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Abstract

Convolutional neural networks (CNNs) based solutions

have achieved state-of-the-art performances for many com-

puter vision tasks, including classification and super-

resolution of images. Usually the success of these methods

comes with a cost of millions of parameters due to stacking

deep convolutional layers. Moreover, quite a large num-

ber of filters are also used for a single convolutional layer,

which exaggerates the parameter burden of current meth-

ods. Thus, in this paper, we try to reduce the number of

parameters of CNNs by learning a basis of the filters in

convolutional layers. For the forward pass, the learned

basis is used to approximate the original filters and then

used as parameters for the convolutional layers. We vali-

date our proposed solution for multiple CNN architectures

on image classification and image super-resolution bench-

marks and compare favorably to the existing state-of-the-

art in terms of reduction of parameters and preservation of

accuracy. Code is available at https://github.com/

ofsoundof/learning_filter_basis.

1. Introduction

Recently, deep convolutional neural network (CNN)

based approaches have been setting new state-of-the-art re-

sults not only for high-level computer vision tasks such as

image classification [25, 44, 15, 18], segmentation [11, 35],

and object detection [11, 10, 43, 42], but also for low-level

tasks such as image super-resolution (SR) [9, 22, 33, 30, 51,

32], denoising [49, 50, 12], and deburring [38, 28]. How-

ever, most of the advances are achieved at the expense of re-

lying on deeper architectures, millions of optimization pa-

rameters and resource-intensive computations. This ham-

pers the application of deep neural networks under resource

constrained environments, e.g., mobile phones.

To overcome the above mentioned problem, one research

direction is to design efficient architectures. For exam-

ple, in comparison with VGG [44], both ResNet [15] and

∗Equal contribution

DenseNet [18] reduce the number of parameters in their

CNN by one magnitude of order while achieving compara-

ble or even more accurate image classification results. De-

spite being more compact, there are still redundancies in

those networks, making it possible for further compression.

In the meanwhile, network compression promises to al-

leviate the model complexity without losing much accuracy

of the original network. Many network compression meth-

ods have been proposed. They mainly fall into three cate-

gories including network quantization [41, 29, 7, 53], net-

work pruning [13, 14, 17], and filter decomposition [20, 52,

46, 45, 40]. In this paper, we focus on filter decomposition.

Filter decomposition approximates the original filter

with a lightweight convolution and a linear projection. Cur-

rent methods either operate directly on the channel-wise

2D w × h filters [20, 46, 45] or decompose the intact 3D

c × w × h filters [52, 40]. For those working on 2D filters,

considering that the kernel size is usually small (e.g., 3× 3)

and a couple of new parameters are introduced to represent

the 2D kernel, the compression ratio in terms of reduction

of parameters is not impressive [46, 45]. The other filter

decomposition methods [52] consider a 3D kernel as an in-

tact element making impossible the reduction of the number

of input channels [17]. This prevents the application of the

method to narrow networks with much fewer output chan-

nels but more input channels. For example, in DenseNet-

12-40, there are only 12 output channels which makes it not

economic to decompose the 3D filters.

The aforementioned methods either collapse or maintain

the 3D filters during decomposition, which can be regarded

as ’hard’ decomposition. They are only coarse-grained con-

figurations on the two boundary operating points. The mo-

tivation of this paper is to provide the missing in-between

fine-grained operating points and to balance the parame-

ter distribution between the two decomposed convolutions.

Thus, we propose a novel filter basis learning method that

circumvents the limitation of the ’hard’ filter decomposition

methods. We split the 3D filters along the input channel di-

mension and each split is considered as a basic element. We

assume that the ensemble of those basic elements within one

convolutional layer can be represented by the linear combi-
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nations of a basis. Our aim is to learn the basis and the lin-

ear combination together. During inference, the basis can

be combined to reconstruct the original element, i.e., the

3D split. Then the splits are stacked along the input channel

dimension to form the original 3D filters. Also, as it will

be explained in the paper, the convolutions with respect to

the original 3D filters can be converted to convolutions with

respect to the learned basis. Thus, our method can be easily

and efficiently implemented and embedded into the state-of-

the-art networks. Compared with previous works, our basis

learning method also generalized easily to 1 × 1 convolu-

tion, which is vital for compressing networks with intensive

1× 1 convolutions.

