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ABSTRACT

This paper introduces a new large-scale music dataset, MusicNet, to serve as a
source of supervision and evaluation of machine learning methods for music re-
search. MusicNet consists of hundreds of freely-licensed classical music record-
ings by 10 composers, written for 11 instruments, together with instrument/note
annotations resulting in over 1 million temporal labels on 34 hours of chamber
music performances under various studio and microphone conditions.

The paper defines a multi-label classification task to predict notes in musical
recordings, along with an evaluation protocol, and benchmarks several machine
learning architectures for this task: i) learning from spectrogram features; ii) end-
to-end learning with a neural net; iii) end-to-end learning with a convolutional
neural net. These experiments show that end-to-end models trained for note pre-
diction learn frequency selective filters as a low-level representation of audio.

1 INTRODUCTION

Music research has benefited recently from the effectiveness of machine learning methods on a wide
range of problems from music recommendation (van den Oord et al., 2013} [McFee & Lanckriet,
2011) to music generation (Hadjeres & Pachet, 2016)); see also the recent demos of the Google
Magenta project'| As of today, there is no large publicly available labeled dataset for the simple
yet challenging task of note prediction for classical music. The MIREX MultiFO Development
Set (Benetos & Dixon, [2011)) and the Bach10 dataset (Duan et al.l 2011) together contain less than
7 minutes of labeled music. These datasets were designed for method evaluation, not for training
supervised learning methods.

This situation stands in contrast to other application domains of machine learning. For instance, in
computer vision large labeled datasets such as ImageNet (Russakovsky et al., 2015) are fruitfully
used to train end-to-end learning architectures. Learned feature representations have outperformed
traditional hand-crafted low-level visual features and lead to tremendous progress for image classi-
fication. In (Humphrey et al., [2012)), Humphrey, Bello, and LeCun issued a call to action: “Deep
architectures often require a large amount of labeled data for supervised training, a luxury music
informatics has never really enjoyed. Given the proven success of supervised methods, MIR would
likely benefit a good deal from a concentrated effort in the curation of sharable data in a sustainable
manner.”

This paper introduces a new large labeled dataset, MusicNet, which is publicly availableE] as a re-
source for learning feature representations of music. MusicNet is a corpus of aligned labels on
freely-licensed classical music recordings, made possible by licensing initiatives of the European
Archive, the Isabella Stewart Gardner Museum, Musopen, and various individual artists. The dataset
consists of 34 hours of human-verified aligned recordings, containing a total of 1,299, 329 individ-
ual labels on segments of these recordings. Table [T|summarizes statistics of MusicNet.

The focus of this paper’s experiments is to learn low-level features of music from raw audio data.
In Sect. 4, we will construct a multi-label classification task to predict notes in musical recordings,

'nttps://magenta.tensorflow.org/
http://homes.cs.washington.edu/~thickstn/musicnet.htmll
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MusicNet
Minutes Labels Recordings  Error Rate Composer Minutes Labels
2,048 1,299,329 330 4,0% Beethoven 1,085 736,072
Schubert 253 146,648
Ensemble Minutes  Labels Brahms 192 133,109
Solo Piano 917 576,471 g"m” 156 99,641
. ach 184 62,782
String Quartet 40.‘_3 259,702 Dvorak 56 46.261
Accompanied Violin 148 124,886 4 13 9 4’820
Piano Quartet 7360362 oo 33 22’3 49
Accompanied Cello 63 37,557 Ravel 27 21 ’243
String Sextet 48 33,248 Haydn 15 6,404
Piano Trio 46 28,873 ’
gl,?:g 83::::: Z:g gjl:g;g Instrument Minutes Labels
Horn Piano Trio 30 18,799  Piano 1346 794,532
Wind Octet 23 14,635 Violin 874 230,484
Clarinet-Cello-Piano Trio 25 13,447 Viola 621 99,407
Pairs Clarinet-Horn-Bassoon 24 12,218  Cello 800 99,132
Clarinet Quintet 26 11,184  Clarinet 173 24426
Solo Cello 49 10,876 Bassoon 102 14,954
Accompanied Clarinet 20 10,049 Horn 132 11,468
Solo Violin 30 8,837  Oboe 66 8,696
Violin and Harpsichord 16 7469  Flute 69 8,310
Viola Quintet 15 4,156  Harpsichord 16 4,914
Solo Flute 8 2,214  String Bass 38 3,006

