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Abstract

A great challenge in tracking multiple objects is how to

locate each object when they interact and form a group. We

view it as a binary classification problem. It is important

to base the classification on the currently most discrimina-

tive features. We derive a unified framework for learning

feature extraction and classification in appearance-spatial

space for multiple object tracking. In this framework, both

classifier design and feature evaluation are accomplished

by minimizing an criterion which corresponds to an upper-

bound of classification error. There, the most discrimina-

tive features, as variables, minimize the criterion function,

whereas the classifier, as a function, minimizes the crite-

rion functional. The resulting system offers high accuracy

for real-time tracking of nearby multiple objects in complex

and dynamic scenes.

1. Introduction

An intelligent visual surveillance and monitoring system

requires moving objects to be tracked as they move through

a scene. Accurate and real-time tracking can provide useful

information for applications, such as activity analysis [12]

and detection of important or abnormal events [8]. An ar-

senal of powerful tracking algorithms have been proposed

during the last two decades of vision research. A common

approach is by detect-then-track where objects are detected

and then tracked [13, 2].

Much attention has been paid to multiple objects track-

ing [13, 9, 10, 14]. A challenge in tracking multiple mov-

ing objects is when the objects form groups, interact, or

depart from one another, especially in unconstrained clut-

tered environments. When the objects are spatially nearby,

each object is a distractor to another. McKenna et.al. [13]

used color distribution models to track groups of people.

Han el.al. [9] based their indoor multiple people tracking

on state-observation sequence analysis. Probabilistic ap-

proaches like Monte Carlo filter [10] or Bayesian correla-

tion [14] is useful in dealing with the problem of back-

ground clutter as it allows for the tracking of multiple hy-

potheses.

In a recent work [3], Collins et. al. argue that the success

or failure of tracking depends primarily on how distinguish-

able an object is from its surroundings. They present an

online distractor-resistance feature extraction mechanism to

enhance the performance of mean-shift tracker for tracking

single object in complex scenes, where distractors include

background and nearby objects. The method is simple yet

proves powerful for tracking single object under influence

of distractors. Similar idea is taken in [1] where tracking is

consider as a binary classification problem and an ensemble

of weak classifier is trained on-line to distinguish between

the object and the background.

Appearance-based features are often used for tracking

[4, 5]. Such methods offer flexibility to track deformable

or non-rigid objects while being robust to partial occlusion.

However, appearance based features could lead to confu-

sion between different objects when the objects and their

distractors are very similar in appearance.

In this paper, we address the problem of distractor-

resistance tracking for multiple nearby objets. We pose it

as a binary pattern classification problem. The key prob-

lems are the following: (1) designing an evaluation criterion

for effective classification; (2) performing online learning

of the best features for the next frame; and (3) exploiting

constraints on spatial relations between the tracked region

and distractors tracked the region and distractors, to make

full use of available information contained in the observa-

tion. Solving these problems leads to a unified, theoretically

justified, framework , in which both feature evaluation and

classifier design are accomplished by minimizing an crite-

rion which corresponds to an upper-bound of classification

error. The overall description of the framework is as fol-

lows:

(1) Classification. In a tracking system, samples of pixels



from object and its distractor classes are available from pre-

viously tracked multiple objects; they form a training data

set. We use an upper-bound of error rate as the evaluation

criterion for classification. Through functional analysis, the

optimal Bayesian classifier is derived by minimizing the

evaluation criterion, in the form of log likelihood ratio.

(2) Feature Extraction. We further analyze the upper-

bound of classification error rate that can be achieved by

the derived Bayesian classifier and derive the most discrim-

inative features. We adopt the linear subspace learning for

feature extraction. The optimal projection matrix is learned

by minimizing the corresponding Bayessian upper-bound.

(3) Constraints on Spatial Relationship. We augment the

appearance features in temporal frames by including spatial

relationship between the object regions; and then perform

the learning of the classification and feature extraction in

the augmented appearance-spatial space.