The contribution of this paper is four-fold. (I) We pro-

pose a novel basis learning method that can reduce the in-

put channel, making it eligible for narrow networks. Our

method can be applied to convolutional layers with differ-

ent kernel sizes and even 1 × 1 convolutions. (II) Our

method achieves state-of-the-art compression performance.

On VGG, SRResNet, and EDSR, our method outperforms

state-of-the-art compression method gracefully with lower

classification error and fewer parameters of the previous

compression method [45, 46]. On ResNet, DenseNet, our

compressed model is comparable with the recent state-of-

the-art with fewer parameters. (III) Our method generalizes

easily to prior work just by changing the number of splits,

thus leading to a unified formulation of different filter de-

composition methods [20, 52, 46]. (IV) We validate our

method on both high-level vision tasks, i.e., image classifi-

cation, and low-level vision tasks, i.e., image SR. Compared

with the high-level vision tasks such as image classifica-

tion where a single class is regressed, the low-level image

SR task is more challenging since the algorithm need to re-

cover every pixel and the content detail in the image. How-

ever, none of the previous works apply compression method

to networks designed for low-level task. Our experimental

results show that network compression method also works

well for image SR.

The reminder of the paper is organized as follows. In

Sec. 2, we discuss the relevant work. In Sec. 3, we intro-

duce the proposed filter basis learning method for network

compression in detail. In Sec. 4, we explain how to learn

the basis filter and the coding coefficients. In Sec. 5, we

provide the implementation details of our method and dis-

cuss the experimental results. Sec. 6 concludes the paper.

2. Related Work

Network compression as a research topic attracted an

increased interest recently. The works in this field can

be roughly grouped into three categories, namely, network

pruning, network quantization, and filter decomposition.

Network Pruning: Network pruning attempts to prune

the less important network parameters in the network.

Han et al. [13, 14] tried to learn sparse connections and

prune the less important ones. They introduced deep com-

pression that combines several techniques such as weight

pruning, quantization and weight sharing, and Huffman

coding to reduce the size of neural networks. However,

their method results in irregular kernel shapes making it dif-

ficult for implementation although the theoretical speed-up

ratio is impressive [14]. Thus, channel pruning is proposed

to remove redundant channels in feature maps which result

in regular kernel shapes and implementation-friendly algo-

rithms [3, 54, 47]. Wen et al. [47] explored structured spar-

sity including channel-wise, shape-wise, and depth-wise

sparsity in deep neural networks. He et al. [17] proposed

channel pruning to accelerate deep neural networks. Their

method can choose representative channels and prune re-

dundant ones, based on LASSO regression.

Network Quantization: Network quantization aims at

reducing the model size of neural networks by quantizing

the weight parameters. Han et al. [13] demonstrated how

to quantize weight parameters to a relatively small number

of shared weights without loss of accuracy. Chen et al. [5]

introduced a hash function to group network connections

into hash buckets and forced connections falling into the

same buckets to share the same weight. Other works at-

tempt to reduce the precision of parameter by introducing

binary [41, 7, 6] and ternary [55] weights.

Filter Decomposition: Apart from the two aforemen-

tioned methods, filter decomposition is proposed to approx-

imate the original filter with parameter efficient represen-

tations [8, 20, 26, 52, 46, 40]. Early low-rank approxi-

mation applies matrix decomposition by using SVD [8] or

CP-decomposition [26]. Jaderberg et al. [20] proposed to

approximate the 2D filter set by a linear combination of a

smaller basis set of 2D separable filters. Wang et al. [46]

built on the work of Jaderberg et al. and further rearranged

the decomposed filter sequentially. In their work, each nor-

mal convolution is decomposed into several layers of depth-

wise convolution followed by 1 × 1 convolution. Son et

al. [45] proposed to use k-means algorithm to cluster the

3×3 convolutional kernels. The kernels that fall in the same

cluster share the same weight parameter. However, for each

3 × 3 kernel, a scale and an index parameter is introduced

to represent the kernel. So the compression ratio in terms of

number of parameters is fixed and slightly larger than 2/9.

The same problem exists for [46]. Although the compres-

sion ratio 1/9 could be achieved by [46], the classification

accuracy is severely diminished. Another drawback of [45]

is that it could not be applied to 1× 1 convolutions favored

by modern networks such as ResNet and DenseNet.

