
Learning Fast Optimizers for Contextual Stochastic Integer Programs

Vinod Nair
DeepMind

vinair@google.com

Krishnamurthy Dvijotham
DeepMind

dvij@google.com

Iain Dunning
DeepMind

idunning@google.com

Oriol Vinyals
DeepMind

vinyals@google.com

Abstract
We present a novel reinforcement learning (RL)
approach to learning a fast and highly scalable
solver for a two-stage stochastic integer pro-
gram in the large-scale data setting. Mixed inte-
ger programming solvers do not scale to large
datasets for this problem class. Additionally,
they solve each instance independently, without
any knowledge transfer across instances. We
address these limitations with a learnable local
search solver that jointly learns two policies,
one to generate an initial solution and another
to iteratively improve it with local moves. The
policies use contextual features for a problem
instance as input, which enables learning across
instances and generalization to new ones. We
also propose learning a policy to compute a
bound on the objective using dual decompo-
sition. Benchmark results show that on test
instances our approach rapidly achieves approx-
imately 30% to 2000% better objective value,
which a state of the art integer programming
solver (SCIP) requires more than an order of
magnitude more running time to match. Our
approach also achieves better solution quality
on seven out of eight benchmark problems than
standard baselines such as Tabu Search and Pro-
gressive Hedging.

1 INTRODUCTION
Stochastic integer programming (Birge and Louveaux
[1997], Shapiro et al. [2009]) arises in various applica-
tions that require combinatorial optimization under un-
certainty, such as electric grid optimization, finance, and
logistics. Many domains involve large-scale data for ran-
dom variables (e.g., weather, demand, etc.), and require
solving a set of related problem instances instead of only
one instance (e.g., solve instances periodically, each with
different weather and demand forecast distributions).

While powerful solvers exist for deterministic, single-
instance mixed integer programs (MIPs), this is not the
case for the stochastic, multi-instance setting. Traditional
solvers from the optimization literature are not able to
scale to high dimensional stochastic MIPs where several
thousands of samples are required to represent uncertainty,
and do not reuse experience on solving past optimization
problems to solve future problems.

In this paper we consider learning an approximate solver
with reinforcement learning (RL). We frame optimization
as a sequential decision problem where at each step the
solver “agent” proposes a solution, and the “environment”
evaluates the objective value and any constraint violations
to provide reward and observations. Contextual features
describing a problem instance are used as an input to the
solver so that its actions are adapted to that instance. The
parameters of such a contextual solver are learned offline
on a training set of instances. Once trained, the solver
is applied to a new instance from the same distribution.
We also learn a dual policy that computes a bound on the
optimal value to estimate how far the solution computed
by the contextual solver is from the global optimum for a
given instance.

The advantages of our approach are: a) it can scale to
a large set of problem instances, as well as a large set
of samples for the random variables in each instance,
and b) it can generalize to a new instance to achieve
better solution quality and/or time than a solver that treats
each instance independently. As the results show, our
approach is able to scale to much larger datasets and
achieve significant speedups compared to SCIP (Gleixner
et al. [2017]), the state-of-the-art open source MIP solver.

Two-stage stochastic integer programs: We focus on
an important class of stochastic programs called a two-
stage stochastic MIP (Birge and Louveaux [1997]). In
the first stage, a planning decision is optimized under
uncertainty, then the values of all random variables are
observed, and in the second stage a recourse decision is
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Figure 1: Local search for a two-stage stochastic MIP as an RL problem. The initialization and local move policies are
part of the “agent”, while the second stage optimization is part of the “environment.” Given a problem instance specified
by the context, the agent’s “action” is to propose a first stage solution at each step of local search. The environment
evaluates it on a minibatch of noise samples (denoted by ω in the text) by optimizing the second stage problem for each
sample using a MIP solver to compute the reward and observations.

deterministically optimized to adapt the plan in repsonse
to observations. The uncertainty is exogenous, so it is
independent of the first stage solution. This problem
structure arises in many applications, such as electric grid
day-ahead planning (Zheng et al. [2015]) and logistics
(Laporte et al. [1992]).