|Pian0 Violin Cello Viola Clarinet Bassoon Horn Oboe Flute Bass Harpsichord
Notes| 83 51 51 51 41 36 41 28 37 43 51

Table 1: Summary statistics of the MusicNet dataset. See Sect. 2 for further discussion of MusicNet
and Sect. 3 for a description of the labelling process. Appendix A discusses the methodology for
computing error rate of this process.

along with an evaluation protocol. We will consider a variety of machine learning architectures for
this task: i) learning from spectrogram features; ii) end-to-end learning with a neural net; iii) end-
to-end learning with a convolutional neural net. Each of the proposed end-to-end models learns a
set of frequency selective filters as low-level features of musical audio, which are similar in spirit
to a spectrogram. The learned low-level features are visualized in Figure [I] The learned features
modestly outperform spectrogram features; we will explore possible reasons for this in Sect. 5.
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Figure 1: (Left) Bottom-level weights learned by a two-layer ReLU network trained on 16,384-
samples windows (= 1/3 seconds) of raw audio with ¢ regularized (A = 1) square loss for multi-

label note classification on raw audio recordings. (Middle) Magnified view of the center of each set
of weights. (Right) The truncated frequency spectrum of each set of weights.
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2 MUSICNET

Related Works. The experiments in this paper suggest that large amounts of data are necessary
to recovering useful features from music; see Sect. @] for details. The Lakh dataset, released this
summer based on the work of [Raffel & Ellis| (2015), offers note-level annotations for many 30-
second clips of pop music in the Million Song Dataset (McFee et al.| 2012). The syncRWC dataset
is a subset of the RWC dataset (Goto et al.,2003) consisting of 61 recordings aligned to scores using
the protocol described in |[Ewert et al.| (2009). The MAPS dataset (Emiya et al., [2010) is a mixture
of acoustic and synthesized data, which expressive models could overfit. The Mazurka projec
consists of commercial music. Access to the RWC and Mazurka datasets comes at both a cost and
inconvenience. Both the MAPS and Mazurka datasets are comprised entirely of piano music.

The MusicNet Dataset. MusicNet is a public collection of labels (exemplified in Table [2) for
330 freely-licensed classical music recordings of a variety of instruments arranged in small chamber
ensembles under various studio and microphone conditions. The recordings average 6 minutes in
length. The shortest recording in the dataset is 55 seconds and the longest is almost 18 minutes.
Table [T| summarizes the statistics of MusicNet with breakdowns into various types of labels. Table
demonstrates examples of labels from the MusicNet dataset.

Start  End Instrument Note Measure Beat Note Value

4529 4549 Violin G5 21 3 Eighth
48.99 50.13 Cello A#3 24 2 Dotted Half
8291 83.12 Viola C5 51 2.5 Eighth

Table 2: MusicNet labels on the Pascal String Quartet’s recording of Beethoven’s Opus 127, String
Quartet No. 12 in E-flat major, I - Maestoso - Allegro. Creative commons use of this recording is
made possible by the work of the European Archive.

MusicNet labels come from 513 label classes using the most naive definition of a class: distinct
instrument/note combinations. The breakdowns reported in Table [I] indicate the number of distinct
notes that appear for each instrument in our dataset. For example, while a piano has 88 keys only
83 of them are performed in MusicNet. For many tasks a note’s value will be a part of its label, in
which case the number of classes will expand by approximately an order of magnitude after taking
the cartesian product of the set of classes with the set of values: quarter-note, eighth-note, triplet,
etc. Labels regularly overlap in the time series, creating polyphonic multi-labels.