Instead of working on 2D filters as in the previous low-

rank approximation, Zhang et al. [52] directly dealt with

3D filters by considering the input channel as the third di-

mension. However, their method cannot reduce the input
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channel. This prohibits the application of the decomposi-

tion method narrow networks with small output channel but

large input channel such as DenseNet. In a recent work,

Peng et al. [40] proposed to approximate a normal convolu-

tion by group convolution followed by a linear combination

(1 × 1 convolution). However, they did not apply their ap-

proximation methods to DenseNet, which is of particular

interest in the newly proposed architectures.

By contrast, our proposed basis learning method can be

applied to convolutions with any kernel size and any in-

put/output channel size. This makes our method flexible

to compress different modern networks.

3. Filter Decomposition for Network Compres-

sion

Given an input image x ∈ X , the aim of supervised

learning is to recover the corresponding label y ∈ Y . For

low-level vision tasks such as image SR, the label is the

ground-truth high-resolution image corresponding to the

low-resolution input image x. For high-level image clas-

sification, y is a class label of the image. The regression

process can be represented by a simple function

ŷ = fΘ(x), (1)

where ŷ denotes the regressed label and fΘ(·) is the regres-

sion function of the neural network parameterized by Θ.

3.1. Decomposing convolution layer with filter basis

We assume that a convolution layer has c input channels

and n output channels, and the kernel size is w×h. In order

to reduce the number of parameters in neural network, dif-

ferent decomposition methods have been suggested. Zhang

et al. assumed the parameters of a convolution layer could

be approximated by a low-rank matrix [52], i.e.,

W ≈ B ·A, (2)

where W ∈ ℜcwh×n = [W1, · · · ,Wn] is the matrix that

contains the vectorized 3D filters, the multiplication of ma-

trix B ∈ ℜcwh×m and matrix A ∈ ℜm×n is a low-rank ma-

trix with rank m < n. Besides formulating the parameters

of convolution layer as a cwh×n matrix, there are also other

low-rank approximation works [20, 46] which consider the

parameter matrix as a wh × cn matrix. These works treat

each channel in the 3D filter independently.

In Eqn. (2), the approximation of filter can also be ana-

lyzed in a filter basis decompostion perspective. Each 3D

filter Wi ∈ ℜcwh×1 (or Wi ∈ ℜwh×1 for the channel-wise

decomposition case) is represented by the linear combina-

tion of a set of m filter basis {Bj |j = 1, · · · ,m} with the

coding coefficient vector Ai ∈ ℜm×1:

Wi ≈
m
∑

j=1

αj,iBj , i = 1, · · · , n. (3)

...

...

...

F
ilter

Channel

Channel-wiseSplit-wise3D Filter-wise

Figure 1. Comparison of different filter decomposition methods.

Right: each channel of the 3D filter is considered as a basic el-

ement. A unique set of basis is learned for the n 2D filters in

each channel. Middle (the proposed): the 3D filters are split into s

groups along the channel dimension and each group is considered

as a basic filter element. A basis set is learned for all of the n× s

splits of all the 3D filters. Left: the 3D filter is considered as a

whole. A basis set is learned for the 3D filters.

where Ai is the i-th column of A, Bj is the j-th filter basis

with dimension cwh×1 or wh×1 for the 3D filter-wise de-

composition and 2D channel-wise decomposition cases, re-

spectively. An illustration of direct 3D filter-wise decompo-

sition and channel-wise filter decomposition can be found in

the left and right part of Fig. 1.

From the viewpoint of filter basis decomposition, more

flexible decomposition strategy can be adopted. In the next

subsection, we analyze the relationship between the dimen-

sion of filter basis and compression rate, and suggest a split-

wise decomposition approach for network compression.

3.2. Compression rate with different filter basis

If we utilize m 3D filter basis as a basic element (Fig 1:

Left) to decompose the parameters of a convolution layer,

the compression rate of the parameters is

m · c · w · h+m · n
n · c · w · h =

m

n
+

m

c · w · h, (4)

where (n·c·w ·h), (m·c·w ·h), and (m·n) is the number of

parameters of the original convolution layer, the filter basis,

and the coding coefficients, respectively. In most of existing

neural networks, c · w · h is much larger than n. Thus, the

first term in Eqn. (4) dominates the compression rate. For

the 2D channel-wise decomposition case, we can similarly

get the compression rate, namely,

m · w · h+ c ·m · n
n · c · w · h =

m

n · c +
m

w · h. (5)

The major storage budget is used for the coding coefficients.