The work most closely related to ours is that of [3] and

[1] that use on-line subspace learning and Adaboost to find

the best feature space to work in and tracker ensemble. We

extend their work in several aspects. First, we derived a the-

oretically justified framework, instead of a heuristic one, for

on-line tracker design and feature extraction. Second, we

introduce the constrains on spatial relationship among the

object regions into feature space, and automatically trade

off between the appearance feature and spatial feature dur-

ing the tracking process. Finally we focus on multi-objects

tracking which is not involved in [3] and [1] and the result-

ing system is realtime.

The remainder of this paper is organized as follows. The

unified framework and how it is formulated to tackle the

three problems are presented in Section 2 . Experiments are

provided in Section 3 to demonstrate the performance of the

resulting system. Section 4 concludes the paper.

2. The Unified Framework

The tracking problem we are dealing with can be illus-

trated in Fig.1: (a),(b) and(c) show nearby moving objects

of similar type. Each object is a distractor to the other before

they spit. The object detection results of an object tracker

are given in (d),(e) and (f), in which these nearby objects

are detected as merged foreground blobs (we use a Gaus-

sian mixture model [15] for moving objects detection and

the merge and split events reasoning is similar to the work

in [16]). Such cases are common in many tracking applica-

tions. We aim to locate each object in blob correctly.

Tracking nearby objects is equivalent to keeping track of

the location of each object. This may be done by labeling

the pixels inside the blob with 1 or -1, with 1 indicating the

pixels belonging the object and -1 those of distractors. This

could be viewed as a binary classification problem.

In a tracking system, samples of pixels from object and

Figure 1. Two moving objects are detected as one fore-

ground blob.

its distractor classes are available from multiple objects

tracked; they form a training data set for each object, de-

noted as {xi, yi}
N
i=1 with xi a vector valued feature and

yi = 1 or −1. We aim to learn from the training data a

classification function f(x) : X 7→ {−1,+1} where X is

the domain of features x. The training data for tracking in

the next frame is collected up to the current frame, and so

the learning is done online using temporal information. In

the following three subsections, we present solutions for the

aforementioned three problems.

2.1. Upper-Bound of Classification Errors

We adopt the upper-bound estimate used in AdaBoost

learning [7], which is viewed to be the most important de-

velopments in classification methodology. For the real ver-

sion of AdaBoost (RealBoost), a stronger classifier L(x) :
X 7→ (−∞,+∞) is a real function on features domain

X. The class label for a test x is obtained as f(x) =
sign(L(x)) while the magnitude |L(x)| indicates the confi-

dence.

The following criterion measures the upper-bound on

classification error [7]1:

J(L) = log(E(e−yL(x))) (1)

where E stands for the mathematical expectation over the

joint (x, y) space. According to Lemma 1 in [7], J(L) is

minimized at

L∗(x) =
1

2
log

P (y = +1|x)

P (y = −1|x)
(2)

Assuming that the two class prior probabilities satisfy

P (y = +1) = P (y = −1), and denote P+(x) = P (x|y =
+1),P−(x) = P (x|y = −1), we get

L∗(x) =
1

2
log

P+(x)

P−(x)
(3)

1For the convenience of derivation, we actually use the logarithm of the

upper-bound, without changing the minimum



L∗ maps object one/two class condition distributions into a

positive real number for features distinctive to object one,

and a negative one for features distinctive to object two (be-

longing to distractors). The associated classification rule is

f∗(x) = sign(L∗(x)), which can be shown as the Bayesian

classifier (Lemma 1 in [7]). This log likelihood ratio func-

tion has been empirically used as what is called “tuned fea-

ture” in [3] for discriminating between the tracked object

and its distractors. This gives a solution to problem (1) de-

fined in this paper.

2.2. Extraction of Most Discriminability
Features

We adopt linear subspace learning for feature extraction.

