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Abstract

We investigate learning feature-to-feature translator

networks by alternating back-propagation as a general-

purpose solution to zero-shot learning (ZSL) problems.

It is a generative model-based ZSL framework. In con-

trast to models based on generative adversarial networks

(GAN) or variational autoencoders (VAE) that require aux-

iliary networks to assist the training, our model consists

of a single conditional generator that maps class-level se-

mantic features and Gaussian white noise vector account-

ing for instance-level latent factors to visual features, and

is trained by maximum likelihood estimation. The train-

ing process is a simple yet effective alternating back-

propagation process that iterates the following two steps:

(i) the inferential back-propagation to infer the latent fac-

tors of each observed example, and (ii) the learning back-

propagation to update the model parameters. We show that,

with slight modifications, our model is capable of learning

from incomplete visual features for ZSL. We conduct ex-

tensive comparisons with existing generative ZSL methods

on five benchmarks, demonstrating the superiority of our

method in not only ZSL performance but also convergence

speed and computational cost. Specifically, our model out-

performs the existing state-of-the-art methods by a remark-

able margin up to 3.1% and 4.0% in ZSL and generalized

ZSL settings, respectively.

1. Introduction

Deep learning techniques have successfully tackled vari-

ous computer vision problems such as object detection [16,

34, 10, 26, 9, 63], image, video and 3d shape genera-

tion [18, 13, 57, 58, 33, 60, 59, 64, 45], pose estima-

tion [32, 44, 65, 42, 43], object recognition [20, 41, 17], etc.

Especially, these advanced deep learning methods equip the

machine with the comparable ability of object recognition

to human beings when abundant labeled training samples

∗Work was done while Yizhe Zhu was an intern at Hikvision.

Figure 1: Demonstration of the feature-to-feature transla-

tor for generative zero-shot learning. Training (blue flow):

given the class-level semantic features C and the observed

visual features X , (i) the latent factors Z are inferred by

MCMC and (ii) the weights θ of the translator are updated

by the gradient ascent for maximum likelihood. Transla-

tion (black flow): once the translator is learned, arbitrary

number of synthetic visual features can be generated for

unseen classes by translating the unseen class semantic fea-

tures along with Z randomly sampled from Gaussian distri-

bution. The generated samples for unseen classes are useful

for zero-shot learning.

are provided. However, this ability will decrease dramati-

cally for classes that are insufficiently represented or even

not present in the training data, thus increasing the difficulty

of real-world applications due to the costly data collection

and annotation effort. This limitation attracts the intense

interest of researchers in zero-shot learning (ZSL).

ZSL aims to recognize novel classes where no training

data is available for these classes. The key to make ZSL

work is to use the semantic description of classes as the

bridge to connect the seen classes and unseen classes. Re-

cently, generative ZSL approaches [4, 67, 55, 11, 50, 46]

have emerged as a new trend of ZSL strategy by exploit-

ing the successful generative models, e.g., variational au-

toencoders (VAE) [18, 35], generative adversarial networks

(GAN) [13, 28], etc, to learn mappings from class-level se-

mantic features (e.g., attributes or description embeddings)

to visual features. The synthetic visual features for unseen

classes through well-trained generative models establish the

visual description of unseen classes and make the conven-
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tional supervised classification applicable. The quality of

generative ZSL approaches mainly depends on how well the

generative model can emulate the data distribution. GAN-

based methods [67, 55, 11] employ the conditional genera-

tor network which maps class-level semantic features along

with Gaussian white noise as latent factors to visual fea-

tures. The conditional generator is trained in an adversarial

manner where a well-designed discriminator network is re-

cruited to play a minimax game with the conditional gen-

erator. The adversarial training strategy gets around the

intractable inference of latent factors in training; however,

the imbalance between the discriminator and the generator

would lead to non-convergence and mode collapse issues.

VAE-based methods [50, 46] associate the conditional gen-

erator network with an additional encoder that approximates

the posterior distribution for the purpose of inference of la-

tent factors, and train both models by maximizing the varia-

tional lower bound. In this paper, we will show that neither

of these assisting networks is necessary for training the con-

ditional generator.