In order to achieve a better trade-off between compress-

ing the basis and coefficients, we split the 3D filters along

the channel dimension as illustrated in the middle part of
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(a)

(b)

Figure 2. Illustration of the proposed basis learning method. Oper-

ations are converted to convolutions. Unlike the normal convolu-

tion, our method splits both the input feature map and the 3D filter

along the channel dimension. A set of basis is learned for the en-

semble of splits. Every split of the input feature map is convolved

with the basis. A final 1× 1 convolution generates the output.

Fig. 1, namely, thinking of the c × w × h filter as being

composed of s smaller p × w × h filters and c = s · p. As

a result, the n 3D c× w × h filters can be regarded as n · s
filters with size p × w × h. Then, the problem becomes

learning the basis and the representation coefficients of the

n · s smaller filters. And the compression rate becomes

m · p · w · h+m · n · s
n · c · w · h =

m

n× s
+

m

p · w · h. (6)

The compression rate equation in Eqn. (6) enable us to

utilize generalized split-wise decomposition formula to

achieve better compression rate. Concretely, the optimal

compression rate with respect to the size of filter basis could

be achieved by solving the following optimization problem:

{s∗, p∗} = argmin
{s,p}

{

m

n× s
+

m

p · w · h

}

s.t. c = s · p

=

{
√

c · w · h
n

,

√

n · c
w · h

}

. (7)

We can further quantize p to the nearest integer that can

divide c. For most of the convolutional layers, the input

channel c and output channel n are the same or of the same

magnitude order, i.e., c ≈ n. Thus, the optimal group s∗ ≈√
w × h. That is to say, the optimal configuration of splits

is neither Fig. 1: Left nor Fig. 1: Right but the middle state

between them.

3.3. Implementing with convolution

In this subsection, we show that filter decomposition can

be implemented by convolution in the forward pass. By re-

arranging the operation, the proposed filter decomposition

approach can alleviate the computation burden and com-

press network parameters.

We start with the case where there is only one split, i.e.,

s = 1. As in Eqn. 3, we utilize linear combination of fil-

ter basis to reconstruct the 3D filter Wi =
∑m

j=1
αj,iBj .

For the simplicity of notation, we use the same notation to

represent the original non-vectorized 3D filters and basis,

i.e., Wi,Bj ∈ ℜc×w×h. Thus, the convolution between

the input feature map x and the 3D kernel becomes

x ∗Wi = x ∗





m
∑

j=1

αj,iBj



 =
m
∑

j=1

αj,i (x ∗Bj). (8)

The second equality follows the linearity of convolution.

Eqn. (8) decompose the convolution operation with 3D fil-

ter Wi as linear combination of convolution operations with

filter basis {Bj , j = 1, . . . ,m}. The linear combination can

be implemented by a 1× 1 convolution.

For more general split-wise decomposition cases, we use

smaller filter basis {Bj ∈ ℜp×w×h, j = 1, . . . ,m} to re-

construct each sub-part of the 3D filter, namely,

Wi =
[

Wi,1; . . . ;Wi,s

]

, (9)

Wi,g =

m
∑

j=1

αj,i,gBj , (10)

where Wi,g ∈ ℜp×w×h is a split of the 3D filter, g =
1, . . . , s is the split index, and [·] is the operator that stacks

the basis along the channel dimension. Accordingly, the

convolution between x and Wi becomes

x ∗Wi = [x1, · · · , xs] ∗
[

Wi,1, · · · ,Wi,s

]

=

s
∑

g=1

xg ∗Wi,g =

s
∑

g=1

xg ∗
m
∑

j=1

αj,i,gBj

=

s
∑

g=1

m
∑

j=1

αj,i,g

(

xg ∗Bj

)

. (11)

where {xg, g = 1, . . . , s} in Eqn. (11) are the splits of the

input x. As revealed by Eqn. (11), in the split-wise decom-

position case, each split of feature map is firstly convolved

with the filter basis, and then the final output is achieved

by a weighted summation of the convolution results. This

operation on feature map splits could be implemented as a

3D convolution as in Pytorch [39] or Tensorflow [1] with

stride p = c/s and no padding along the channel dimen-

sion. But we find the 3D convolution implementation is not

efficient. In this way it takes 121 ms to run the compressed

EDSR model for one iteration with batch size 16 and patch

size 48 × 48. Instead, we implement the operation with s
2D convolutions that share the same weight parameter and

the running time drops to 62 ms. The linear combination is

again converted to a 1×1 convolution. Thus, no matter how

many splits there are, a standard convolution can be decom-

posed into a convolution with respect to the basis and a 1×1
convolution. The implementation is illustrated in Fig. 2.
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3.4. Filter basis decomposition for special filter sizes

As shown in the above analysis, our basis learning

method follows a general setting of filter size, i.e., n × c ×
w× h. This means that the proposed basis learning method

can be applied to any convolutional filters. Here we empha-

size two special filter sizes.