MusicNet is skewed towards Beethoven, thanks to the composer’s popularity among performing
ensembles. The dataset is also skewed towards Solo Piano due to an abundance of digital scores
available for piano works. For training purposes, researchers may want to augment this dataset to
increase coverage of instruments such as Flute and Oboe that are under-represented in MusicNet.
Commercial recordings could be used for this purpose and labeled using the alignment protocol
described in Sect. 3.

3 DATASET CONSTRUCTION

MusicNet recordings are freely-licensed classical music collected from the European Archive, the
Isabella Stewart Gardner Museum, Musopen, and various artists’ collections. The MusicNet la-
bels are retrieved from digital MIDI scores, collected from various archives including the Classical
Archives (classicalarchives.com) Suzuchan’s Classic MIDI (suzumidi . com) and Har-
feSoft (harfesoft .de). The methods in this section produce an alignment between a digital score
and a corresponding freely-licensed recording. A recording is labeled with events in the score, asso-
ciated to times in the performance via the alignment. Scores containing 6, 550, 760 additional labels
are available on request to researchers who wish to augment MusicNet with commercial recordings.

Music-to-score alignment is a long-standing problem in the music research and signal processing
communities (Raphaell [1999). Dynamic time warping (DTW) is a classical approach to this prob-
lem. An early use of DTW for music alignment is Orio & Schwarz| (2001) where a recording is

*http://www.mazurka.org.uk/
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aligned to a crude synthesis of its score, designed to capture some of the structure of an overtone
series. The method described in this paper aligns recordings to synthesized performances of scores,
using side information from a commercial synthesizer. To the best of our knowledge, commercial
synthesis was first used for the purpose of alignment in Turetsky & Ellis| (2003)).

The majority of previous work on alignment focuses on pop music. This is more challenging than
aligning classical music because commercial synthesizers do a poor job reproducing the wide variety
of vocal and instrumental timbers that appear in modern pop. Furthermore, pop features inharmonic
instruments such as drums for which natural metrics on frequency representations—including ¢?—are
not meaningful. For classical music to score alignment, a variant of the techniques described in
Turetsky & Ellis| (2003) works robustly. This method is described below; we discuss the evaluation
of this procedure and its error rate on MusicNet in the appendix.

spectrogram bins

et El

frames (synthesis)

200 300 400 500 600 700 80 0100 200 300
frames (recording) frames (recorded performance)

Figure 2: (Left) Heatmap visualization of local alignment costs between the synthesized and
recorded spectrograms, with the optimal alignment path in red. The block from x = 0 to x = 100
frames corresponds to silence at the beginning of the recorded performance. The slope of the align-
ment can be interpreted as an instantaneous tempo ratio between the recorded and synthesized per-
formances. The curvature in the alignment between z = 100 and x = 175 corresponds to an
extension of the first notes by the performer. (Right) Annotation of note onsets on the spectrogram
of the recorded performance, determined by the alignment shown on the left.

In order to align the performance with a score, we need to define a metric that compares short
segments of the score with segments of a performance. Musical scores can be expressed as binary
vectors in £ x K where E = {1,...,n} and K is a dictionary of notes. Performances reside
in RT>P where T € {1,...,m} is a sequence of time steps and p is the dimensionality of the
spectrogram at time 7". Given some local cost function C' : (R?, K) — R,ascore Y € E x K, and
a performance X € RT*P, the alignment problem is to

n
minimize Z C(X4,,Y,)
) =1 1
subjectto o =0, M
tn, =m,
t; <t ifi < j.

Dynamic time warping gives an exact solution to the problem in O(mn) time and space.

