,t ≈ [p]π . (76)

In particular, it is only v1,t which contributes to the variance:

〈

δv2t
〉

≈ (1− wSlow)
2
〈

δv21,t
〉

. (77)

1To be really consistent in the apprximations, the first terms on the rights sides of Eq. (73) must also be expanded.
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Furthermore, given that τ1 ≪ T , the main contribution to the averages of 〈v1,t〉 or
〈

δv21,t
〉

over t
running from 1 : T comes from t’s within the current block that are much larger than τ1 (i.e., we can

ignore the transient behavior of v1,t at the beginning of the block and only consider its steady-state

behavior). This means that in Eqs. (16) and (31), we can safely replace pk(t−n) with p0, the head

probability in the current block. The geometric series thus become infinite and we obtain

〈

δv21,t
〉

≈ q21

∞
∑

n=0

(1− q1)
2n p0(1− p0) =

q21
1− (1− q1)2

p0(1− p0) =
p0(1− p0)

2τ1 − 1
. (78)

〈v1,t〉 ≈ q1

∞
∑

n=0

(1− q1)
n p0 = p0 (79)

Averaging Eq. (78) over π, and using Eq. (77) we obtain

[〈

δv2t
〉]

π
≈ (1− wSlow)

2 [p(1− p)]π
2τ1 − 1

. (80)

For the full bias we have bt = 〈vt〉 − p0 = (1 − wSlow) 〈v1,t〉 + wSlow 〈v2,t〉 − p0, which by Eq. (76)

and (79), yields bt = wSlow([p]π − p0) = −wSlowδp0 (this yields (1 − wSlow) for the undermatching

slope, as an approximation to Eq. (88)). Thus

[

b2t
]

π
≈ w2

Slow

[

δp2
]

π
. (81)

Finally for the average square error we obtain Eq. (64) with

C1 ≈ [p(1− p)]π
2τ1 − 1

(82)

C2 ≈
[

δp2
]

π
(83)

C3 ≈ 0. (84)

S1.3.1 Time-dependent undermatching slope

Going back to Eq. (39) for the bias, since the second term in Eq. (39) vanishes after averaging

over pk+1, for the transient of bias conditional on p0 but averaged over pk in past blocks we obtain

[vt − p0|p0]π = −(p0 − [p]π)
[

(1− wSlow)(1− q1)
t + wSlow(1− q2)

t
]

. (85)

which we can also write in a form corresponding to the slop of the matching law plot

[vt|p0]π − [p]π
p0 − [p]π

= 1− (1− wSlow)(1− q1)
t − wSlow(1− q2)

t. (86)

(assuming a “symmetric” distribution π(·), [p]π = 1
2 ). In particular, when τ2 ≫ T (or q2T ≪ 1)

(1 − q2)
t remains approximately equal to unity even for t = T (at the end of the block). Thus we

have
[vt|p0]π − [p]π

p0 − [p]π
= (1− wSlow)

[

1− (1− q1)
t
]

, (τ2 ≫ T ). (87)
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This shows that there is more undermatching at the beginning of the block, than at the end (where

(1− q1)
t ≪ 1, if τ1 ≪ T ). If we average this over the whole block we obtain for the block-averaged

(under)matching slope:

[vt|p0]π − [p]π
p0 − [p]π

= (1− wSlow)

[

1− 1− (1− q1)
T

Tq1

]

, (τ2 ≫ T ) (88)

≈ (1− wSlow)
[

1− τ1
T

]

, (τ2 ≫ T ≫ τ1) (89)

S2 Exploring the possible neural implementation of adaptive com-

putation: metaplastic synapses model

In our analysis, we found that monkeys integrated the reward histories over a wide range of

timescales, and they changed the relative weights of the timescales to optimize the harvesting

efficiency. What would be a possible neural implementation of this computation? Here we explore

a possible candidate, following a meta-plastic synapses model [15] that has been recently applied

to the context of decision-making [21].

Following [21], we consider a well-studied neural network model for decision-making (figure S7a)

[57, 51, 14, 22, 21]. Essentially, this network produces bi-stable attractor dynamics (winner-take-

all process), where the each stable state corresponds to the choice of Green (when G population

wins) or the choice of Red (when R population wins). Crucially, the competition is determined by

the synaptic strength between the input population and the decision populations, which are trained

trial-by-trial by a reward based stochastic Hebbian learning [49, 51, 14, 22, 21].

The synaptic efficacy is assumed to take one of the two strengths (weak or strong), as this follows

the biophysical constraint of bounded strength. In addition to the changes in efficacy, following [15],

here we introduce a metaplastic transition so that synapses can change the rate of plasticity itself

[15, 21] (figure S7b). This cascade model incorporates a various chemical cascade processes

taking place over multiple timescales. It has been shown that the model improves the memory

performance of bounded synapses, and also the model reproduces a widely observed power-

low memory decay in time. The details of implementation are described in [21]. As in [21], we

assumed a ‘forgetting’ between experimental sessions which in our model is random transitions

between weak and strong states between sessions.

