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Abstract

Learning fine-grained image similarity is a challenging

task. It needs to capture between-class and within-class

image differences. This paper proposes a deep ranking

model that employs deep learning techniques to learn sim-

ilarity metric directly from images. It has higher learning

capability than models based on hand-crafted features. A

novel multiscale network structure has been developed to

describe the images effectively. An efficient triplet sam-

pling algorithm is proposed to learn the model with dis-

tributed asynchronized stochastic gradient. Extensive ex-

periments show that the proposed algorithm outperforms

models based on hand-crafted visual features and deep

classification models.

1. Introduction

Search-by-example, i.e. finding images that are similar

to a query image, is an indispensable function for modern

image search engines. An effective image similarity metric

is at the core of finding similar images.

Most existing image similarity models consider

category-level image similarity. For example, in [12, 22],

two images are considered similar as long as they belong

to the same category. This category-level image similarity

is not sufficient for the search-by-example image search

application. Search-by-example requires the distinction of

differences between images within the same category, i.e.,

fine-grained image similarity.

One way to build image similarity models is to first ex-

tract features like Gabor filters, SIFT [17] and HOG [4],

and then learn the image similarity models on top of these

features [2, 3, 22]. The performance of these methods is

largely limited by the representation power of the hand-

crafted features. Our extensive evaluation has verified that

being able to jointly learn the features and similarity models
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Figure 1. Sample images from the triplet dataset. Each column

is a triplet. The upper, middle and lower rows correspond to

query image, positive image, and negative image, where the pos-

itive image is more similar to the query image that the negative

image, according to the human raters. The data are available at

https://sites.google.com/site/imagesimilaritydata/.

with supervised similarity information provides great po-

tential for more effective fine-grained image similarity mod-

els than hand-crafted features.

Deep learning models have achieved great success on

image classification tasks [15]. However, similar image

ranking is different from image classification. For image

classification, “black car”, “white car” and “dark-gray car”

are all cars, while for similar image ranking, if a query im-

age is a “black car”, we usually want to rank the “dark gray

car” higher than the “white car”. We postulate that image

classification models may not fit directly to task of distin-

guishing fine-grained image similarity. This hypothesis is

verified in experiments. In this paper, we propose to learn

fine-grained image similarity with a deep ranking model,

which characterizes the fine-grained image similarity rela-

tionship with a set of triplets. A triplet contains a query

image, a positive image, and a negative image, where the

positive image is more similar to the query image than the

negative image (see Fig. 1 for an illustration). The image

similarity relationship is characterized by relative similar-

ity ordering in the triplets. Deep ranking models can em-

ploy this fine-grained image similarity information, which



is not considered in category-level image similarity models

or classification models, to achieve better performance.

As with most machine learning problems, training data

is critical for learning fine-grained image similarity. It is

challenging to collect large data sets, which is required for

training deep networks. We propose a novel bootstrapping

method (section 6.1) to generate training data, which can

virtually generate unlimited amount of training data. To

use the data efficiently, an online triplet sampling algo-

rithm is proposed to generate meaningful and discriminative

triplets, and to utilize asynchronized stochastic gradient al-

gorithm in optimizing triplet-based ranking function.

The impact of different network structures on similar im-

age ranking is explored. Due to the intrinsic difference be-

tween image classification and similar image ranking tasks,

a good network for image classification ( [15]) may not

be optimal for distinguishing fine-grained image similarity.

A novel multiscale network structure has been developed,

which contains the convolutional neural network with two

low resolution paths. It is shown that this multi-scale net-

work structure can work effectively for similar image rank-

ing.

The image similarity models are evaluated on a human-

labeled dataset. Since it is error-prone for human labelers

to directly label the image ranking which may consist tens

of images, we label the similarity relationship of the images

with triplets, illustrated in Fig. 1. The performance of an

image similarity model is determined by the fraction of the

triplet orderings that agrees with the ranking of the model.

To our knowledge, it is the first high quality dataset with

similarity ranking information for images from the same

category. We compare the proposed deep ranking model

with state-of-the-art methods on this dataset. The experi-

ments show that the deep ranking model outperforms the

hand-crafted visual feature-based approaches [17, 4, 3, 22]

and deep classification models [15] by a large margin.