Local search solver: The contextual solver is structured
as a local search algorithm over the space of first stage
solutions. It consists of two learnable components: a) an
initialization policy that takes as input the context vector
and outputs an initial solution, and b) a local move policy
that takes the initial solution and applies a sequence of
local moves such that the final solution has high objective
value. Both of these policies are learned jointly.

Both during training and testing, evaluation of a first stage
solution requires solving several second stage optimiza-
tion problems to approximate the expected objective as
a sample average. Since each such problem is a deter-
ministic MIP, they are well-suited for solving with an
off-the-shelf MIP solver, so we use SCIP to solve them.
This provides another perspective of our work as a hybrid
approach that combines a learned contextual solver with
a MIP solver in the learning loop to efficiently optimize
stochastic two-stage MIPs.

Contributions: We develop an approach to learn 1) a
contextual local search solver with the initialization and
local move policies that computes a solution to the opti-
mization for a given problem instance, and 2) a contextual
dual policy that computes an upper bound on the optimal
value (achievable by any algorithm) for a given problem
instance. We benchmark our approach on a set of two-
stage stochastic MIPs and show that compared to SCIP it
achieves approximately 30% to 2000% better objective
value for the same running time and at least an order of
magnitude faster for the same objective value. It also

outperforms baseline algorithms such as Tabu Search and
Progressive Hedging on seven out of eight problems.

2 RELATED WORK
Learning solvers: Early examples of learning solvers
for combinatorial optimization problems include Zhang
and Dietterich [1995], Moll et al. [1999], and Boyan and
Moore [2001]. The first two use TD(λ) to learn a value
function over the solution space such that applying a lo-
cal search algorithm with that value function can find
a good solution and can generalize to new problem in-
stances. These approaches assume that an initial solution
is given (either randomly generated or by another algo-
rithm), whereas our approach learns to generate the initial
solution jointly with the local search policy. Boyan and
Moore proposed STAGE, an iterative algorithm that alter-
nates between learning a value function over the solution
space for one instance and using that function to find a
better solution for that instance. This work was primarily
focused on the single instance setting.

More recently Vinyals et al. [2015] used supervised learn-
ing with pointer networks to approximately solve trav-
elling salesman problems. Subsequent work improved
on it by using the same pointer network architecture, but
learned with RL (Bello et al. [2016]). Ignoring archi-
tectural differences, our initialization policy is similar to
Bello et al.’s approach, but we further improve the ini-
tial solution using a learned local move policy. As our
results show, this is a crucial difference for improving
performance. Khalil et al. [2017a] combine graph neu-
ral networks with RL to learn a greedy solver for graph
combinatorial optimization problems that incrementally
extends a partial solution till its complete. Again, our idea
of improving the complete solution further with a learned
local search policy can be applied here as well.



Additionally, using the dual policy, we can compute a
bound on the objective function value even on new prob-
lem instances. This allows us to a) assess the quality of
the solution produced by the learned solver, and b) to
make a fairer comparison to approaches that provide both
a solution and a bound since proving the bound can be a
significant part of the solver running time.

Learning to improve solvers: Several works have fo-
cused on applying learning to improve the decisions made
by non-learning solvers, e.g., variable selection and node
selection decisions in a branch and bound solver. See Lodi
and Zarpellon [2017] for a survey. Khalil et al. [2016]
treat variable selection as a ranking problem and learn a
ranking function. Khalil et al. [2017b] use learning to pre-
dict on which nodes of the branch and bound search tree
various primal heuristics will succeed. Such approaches
can be used as building blocks for an end-to-end solution.

3 CONTEXTUAL TWO-STAGE
STOCHASTIC INTEGER PROGRAM

A contextual two-stage stochastic integer program is de-
fined as follows (for the case of maximization):

max
x

f(x; z) + EP (ω)

[
max

y∈Y (x,ω)
g(y;x, ω, z)

]
(1)

where

• ω ∈ Rd is a random variable representing the un-
certainty affecting the second stage objective func-
tion and constraints. ω is independent of the deci-
sion variables. We are given a set of I.I.D. samples
Dω = {ωi ∼ P (ω)}, i = 1, ..., Nω with which the
expectation in equation 1 is estimated as a sample
average.

• x ∈ {0, 1}n is the first stage decision variable, opti-
mized before observing ω. We assume that every x
is feasible.