The transformation can be performed by multiplying the

input data by a projection matrix W to produce new fea-

ture salient features. After substituting x by extracted fea-

tures Wx and L by the Bayesian estimate L∗, the upper-

bound becomes J(L∗|W ) = log(E(e−yL∗(Wx))). Now,

we will find optimal linear transformation W by minimiz-

ing J(L∗|W ) with respect to W of the evaluation criterion.

It is interesting to notice that the above the Bayesian

upper-bound J(L∗|W ) is identical to the Bhattacharyya co-

efficient [11] between the two class conditional distribu-

tions (see Appendix A for a proof).

J(L∗|W ) = log(

∫

(P+(Wx)P−(Wx))
1

2 dx) (4)

Generally speaking, the expression of object function J

is very complex, and its gradient equation is highly nonlin-

ear with respect to W even when P+ and P−. For real time

tracking, it is computationally impractical to estimate the

best W ∗ using a gradient-descent method. A compromise

is to define a finite set S of seed candidate transformation

matrix and choose the most discriminative one from the set

to get the sub-optimal feature space [3].

Assuming that the number N of training samples is large

enough, we could use the arithmetic average to approximate

the expectation E in (1), according to the law of large num-

bers. This gives the approximate form

J̃(L∗|W ) =
1

N
(

∑

yi=−1

(
P+(Wxi)

P−(Wxi)
)

1

2 +
∑

yi=+1

(
P−(Wxi)

P+(Wxi)
)

1

2 )

(5)

Given a matrix W ∈ S , the class conditional probability

P+(Wx) and P−(Wx) in subspace Wx can be determined

by using some statistical means such as non-parameter his-

togram estimation. The best discriminative transformation

matrix is then chosen to be:

W ∗ = arg min
W∈S

(J̃(L∗|W )) (6)

This defines a solution to problem (2) defined in this paper.

An exhaustive search will be described in Section 2.4 to find

the solution.

2.3. Constraints on Spatial Relationship

In the above section, we have not specified what origi-

nal features space to work in. In principle, a wide range of

features could be chosen for tracking, including color, tex-

ture, contour, shape and motion. Collins et. al. [3] chose

to represent target appearance using histograms of color fil-

ter bank responses applied to the R-G-B pixel values within

local image windows. A 11D feature vector that is formed

by the combination of local orientation histogram and pixel

colors is used in [1] for feature selection.

In this paper, we exploit cues in spatial relations between

tracked the region and distractors, and integrate the spatial

cues into feature extraction, to make tracking robust to the

scene in which appearance itself is indistinctive. This is

done by taking into consideration information on spatial lo-

cations of both tracked regions so that discrimination be-

tween regions can be inferred spatially.

We view the feature vector x = (u, s)T as a multi-

dimension probabilistic variable, where u is the appear-

ance feature vector and s is the the spatial feature vector;

and define the two conditional distributions in (3) in the

joint appearance-spatial space. In an implementation, the

appearance-spatial space is chosen to be a 5D dimensional

(3D color plus 2D coordinates) space . The dimensionality

reduction may be done via Linear Discriminant Analysis

(LDA) [6].

However, it is advantageous to keep the most discrimi-

native appearance features and most discriminative spatial

features separately. This means that we want to search for

a plane in the 3D color space and a straight line on the 2D

image plane, they can best discriminate the samples of two

classes. Therefore, we define the transformation matrix in

the the following form

W =

(

ω1 ω2 ω3 0 0
0 0 0 τ1 τ2

)

, ωi, τi ∈ R.

In an implementation, we define the set of seed candidate

transformation matrix as:

S = {

(

ω1 ω2 ω3 0 0
0 0 0 τ1 τ2

)

| ωi, τi ∈ {−2,−1, 0, 1, 2}}

This set of seed matrixes is chosen as such for the follow-

ing reasons: (1) the matrix computation can be done effi-

ciently when the entries are integer-valued; (2) most com-

monly used appearance feature combination schemes can

be expressed by this form of transformation; for example

2G-R-B used in [3]; (3) the orientations in 2D image plane,

such as 0, π
4 , π

2 and 3π
4 in fig.2, can be expressed by this

form.