In our framework of generative ZSL, we adopt a con-

ditional generator as a feature-to-feature translator network

that translates the class-level semantic features along with

the instance-level latent factors to visual features as shown

in Figure 1. However, different from GAN and VAE-based

methods, we resort to a theoretically more accurate estima-

tor, maximum likelihood estimation (MLE) with EM-like

strategy [6], to train the network, without the requirement

of auxiliary networks for assistance. The hard nut to crack

in training latent variable models by MLE is the intractable

posterior distribution that is required for computing the gra-

dient of the observed-data log-likelihood. In the proposed

framework, we adopt Markov chain Monte Carlo (MCMC),

such as Langevin dynamics [51, 29], for computing the

posterior distribution. We show that the maximum likeli-

hood algorithm involves the computation of the gradient of

observed-data log-likelihood with respect to model param-

eters and the gradient with respect to latent factors, both of

which can be efficiently computed by back-propagation.

Specifically, the proposed translator is learned by alter-

nating back-propagation (ABP) algorithm, which iterates

the following two steps: (i) inferential back-propagation:

for each training example, inferring the continuous latent

factors by sampling from the current learned posterior dis-

tribution via Langevin dynamics, where the gradient of the

log joint density can be calculated by back-propagation, (ii)

learning back-propagation: updating the model parameters

given the inferred latent factors and the training examples

by gradient ascent, where the gradient of the log-likelihood

with respect to the model parameters can again be calcu-

lated by back-propagation.

The ABP algorithm was originally proposed for training

unconditional generator networks [15, 56]. In this paper, we

generalize ABP to learning conditional generator network

for feature-to-feature translation, where the class-level se-

mantic features play the role of condition.

It is worth mentioning that the proposed model is capa-

ble of learning from incomplete training examples, where

visual features are partially corrupted or inaccessible due to

occlusion in image space. Specifically, our model can learn

from incomplete data by making latent factors only explain

the visible parts of the visual features conditioned on class-

level semantic features, while GAN or VAE-based methods

can hardly deal with this situation.

Our contributions can be summarized as follows: (1)

We propose a feature-to-feature translator for generative

ZSL, where we learn a mapping from class-level seman-

tic features, along with instance-level latent factors fol-

lowing Gaussian white noise distribution, to visual fea-

tures. (2) We propose to learn the translator via alternat-

ing back-propagation (ABP) algorithm for maximum like-

lihood, without relying on other assisting networks, which

makes our framework more statistically rigorous and ele-

gant. (3) We show that the proposed framework can learn

from incomplete training examples where visual features

are partially visible due to corruption or occlusion in image

space. (4) Comprehensive experiments conducted on vari-

ous ZSL tasks show the state-of-the-art performance of our

framework, and a thorough analysis of the model demon-

strates the superiority of the proposed framework in differ-

ent aspects.

2. Related Work

X-to-Y Translation. We are not the first to apply condi-

tional generators to learn X-to-Y mapping. A text-to-image

translation is proposed for image synthesis from text de-

scription [33]. Zhu et al [66] has studied image-to-image

translation problem for different types of image processing

tasks, which include synthesizing photos from label maps

or edge maps and generating color images from their grey-

scaled versions. Recently, video-to-video translation prob-

lem has been tackled by learning a mapping function from

an input source video (e.g., a sequence of semantic seg-

mentation masks) to a target realistic video [49]. Our work

learns a feature-to-feature mapping for ZSL. Additionally,

all other works mentioned above are based on the frame-

work of GANs, which means that well-designed discrimi-

nator networks need to be resorted to in the training stage.

Our framework differs in that it is trained by an alternat-

ing back-propagation algorithm without incorporating any

extra assisting networks. This makes our framework con-

siderably simpler and computationally more efficient than

those based on GANs.

Generative Models. Our model is essentially a con-

ditional latent variable model. The alternating back-

propagation (ABP) training method for our model is re-
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lated to variational inference (e.g., VAE) and adversarial

learning (e.g., GAN), both of which require an extra as-

sisting network with a separate set of learning parameters

to avoid the explaining-away inference of latent variables

in the model. Unlike VAE and GAN, ABP does not involve

an auxiliary network and performs explicit explaining-away

inference by directly sampling from the posterior distribu-

tion via MCMC, such as Langevin dynamics, which is pow-

ered by back-propagation. Our model trained by ABP is

much simpler, more natural and statistically rigorous than

those trained by adversarial learning and variational infer-

ence schemes. ABP has been used to train general gener-

ators [15] and deformable generators [61] for image pat-

terns, as well as dynamic generators [56] for video patterns.

Our paper is a generalization of [15, 56] by applying ABP

to train a conditional version of the generator model for

feature-to-feature translation. The generative ConvNet [58]

and the Wasserstein INN [23] are two one-piece models that

learn energy-based generative models for data generation.

Both [58] and [23] generate data via iterative MCMC sam-

pling, while our model generates data via direct ancestral

sampling, which is much more efficient.