• y ∈ {0, 1}m is the second stage decision vari-
able, optimized after observing ω, where Y (x, ω) ⊆
{0, 1}m is the feasible set defined by second stage
constraints. We assume Y (x, ω) 6= ∅ for all (x, ω)
(i.e., complete recourse).

• z ∈ Rc is the context feature vector describing
an instance of the optimization problem. A set of
instances is generated by drawing I.I.D. samples
Dz = {zj ∼ P (z)}, j = 1, ..., Nz .

f and g represent the first and second stage objective
functions, respectively. Unlike LP relaxation based ap-
proaches to solving MIPs, our approach can be applied to

nonlinear f , g, and constraints. However, in this work we
focus on the linear case to allow a direct comparison to
LP relaxation based approaches:

f(x; z) = cT1 (z)x

g(y;x, ω, z) = cT2 (x, ω, z)y

Y (x, ω) = {y ∈ {0, 1}m : B(ω, z)x+ C(ω, z)y ≤ d(ω, z)}

Sample Average Approximation: The primary ap-
proach in the optimization literature for solving equation
1 is the Sample Average Approximation (SAA) method
(Ahmed and Shapiro [2002]). It replaces the expectation
with a sample average and replicates the second stage
decision for each sample:

max
x

f(x; z) +
1

Nω

Nω∑
i

[
max

yi∈Y (x,ωi)
g(yi;x, ωi, z)

]
.

This converts the original problem into a deterministic
one which can be solved using a deterministic MIP solver
(assuming linear f , g, and constraints). The key disadvan-
tage is that the number of second stage decision variables
increases by a factor of the number of samples Nω. As
a result, the approach does not scale beyond a moderate
number of variables and samples. In practice this limita-
tion is overcome by domain experts carefully selecting
a small set of samples that they judge will likely affect
the solution. By being more scalable, our learning-based
approach makes such expert selection unnecessary.

4 RL APPROACH

We describe our Reinforcement Learning (RL) approach
for learning a solver for the optimization problem defined
in section 3.

4.1 MAIN IDEA

We formulate our approach as learning an iterative local
search algorithm over the space of first stage solutions
(see figure 1). It has two learnable components which are
optimized jointly:

• Initialization policy: Given an instance of the op-
timization problem, generate an initial first stage
solution x0 from which local search starts.

• Local move policy: At each iteration of local search,
select one of the neighbors of the current first stage
solution as the proposal for the next iteration.

The solution xK after a fixed number of iterations K is
the solver’s output. The objective function value rK at



xK is approximated by:

rK = f(xK ; z) +
1

Nω

Nω∑
i=1

[
max

y∈Y (xK ,ωi)
g(y;xK , ωi, z)

]
(2)

where the expectation is approximated as a sample aver-
age. For a given x and ω, the second stage optimization
over y is deterministic. We assume that an efficient solver
is available (e.g., SCIP, or a fast heuristic) so that an accu-
rate approximation of the expectation can be computed
quickly. This allows us to leverage existing efficient tech-
niques for deterministic optimization to learn a solver for
stochastic optimization.

Limitations: 1) Our approach relies on offline learning
on a dataset of instances, and it is unlikely to be useful
in a setting where there is only one instance (or few)
to be solved. Our early experiments showed that in the
single-instance setting (i.e., treat z as a constant), our
approach’s running times tend to be much higher than
baseline algorithms to achieve similar solution quality. 2)
The solution found after K iterations is not guaranteed
to be optimal. But if learning is successful, it can be
expected to be a good solution, and the bound provided
by the dual policy indicates how close to optimal it is.

4.2 INITIALIZATION POLICY

The initialization policy is a distribution P (x|z) over
the first stage solution x given the context feature vec-
tor z. The initial solution is generated by sampling
x0 ∼ P (x|z). Reward is the expected objective func-
tion value achieved by the solution at the end of local
search. We use policy gradients to learn P (x|z).