Figure 2. Four typical spatial configurations of nearby

objects watched by a top-view camera

2.4 Implementation Issues

When both appearance and spatial feature are consid-

ered jointly, a total of 55 candidate features have to be enu-

merated for finding the optimal matrix W . To alleviate

such computational burden for real-time performance, we

assume that appearance feature and spatial feature are in-

dependent, so that P (W (u, s)T |y) = P (wuT |y)P (τsT |y).
We then use a greedy strategy to minimize the following

two object functions separately:

J̃1(L
∗|ω) =

1

N

∑

yi=−1

(
P+(ωuT

i )

P−(ωuT
i )

)
1

2 +
1

N

∑

yi=+1

(
P−(ωuT

i )

P+(ωuT
i )

)
1

2

(7)

J̃2(L
∗|τ) =

1

N

∑

yi=−1

(
P+(τsT

i )

P−(τsT
i )

)
1

2 +
1

N

∑

yi=+1

(
P−(τsT

i )

P+(τsT
i )

)
1

2

(8)

This obtains a sub-optimum for minimizing (5).

Suppose J̃1(L
∗|ω) and J̃2(L

∗|τ) are minimized at ω∗

and τ∗ with value J̃∗

1 and J̃∗

2 separately , then

(

ω∗ 0
0 τ∗

)

is chosen as a approximation to the optimal matrix W ∗.

After normalizing (J∗

1 , J∗

2 ), we set λ1 = 1
2 log

1−J̃∗
1

J̃∗
1

and

λ2 = 1
2 log

1−J̃∗
2

J̃∗
2

. Also normalize (λ1, λ2), then the tuned

feature can be expressed as:

L∗(u, s) = λ1 log
P+(ω∗uT )

P−(ω∗uT )
+ λ2 log

P+(τ∗sT )

P−(τ∗sT )
(9)

This way, the number of candidate features is reduced to

53 + 52 = 150. Using a trick described in [3], this number

can be further decreased to 57.

Fig.3 illustrates the advantage of feature extraction in

appearance-spatial space over appearance-only space. The

two vehicles are nearby and form a group during the track-

ing. The histograms of the two objects in the two spaces,

when the objects merge, are shown in Fig.4 . About 20%

of the pixels is ”hard ” to be classified in appearance space,

and this deteriorates the tracking in subsequent frames, as

shown in the third row of fig.3. On the other hand, the error

rate of the spatial-feature-based classifier is as low as 3.5%.

Combining features in the two spaces improves the classi-

fication accuracy, as is illustrated in the fourth row of the

fig.3.

Figure 3. Tracking two nearby moving vehicles which

are spatially separable but un-separable by apearance.

Row 1:original image. Row 2: Foreground blob. Row 3:

Classification results using appearance feature only. Row 4:

Classification results using both appearance-spatial feature

.

Figure 4. Histograms of the two objects in the RGB space

(a) and in the spatial space (b).

The location of the tracked object can be calculated eas-

ily based on the labelling result of the pixels through mean-

shift procedure[4].

3. Experimental Results

A real-time outdoor tracking system has been imple-

mented based on the methods presented in this paper. The

system is running on a standard PC hardware (Pentium IV

at 3.0GHz) and works at 10-15 fps. We take the videos cap-

tured by a camera system set around our building for test

and comparison. The video image size is 320× 240(24 bits

per pixel).

Fig.5 shows results of tracking cars on road . Tracking

methods based on color, shape or appearance information

are likely to fail in this situation. The first row shows re-

sults obtained using the method of [3]: At frame 53, the

two vehicles merge into a group, where a white rectangle is

used to indicate merge into a single blob; and it is unable

to recover two different objects when they split at frame 65.

In contrast, the use of the spatial constraint in the present

methods can give correct results after the objects merge or



Figure 5. Tracking cars on road. Appearance-only based

methods fail (row 1). The appearance-spatial feature based

method works well (row 2).

split (the second row). Table 1 provides some feature ex-

traction results.