1 × 1 convolution: The first one is 1 × 1 convolu-

tion which is favored by modern neural networks [15, 18].

When the input/output channels are quite large, consider-

able parameters and computation are consumed by 1 × 1
convolution. For example, in DenseNet-12-40 architec-

ture [18], 12.1% of the parameters is in the two large

1 × 1 convolutions. Unfortunately, prior filter decompo-

sition works [20, 8, 46] could not be applied to this kind of

convolution. Following our formulation Eqn. (8) through

Eqn. (11), a 1 × 1 convolution with large n and c can be

decomposed into two cheaper ones.

c ≫ n > m convolution: In some networks such as

DenseNet, the output channel n is much smaller than the

input channel c. In this case, according to Eqn. (4), we are

in the dilemma of either choosing a even smaller basis size

m at the risk of losing too much accuracy or selecting an m
comparable with n thus resulting in uneconomic compres-

sion. As revealed by Eqn. (5), by splitting the 3D kernels

along the channel dimension, we can have s times more fil-

ters. So we can gracefully choose a comfortable basis size

that leads to both economic compression and high accuracy.

4. Learning Filter Basis

In the previous section, we have shown that decompos-

ing filter splits into linear combinations of filter basis could

reduce the computational burden and parameter number of

networks. In this section, we present our learning method

for learning filter basis.

4.1. General filter basis learning approach

For the purpose of notation simplicity, we only introduce

the simple case of using B ·A to approximate filter W. The

training method for the split-wise case of approximating W

with B ·A is exactly the same. We jointly minimize the ap-

proximation error ‖W − B · A‖2F and the network target

loss L(y, f(x)). For example, to compress image restora-

tion network with mean square error (MSE) loss, our train-

ing objective function is

min
Bl,Al

∥

∥y − fB,A|Θ(x)
∥

∥

2

F
+ γ

L
∑

l=1

∥

∥W
l −B

l ·Al
∥

∥

2

F
,

(12)

where fB,A|Θ(·) denotes the CNN with parameter {B,A}
conditioned that the other parameters Θ are known and the

superscript l indexes the l-th layer of an L-layer network.

DenseBlock 36

DenseBlock 35

...

DenseBlock 2

DenseBlock 1

...

Figure 3. Basis sharing for the compression of DenseNet-12-40.

The basis set is shared by all of the DenseBlocks in DenseNet-12-

40. The shared basis is split into 36 splits. The basis of a certain

DenseBlock is sliced from the shared basis set. Starting from the

lower DenseBlock, every DenseBlock adds a new split from the

shared basis set to the basis of the previous block forming the basis

of current block. Thus, the basis channel of the DenseBlock grows

gradually.

After having learned the basis and the coding matrices

{B,A}, there is no need to store the original filters. Dur-

ing inference, {B,A} is used as the weight parameter as

the lightweight and 1 × 1 convolution, respectively. The

total number of parameters of the basis and the coding co-

efficient is much fewer than those of the original filters, thus

achieving a reduction of the number of parameters.

4.2. Basis sharing

To compress the networks further, we can force several

or all convolutional layers to share the same basis set de-

pending on the compression degree we want to achieve. The

weight sharing strategy can be customized to the networks.

For example, in ResNet [15] and the following works SR-

ResNet [27], EDSR [33], there are two convolutions in the

residual block. We can let the two convolutions share the

basis. In ResNet-56 architecture for CIFAR10, the residual

blocks are grouped into three groups, each with 9 residual

blocks and increasing feature map channels. The channels

in the lower residual block groups are relatively small (16

and 32 for the first and second group). To achieve a sat-

isfying compression rate, we have the convolutions within

the same group share a common basis set. Moreover, in

DenseNet, the input channel grows gradually with a step

12. There is no clear sign like in ResNet to indicate which

convolution should share the basis. In this case, all of the

convolutional layers share the same basis. For the lower

layers, only a slice of the basis is used while only for the

last convolutional layer the whole basis is used. The basis

sharing strategy for DenseNet-12-40 is shown in Fig. 3.