The success of dynamic time warping depends on the metric used to compare the score and the
performance. Previous works can be broadly categorized into three groups that define an alignment
cost C between segments of music x and score y by injecting them into a common normed space
via maps ¥ and &:

Clxy) = [[¥(x) - 2(y)|| 2

The most popular approach—and the one adopted by this paper—maps the score into the space of the
performance (Orio & Schwarz, [2001}; Turetsky & Ellis|, [2003; [Soulez et al., [2003). An alternative
approach maps both the score and performance into some third space, commonly a chromogram
space (Hu et al. 2003} Izmirli & Dannenberg, 2010; Joder et al., 2013). Finally, some recent
methods consider alignment in score space, taking & = Id and learning ¥ (Garreau et al., 2014
Lajugie et al.,[2016).
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With reference to the general cost (2), we must specify the maps ¥, ®, and the norm || - ||. We
compute the cost in the performance feature space RP, hence we take ¥ = Id. For the features,
we use the log-spectrogram with a window size of 2048 samples. We use a stride of 512 samples
between features. Hence adjacent feature frames are computed with 75% overlap. For audio sampled
at 44.1kHz, this results in a feature representation with 44,100/512 ~ 86 frames per second. A
discussion of these parameter choices can be found in the appendix. The map ® is computed by
a synthetizer: we used Plogue’s Sforzando sampler together with Garritan’s Personal Orchestra 4
sample library.

For a (pseudo)-metric on R, we take the ¢? norm || - ||2 on the low 50 dimensions of R?. Recall
that R? represents Fourier components, so we can roughly interpret the k’th coordinate of R? as the
energy associated with the frequency k& x (22,050/1024) = k x 22.5Hz, where 22, 050Hz is the
Nyquist frequency of a signal sampled at 44.1kHz. The 50 dimension cutoff is chosen empirically:
we observe that the resulting alignments are more accurate using a small number of low-frequency
bins rather than the full space RP. Synthesizers do not accurately reproduce the high-frequency
features of a musical instrument; by ignoring the high frequencies, we align on a part of the spectrum
where the synthesis is most accurate. The proposed choice of cutoff is aggressive compared to
usual settings; for instance, Turetsky & Ellis| (2003) propose cutoffs in the 2.5kHz range. The
fundamental frequencies of many notes in MusicNet are higher than the 50 x 22.5Hz ~ 1kHz
cutoff. Nevertheless, we find that all notes align well using only the low-frequency information.

4 METHODS

We consider identification of notes in a segment of audio x € & as a multi-label classification
problem, modeled as follows. Assign each audio segment a binary label vector y € {0,1}!2%. The
128 dimensions correspond to frequency codes for notes, and y,, = 1 if note n is present at the
midpoint of x. Let f : X — H indicate a feature map. We train a multivariate linear regression
to predict § given f(x), which we optimize for square loss. The vector § can be interpreted as a
multi-label estimate of notes in x by choosing a threshold ¢ and predicting label n iff §,, > c¢. We
search for the value ¢ that maximizes F-score on a sampled subset of MusicNet.

4.1 RELATED WORK

Learning on raw audio is studied in both the music and speech communities. Supervised learning on
music has been driven by access to labeled datasets. Pop music labeled with chords (Hartel [2010)
has lead to a long line of work on chord recognition, most recently Korzeniowsk & Widmer (2016).
Genre labels and other metadata has also attracted work on representation learning, for example
Dieleman & Schrauwen| (2014). There is also substantial work modeling raw audio representations
of speech; a current example is{Tokuda & Zen|(2016). Recent work from Google DeepMind explores
generative models of raw audio, applied to both speech and music (van den Oord et al.,[2016).

The music community has worked extensively on a closely related problem to note prediction: fun-
damental frequency estimation. This is the analysis of fundamental (in contrast to overtone) frequen-
cies in short audio segments; these frequencies are typically considered as proxies for notes. Because
access to large labeled datasets was historically limited, most of these works are unsupervised. A
good overview of this literature can be found in Benetos et al.|(2013)). Variants of non-negative ma-
trix factorization are popular for this task; a recent example is [Khlif & Sethu|(2015). A different line
of work models audio probabilistically, for example Berg-Kirkpatrick et al.|(2014). Recent work by
Kelz et al.| (2016) explores supervised models, trained using the MAPS piano dataset.