Zero-Shot Learning. Several pioneering works for ZSL

[21, 22] make use of class attributes as intermediate infor-

mation to classifiy images for unseen classes. Some ZSL

methods are based on the bilinear compatibility function

between the visual and semantic features, which can be

learned by using (a) the ranking loss (e.g., ALE [1] and

DeViSE [12]), (b) the structural SVM loss [2] or (c) the

ridge regression loss (e.g., ESZSL [36] and PTZSL [8]). To

enhance the expressive power of the models, several ZSL

approaches [53, 62, 25, 24, 68] learn non-linear multimodal

embedding. Taking advantage of the generative models in

data generation, several methods [67, 11, 52, 46, 4, 50] re-

sort to generating visual features from unseen classes for

ZSL. Both GAZSL [67] and FGZSL [52] pair a Wasser-

stein GAN [3, 14] with a classification loss as regulariza-

tion to increase the inter-class discrimination of synthetic

features. MCGZSL [11] adopts cycle consistency loss [66]

to regularize the generator for ZSL . [50, 46] employ condi-

tional VAEs [39] framework to learn feature generator. Our

model also learns to generate visual features from unseen

classes by a conditional generator, however, different from

the generative ZSL methods mentioned above, our model

is trained by alternating back-propagation, without the need

of assisting models for training.

3. Feature-to-Feature Translator

3.1. Conditional Latent Variable Model for Feature­
to­Feature Translation

Let S = {(Xi, Ci), i = 1, ..., n} be the training data

of the seen classes, where Xi ∈ X
D is the D-dimensional

visual features (e.g., CNN features extracted from images)

for the i-th image and Ci ∈ C
K is its K-dimensional class-

level semantic features (e.g., class attribute embedding).

Because one class usually corresponds to many image ex-

amples, we aim at finding a one-to-many class-to-instance

feature generator. Specifically, we try to learn a mapping

g : CK×Zd → XD that seeks to explain the visual features

Xi extracted from each image by its corresponding class-

level features Ci and a d-dimensional vector of latent factors

Zi ∈ Z
d that accounts for instance variations. We assume

Zi is sampled from a Gaussian prior distribution N(0, Id),
where Id stands for the d-dimensional identity matrix. Once

the generator g learns to generate image features from class

features, it can also generate X̃ from any unseen classes.

Formally, the feature-to-feature mapping can be formulated

by a conditional latent variable model as follows:

Z ∼ N (0, Id),

X = gθ(C,Z) + ǫ, ǫ ∼ N (0, σ2ID),
(1)

where θ contains all the learning parameters in the mapping

function g, and ǫ is a D-dimensional noise vector follow-

ing Gaussian distribution. The mapping g can be any non-

linear mapping. In this paper we adopt the top-down MLP

parameterization of g, which is also called the conditional

generator network, to map the latent factors Z along with

the class features C to the visual features X . Generally,

the model is defined by a prior distribution of latent fac-

tors Z ∼ p(Z) and the conditional distribution to generate

visual features given the class features and the latent fac-

tors, i.e., [X|Z,C] ∼ pθ(X|Z,C). Let qdata(X|C) be the

true distribution that generates the training visual features

given their associated class features. The goal of learning

this model is to minimize the Kullback-Leibler divergence

KL(qdata(X|C)‖pθ(X|C)) over θ.

3.2. Learning by Alternating Back­Propagation

3.2.1 Maximum Likelihood Learning

The maximum likelihood estimation (MLE) of our model

pθ(X|C) is equivalent to minimizing the Kullback-Leibler

divergence KL(qdata(X|C)‖pθ(X|C)) over θ. The com-

plete data model is given by

log pθ(X,Z|C) = log[pθ(X|Z,C)p(Z)]

= −
1

2σ2
‖X − gθ(C,Z)‖2 −

1

2
‖Z‖2 + const,

(2)

where the constant term is independent of X , Z and θ. The

observed-data model or the log-likelihood is obtained by

integrating out the latent factors Z:

log pθ(X|C) = log

∫
pθ(X|Z,C)p(Z)dZ. (3)

Suppose we observe the training data S =
{(Xi, Ci), i = 1, ..., n}, and [X|C] ∼ pθ(X|C), the goal

of MLE is to maximize the observed-data log-likelihood:
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L(θ) =

n∑

i=1

log pθ(Xi|Ci). (4)

Without loss of generality, we consider one observed pair

(Xi, Ci) and omit subscript i for brevity. To maximize the

log-likelihood, we adopt gradient ascent strategy. The gra-

dient of the log-likelihood with respect to θ can be calcu-

lated by the following equation:

∂

∂θ
log pθ(X|C) =

1

pθ(X|C)

∂

∂θ
pθ(X|C)

= EZ∼pθ(Z|X,C)

[
∂

∂θ
log pθ(X,Z|C)

]
.