In conclusion, we can apply block-wise, group-wise, or

network-wise basis sharing flexibly according to the archi-

tecture of the target network.
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Ground Truth: PSNR (dB) Factor [46]: 34.67 Basis-S (ours): 34.99 Basis (ours): 35.10 Baseline: 35.27

Figure 4. SR results of bird image for upscaling factor ×4. Network compression methods are applied on EDSR [33].

Metrics

Basis Share
Base-
lineNo / Yes No /Yes No / Yes

m = 16 m = 32 m = 64

Set5 32.14 / 32.16 32.22 / 32.20 32.33 / 32.30 32.48

Set14 28.58 / 28.57 28.66 / 28.64 28.72 / 28.73 28.81

B100 27.58 / 27.57 27.62 / 27.61 27.66 / 27.64 27.72

Urban100 26.05 / 26.00 26.20 / 26.20 26.38 / 26.38 26.65

DIV2K 28.96 / 28.93 29.06 / 29.04 29.14 / 29.14 29.25

#Params 27k / 17k 53k / 35k 106k / 70k 1180k

Comp. (%) 2.3 / 1.5 4.5 / 3.0 9.0 / 5.9 100

Table 1. Different operating points of applying the proposed basis

learning to EDSR for image SR for upscaling factor ×4. PSNR

(dB) is reported for the five commonly used datasets. ‘Basis Share’

indicates whether the two convolutions within the same residual

block share the basis. m is the number of basis. The number of

splits p for one convolution is 4.

5. Experimental Results

We show the experimental results in this section and

compare with the state-of-the-art methods on both image

classification and image SR. For classification, we applied

our basis learning method to various networks including

VGG [44], ResNet [15], and DenseNet [18]. We evaluate

the performance of compressed models on CIFAR10 [24]

dataset. The training and testing subset contains 50,000

and 10,000 images, respectively. As is done by prior

works [15, 18], we normalize all images using channel-wise

mean and standard deviation of the the training set. Stan-

dard data augmentation is also applied. We train the com-

pressed networks for 300 epochs with SGD optimizer and

an initial learning rate of 0.1. The learning rate is decayed

by 10 after 50% and 75% of the epochs.

For image SR, we applied our method to two typical SR

networks, namely, SRResNet [27] and EDSR [33]. SR-

ResNet is a middle-level network with 1.5M parameters

while EDSR is quite a huge network with 43M parame-

ters but much higher PSNR accuracy. For fast training, we

also compressed a lighter version of EDSR with 8 resid-

ual blocks and 128 channels per convolution in the residual

block. We denote this network as EDSR-8-128. The net-

works are trained on DIV2K [2] dataset that contains 1,000

2K images. We test the networks on five datasets: Set5 [4],

Set14 [48], B100 [36], Urban100 [19], and DIV2K valida-

tion set. Adam optimizer [23] is used for training SR net-

works. We use the default hyper-parameter. The networks

are trained for 300 epochs. The learning rate starts from

1× 10−4 and decays by 10 after 200 epochs.

5.1. Validation on superresolution

The compression results of SR networks are shown in

Table 1, Table 2, and Table 3. In Table 1, we explore differ-

ent operating points applied to EDSR. We use 4 splits for the

convolution in the residual block. For a clearer comparison,

we report the number of parameters and compression ratio

for one residual block since all of the other blocks has the

same parameter. And we keep to this setting in Table 2 and

Table 3. By default, each convolution layer uses an unique

basis set, i.e., without basis sharing. In Table 1 and Table 3,

the corresponding basis sharing result is also shown.

In Table 1, there are several noticeable points. Firstly,

the compressed models with and without basis sharing tech-

nique achieve almost the same PSNR for different m. But

with basis sharing, the model size is further compressed.

Secondly, when m = 64 and basis sharing is used, the com-

pressed model only accounts for 9% of the parameters of

the original network. When basis sharing is further used,

an impressive compression rate of 5.9% is achieved while

the PSNR result is not far away from the baseline. Thirdly,

the most aggressive compression ratio is 1.5%. Considering

that there are 32 and 16 residual blocks in EDSR and SR-

ResNet respectively, this operating point brings the model

size from EDSR level to SRResNet level while the PSNR

of the resulting model is higher than that of SRResNet.

In Table 2, the results of Factor [46] and our basis learn-

ing method are shown for the SRResNet and EDSR-8-128.