Architecture: We explored two architectures: 1) a condi-
tional autoregressive generative model, and 2) a simpler,
fully connected feedforward neural network with a single
hidden layer. Results are better for the former, so we
describe it here. Autoregressive generative models pro-
vide a flexible neural network parameterization for high
dimensional distributions while still allowing tractable
exact evaluation of the log probability and its gradient
with respect to model parameters. Crucially, they do not
make any independence assumptions, thus capturing com-
plicated correlations in the vector x. Here we consider a
conditional version

Pθinit(x|z) =
∏
i

Pθinit(xi|x<i, z) (3)

where xi is the ith dimension of x, x<i is the set of first
i − 1 dimensions of x, and θinit denotes the model’s
parameters. Specifically, we use the Neural Autoregres-
sive Density Estimator (NADE) (Larochelle and Murray

[2011]). NADE is not specialized for a particular type
of data (e.g., images, time series), which makes our ap-
proach application agnostic. It uses weight sharing across
the conditional distributions in equation 3 to achieve a
compact parameterization. For details see Larochelle and
Murray [2011].

Training: The loss function for learning θinit is

L(θinit) = −EPθinit (x0|z)P (rK |x0,z)

[
rK
]
. (4)

θinit is learned with stochastic gradient descent using
the policy gradient method of REINFORCE (Williams
[1992]). The gradient is given by:

∇θinitL(θinit) =

− E
[
(rK − bw(z))∇θinit(logPθinit(x|z))

]
where bw(z) is a learned baseline function parame-
terized by w, and the expectation is with respect to
Pθinit(x

0|z)P (rK |x0, z). The baseline bw(z) is a single
hidden layer, fully connected feedforward neural network
with ReLU hidden units. Its weights w are learned jointly
with the initialization policy by stochastic gradient de-
scent to minimize (rK − bw(z))2.

4.3 LOCAL MOVE POLICY

We learn a policy that makes K local moves starting from
the initial solution x0 to produce xK . At an intermediate
step k, the local move policy takes the first stage solution
xk and selects one of its neighbors from a Hamming ball
of radius 1 as xk+1. This results in n + 1 possible ac-
tions per step: either toggle one of the dimensions of xk,
or a no-op. The policy outputs a categorical distribution
πθlm(ak|xk, sk, x0, z) over the actions, given state sk (de-
scribed below), initial solution x0, and context vector z,
parameterized by θlm. The reward at each iteration is the
change in objective value from the previous iteration. So
the policy is being learned to maximize the total expected
increase in objective value relative to the initial solution
in an episode. We use the Asynchronous Advantage Actor
Critic (A3C) algorithm (Mnih et al. [2016]) for learning.

Architecture: πθlm(ak|xk, sk, x0, z) is a two hidden
layer, fully connected feedforward neural network with
ReLU hidden units. The observations ok at step k consists
of:

• Constraint slacks: The difference between a second
stage constraint’s value and its upper/lower bounds
obtained for each sample ωi.

• Second stage solutions: The solutions yi obtained
for each sample ωi.



We define state sk to be a fixed size time window of J
observations {ok−1, ..., ok−J}. The window size is a hy-
perparameter tuned based on validation set performance.
A3C also learns a value function Vθv (sk;x0, z) jointly
with the policy. Following standard practice, this function
shares with the policy all the hidden layers and corre-
sponding parameters, with unshared parameters only in
the output layers to compute the value and policy outputs.

Training: The reward at step k of an episode is given by

rklm = rk+1 − rk,

where rk is defined by equation 2. A3C defines its loss in
terms of the advantage function:

A(ak, sk;x0, z) =

L−1∑
l=0

γlrk+llm + γLVθv (sk+L;x0, z)

− Vθv (sk;x0, z),

where the first two terms on the RHS give an estimate of
the L-step return, and γ is the discount factor. The loss is
given by

L(θlm, θv) = −Eπθlm (ak|xk,sk,x0,z)

[
A(ak, sk;x0, z)

]
,

(5)

with the gradient with respect to θlm given by:

∇θlmL(θlm, θv) =

−E
[
A(ak, sk;x0, z)∇θinit(log πθlm(ak|xk, sk, x0, z)

]
.

The square of the advantage function is an additional loss
used to learn the value function parameters θv. We also
apply entropy regularization to encourage exploration by
preventing the policy from becoming deterministic. The
relative magnitude of these losses’ contribution to the total
loss are tuned as hyperparameters based on validation set
performance.