(5)

3.2.2 Inferential Back-Popagation

Since the expectation with respect to the posterior distribu-

tion pθ(Z|X,C) in Equation (5) is analytically intractable,

we resort to the average of the MCMC samples to approx-

imate the expectation. Specifically, we employ Langevin

dynamics which carries out sampling by iterating:

Zτ+1 = Zτ +
s2

2

∂

∂Z
log pθ(X,Zτ |C) + sUτ ,

= Zτ + sUτ+

s2

2

[
1

σ2
(X − gθ(C,Zτ ))

∂

∂Z
gθ(C,Zτ )− Zτ

]
,

(6)

where τ denotes the time step for Langevin dynamics, Uτ

is the Gaussian white noise corresponding to the Brown-

ian motion, which is added to prevent the chain from being

trapped by local modes, and s is the step size.

Because of the high computational cost of MCMC, it is

infeasible to generate independent samples from scratch in

each learning iteration. In practice, the MCMC transition

of latent factors Z in the current iteration starts from the

previous updated result of Z, which is obtained from the

previous learning iteration. We initialize Z with Gaussian

white noise at the beginning. Persistent MCMC update with

such a warm start scheme is effective and efficient enough

to provide fair samples from the posterior distribution.

We infer the latent factors Zi for each observed

pair (Xi, Ci) by sampling a single copy of Zi from

pθ(Zi|Xi, Ci) via running finite steps of Langevin dynam-

ics starting from the current Zi (i.e., the warm start). This is

a conditional explaining-away inference solving an inverse

problem, which is that given the specific visual features of

an image and its associated class features, how to obtain its

corresponding latent factors. Unlike VAE, our model does

not need to recruit an extra network for inference.

3.2.3 Learning Back-Popagation

Once Z is inferred, we learn the model via stochastic gra-

dient algorithm by updating θ based on the Monte Carlo

approximation of the gradient of L(θ) in Equation (5):

θt+1 = θt + γt
∂

∂θ
L(θ), (7)

where t is the time step for the gradient algorithm, γt is the

learning rate, and

∂

∂θ
L(θ) ≈

n∑

i=1

∂

∂θ
log pθ(Xi, Zi|Ci)

= −
n∑

i=1

∂

∂θ

1

2σ2
‖Xi − gθ(Ci, Zi)‖

2

=

n∑

i=1

1

σ2
(Xi − gθ(Ci, Zi))

∂

∂θ
gθ(Ci, Zi).

(8)

The Equation (7) corresponds to a non-linear regression

problem, where it seeks to find the θ to predict visual fea-

tures Xi by its corresponding observed class features Ci and

the inferred latent factors Zi.

3.2.4 Alternating Back-Propagation Algorithm

The key to compute Equation (6) is to calculate

∂gθ(C,Z)/∂Z, while the key to compute Equation (8) is

to calculate ∂gθ(C,Z)/∂θ. Both of them can be efficiently

computed by back-propagation. Algorithm 1 describes the

details of the learning and sampling algorithm.

Algorithm 1 Alternating back-propagation procedure for

learning feature-to-feature translator.

Input: training samples {(Xi, Ci), i = 1, ..., n}, the max-

imal number of loops Nstep, the number of Langevin

steps l, the learning rate γt.
Output: the learned parameters θ, the inferred latent fac-

tors {Zi, i = 1, ..., n}.

1: Initialize θ and Zi, for i = 1, ..., n.

2: for t = 1,..., Nstep do

3: Inferential back-propagation: For each i, run

l steps of Langevin dynamics to sample Zi ∼
pθ(Zi|Xi, Ci) with warm start, i.e., starting from the

current Zi, each step follows equation (6).