The main contributions of this paper includes the follow-

ing. (1) A novel deep ranking model that can learn fine-

grained image similarity model directly from images is pro-

posed. We also propose a new bootstrapping way to gen-

erate the training data. (2) A multi-scale network structure

has been developed. (3) A computationally efficient online

triplet sampling algorithm is proposed, which is essential

for learning deep ranking models with online learning al-

gorithms. (4) We are publishing an evaluation dataset. To

our knowledge, it is the first public data set with similar-

ity ranking information for images from the same category

(Fig. 1).

2. Related Work

Most prior work on image similarity learning [23, 11]

studies the category-level image similarity, where two im-

ages are considered similar as long as they belong to the

same category. Existing deep learning models for image

similarity also focus on learning category-level image sim-

ilarity [22]. Category-level image similarity mainly corre-

sponds to semantic similarity. [6] studies the relationship

between visual similarity and semantic similarity. It shows

that although visual and semantic similarities are gener-

ally consistent with each other across different categories,

there still exists considerable visual variability within a cat-

egory, especially when the category’s semantic scope is

large. Thus, it is worthwhile to learn a fine-grained model

that is capable of characterizing the fine-grained visual sim-

ilarity for the images within the same category.

The following works are close to our work in the spirit

of learning fine-grained image similarity. Relative at-

tribute [19] learns image attribute ranking among the im-

ages with the same attributes. OASIS [3] and local dis-

tance learning [10] learn fine-grained image similarity rank-

ing models on top of the hand-crafted features. These above

works are not deep learning based. [25] employs deep learn-

ing architecture to learn ranking model, but it learns deep

network from the “hand-crafted features” rather than di-

rectly from the pixels. In this paper, we propose a Deep

Ranking model, which integrates the deep learning tech-

niques and fine-grained ranking model to learn fine-grained

image similarity ranking model directly from images. The

Deep Ranking models perform much better than category-

level image similarity models in image retrieval applica-

tions.

Pairwise ranking model is a widely used learning-to-rank

formulation. It is used to learn image ranking models in

[3, 19, 10]. Generating good triplet samples is a crucial

aspect of learning pairwise ranking model. In [3] and [19],

the triplet sampling algorithms assume that we can load the

whole dataset into memory, which is impractical for a large

dataset. We design a computationally efficient online triplet

sampling algorithm that does not require loading the whole

dataset into memory, which makes it possible to learn deep

ranking models with very large amount of training data.

3. Overview

Our goal is to learn image similarity models. We define

the similarity of two images P and Q according to their

squared Euclidean distance in the image embedding space:

D(f(P ), f(Q)) = ‖f(P )− f(Q)‖22 (1)

where f(.) is the image embedding function that maps an

image to a point in an Euclidean space, and D(., .) is the

squared Euclidean distance in this space. The smaller the

distance D(P,Q) is, the more similar the two images P and

Q are. This definition formulates the similar image ranking

problem as nearest neighbor search problem in Euclidean

space, which can be efficiently solved via approximate near-

est neighbor search algorithms.
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We employ the pairwise ranking model to learn image

similarity ranking models, partially motivated by [3, 19].

Suppose we have a set of images P , and ri,j = r(pi, pj)
is a pairwise relevance score which states how similar the

image pi ∈ P and pj ∈ P are. The more similar two images

are, the higher their relevance score is. Our goal is to learn

an embedding function f(.) that assigns smaller distance to

more similar image pairs, which can be expressed as:

D(f(pi), f(p
+
i )) < D(f(pi), f(p

−
i )),

∀pi, p
+
i , p

−
i such that r(pi, p

+
i ) > r(pi, p

−
i )

(2)

We call ti = (pi, p
+
i , p

−
i ) a triplet, where pi, p

+
i , p

−
i are the

query image, positive image, and negative image, respec-

tively. A triplet characterizes a relative similarity ranking

order for the images pi, p
+
i , p

−
i . We can define the follow-

ing hinge loss for a triplet: ti = (pi, p
+
i , p

−
i ):

l(pi, p
+
i , p

−
i ) =

max{0, g +D(f(pi), f(p
+
i ))−D(f(pi), f(p

−
i ))}

(3)

where g is a gap parameter that regularizes the gap between

the distance of the two image pairs: (pi, p
+
i ) and (pi, p

−
i ).