A lighter and a heavier operating point are reported for

each compression method. The proposed method outper-

forms Factor under the two settings. To further compare

Factor and the proposed method, we apply the compression

method to the fully-fledged EDSR model. As shown in Ta-

ble 3, the compressed model Basis-S is much better than

Factor and in the meanwhile with fewer parameters. The

PSNR result of our Basis-S is slightly worse than that of Ba-
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SRResNet [27] Factor-SIC2 Factor-SIC3 Basis-64-14 (ours) Basis-32-32 (ours) Baseline

PSNR (dB)

Set5 31.68 31.86 31.84 31.90 32.03

Set14 28.32 28.38 28.38 28.43 28.50

B100 27.37 27.40 27.39 27.44 27.52

Urban100 25.47 25.58 25.54 25.65 25.88

DIV2K 28.59 28.65 28.63 28.69 28.85

#Parameters 19k 28k 18k 27k 74k

Compression Rate (%) 25.3 38.0 24.3 36.1 100

EDSR-8-128 [33] Factor-SIC2 Factor-SIC3 Basis-128-27 (ours) Basis-128-40 (ours) Baseline

PSNR (dB)

Set5 31.82 31.96 31.95 32.03 32.10

Set14 28.40 28.47 28.42 28.45 28.55

B100 27.43 27.49 27.46 27.50 27.55

Urban100 25.63 25.81 25.76 25.81 26.02

DIV2K 28.70 28.81 28.76 28.82 28.93

#Parameters 70k 105k 69k 102k 295k

Compression Rate (%) 23.8 35.7 23.4 34.7 100

Table 2. Comparison of Factor [46] and our basis learning method for the lighter SR networks SRResNet and EDSR-8-128. The upscaling

factor is ×4. For each method, two operating points including a lighter one and a heavier one are reported. ‘SIC*’ denotes the number of

SIC layers in Factor. ‘Basis-N-S’ means that the number of basis is S and each basis has N input channels.

Comparison Metrics
Factor [46] Basis-S (ours) Basis (ours) Baseline

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

PSNR
(dB)

Set5 37.95 34.33 32.05 38.09 34.47 32.29 38.12 34.55 32.39 38.19 34.68 32.48

Set14 33.53 30.31 28.54 33.75 30.41 28.63 33.72 30.46 28.69 33.95 30.53 28.81

B100 32.15 29.08 27.55 32.23 29.15 27.62 32.27 29.18 27.64 32.35 29.26 27.72

Urban100 31.99 28.10 25.98 32.38 28.39 26.25 32.46 28.51 26.36 32.97 28.81 26.65

DIV2K 34.60 30.91 28.92 34.77 31.06 29.06 34.84 31.11 29.13 35.03 31.26 29.25

#Parameters 136k 90k 164k 1180k

Compression Ratio (%) 11.5 7.6 13.9 100

Table 3. Compression results for EDSR [33]. Basis-S uses basis sharing for the two convolutions within the same residual block.

Configuration Top-1 Error (%) #Params Comp.(%)

M24 5.69 320k 30.8

M26 5.70 336k 32.3

M32 5.57 383k 36.8

M36T6 5.32 331k 31.8

M38T12 5.56 326k 31.3

Baseline 5.26 1041k 100

Table 4. Different operating points of our method for compressing

DenseNet-12-40 architecture [18] for image classification. ‘M*’

and ‘T*’ means the number of basis in DenseBlock and the splits

in the transition block in DenseNet, respectively. The classifica-

tion error is Top-1 error for CIFAR10.

sis. The super-resolved bird images of compressed EDSR

by different methods are shown in Fig .4. The image from

our compressed model has the highest PSNR and it is very

close to the baseline in visual quality as well.

5.2. Validation on image classification

In Table 4, we show different operating points for the

proposed method applied on DenseNet-12-40 architecture.
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Figure 5. Comparison between our method and KSE [31] for

ResNet-56 on CIFAR10.