4: Learning back-propagation: Update θ ← θ +
γtL

′(θ), where L′(θ) is computed according to equa-

tion (8), with learning rate γt.
5: end for

3.3. Comparison with Variational Inference

Our learning algorithm presented in Algorithm 1 seeks

to minimize KL(qdata(X|C)‖pθ(X|C)), while variational

auto-encoder (VAE) changes the objective to

min
θ,φ

KL(qdata(X|C)pφ(Z|X,C)‖p(Z|C)pθ(X|Z,C))
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by utilizing an extra inference model pφ(Z|X,C) with

parameter φ to infer latent variable Z, where the infer-

ence model pφ(Z|X,C) is an analytically tractable ap-

proximation to pθ(Z|X,C). Compared to the maximum

likelihood objective KL(qdata(X|C)‖pθ(X|C)), which is

the KL-divergence between the marginal distributions of

X conditioned on C, while the VAE objective is the KL-

divergence between the joint distributions of (Z,X) condi-

tioned on C (i.e., an upper bound of the maximum likeli-

hood objective.) as shown below:

KL(qdata(X|C)pφ(Z|X,C)‖pθ(Z,X|C)) =

KL(qdata(X|C)‖pθ(X|C)) + KL(pφ(Z|X,C)‖pθ(Z|X,C)).

The accuracy of variational inference depends on the accu-

racy of the inference model pφ(Z|X,C) as an approxima-

tion of the true posterior distribution pθ(Z|X,C). That is,

when KL(pφ(Z|X,C)‖pθ(Z|X,C)) = 0, the variational

inference is equivalent to the maximum likelihood solution.

Therefore, our learning algorithm is more natural, straight-

forward, accurate, and computationally efficient than VAE.

4. Zero-Shot Learning

4.1. Classification in Zero­Shot Learning

The feature-to-feature translator that maps [C,Z] → X
can be considered as an explicit implementation of the lo-

cal linear embedding [37], where [C,Z] is the embedding

of X , with disentanglement of class features C and non-

class features Z. Given any unseen class Cu ∈ CK , we

can generate arbitrarily many visual features for the unseen

class by first sampling Z from N (0, Id) and then mapping

(Cu, Z) into X via the learned feature-to-feature transla-

tor X̃ = gθ(C
u, Z) + ǫ. With generated data of unseen

classes, the labels of testing examples from unseen classes

can be predicted via any conventional supervised classifiers.

Here we employ a KNN classifier (K=20) for ZSL for its

simplicity and a softmax classifier for GZSL as suggested

in [55].

4.2. Learning from Incomplete Visual Features

The inferential back-propagation step performs an

explaining-away inference, where the latent factors com-

pete with each other to explain the observed visual features.

This is very useful in the scenario where the training vi-

sual features are incomplete. In this case, our model is still

able to learn from incomplete visual features via alternat-

ing back-propagation algorithm. The latent factors can still

be obtained by explaining the incomplete observed visual

features, and the model parameters can still be updated as

before. Taking the features in [67] as an example, Zhu et

al train a part detector to localize small semantic parts of

birds such as heads and tails, and concatenate the extracted

features of parts as the visual representation of the object

for ZSL. The part features are inaccessible in two cases: (a)

the semantic parts don’t appear in the images, for example,

no tails can be observed when birds are in front view; (b)

the detector fails to discover the parts. In these cases, ze-

ros are assigned to the corresponding bins of feature vector

for the missing parts. We can easily adapt our ABP algo-

rithm to the above situation by changing the computation of

‖X−gθ(C,Z)‖2 to ‖M◦(X−gθ(C,Z))‖2, where M is the

given binary indicator matrix with the same size of X , with

1 indicating “visible” and 0 indicating “missing”, and sign ◦
denotes element-wise matrix multiplication operation. The

indicator matrices Mi vary for different visual features Xi.

Note that GAN or VAE-based methods can hardly handle

learning from incomplete visual features.

5. Experiments

5.1. Experiment Settings

Datasets. We evaluate the proposed framework for gen-

erative ZSL on four widely used ZSL benchmark datasets

and compare it with a number of state-of-the-art baselines.

The datasets include: (1) Caltech-UCSD Birds-200-2011

(CUB) [48], (2) Animal with Attributes (AwA1) [22], (3)

Animal with Attributes 2 (AwA2) [54], (4) SUN attribute

(SUN) [31]. CUB is a fine-grained dataset of bird species

with 312 class-level attributes. AwA1 is a coarse-grained

dataset including 50 classes of animals with 85 attributes.

Since the original images in AwA1 are not publicly avail-

able due to the copyright license issue, Xian et al [54] create

a new dataset AwA2 by collecting new images for each class

in AwA1 while keeping the attribute annotations the same

as AwA1. SUN contains 717 types of scenes with 102 at-

tributes. We follow the train/test split settings in [54], which

ensures that no unseen classes are included in the ImageNet

dataset where the visual feature extractor is pretrained, to

avoid violating the setting of ZSL. Besides, we also con-

duct experiments on a large-scale dataset, i.e., ImageNet-

21K [7]. In this challenging dataset, no attribute annota-

tions are available. We use the word embedding of the class

names as the semantic represention of the classes [5].