The hinge loss is a convex approximation to the 0-1 rank-

ing error loss, which measures the model’s violation of the

ranking order specified in the triplet. Our objective function

is:

min
∑

i

ξi + λ‖W ‖22

s.t. : max{0, g +D(f(pi), f(p
+
i ))−D(f(pi), f(p

−
i ))} ≤ ξi

∀pi, p
+
i , p

−
i such that r(pi, p

+
i ) > r(pi, p

−
i )

(4)

where λ is a regularization parameter that controls the mar-

gin of the learned ranker to improve its generalization. W

is the parameters of the embedding function f(.). We em-

ploy λ = 0.001 in this paper. (4) can be converted to an

unconstrained optimization by replacing ξi = max{0, g +
D(f(pi), f(p

+
i ))−D(f(pi), f(p

−
i ))}.

In this model, the most crucial component is to learn an

image embedding function f(.). Traditional methods typi-

cally employ hand-crafted visual features, and learn linear

or nonlinear transformations to obtain the image embed-

ding function. In this paper, we employ the deep learning

technique to learn image similarity models directly from

images. We will describe the network architecture of the

triple-based ranking loss function in (4) and an efficient op-

timization algorithm to minimize this objective function in

the following sections.

4. Network Architecture

A triplet-based network architecture is proposed for the

ranking loss function (4), illustrated in Fig. 2. This net-
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Figure 2. The network architecture of deep ranking model.

work takes image triplets as input. One image triplet con-

tains a query image pi, a positive image p+i and a negative

image p−i , which are fed independently into three identi-

cal deep neural networks f(.) with shared architecture and

parameters. A triplet characterizes the relative similarity re-

lationship for the three images. The deep neural network

f(.) computes the embedding of an image pi: f(pi) ∈ Rd,

where d is the dimension of the feature embedding.

A ranking layer on the top evaluates the hinge loss (3)

of a triplet. The ranking layer does not have any parame-

ter. During learning, it evaluates the model’s violation of

the ranking order, and back-propagates the gradients to the

lower layers so that the lower layers can adjust their param-

eters to minimize the ranking loss (3).

We design a novel multiscale deep neural network archi-

tecture that employs different levels of invariance at differ-

ent scales, inspired by [8], shown in Fig. 3. The ConvNet

in this figure has the same architecture as the convolutional

deep neural network in [15]. The ConvNet encodes strong

invariance and captures the image semantics. The other two

parts of the network takes down-sampled images and use

shallower network architecture. Those two parts have less

invariance and capture the visual appearance. Finally, we

normalize the embeddings from the three parts, and com-

bine them with a linear embedding layer. In this paper, The

dimension of the embedding is 4096.

We start with a convolutional network (ConvNet) archi-

tecture for each individual network, motivated by the recent

success of ConvNet in terms of scalability and generaliz-

ability for image classification [15]. The ConvNet contains

stacked convolutional layers, max-pooling layer, local nor-

malization layers and fully-connected layers. The readers

can refer to [15] or the supplemental materials for more de-

tails.

A convolutional layer takes an image or the feature maps

of another layer as input, convolves it with a set of k learn-

able kernels, and puts through the activation function to

3
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Figure 3. The multiscale network structure. Ech input image goes

through three paths. The top green box (ConvNet) has the same

architecture as the deep convolutional neural network in [15]. The

bottom parts are two low-resolution paths that extracts low resolu-

tion visual features. Finally, we normalize the features from both

parts, and use a linear embedding to combine them. The number

shown on the top of a arrow is the size of the output image or

feature. The number shown on the top of a box is the size of the

kernels for the corresponding layer.

generate k feature maps. The convolutional layer can be

considered as a set of local feature detectors.

A max pooling layer performs max pooling over a local

neighborhood around a pixel. The max pooling layer makes

the feature maps robust to small translations.

A local normalization layer normalizes the feature map

around a local neighborhood to have unit norm and zero

mean. It leads to feature maps that are robust to the differ-

ences in illumination and contrast.

The stacked convolutional layers, max-pooling layer and

local normalization layers act as translational and contrast

robust local feature detectors. A fully connected layer com-

putes a non-linear transformation from the feature maps of

these local feature detectors.

Although ConvNet achieves very good performance for

image classification, the strong invariance encoded in its ar-

chitecture can be harmful for fine-grained image similarity

tasks. The experiments show that the multiscale network ar-

chitecture outperforms single scale ConvNet in fine-grained

image similarity task.