We use distributed TensorFlow with Nw parallel workers
executing episodes and computing gradients, and one cen-
tral learner asynchronously applying gradients to update
parameters. This setup is replicated for each of the Nh
randomly sampled hyperparameter settings for hyperpa-
rameter tuning. We use Nw = 20 and Nh = 25 for each
problem in our benchmark.

5 BOUNDS VIA LEARNED DUAL
POLICIES

An attractive feature of MIP solvers is that they provide
an upper bound on the optimal value of a maximization
problem, quantifying the objective value gap between a

solution and the global optimum. However, as explained
in section 3, directly applying a MIP solver to a two-stage
stochastic integer program with a large set of samples
is computationally infeasible. We use dual decomposi-
tion (Carøe and Schultz [1999]) to develop an alternative
approach.

The main idea is that if we are allowed to choose a differ-
ent x = xω for each sample ω, the optimization problem
(1) decomposes into independent subproblems for each
sample that can be solved in parallel. This constitutes
a relaxation of the optimization problem, and hence its
optimal value is an upper bound on the original prob-
lem. Solving the relaxation only requires a deterministic
MIP problem, which can be solved efficiently or bounded
using a further LP relaxation.

This bound can be tightened by adding Lagrangian multi-
pliers that encourage the scenario subproblems to agree
on a single x = xω . Since we are interested in large-scale
stochastic MIPs and in out-of-sample tests, it is not appro-
priate to compute an independent dual variable for each
scenario ω. Instead, we train a neural network that, given
features that depend on ω (the sample) and z (the context),
predict the dual variables for the problem. Given any such
policy, we can obtain a bound on the value of the 2-stage
stochastic MIP and further, we can evaluate this bound
out of sample (on samples that were unavailable during
training) to estimate the “generalization” of the bound.

5.1 DUAL DECOMPOSITION OF 2-STAGE
STOCHASTIC MIPs

Consider equation 1 in the linear case:

max
x∈{0,1}n

c1(z)Tx+
1

Nω

∑
ω∈Dω

[
max

y∈Y (x,ω,z)
c2(ωi, z)

T y

]
.

(6)

We now introduce independent copies xω for each sample
ω with constraints to enforce equality of xω:

max
x,{xω}

1

Nω

∑
ω∈Dω

[
max

y∈Y (xω,ω,z)
c1(z)Txω + c2(ω, z)T y

]
,

s.t xω = x ∀ω ∈ Ω.

We drop the constraints and add a Lagrangian term to
obtain a relaxation:

max
x,{xω}

1

Nω

∑
ω∈Dω

 max
y∈

Y (xω,ω,z)

cT1 xω + cT2 y + λTω (x− xω)

 ,
(7)

where λω for each ω is a dual variables, and we dropped
the dependence of c1, c2 on ω, z for brevity.



From equation 7 we can derive the following dual problem
to optimize the upper bound (see supplementary material
for details):

min
{λω}

1

Nω

∑
ω∈Dω

h(ω, z, λω) + 1T max

(
1

Nω

∑
ω∈Dω

λω, 0

)
,

(8)

where

h(ω, z, λω) =

max
y∈Y (xω,ω,z)

c1(z)Txω + c2(ω, z)T y − λTωxω.

We use (8) to estimate a bound.

5.2 LEARNING DUAL POLICIES

There are three issues with applying the above dual de-
composition approach to large scale contextual stochastic
MIPs:

• Context ignored: If we directly apply dual decompo-
sition, even after solving the problem for thousands
of context vectors z, we would start from scratch for
a new context. This is wasteful particularly if the
solutions for the dual variables are simple functions
of z that can be learned.

• Generalization: The problem (8) only implies a
bound for the set of scenarios in the training set
Dω . However, this does not say anything about how
the bound generalizes to unseen samples.

• Computation: The problem (8) is expensive to solve
if the number of scenarios Dω is large, since one has
to solve an optimization problem (to compute h) for
each scenario ω simply to evaluate the objective and
compute gradients with respect to λω .

We address all three issues by learning a dual policy
λω = λθd (ω, z) that maps from the context z and sam-
ple features ω to the dual variables λω , parameterized by
θd. We train the policy to minimize the dual objective
averaged over samples Dω and context sample set Dz:

min
θ

1

Nz

∑
z∈Dz

1

Nω

∑
ω∈Dω

h (ω, z, λθd (ω, z)) (9a)

+ 1T max

(
1

Nω

∑
ω∈Dω

λθd (ω, z) , 0

)
.