Implementation Details. Our translator is implemented

by a multilayer perceptron with a single hidden layer of

4,096 nodes. LeakyReLU and ReLU are used as nonlin-

ear activation functions on the hidden layer and the output

layer respectively. The dimension of latent factors z is set

to be 10. We fix σ = 0.3, l = 10 and s = 0.3. Our model

is trained with a batch size of 64 and the Adam optimizer

with a learning rate of 10−3, β1 = 0.9, and β2 = 0.999. The

number of epochs is 50. Our model is implemented using

Pytorch framework [30] and trained on one NVIDIA TI-

TAN Xp GPU. Our code is publicly available online1 .

1https://github.com/EthanZhu90/ZSL_ABP
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Method CUB AwA1 AwA2 SUN

§

DAP [22] 40.0 44.1 46.1 39.9

CMT [38] 34.6 39.5 37.9 39.9

LATEM [53] 49.3 55.1 55.8 55.3

ALE [1] 54.9 59.9 62.5 58.1

DEVISE [12] 52.0 54.2 59.7 56.5

SJE [2] 53.9 65.6 61.9 53.7

ESZSL [36] 53.9 58.2 58.6 54.5

SYNC [5] 55.6 54.0 46.6 56.3

SAE [19] 33.3 53.0 54,1 40.3

DEM [62] 51.7 65.7 66.5 60.8

GFZSL [47] 49.3 68.3 63.8 60.6

†

VZSL [50] 56.3 67.1 66.8 59.0

GAZSL [67] 55.8 63.7 64.2 60.1

FGZSL [55] 57.7 65.6 66.9 58.6

MCGZSL [11] 58.4 66.8 67.3 60.0

Ours 58.5 69.3 70.4 61.5

Table 1: Performance comparison for zero-shot learning on

CUB, AwA1, AwA2 and SUN datasets. The performance

is measured by average per-class top-1 accuracy (%). † and

§ indicate generative and non-generative methods, respec-

tively. The best and the second best results are marked in

bold and underlined respectively.

5.2. Zero­Shot Learning

As for zero-shot learning setting, we follow the evalua-

tion protocol used in [54], where results are measured by av-

erage per-class top-1 accuracy. We compare with 15 state-

of-the-art methods, including 11 non-generative ones and 4

generative ones which are separately shown in Table 1. For

GAZSL, FGZSL, and MCGZSL, we get results by running

their codes. We reimplement the VZSL by ourselves since

no code is publicly available. The results of other methods

are published in [54]. From Table 1, we can observe that: (i)

the generative methods have an overall performance supe-

rior to the non-generative ones (ii) our proposed model con-

sistently outperforms previous state-of-the-art methods and

shows great superiorities on AwA1 and AwA2, where the

improvements are up to 3.1%. This validates that our model

trained by alternating back-propagation is significantly ben-

eficial to ZSL tasks.

5.3. Generalized Zero­Shot Learning

In the generalized zero-shot learning setting, a test im-

age is classified to the union of seen and unseen classes.

This setting is more practical and difficult as it removes

the assumption that test images only come from unseen

classes. Following the protocol proposed by [54], we com-

pute the harmonic mean of accuracies on seen and unseen

classes: H = 2·AS ·AU

AS+AU
, where AS and AU denote the ac-

curacies of classifying images from seen classes and those

from unseen classes respectively. We evaluate our method

on four datasets and show the performance comparison with

13 state-of-the-art methods in Table 2. The experimental re-

sults show that non-generative methods achieving high per-

formance on seen classes perform badly on unseen classes,

indicating that those methods are biased in favor of seen

classes. In contrast, those generative methods can mitigate

the bias and perform well on both unseen and seen classes.

Compared with other generative ZSL methods, our method

obtains much higher accuracies on unseen classes and com-

parable accuracies on seen classes. It improves the state-of-

the-art performances by notable margins on most datasets

(e.g., 4.0% on AwA2 in terms of harmonic mean), demon-

strating the capability for generalized zero-shot learning.

5.4. Large­Scale Experiments

We also evaluate the performance of our model on the

large-scale ImageNet-21K [7] dataset. The dataset contains

a total of 14 million images from more than 21K classes.