4.2 MULTI-LAYER PERCEPTRONS

We build a two-layer network with features f;(x) = log (1 4+ max(0,w?x)). We find that com-
pression introduced by a logarithm improves performance versus a standard ReLU network (see
Table [3). Figure [T]illustrates a selection of weights w; learned by the bottom layer of this network.
The weights learned by the network are modulated sinusoids. This explains the effectiveness of
spectrograms as a low-level representation of musical audio. The weights decay at the boundaries,
analogous to Gabor filters in vision. This behavior is explained by the labeling methodology: the
audio segments used here are approximately 1/3 of a second long, and a segment is given a note
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label if that note is on in the center of the segment. Therefore information at the boundaries of the
segment is less useful for prediction than information nearer to the center.

4.3 (LOG-)SPECTROGRAMS

Spectrograms are an engineered feature representation for musical audio signals, available in popular
software packages such as librosa (McFee et al.l 2015)). Spectrograms (resp. log-spectrograms) are
closely related to a two-layer ReLU network (resp. the log-ReLU network described above). If
x = (z1,..., ) denotes a segment of an audio signal of length ¢ then we can define

t—1 2 t—1 2 t—1 2
Spec,, (x) = Z e~ 2miks/ty <Z cos(2mks/t)x ) (Z sin(27ks/t)x > .
s=0

These features are not precisely learnable by a two-layer ReLU network. But recall that |z| =
max(0, z) + max(0, —z) and if we take weight vectors u,v € RT with u, = cos(27ks/t) and
vs = sin(2mwks/t) then the ReLU network can learn

ZCOb 2rks/t)xs

s=0

fk,cos(x) + fk',sin(x) = |uTX| + ‘VTX| )

We call this family of features a ReLUgram and observe that it has a s1m11ar form to the spectrogram;
we merely replace the x +— 2 non-linearity of the spectrogram with x + |z|. These features
achieve similar performance to spectrograms on the classification task (see Table[3).

4.4 WINDOW SIZE

When we parameterize a network, we must choose the width of the set of weights in the bottom
layer. This width is called the receptive field in the vision community; in the music community
it is called the window size. Traditional frequency analyses, including spectrograms, are highly
sensitive to the window size. Windows must be long enough to capture relevant information, but not
so long that they lose temporal resolution; this is the classical time-frequency tradeoff. Furthermore,
windowed frequency analysis is subject to boundary effects, known as spectral leakage. Classical
signal processing attempts to dampen these effects with predefined window functions, which apply
a mask that attenuates the signal at the boundaries (Rabiner & Schafer, |[2007)).

The proposed end-to-end models learn window functions. If we parameterize these models with a
large window size then the model will learn that distant information is irrelevant to local prediction,
so the magnitude of the learned weights will attenuate at the boundaries. We therefore focus on two
window sizes: 2048 samples, which captures the local content of the signal, and 16,384 samples,
which is sufficient to capture almost all relevant context (again see Figure [I).

4.5 REGULARIZATION

The size of MusicNet is essential to achieving the results in Figure[I] In Figure [3|(Left) we optimize
a two-layer ReLU network on a small subset of MusicNet consisting of 65,000 monophonic data
points. While these features do exhibit dominant frequencies, the signal is quite noisy. Comparable
noisy frequency selective features were recovered by Dieleman & Schrauwen| (2014); see their Fig-
ure 3. We can recover clean features on a small dataset using heavy regularization, but this destroys
classification performance; regularizing with dropout poses a similar tradeoff. By contrast, Figure
(Right) shows weights learned by an unregularized two-layer network trained on the full MusicNet
dataset. The models described in this paper do not overfit to MusicNet and optimal performance
(reported in Table|3)) is achieved without regularization.