When the basis size increases from 24 to 32, the correspond-

ing error rate decreases from 5.69% to 5.57%. In addition,

by applying compression to the 1 × 1 convolution in the

transition layer, we can save some parameter budget for the

DenseBlock, which is relatively more important in the net-

work. Thus, for ‘M36T6’ and ‘M38T12’, we can utilize

more basis and at the same time with smaller number of
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Model Method Top-1 Error (%) / Baseline #Parameters Compression Rate(%)

VGG-16

K-means [45] 6.24 / 5.98 3.27M 22.2

Factor [46] 7.12 / 5.98 3.34M 22.7

Group [40] 6.69 / 5.98 3.80M 25.9

Basis (ours) 6.18 / 5.98 3.21M 21.8

DenseNet-12-40

K-means 5.44 / 5.26 335k 32.2

Factor 6.71 /5.26 317k 30.4

Group 6.65 / 5.26 337k 32.4

KSE [31] 5.30 / 5.19 390k 37.5

[34](70%) 5.65 / 5.19 350k 33.6

Simple-SVD 7.14 / 5.26 360k 34.6

Basis (ours) 5.32 / 5.26 331k 31.8

ResNet-56

K-means [45] 6.76 / 6.28 190k 22.4

Factor 8.70 / 6.28 212k 24.9

Group 6.45 / 6.28 206k 24.3

KSE 7.12 / 6.97 360k 42.4

Basis (ours) 6.60 / 6.28 186k 21.9

Table 5. Compression results for VGG [44], DenseNet [18] and ResNet [15] trained on CIFAR-10 [24]. For a fair comparison, the model

size from different methods is kept to the same level.

Model Method Top-1 Err.(%) / Baseline FLOPs (%)

VGG

K-means [45] 6.24 / 5.98 100

Factor [46] 7.12 / 5.98 36.6

Group [40] 6.69 / 5.98 46.1

Basis (ours) 6.23 / 5.98 23.5

ResNet56

CaP [37] 6.78 / 6.49 50.2

ENC [21] 7.00 / 6.90 50.0

AMC [16] 8.10 / 7.20 50.0

KSE [31] 6.77 / 6.97 48.0

Basis (ours) 6.08 / 7.05 50.0

Table 6. Top-1 error vs. FLOPs reduction rate for VGG-16 and

ResNet-56 on CIFAR10. For K-means, the practical FLOPs in the

authors’ code rather than the theoretical is reported.

parameters. Compared with ‘M32’, ‘M36T6’ further re-

duces the error rate by 0.25%. Interestingly, although our

‘M38T12’ model uses two more basis than ‘M36T6’, the

error rate rises a little bit. This is because ‘M38T12’ uses an

aggressive compression, i.e., s = 12 in the transition block.

Therefore, the compression degree of the DenseBlock and

the transition block should be balanced to obtain the best

trade-off between compression ratio and accuracy.

The compression results of different methods for VGG-

16, DenseNet-12-40, and ResNet-56 are shown in Table 5.

For a fair comparison, we follow the setting in [45] for

VGG-16. That is, only one instead of three fully-connected

layer is appended after the last pooling layer. On VGG-16,

our method shows the most aggressive compression and the

lowest error rate. For our compressed model, we only suffer

0.2% increase of error rate, which is quite small compared

with 0.71% 1.14% increase of Group [40] and Factor. And

our model has the smallest size. Our compression method

and KSE [31] shoots the lowest error rate on DenseNet-12-

40. As for the compression ratio, although Factor is slightly

lower than ours, its accuracy is the worst among all the com-

pared methods. For ResNet-56, our method performs com-

parable with Group in terms of accuracy while with 20k

fewer parameters. Table 6 and Fig. 5 compare the computa-

tional cost of the proposed method and the state-of-the-art.

Results are reported at operating points different from those

in Table 5. For VGG-16, our method achieves the lowest

error rate under the severest FLOPs reduction. For ResNet-

56, the proposed method outperforms the others by a sig-

nificant margin under the same FLOPs reduction. In Fig. 5,

our method always shoots a lower error rate than KSE.

6. Conclusion

In this paper, we explored how to learn a filter basis set

for convolution operations in modern CNNs. Our method

is not limited by the filter size. Thus, it can be applied to

1× 1 convolution and convolution with large input channel

and smaller output channel. We applied our basis learn-

ing method to image classification and SR networks. The

experiments validate the advantage of our basis learning

method. Our compressed SRResNet and EDSR outper-

forms the models from the previous filter decomposition

method. For the image SR network EDSR, the most aggres-

sive compression our method brings the model size from

EDSR level to SRResNet level while being more accurate

than SRResNet. For VGG-16, the error rate of the model

compressed by our method is within 0.2% the baseline er-

ror, which is much better than the results of other com-

pression methods. Our filter basis learning method leads

to state-of-the-art performance on ResNet and DenseNet.
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