The relation among classes follows the WordNet [27] hier-

archy. Following the same protocol in [54, 5], we keep a

specific subset of 1K classes for training, and use either all

the remaining classes or a subset of it for testing. Specifi-

cally, the subsets for testing are determined according to the

hierarchical distance from the training classes, or their pop-

ulation. For example, 2Hop contains 1,509 unseen classes

that are within two tree hops of the seen 1K classes based

on the class hierarchy, while 3Hop increases the number of

unseen classes to 7,678 by extending the range to three tree

hops. M500, M1K and M5K contain 500, 1K, and 5K most

populated classes, while L500, L1K and L5K contain 500,

1K, and 5K least populated classes respectively.

We compare our method with three baseline methods,

which include a visual-semantic embedding-based method,

i.e., ALE, and two generative model-based methods, i.e.,

VZSL and FGZSL. The results are shown in Figure 2. A

notable observation is that all methods perform much bet-

ter in 2Hop subset than in 3Hop subset. Two vital factors

accounting for the observation are: in 3Hop subset, (i) the

unseen classes are semantically less related to the training

classes, making it difficult to transfer knowledge, (ii) a dra-

matic increase in the number of unseen classes (from 1, 509
to 7, 678) makes the classification even harder. Generally,

it is evident that generative methods have superior perfor-

mances. Among the three generative methods, our proposed

method achieves the best accuracies in most cases, demon-

strating that it is very competitive in this realistic and chal-

lenging task.

5.5. Comparison with GAN & VAE­based Methods

To thoroughly evaluate the performance of our model,

we perform extensive ablation experiments. We study the

comparison of our method with GAN and VAE-based meth-

ods (i.e., FGZSL and VZSL) in terms of (i) the speed of
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CUB AwA1 AwA2 SUN

Method AU AS H AU AS H AU AS H AU AS H

§

DAP [22] 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.2 25.1 7.2

DEVISE [12] 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 16.9 27.4 20.9

CMT [38] 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 8.1 21.8 11.8

SJE [2] 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 14.7 30.5 19.8

LATEM [53] 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 14.7 28.8 19.5

ESZSL [36] 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 11.0 27.9 15.8

ALE [1] 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3

SAE [19] 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 8.8 18.0 11.8

DEM [62] 19.6 57.9 29.2 32.8 84.7 47.3 30.5 86.4 45.1 20.5 34.3 25.6

†

VZSL [50] 44.9 54.1 49.1 53.4 68.3 59.9 51.7 67.2 58.4 43.5 34.9 38.7

GAZSL [67] 26.5 57.4 36.2 32.8 84.7 47.3 59.9 68.3 53.4 21.7 34.5 26.7

FGZSL [19] 45.9 54.6 49.9 53.1 68.0 59.6 50.2 67.5 57.5 40.2 36.4 38.2

MCGZSL [11] 45.7 61.0 52.3 56.9 64.0 60.2 51.9 67.2 58.6 49.4 33.6 40.0

Ours 47.0 54.8 50.6 57.3 67.1 61.8 55.3 72.6 62.6 45.3 36.8 40.6

Table 2: Performance comparison for generalized zero-shot learning. † and § indicate generative and non-generative model-

based methods respectively. The best and the second best results are marked in bold and underlined respectively.
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Figure 2: ZSL and GZSL results on ImageNet. For GZSL,

AU is reported.
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Figure 3: Convergence comparison: top-1 accuracies in the

validation set over different numbers of training epochs.

the convergence, (ii) the number of model parameters, (iii)

ZSL performance when generating different numbers of

features for unseen classes, (iv) ZSL performance under dif-

ferent numbers of seen classes for training.

Comparison (i) To investigate the advantage of our pro-

posed method, we display the convergence curves of dif-

ferent models. We reserve a subset of seen classes as the

validation set, and the remaining seen classes are used for

training. Considering that various loss functions used in dif-

ferent methods are not comparable, we instead use the aver-

age per-class top-1 accuracy of the validation set as the con-

vergence indicator. Figure 3 shows classification accura-

cies over different numbers of training epochs on CUB and

AwA1 datasets. The convergence trends on both datasets

are similar. Among these three methods, ours converges

fastest, while the GAN-based method is the slowest one.

Dataset # of Parameters # of Mult-Adds

FGZSL [55] 20.62M 41.23M

VZSL [50] 21.90M 43.78M

Ours 9.71M 19.42M

Table 3: Comparison of the number of parameters and

the computational cost among three generative model-based

ZSL methods that are applied to CUB dataset.