4.6 CONVOLUTIONAL NETWORKS

Previously, we estimated § by regressing against f(x). We now consider a convolutional model that
regresses against features of a collection of shifted segments x, near to the original segment x. The
learned features of this network are visually comparable to those learned by the fully connected net-
work (Figure[T). The parameters of this network are the receptive field, stride, and pooling regions.
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Figure 3: (Left) Features learned by a 2-layer ReLLU network trained on small monophonic subset
of MusicNet. (Right) Features learned by the same network, trained on the full MusicNet dataset.

The results reported in Table 3] are achieved with 500 hidden units using a receptive field of 2, 048
samples with an 8-sample stride across a window of 16, 384 samples. These features are grouped
into average pools of width 16, with a stride of 8 features between pools. A max-pooling operation
yields similar results. The learned features are consistent across different parameterizations. In all
cases the learned features are comparable to those of a fully connected network.

5 RESULTS

We hold out a test set of 3 recordings for all the results reported in this section:

e Bach’s Prelude in D major for Solo Piano. WTK Book 1, No 5. Performed by Kimiko
Ishizaka. MusicNet recording id 2303.

e Mozart’s Serenade in E-flat major. K375, Movement 4 - Menuetto. Performed by the Soni
Ventorum Wind Quintet. MusicNet recording id 1819.

e Beethoven’s String Quartet No. 13 in B-flat major. Opus 130, Movement 2 - Presto. Re-
leased by the European Archive. MusicNet recording id 2382.

The test set is a representative sampling of MusicNet: it covers most of the instruments in the dataset
in small, medium, and large ensembles. The test data points are evenly spaced segments separated
by 512 samples, between the 1st and 91st seconds of each recording. For the wider features, there is
substantial overlap between adjacent segments. Each segment is labeled with the notes that are on
in the middle of the segment.
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Figure 4: Precision-recall curves for the convolutional network on the test set. Curves are eval-
uated on subsets of the test set consisting of all data points (blue); points with exactly one label
(monophonic; green); and points with exactly three labels (red).

We evaluate our models on three scores: precision, recall, and average precision. The precision score
is the count of correct predictions by the model (across all data points) divided by the total number
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of predictions by the model. The recall score is the count of correct predictions by the model divided
by the total number of (ground truth) labels in the test set. Precision and recall are parameterized by
the note prediction threshold c (see Sect. 4). By varying ¢, we construct precision-recall curves (see
Figure[d). The average precision score is the area under the precision-recall curve.

Representation Window Size Precision Recall Average Precision
log-spectrograms 1,024 49.0% 40.5% 39.8%
spectrograms 2,048 28.9% 52.5 % 32.9%
log-spectrograms 2,048 61.9% 42.0% 48.8%
log-ReLUgrams 2,048 58.9% 47.9% 49.3%
MLP, 500 nodes 2,048 50.1% 58.0% 52.1%
MLP, 2500 nodes 2,048 53.6% 62.3% 56.2%
AvgPool, 2 stride 2,148 53.4% 62.5% 56.4%
log-spectrograms 8,192 64.2% 28.6% 52.1%
log-spectrograms 16,384 58.4% 18.1% 45.5%
MLP, 500 nodes 16,384 54.4% 64.8% 60.0%
CNN, 64 stride 16,384 60.5% 71.9% 67.8%

Table 3: Benchmark results on MusicNet for models discussed in this paper. The learned repre-
sentations are optimized for square loss with SGD using the Tensorflow library (Abadi et al.). We
report the precision and recall corresponding to the best F';-score on validation data.

A spectrogram of length n is computed from 2n samples, so the linear 1024-point spectrogram
model is directly comparable to the MLP runs with 2048 raw samples. Learned features’| modestly
outperform spectrograms for comparable window sizes. The discussion of windowing in Sect. 4]
partially explains this. Figure [5] suggests a second reason. Recall (Sect. [d.3) that the spectrogram
features can be interpreted as the magnitude of the signal’s inner product with sine waves of linearly
spaced frequencies. In contrast, the proposed networks learn weights with frequencies distributed
similarly to the distribution of notes in MusicNet (Figure[5). This gives the network higher resolution
in the most critical frequency regions.
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Figure 5: (Left) The frequency distribution of notes in MusicNet. (Right) The frequency distribution
of learned nodes in a 500-node, two-layer ReLLU network.
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*A demonstration using learned MLP features to synthesize a musical performance is available on the
dataset webpage: http://homes.cs.washington.edu/~thickstn/demos.html
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A VALIDATING THE MUSICNET LABELS