(9b)

A major bottleneck in solving this problem is the need to
compute h (which itself involves solving a deterministic

MIP or an LP relaxation of it). Thus, it is desirable to
have an algorithm that does not compute h for each z, ω
at each iteration.

In our experiments we sample zs, ωs but also get predic-
tions of the neural network for each ω ∈ Dω to compute
σ =

∑
ω∈Dω λω(ω, zs; θ). Then, an unbiased estimate of

a (sub)-gradient of the objective is given by

gs =
∂h

∂λω
(ωs, zs)

∂λω(ωs, zs; θ)

∂θ

+ sign (σ)
∂λω(ωs, zs; θ)

∂θ
(10)

This only requires one backprop through the network and
Nω forward passes and computation of h for a single z, ω.

Architecture: We use a simple feedforward architecture
with a single hidden layer in all our experiments. The
architecture has fully connected layers with ReLU activa-
tions. We add a skip connection from the context vector z
to the hidden and output layer and a skip connection from
ω to the output layer. We tune the size of the hidden layer
and learning rate as hyperparameters (picked so that the
dual bound on a validation set is minimized).

6 EVALUATION

6.1 BENCHMARK

There is a dearth of standardized, large-scale benchmarks
for stochastic programming problems. As a first step, we
construct a benchmark using stochastic versions of two
standard optimization problems, knapsack and facility
location, with large-scale data. We plan to add more
problems in the future.

Knapsack (KS): The problem is to place a set of items
with various sizes and values into a knapsack of speci-
fied capacity so as to maximize the total knapsack value
without exceeding capacity. For a given problem instance
the item sizes are stochastic. In the first stage, the items
have to be selected without knowing their precise sizes.
After the sizes are revealed, the second stage decision
is to remove items selected in the first stage to satisfy
the capacity limit, but removal incurs a penalty. Context
specifies the values of the items, knapsack capacity, and
removal penalty.

Facility Location (FL): Adapted from Ntaimo and Sen
[2005], the problem is to place facilities at a set of
locations with varying costs such that profit is maxi-
mized. Customer demand and revenue at the locations
are stochastic. There is a linear penalty for not meeting
customer demand. In the first stage, locations have to be
selected without knowing precise demand and revenue.
After demand and revenue are revealed, the second stage



decision is to assign customers to various facilities. Con-
text specifies the location costs, facility capacity, and the
linear penalty factor on unsatisfied demand.

Problem size: We define “problem size” to be the num-
ber of first stage binary decision varibles. We use the
following sizes: {25, 50, 100, 200}. The number of sec-
ond stage binary decision variables for KS is the same
as in the first stage, while for FL, it is the problem size
multiplied by the number of customers (set to 5 in our
experiments). In the SAA method the deterministic refor-
mulation multiplies the number of second stage variables
by the number of samples. So for problem size 200, even
with only 1000 samples, the number of variables already
exceeds 2× 105.

Data generation: We generate samples for the context
vectors and for the random variables within an instance
using a Mixture of Factor Analyzers (Ghahramani and
Hinton [1997]). The resulting distributions are structured
with dependencies among variables, and the mixture com-
ponents make them more complex than a Gaussian.

6.2 BASELINE SOLVERS
SCIP is an open source MIP solver that uses LP
relaxation-based branch and bound algorithm. We ap-
ply SCIP using the SAA method.

Tabu Search (Glover [1986]) is a local search algorithm
that makes moves in the space of the first stage decision
variable and maintains a tabu list of recently visited so-
lutions to avoid cycles. See supplementary material for
more details.

Progressive Hedging ([Watson and Woodruff, 2011]) is
based on the dual decomposition approach described in
section 5.1. It iteratively fixes the relaxation introduced
in the dual decomposition by adding penalty terms to pro-
mote consistency between xω and x. See supplementary
material for more details.

SCIP, Tabu Search, and Progressive Hedging do not sup-
port any transfer across problem instances as they are
originally formulated. We implement a simple way to
adapt Tabu Search and Progressive Hedging to the con-
textual setting. At training time, these optimizers solve
as many training instances as possible within the given
training budget. At test time, a test instance’s context
vector is used for nearest neighbor selection of a training
instance. The solution for the test instance is initialized
to the final solution of the nearest training instance by L1
distance.