Figure 6. Tracking people walking and cycling in a park-

ing lot. (a) Our method well handled in this challenge se-

quence for departure from on another (263∼361), merge

and split (3651∼3673). (b) Tracking fails by appearance

only method.

Fig.6 shows results of tracking people walking and cy-

cling in a parking lot. A parking lot surveillance video

about 30 minutes is used for this test. It is a challenging

dynamic scene for multiple objects tracking. Difficulties

due to partial occlusion, merge, split and departure from

one another are frequently encountered during the period.

Fig.6(a) shows results of the present method. In frame 263,

278 and 361, at the bottom side, a person and a red car de-

part from each other. In the upper part of the video images,

six vehicles or bicycles are moving, five from left to the

right and the other in the other direction. Our results made

Table 1. Feature extraction results for Fig. 5 and Fig.6

Frame ID λ1 λ2 W ∗

(Fig.5) 58 0.44 0.56

(

1 1 −2 0 0
0 0 0 −2 1

)

(Fig.5) 65 0.44 0.56

(

1 1 −2 0 0
0 0 0 −2 1

)

(Fig.6(a)) 278 0.13 0.87

(

−2 1 1 0 0
0 0 0 1 0

)

(Fig.6(a)) 3651 0.07 0.93

(

−2 1 1 0 0
0 0 0 0 1

)

(Fig.6(a)) 3673 0.06 0.94

(

−2 1 1 0 0
0 0 0 1 0

)

no mal-tracking after merge and split happened five times.

In frames 3651 and 3673, at the lower part, three persons

interacted to each other and the trajectories were still ac-

curately computed for each target. Frame 23923 is the last

frame of the sequence. Our method worked well throughout

the sequence. Some feature extraction results are shown in

table 1. Note that the tracker pick the spatial coordinates

as discriminative feature over time. Fig.6(b) shows a fail-

ure results made by the method of [3] for frames 3622 to

3642, in which only appearance space is used for feature

extraction..

Figure 7. Pedestrian tracking. Two pedestrians (high-

lighted by red ellipse) merge into a group and walk nearby

until they leave the scene. Row 1: results obtained by ap-

pearance only tracker. Row (2) results obtained by present

tracker.

Fig.7 shows results of pedestrian tracking, where the mo-

tion of objects involves direction changes. The two pedes-

trians (high lighted by red ellipse) moved into the scene and

then merged into a group after frame 8. In frame 53 they

turn right together at the parking lot entrance. Velocity-

prediction based trackers will fail in such cases. So is

appearance-only based method (row 1). In contrast, our

tracker tracked every person correctly (row 2) until they

leave the scene.



4. Conclusion

In this paper, we have developed a unified, theoretically

justified, framework for classification and feature extraction

for tracking multiple objects in group. The novel contribu-

tions are: (1) The two problems are solved by minimizing

an error bound function; this is demonstrated by theoreti-

cal analysis derivation. (2) Spatial constraint, in addition to

appearance features space, is used to achieve better track-

ing performance than using either appearance or spatial fea-

tures, as has been demonstrated by experimental results.
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Appendix A

Proof of the identity between Bayesian upper-bound and

the Bhattacharyya coefficient.

J(L∗) = log(E(e−yL∗(x)))

= log(E(e−L∗(x)|y = +1)P (y = +1)

+E(e−L∗(x)|y = −1))P (y = −1)

= log(E((
P−(x)

P+(x)
)

1

2 |y = +1)P (y = +1)

+E((
P+(x)

P−(x
)

1

2 |y = −1)P (y = −1))

= log(P (y = +1)

∫

(
P−(x)

P+(x)
)

1

2 P+(x)dx

+P (y = −1)

∫

(
P+(x)

P−(x)
)

1

2 P−(x)dx)

= log(

∫

(P−(x)P+(x))
1

2 dx) (10)

The last form of expression is defined as Bhattacharyya co-

efficient between two distributions in [11]
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