Comparison (ii) Another advantage of our proposed

model is the small number of parameters, or equivalently,

the low computational load. We compare our method with

FGZSL and VZSL for the CUB dataset in terms of the num-

ber of parameters and the number of element-wise multipli-

cation and addition operations in Table 3. Note that these

numbers might get changed when the methods are applied

to other datasets, because different datasets may have vari-

ous dimensions of semantic and visual features. Due to the

incorporation of auxiliary networks in VAE and GAN-based

methods (i.e., the encoder in VAE and the discriminator in

GAN), these models require more parameters and computa-

tions. Our method only contains one single conditional gen-

erator, therefore its parameter size and computational cost

are only half of those in GAN and VAE-based frameworks.
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AwA1
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Figure 4: Comparison of top-1 per-class accuracies of un-

seen classes with different numbers of synthetic features per

class.

Comparison (iii) Figure 4 shows the accuracies of three

methods with different numbers of synthetic features for

each unseen class. The same curve trends appear on both

CUB and AwA1 datasets. The results are better with larger

number of synthetic samples. When the number increases

to 300, all the performances are similar and stable, indi-

cating that each of the models is saturated as no improve-

ment appears with more samples. Compared with FGZSL,

our model performs much better with fewer samples (e.g.,

50.1% v.s. 29.1% on CUB and 60.1% v.s. 38.9% on AwA1

with only 1 sample). The VZSL model performs slightly

worse than ours.

Comparison (iv) As pointed out in [40], the number of

unseen classes usually dramatically surpasses that of seen

classes in the real world. However, most ZSL benchmark

datasets are far away from this situation. For instance, only

72 out of 717 classes on the SUN dataset are specified as

unseen classes. This motivates us to investigate how mod-

els perform with different numbers of seen classes for train-

ing. We conduct experiments on the SUN dataset as it con-

tains more classes than other datasets. We keep the unseen

classes the same and randomly sample different numbers of

seen classes for training. To make the experiments closer

to the real world situation, we report the performance in

the generalized ZSL setting, as shown in Figure 5. As the

number of seen classes increases, the accuracies of seen

classes of all methods consistently decrease, indicating the

increasing difficulty in discriminating seen class examples.

From another perspective, more seen classes can provide

more knowledge to associate the visual and semantic fea-

tures, resulting in the improvement in the performance on

unseen classes. Compared with other generative methods,

our model achieves the best AU while keeping decent AS .

5.6. Learning from Incomplete Visual Features

Zhu et al [8, 67] propose to use concatenated part fea-

tures for ZSL, where those part features are either from

groundtruth part annotations or extracted by a learned part

detector, denoted as GTA and DET features respectively.

The missing ratio in GTA is 9.3%, while the ratio decreases

VZSL VZSL

FGZSL FGZSL

Ours Ours

AU

AU

AU

AS

AS

AS

Figure 5: Comparison of top-1 per-class accuracies of un-

seen classes among different methods with different num-

bers of seen classes in training.

DET∗

Method GTA DET 30% 50% 70% 90%
GAZSL [67] 74.1 72.7 68.5 63.7 55.6 37.7

Ours 76.7 75.2 72.9 71.3 64.8 51.6

Table 4: Zero-shot learning performance (top-1 accuracy

%) of the models trained on incomplete visual features with

different missing ratios.

to 4.0% in DET due to the high recall of their part detec-

tor. We first evaluate the performance of our model and

GAZSL [67] with GTA features and DET features. As

shown in Table 4, our method outperforms GAZSL by 2.6%
and 2.5% using GTA and DET features respectively. To

further analyze the power of our model in dealing with in-

complete visual features, we increase the missing ratio of

the DET features by randomly masking some valid feature

values. As the missing ratio increases, the performances

of both methods drop due to the reason that less and less

useful information can be used. However, our method can

still achieve a decent performance of 51.6% in the most

challenging situation where the missing ratio reaches 90%,

while the accuracy of GAZSL is only 37.7%. This confirms

the claimed power of our model in learning from incomplete

visual features for ZSL.

6. Conclusion

We propose a feature-to-feature translator learned by

an alternating back-propagation algorithm as a general-

purpose solution to zero-shot learning. Unlike other gener-

ative models, such as GAN and VAE, our method is sim-

ple yet effective, and does not rely on any assisting net-

works for training. The alternating back-propagation al-

gorithm iterates the inferential back-propagation for infer-

ring the instance-level latent factors and the learning back-

propagation for updating the model parameters. We present

a solution to learning from incomplete visual features for

ZSL. We show that our framework outperforms the existing

generative ZSL methods.
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