6.3 EVALUATION PROTOCOL

Solvers that support contextual optimization are given
the same training budget of 500 CPU cores for 12 hours.

GPUs are not used to allow fair comparison to methods
that cannot use them. The training budget is used for
hyperparameter tuning and parameter learning. For Tabu
Search and Progressive Hedging, instead of parameter
learning, a set of training instances are solved for nearest
neighbor initialization at test time.

We use 1000 contexts and 105 samples for the random
variables in a problem for training, and 100 contexts and
1000 random variable samples each for validation and
testing. The context distribution is independent of the
distribution over random variables in a problem, so we can
sample each separately. The number of variable samples
is limited to 1000 only because SCIP becomes too slow
and uses excessive memory for some problem instances
with more samples. RL approaches can easily scale to
much larger number of samples. The solver performance
on the validation set is used to select the hyperparameters.

At test time we provide one CPU core per instance for all
solvers. Tabu Search and Progressive Hedging both make
the same number of second stage solver calls (which dom-
inates the running time) as the local search solver so that
all three have (approximately) the same computational
budget. SCIP’s computation cannot be easily character-
ized by the number of second stage solver calls. Instead
we set a maximum time limit and a 5% optimality gap,
and allow SCIP to run until whichever condition is satis-
fied first.

7 EXPERIMENTS

We present the following results: a) a comparison of
the local search solver to SCIP in terms of test solution
objective value vs. solver running time, b) a comparison
to the objective value achieved by the baselines, and c)
results for estimating a bound using the dual policy.

7.1 OBJECTIVE VALUE VS. RUNNING TIME

We run SCIP on 100 test problem instances with different
running time limits, from 1s to 104s. We then compare its
objective value to that achieved by the local search solver
on the same instances. The running time of the local
search solver is fixed to be the time needed to execute one
episode per instance and evaluate the solution at the end
of the episode.

Figure 2 summarizes the results. Each plot shows the
percent difference in SCIP’s objective value with respect
to that of the local search solver as a function of the run-
ning time ratio of SCIP to the local search solver. The
key observation is that SCIP gives significantly worse
objective value than the local search solver unless it is
given much more running time. For knapsack problems



Figure 2: SCIP running time vs. objective value comparison between local search solver and SCIP on test problem
instances for the benchmark problems (KS = Knapsack, FL = Facility Location) of sizes {25, 50, 100, 200}. x-axis is
SCIP’s average running time as a factor of the local search (LS) solver’s average running time. y-axis is the percent
improvement in average objective value given by local search over SCIP. Positive values mean local search is better.

of different sizes, SCIP performs 30 to 70% worse when
given approximately the same running time. For problem
sizes 25, 50, and 100, SCIP needs more than an order of
magnitude more time to catch up with the local search
solver’s solution quality. For problem size 200, running
SCIP even 1000 times longer still results in more than
35% worse objective value. A similar result is seen in
the facility location problem as well, where the objective
value gaps are even bigger in favor of the local search
solver. For problem sizes 100 and 200, it appears that
SCIP needs more than 104 seconds to improve the objec-
tive value significantly, and therefore is not able to catch
up with the local search solver’s objective value in that
time.

These results show the speedup benefit of learning a con-
textual solver. Since the solver has already seen at training
time problem instances from the same distribution, gen-
eralization allows it to quickly find good solutions on
unseen problem instances at test time.

7.2 OBJECTIVE VALUE COMPARISON

We compare the objective value given by the local search
solver to that of Tabu Search, Progressive Hedging, and
SCIP. We set the running time of SCIP to be ten times that
of the local search solver to make it a stronger baseline.
We also evaluate the initialization policy and the local
move policy independently to get more insight into the
performance of the local search solver. For the former we
train only the initialization policy to generate a solution
directly, without local search. For the latter we train only a
local move policy that is initialized by selecting a solution
uniformly randomly.

Table 1 summarizes the results. For each (solver, problem,
size) triplet the mean of the objective values over a set of
100 test instances is shown. In all but one case the learned
local search solver computes the best solution among all
the algorithms tried, and in the remaining case it is within

5% of the best.