5. Optimization

Training a deep neural network usually needs a large

amount of training data, which may not fit into the mem-

ory of a single computer. Thus, we employ the distributed

asynchronized stochastic gradient algorithm proposed in [5]

with momentum algorithm [21]. The momentum algo-

rithm is a stochastic variant of Nesterov’s accelerated gra-

dient method [18], which converges faster than traditional

stochastic gradient methods.

Back-propagation scheme is used to compute the gradi-

ent. A deep network can be represented as the composition

of the functions of each layer.

f(.) = gn(gn−1(gn−2(· · · g1(.) · · · ))) (5)

where gl(.) is the forward transfer function of the l-th layer.

The parameters of the transfer function gl is denoted as wl.

Then the gradient
∂f(.)
∂wl

can be written as:
∂f(.)
∂gl

× ∂gl
∂wl

,

and
∂f(.)
∂gl

can be efficiently computed in an iterative way:
∂f(.)
∂gl+1

× ∂gl+1(.)
∂gl

. Thus, we only need to compute the gradi-

ents ∂gl
∂wl

and ∂gl
∂gl−1

for the function gl(.). More details of

the optimization can be found in the supplemental materi-

als.

To avoid overfitting, dropout [13] with keeping probabil-

ity 0.6 is applied to all the fully connected layers. Random

pixel shift is applied to the input images for data augmenta-

tion.

5.1. Triplet Sampling

To avoid overfitting, it is desirable to utilize a large va-

riety of images. However, the number of possible triplets

increases cubically with the number of images. It is compu-

tationally prohibitive and sub-optimal to use all the triplets.

For example, the training dataset in this paper contains 12

million images. The number of all possible triplets in this

dataset is approximately (1.2×107)3 = 1.728×1021. This

is an extermely large number that can not be enumerated.

If the proposed triplet sampling algorithm is employed, we

find the optimization converges with about 24 million triplet

samples, which is a lot smaller than the number of possible

triplets in our dataset.

It is crucial to choose an effective triplet sampling strat-

egy to select the most important triplets for rank learning.

Uniformly sampling of the triplets is sub-optimal, because

we are more interested in the top-ranked results returned by

the ranking model. In this paper, we employ an online im-

portance sampling scheme to sample triplets.

Suppose we have a set of images P , and their pairwise

relevance scores ri,j = r(pi, pj). Each image pi belongs to

a category, denoted by ci. Let the total relevance score of

an image ri defined as

ri =
∑

j:cj=ci,j 6=i

ri,j (6)

The total relevance score of an image pi reflects how rele-

vant the image is in terms of its relevance to the other im-

ages in the same category.

To sample a triplet, we first sample a query image pi
from P according to its total relevance score. The probabil-

ity of an image being chosen as query image is proportional

to its total relevance score.
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Then, we sample a positive image p+i from the images

sharing the same categories as pi. Since we are more in-

terested in the top-ranked images, we should sample more

positive images p+i with high relevance scores ri,i+ . The

probability of choosing an image p+i as positive image is:

P (p+i ) =
min{Tp, ri,i+}

Zi
(7)

where Tp is a threshold parameter, and the normalization

constant Zi equals
∑

i+ P (p+i ) for all the p+i sharing the

the same categories with pi.
We have two types of negative image samples. The first

type is out-of-class negative samples, which are the negative

samples that are in a different category from query image pi.
They are drawn uniformly from all the images with differ-

ent categories with pi. The second type is in-class negative

samples, which are the negative samples that are in the same

category as pi but is less relevant to pi than p+i . Since we

are more interested in the top-ranked images, we draw in-

class negative samples p−i with the same distribution as (7).

In order to ensure robust ordering between p+i and p−i in

a triplet ti = (pi, p
+
i , p

−
i ), we also require that the margin

between the relevance score ri,i+ and ri,i− should be larger

than Tr, i.e.,

ri,i+ − ri,i− ≥ Tr, ∀ti = (pi, p
+
i , p

−
i ) (8)

We reject the triplets that do not satisfy this condition. If

the number of failure trails for one example exceeds a given

threshold, we simply discard this example.