We found that the network model captures some key aspects of the behavioral findings. We

simulated our model under the same conditions as Monkey F. As seen in figure S7c, the model

can reproduce the observed changes in matching behavior. In the early days of experiment, the

model shows a good matching, as we assume that the synapses distribute equally over all states

at the beginning of day 1. However, the distribution of synapses in the cascade model gradually

shifts toward the deeper states (less plastic states). This introduces a bias toward the mean of

the reward on a long timescale.Since the rewards are balanced on the long timescale, the bias is

seen as deviation from the matching law, or undermatching. Figure S7d also shows that the model

captures the bias variance trade-off in the data. The details of the model implementation can be

found in [21]; however here we did not implement the surprise detection system, as our focus is to
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capture the behaviors on a long timescale.
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Figure S2: (a). Autocorrelation of choice history decays on multiple timescales within a block size. The

solid lines indicate the fitting results with a sum of two exponents with relative weights c1, c2 and time

constants τ1, τ1. Those choices reinforced by COD are excluded. (b) Both monkeys’ sesion-by-session

choice bias show significant autocorrelations across session lags. The stars indicate the significance.
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Figure S3: The correlation between reward and choice bias over sliding session windows.
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course of experiments.

S-15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/141309doi: bioRxiv preprint 

https://doi.org/10.1101/141309


w
S

lo
w

r=0.64

p<10-6

Monkey F

w
S

lo
w

1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

2 3 4
0

0.1

0.2

0.3
r=-0.54

p<10-4

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4
r= -0.49

p<0.004

w
S

lo
w

200 800 1400 2000
0

0.1

0.2

0.3

0.4

0.5

w
S

lo
w

Monkey G

r=0.77

p<10-12

Monkey F
Monkey G

a b

c d

Recent experimental day length (Trials)

Recent break length (Days)

Figure S5: Non monotonic changes in the weight wSlow of the long timescale τSlow reflect the

experimental schedule on a long timescale. a,b, The weight of long timescale wSlow correlates

with the recent experimental lengths. Daily estimation of wSlow is plotted against the mean length

of recent experiments. The weight of the long timescale wSlow is larger when the animal con-

stantly experienced long experiments with may trials. The mean is taken over 18 experimental

days (Monkey F) and 12 experimental days (Monkey G), respectively, as they give the largest

correlations. c,d, The weight of long timescale wSlow anti-correlates with the mean recent inter-

experimental-intervals. The weight of the long timescale wSlow is smaller when the animal con-

stantly had long inter-experimental-periods. Daily estimation of wSlow is plotted against the mean

recent inter-experimental-intervals. The mean is taken over 25 experimental days (Monkey F) and

32 experimental days (Monkey G), respectively, as they give the largest magnitude of correlations.

S-16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/141309doi: bioRxiv preprint 

https://doi.org/10.1101/141309


Data 

(Monkey F)

0

200

400

600

800

1000

1200

1400

1600

1800
 L

M
IT

 (
T

ri
a
l)
  

Single τ 
model

Figure S6: Variable-single-timescale model dose not capture data. We fitted a local matching

model with a single timescale [52] to the data (Monkey F’s data). Using the fitted parameter (τ ),

we simulated the model to generate choice behaviors, which was then used to estimate the LMIT

in the same manner as the other analysis. We found no LMIT from the single timescale model,

because of the lack of a slow learning.

S-17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/141309doi: bioRxiv preprint 

https://doi.org/10.1101/141309


Change in strength

C
h
a
n
g
e
 in

 p
la

st
ic

ity

α
1-

-

+
+

action

G or R

reward or

input inh

G

R

- +

α
2

q
1

α
3

a b

q
1

q
2

q
2

0 0.5 1
0

B
lo

c
k
w

is
e

 c
h

o
ic

e
 f

ra
c
ti
o

n

Blockwise reward fraction

day 1-3

day  21-23

0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

Undermatching

F
lu

c
tu

a
ti
o

n
 i
n

 c
h

o
ic

e
 p

ro
b

a
b

ili
ty

 

r=-0.58

p<10-6

c d

model model

Figure S7: Metaplastic synapses model captures key aspects of experimental data. (a) Network

model. The decision is made based on the competition between the two action selection popula-

tions (G,R). See [21] for details. (b) The cascade model of synapses. Synapses make transitions

between different strength and plasticity states α1 > α2 > α3, q1 > q2. See [21] for details. (c)

Changes in matching behavior is captured by the model. The model was simulated in the same

conditions as Monkey F in data. (d) The model also captures the trade-off between bias (under-

matching = 1−slope) and the fluctuation in choice.
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Figure S8: The multi-timescale model performs significantly better in a multi-armed bandit task

with a hierarchical block structure. Subjects need to choose a target from 25 different options

(colors are not shown to subjects). There is one target that is most rewarding in the current sub-

block of trials (red), and the most rewarding target would change among the ‘hot spots’ (yellow)

which are fixed for the current block of trials. Crucially, the most rewarding target changes on a

shorter timescale (e.g. every 20 trials), while the hot spots change on a longer timescale (e.g.

every 200 trials). In such a situation, learning over a short and a long timescale is beneficial.
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