We validate the aligned MusicNet labels with a listening test. We create an aural representation of an
aligned score-performance pair by mixing a short sine wave into the performance with the frequency
indicated by the score at the time indicated by the alignment. We can listen to this mix and, if the
alignment is correct, the sine tones will exactly overlay the original performance; if the alignment is
incorrect, the mix will sound dissonant.

We have listened to sections of each recording in the aligned dataset: the beginning, several ran-
dom samples of middle, and the end. Mixes with substantially incorrect alignments were rejected
from the dataset. Failed alignments are mostly attributable to mismatches between the midi and the
recording. The most common reason for rejection is musical repeats. Classical music often contains
sections with indications that they be repeated a second time; in classical music performance culture,
it is often acceptable to ignore these directions. If the score and performance make different choices
regarding repeats, a mismatch arises. When the score omits a repeat that occurs in the performance,
the alignment typically warps over the entire repeated section, with correct alignments before and
after. When the score includes an extra repeat, the alignment typically compresses it into very short
segment, with correct alignments on either side. We rejected alignments exhibiting either of these
issues from the dataset.

From the aligned performances that we deemed sufficiently accurate to admit to the dataset, we
randomly sampled 30 clips for more careful annotation and analysis. We weighted the sample to
cover a wide coverage of recordings with various instruments, ensemble sizes, and durations. For
each sampled performance, we randomly selected a 30 second clip. Using software transforms, it
is possible to slow a recording down to approximately 1/4 speed. Two of the clips were too richly
structured and fast to precisely analyze (slowing the signal down any further introduces artifacts that
make the signal difficult to interpret). Even in these two rejected samples, the alignments sound
substantially correct.

For the other 28 clips, we carefully analyzed the aligned performance mix and annotated every
alignment error. Two of the authors are classically trained musicians: we independently checked for
errors and we our analyses were nearly identical. Where there was disagreement, we used the more
pessimistic author’s analysis. Over our entire set of clips we averaged a 4.0% error rate.

Note that we do not catch every type of error. Mistaken note onsets are more easily identified
than mistaken offsets. Typically the release of one note coincides with the onset of a new note,
which implicitly verifies the release. However, release times at the ends of phrases may be less
accurate; these inaccuracies would not be covered by our error analysis. We were also likely to miss
performance mistakes that maintain the meter of the performance, but for professional recordings
such mistakes are rare.

For stringed instruments, chords consisting of more than two notes are “rolled”; i.e. they are per-
formed serially from the lowest to the highest note. Our alignment protocol cannot separate notes
that are notated simultaneously in the score; a rolled chord is labeled with a single starting time, usu-
ally the beginning of the first note in the roll. Therefore, there is some time period at the beginning
of a roll where the top notes of the chord are labeled but have not yet occurred in the performance.
There are reasonable interpretations of labeling under which these labels would be judged incorrect.
On the other hand, if the labels are used to supervise transcription then ours is likely the desired
labeling.

We can also qualitatively characterize the types of errors we observed. The most common types of
errors are anticipations and delays: a single, or small sequence of labels is aligned to a slightly early
or late location in the time series. Another common source of error is missing ornaments and trills:
these are short flourishes in a performance are sometimes not annotated in our score data, which
results in a missing annotation in the alignment. Finally, there are rare performance errors in the
recordings and transcription errors in the score.
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B ALIGNMENT PARAMETER ROBUSTNESS

The definitions of audio featurization and the alignment cost function were contingent on several
parameter choices. These choices were optimized by systematic exploration of the parameter space.
We investigated what happens as we vary each parameter and made the choices that gave the best
results in our listening tests. Fine-tuning of the parameters yields marginal gains.