Learning deep ranking models requires large amount of

data, which cannot be loaded into main memory. The sam-

pling algorithms that require random access to all the ex-

amples in the dataset are not applicable. In this section, we

propose an efficient online triplet sampling algorithm based

on reservoir sampling [7].

We have a set of buffers to store images. Each buffer has

a fixed capacity, and it stores images from the same cate-

gory. When we have one new image pj , we compute its key

kj = u
(1/rj)
j ,where rj is its total relevance score defined in

(6) and uj = uniform(0, 1) is a uniformly sampled number.

The buffer corresponding to the image pj’s can be found ac-

cording to its category cj . If the buffer is not full, we insert

the image pj into the buffer with key kj . Otherwise, we find

the image p′j with smallest key k′j in the buffer. If kj > k′j ,

we replace the image p′j with image pj in the buffer. Other-

wise, the imgage example pj is discarded. If this replacing

scheme is employed, uniformly sampling from a buffer is

equivalent to drawing samples with probability proportional

to the total relevance score rj .

One image pi is uniformly sampled from all the im-

ages in the buffer of category cj as the query image. We

then uniformly generate one image p+i from all the images

Buffers for queries

Image sample

Find buffer 

of the query

Triplets

Query

Positive

Negative

Figure 4. Illustration of the online triplet sampling algorithm. The

negative image in this example is an out-of-class negative. We

have one buffer for each category. When we get a new image

sample, we insert it into the buffer of the corresponding category

with prescribed probability. The query and positive examples are

sampled from the same buffer, while the negative image is sampled

from a different buffer.

in the buffer of category cj , and accept it with probabil-

ity min(1, ri,i+/ri+), which corresponds to the sampling

probability (7). Sampling is continued until one example is

accepted. This image example acts as the positive image.

Finally, we draw a negative image sample. If we are

drawing out-of-class negative image sample, we draw a im-

age p−i uniformly from all the images in the other buffers.

If we are drawing in-class negative image samples, we use

the positive example’s drawing method to generate a nega-

tive sample, and accept the negative sample only if it satis-

fies the margin constraint (8). Whether we sample in-class

or out-of-class negative samples is controlled by a out-of-

class sample ratio parameter. An illustration of this sam-

pling method is shown in Fig. 4 The outline of reservoir

importance sampling algorithm is shown in the supplemen-

tal materials.

6. Experiments

6.1. Training Data

We use two sets of training data to train our model. The

first training data is ImageNet ILSVRC-2012 dataset [1],

which contains roughly 1000 images in each of 1000 cate-

gories. In total, there are about 1.2 million training images,

and 50,000 validation images. This dataset is utilized to

learn image semantic information. We use it to pre-train the

“ConvNet” part of our model using soft-max cost function

as the top layer.

The second training data is relevance training data, re-

sponsible for learning fine-grained visual similarity. The

data is generated in a bootstrapping fashion. It is collected

from 100,000 search queries (using Google image search),

with the top 140 image results from each query. There are

about 14 million images. We employ a golden feature to

compute the relevance ri,j for the images from the same

search query, and set ri,j = 0 to the images from different

5



queries. The golden feature is a weighted linear combina-

tion of twenty seven features. It includes features described

in section 6.4, with different parameter settings and distance

metrics. More importantly, it also includes features learned

through image annotation data, such as features or embed-

dings developed in [24]. The linear weights are learned

through max-margin linear weight learning using human

rated data. The golden feature incorporates both visual ap-

pearance information and semantic information, and it is of

high performance in evaluation. However, it is expensive to

compute, and ”cumbersome” to develop. This training data

is employed to fine-tune our network for fine-grained visual

similarity.

6.2. Triplet Evaluation Data

Since we are interested in fine-grained similarity, which

cannot be characterized by image labels, we collect a triplet

dataset to evaluate image similarity models 1.

We started from 1000 popular text queries and sampled

triplets (Q,A,B) from the top 50 search results for each

query from the Google image search engine. We then rate

the images in the triplets using human raters. The raters

have four choices: (1) both image A and B are similar to

query image Q; (2) both image A and B are dissimilar to

query image Q; (3) image A is more similar to Q than B; (4)

image B is more similar to Q than A. Each triplet is rated by

three raters. Only the triplets with unanimous scores from

the three rates enter the final dataset. For our application,

we discard the triplets with rating (1) and rating (2), because

those triplets does not reflect any image similarity ordering.