Both Tabu Search and Progressive Hedging perform
poorly on the larger problem sizes (100, 200), especially
for Facility Location. As we have already seen in the
previous section, SCIP requires significantly more time
to achieve comparable objective values.

A comparison among the different variants of the learned
solver shows that the best results are given by learning
both the initialization and local move policies jointly.
Learning a local move policy to start from a random solu-
tion performs the worst among the variants, especially for
larger problem sizes (KS200, FL100 and FL200). Learn-
ing an initialization policy alone performs better, but uni-
formly worse than learning both jointly.

The dual policy bounds computed by the approach from
section 5.2 also show that on most problems, our learning
based approach not only learns to produce good solutions
but is also able to prove that these solutions are within
20% of the optimum (5 of 8 problem instances).

7.3 INSIGHTS INTO SOLVER BEHAVIOR

Figure 3(a) shows examples of how the objective value
varies as a function of solver steps (here for KS100, other
problems show similar behavior). The objective value
typically improves rapidly for roughly the first one-third
of an episode, with smaller gains afterwards. Unlike a
greedy algorithm, the solver is not constrained to always
improve the objective value. Figure 3(b) shows an exam-
ple. The highlighted part of an episode shows that the
objective value can decrease by a large amount (> 10%)
for a significant duration (> 10%) of the episode before
it improves again. Approximately 7% of test instances
across problem types and sizes show non-greedy behavior.
The ability to learn a non-greedy policy explains how the
local search solver can outperform greedy methods like
Tabu Search.



Solver KS 25 KS 50 KS 100 KS 200 FL 25 FL 50 FL 100 FL 200
SCIP @10x 0.5985 0.1681 2.731 1.1273 0.0 0.0 -7.0531 -13.8540

more runtime
Tabu Search 1.3150 1.4859 -3.0144 -0.0851 0.9781 0.3089 0.0 0.0

Progressive 1.4666 1.2584 2.9565 1.1983 0.9301 0.0003 0.0014 0.0
Hedging

RL-based solvers
Init. policy 1.2410 1.2977 0.1304 0.9275 0.8213 0.8148 1.1395 1.3337

only
Local move 1.1427 1.0631 1.2481 0.1846 1.1058 0.7403 -7.3248 -36.8738
policy only

Init. policy + 1.4807 1.4286 3.2920 1.3133 1.1352 1.2416 1.2729 1.8197
local move policy

Bounds from dual policy
Dual policy 1.5885 2.4486 3.4289 3.8304 1.2753 1.2903 1.6489 2.4702

Table 1: Comparison of average test set objective values achieved by various solvers across benchmark problems and
sizes. KS = Knapsack, FL = Facility Location. The last row shows the upper bounds computed by the dual policy.

(a)

Objective value decreases 
for many steps before 
increasing

(b)
Figure 3: Examples of local search behavior on test instances. (a) Objective value as a function of the number of local
search moves for 100-d Knapsack for several test instances. (Other problems show similar behavior.) Objective values
are normalized to [0,1] for display purposes. (b) Example of non-greedy behavior (highlighted) shown by the local
solver. Approximately 7% of test instances show this type of behavior.

Non-greediness can also potentially make the solution
worse than the initial solution. However, only 0.21% of
test instances show a decrease > 1% in objective value
relative to the initial solution, while 89.8% show an in-
crease > 10%. It appears that on some instances the
initial solution is already very good, and local search in-
troduces small changes which reduces the objective value
slightly.

8 CONCLUSIONS

We presented a learned contextual local search solver
that jointly learns both an initialization policy and a lo-
cal move policy. On benchmark problems of two-stage
stochastic knapsack and facility location of different sizes,
it achieves approximately 30% to 2000% better objective
value for the same running time and at least an order of

magnitude faster for the same objective value. It also
outperforms baseline algorithms such as Tabu Search and
Progressive Hedging on seven out of eight problems. Joint
learning is key as learning only one of the policies in isola-
tion results in worse performance. The dual policy is able
to compute bounds showing that the local search solver’s
objective value is within 20% of the optimum for 5 out of
8 problem instances.

Next directions include incorporating a more powerful
search procedure such as MCTS into the agent as a policy
improvement operator (Silver et al. [2017]).
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