The quality of alignments improves uniformly with the quality of synthesis. The time-resolution
of labels improves uniformly as the stride parameter decreases; minimization of stride is limited
by system memory constraints. We find that the precise phase-invariant feature specification has
little effect on alignment quality. We experimented with spectrograms and log-spectrograms using
windowed and un-windowed signals. Alignment quality seemed to be largely unaffected.

The other parameters are governed by a tradeoff curve; the optimal choice is determined by balanc-
ing desirable outcomes. The Fourier window size is a classic tradeoff between time and frequency
resolution. The ¢? norm can be understood as a tradeoff between the extremes of ¢! and £>°. The ¢!
norm is too egalitarian: the preponderance of errors due to synthesis quality add up and overwhelm
the signal. On the other hand, the °° norm ignores too much of the signal in the spectrogram. The
spectrogram cutoff, discussed in Sec. 3, is also a tradeoff between synthesis quality and maximal
use of information

C ADDITIONAL ERROR ANALYSIS

For each model, using the test set described in Sect. 5, we report accuracy and error scores used by
the MIR community to evaluate the Multi-FO systems. Definitions and a discussion of these metrics
are presented in [Poliner & Ellis|(2007).

Representation Acc  Etot Esub Emiss Efa
512-point log-spectrogram 285% 819 198 397 224
1024-point log-spectrogram 33.4% 715 123 457 135
1024-point log-ReL.Ugram 359% 711 144 377 190
4096-point log-spectrogram 247% 788 085  .628 .074
8192-point log-spectrogram 16.1% 866 .082  .737  .047

MLP, 500 nodes, 2048 raw samples 36.8% .790 .206 214 370
MLP, 2500 nodes. 2048 samples 40.4% 740 177 200 363
AvgPool, 5 stride, 2048 samples 40.5% 744 176 200 369
MLP, 500 nodes, 16384 samples 42.0% 735 .160 .191 383
CNN, 64 stride, 16384 samples 489% .634 117 164 352

Table 4: MIREX-style statistics, evaluated using the mir_eval library (Raffel et al.,2014).
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D PRECISION & RECALL CURVES
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E ADDITIONAL RESULTS

We report additional results on splits of the test set described in Sect. 5.

Model Features Precision Recall Average Precision
MLP, 500 nodes 2048 raw samples 56.1% 62.7% 59.2%
MLP, 2500 nodes 2048 raw samples 59.1% 67.8% 63.1%
AvgPool, 5 stride 2048 raw samples 59.1% 68.2% 64.5%
MLP, 500 nodes 16384 raw samples 60.2% 65.2% 65.8%
CNN, 64 stride 16384 raw samples 65.9% 75.2% 74.4%

Table 5: The Soni Ventorum recording of Mozart’s Wind Quintet K375 (MusicNet id 1819).

Model Features Precision Recall Average Precision
MLP, 500 nodes 2048 raw samples 35.4% 40.7% 28.0%
MLP, 2500 nodes 2048 raw samples 38.3% 44.3% 30.9%
AvgPool, 5 stride 2048 raw samples 38.6% 45.2% 31.7%
MLP, 500 nodes 16384 raw samples 43.4% 51.3% 41.0%
CNN, 64 stride 16384 raw samples 51.0% 57.9% 49.3%

Table 6: The European Archive recording of Beethoven’s String Quartet No. 13 (MusicNet id 2382).

Model Features Precision Recall Average Precision
MLP, 500 nodes 2048 raw samples 55.6% 67.4% 64.1%
MLP, 2500 nodes 2048 raw samples 60.1% 71.3% 68.6%
AvgPool, 5 stride 2048 raw samples 59.6% 70.7% 68.1%
MLP, 500 nodes 16384 raw samples 57.1% 76.3% 68.4%
CNN, 64 stride 16384 raw samples ~ 61.9% 80.1% 73.9%

Table 7: The Kimiko Ishizaka recording of Bach’s Prelude in D major (MusicNet id 2303).
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