About 14,000 triplets are used in evaluation. Those triplets

are solely used for evaluation. Fig 1 shows some triplet

examples.

6.3. Evaluation Metrics

Two evaluation metrics are used: similarity precision

and score-at-top-K for K = 30.

Similarity precision is defined as the percentage of

triplets being correctly ranked. Given a triplet ti =
(pi, p

+
i , p

−
i ), where p+i should be more similar to pi than

p−i . Given pi as query, if p+i is ranked higher than p−i , then

we say the triplet ti is correctly ranked.

Score-at-top-K is defined as the number of correctly

ranked triplets minus the number of incorrectly ranked ones

on a subset of triplets whose ranks are higher than K. The

subset is chosen as follows. For each query image in the

test set, we retrieve 1000 images belonging to the same text

query, and rank these images using the learned similarity

metric. One triplet’s rank is higher than K if its positive

image p+i or negative image p−i is among the top K near-

est neighbors of the query image pi. This metric is similar

to the precision-at-top-K metric, which is widely used to

1https://sites.google.com/site/imagesimilaritydata/

evaluate retrieval systems. Intuitively, score-at-top-K mea-

sures a retrieval system’s performance on the K most rele-

vant search results. This metric can better reflect the perfor-

mance of the similarity models in practical image retrieval

systems, because users pay most of their attentions to the

results on the first few pages. we set K = 30 in our experi-

ments.

6.4. Comparison with Hand­crafted Features

We first compare the proposed deep ranking method with

hand-crafted visual features. For each hand-crafted feature,

we report its performance using its best experimental set-

ting. The evaluated hand-crafted visual features include

Wavelet [9], Color (LAB histoghram), SIFT [17]-like fea-

tures, SIFT-like Fisher vectors [20], HOG [4], and SPMK

Taxton features with max pooling [16]. Supervised image

similarity ranking information is not used to obtain these

features.

Two image similarity models are learned on top of the

concatenation of all the visual features described above.

• L1HashKCPA [14]: A subset of the golden features

(with L1 distance) are chosen using max-margin lin-

ear weight learning. We call this set of features “L1

visual features”. Weighted Minhash and Kernel prin-

cipal component analysis (KPCA) [14] are applied on

the L1 visual features to learn a 1000-dimension em-

bedding in an unsupervised fashion.

• OASIS [3]: Based on the L1HashKCPA feature, an

transformation (OASIS transformation) is learnt with

an online image similarity learning algorithm [3], us-

ing the relevance training data described in Sec. 6.1.

The performance comparison is shown in Table 1. The

“DeepRanking” shown in this table is the deep ranking

model trained with 20% out-of-class negative samples. We

can see that any individual feature without learning does

not performs very well. The L1HashKCPA feature achieves

reasonably good performance with relatively low dimen-

sion, but its performance is inferior to DeepRanking model.

The OASIS algorithm can learn better features because it

exploits the image similarity ranking information in the rel-

evance training data. By directly learning a ranking model

on images, the deep ranking method can use more informa-

tion from image than two-step “feature extraction”-“model

learning” approach. Thus, it performs better both in terms

of similarity precision and score-at-top-30.

The DeepRanking model performs better in terms of

similarity precision than the golden features, which are used

to generate relevance training data. This is because the

DeepRanking model employs the category-level informa-

tion in ImageNet data and relevance training data to better

characterize the image semantics. The score-at-top-30 met-

ric of DeepRanking is only slightly lower than the golden

features.
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Method Precision Score-30

Wavelet [9] 62.2% 2735
Color 62.3% 2935

SIFT-like [17] 65.5% 2863
Fisher [20] 67.2% 3064
HOG [4] 68.4% 3099

SPMKtexton1024max [16] 66.5% 3556
L1HashKPCA [14] 76.2% 6356

OASIS [3] 79.2% 6813
Golden Features 80.3% 7165

DeepRanking 85.7% 7004

Table 1. Similarity precision (Precision) and score-at-top-30

(Score-30) for different features.

6.5. Comparison of Different Architectures

We compare the proposed method with the following

architectures: (1) Deep neural network for classification

trained on ImageNet, called ConvNet. This is exactly the

same as the model trained in [15]. (2) Single-scale deep

neural network for ranking. It only has a single scale Con-

vNet in deep ranking model, but It is trained in the same

way as DeepRanking model. (3) Train an OASIS model [3]

on the feature output of single-scale deep neural network for

ranking. (4) Train a linear embedding on both the single-

scale deep neural network and the visual features described

in the last section. The performance are shown in Table 2.

In all the experiments, the Euclidean distance of the embed-

ding vectors of the penultimate layer before the final soft-

max or ranking layer is exploited as similarity measure.

First, we find that the ranking model greatly increases

the performance. The performance of single-scale ranking

model is much better than ConvNet. The two networks have

the same architecture except single-scale ranking model is

fine-tuned with the relevance training data using ranking

layer, while ConvNet is trained solely for classification task

using logistic regression layer.

We also find that single-scale ranking performs very well

in terms of similarity precision, but its score-at-top-30 is

not very high. The DeepRanking model, which employs

multiscale network architecture, has both better similarity

precision and score-at-top-30. Finally, although training

an OASIS model or linear embedding on the top increases

performance, their performance is inferior to DeepRanking

model, which uses back-propagation to fine-tune the whole

network.

An illustration of the learned filters of the multi-scale

deep ranking model is shown in Fig. 5. The filters learned in

this paper captures more color information compared with

the filter learned in [15].

Method Precision Score-30

ConvNet 82.8% 5772
Single-scale Ranking 84.6% 6245

OASIS on Single-scale Ranking 82.5% 6263
Single-Scale & Visual Feature 84.1% 6765

DeepRanking 85.7% 7004

Table 2. Similarity precision (Precision) and score at top 30

(Score-30) for different neural network architectures.

Figure 5. The learned filters of the first level convolutional layers

of the multi-scale deep ranking model.

6.6. Comparison of Different Sampling Methods

We study the effect of the fraction of the out-of-class

negative samples in online triplet sampling algorithm on

the performance of the proposed method. Fig. 6 shows

the results. The results are obtained from drawing 24 mil-

lion triplets samples. We find that the score-at-top-30 metric

of DeepRanking model decreases as we have more out-of-

class negative samples. However, having a small fraction

of out-of-class samples (like 20%) increases the similarity

precision metric a lot.

We also compare the performance of the weighted sam-

pling and uniform sampling with 0% out-of-class negative

samples. In weighted sampling, the sampling probability

of the images is proportional to its total relevance score rj
and pairwise relevance score ri,j , while uniform sampling

draws the images uniformly from all the images (but the

ranking order and margin constraints should be satisfied).

We find that although the two sampling methods perform

similarly in overall precision, the weighted sampling algo-

rithm does better in score-at-top-30. Thus, weighted sam-

pling is employed.

6.7. Ranking Examples

A comparison of the ranking examples of ConvNet, OA-

SIS feature (L1HashKPCA features with OASIS learning)

and Deep Ranking is shown in Fig. 7. We can see that

ConvNet captures the semantic meaning of the images very

well, but it fails to take into account some global visual ap-

pearance, such as color and contrast. On the other hand,
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Figure 6. The relationship between the performance of the pro-

posed method and the fraction of out-of-class negative samples.

C
o

n
v
N

e
t

O
A

S
IS

D
e

e
p

R
a

n
k
in

g
C

o
n

v
N

e
t

O
A

S
IS

D
e

e
p

R
a

n
k
in

g

Query Ranking Results

Figure 7. Comparison of the ranking examples of ConvNet, Oasis

Features and Deep Ranking.

Oasis features can characterize the visual appearance well,

but fall short on the semantics. The proposed deep ranking

method incorporates both the visual appearance and image

semantics.

7. Conclusion

In this paper, we propose a novel deep ranking model to

learn fine-grained image similarity models. The deep rank-

ing model employs a triplet-based hinge loss ranking func-

tion to characterize fine-grained image similarity relation-

ships, and a multiscale neural network architecture to cap-

ture both the global visual properties and the image seman-

tics. We also propose an efficient online triplet sampling

method that enables us to learn deep ranking models from

very large amount of training data. The empirical evaluation

shows that the deep ranking model achieves much better

performance than the state-of-the-art hand-crafted features-

based models and deep classification models. Image sim-

ilarity models can be applied to many other computer vi-

sion applications, such as exemplar-based object recogni-

tion/detection and image deduplication. We will explore

along these directions.
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