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Abstract In formal language theory, finite-state transducers are well-know models for simple

“input-output” mappings between two languages. Even if more powerful, recursive models

can be used to account for more complex mappings, it has been argued that the input-output

relations underlying most usual natural language pairs can essentially be modeled by finite-

state devices. Moreover, the relative simplicity of these mappings has recently led to the

development of techniques for learning finite-state transducers from a training set of input-

output sentence pairs of the languages considered. In the last years, these techniques have lead

to the development of a number of machine translation systems. Under the statistical statement

of machine translation, we overview here how modeling, learning and search problems can

be solved by using stochastic finite-state transducers. We also review the results achieved by

the systems we have developed under this paradigm. As a main conclusion of this review we

argue that, as task complexity and training data scarcity increase, those systems which rely

more on statistical techniques tend produce the best results.
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1. Introduction

Machine translation (MT) is one of the most appealing (and challenging) applications of

human language processing technology. Owing to its great social and economical interest,

in the last 20 years MT has been considered under almost every imaginable point of view:

from strictly linguistics-based methods to pure statistical approaches including, of course,
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formal language theory and the corresponding learning paradigm, grammatical inference
(GI). Different degrees of success have been achieved so far using these approaches.

Basic MT consists in transforming text from a source language into a target language,

but several extensions to this framework have been considered. Among the most interest-

ing of these extensions are speech-to-speech MT (STSMT) and computer assisted (human)

translation (CAT). In STSMT, which is generally considered significantly harder than pure

text MT, the system has to accept a source-language utterance and produce corresponding

human-understandable target-language speech. In CAT, on the other hand, the input is source-

language text and both the system and the human translator have to collaborate with each

other in an attempt to produce high quality target text.

Nowadays, the so called statistical approach to machine translation (SMT) is one of the

most successful approaches. This success is mainly due to the fact that the corresponding

models can be automatically learned from bilingual training data (Brown et al., 1990, 1993).

Basically, the models in SMT aim to characterize the statistical relations between pairs of sin-

gle words (Brown et al., 1993; Ney et al., 2000) or sequences of words (or phrases) (Tomás &

Casacuberta, 2001; Och & Ney, 2004; Zens & Ney, 2004) from the languages considered. One

of the main problems with such models is the lack of efficient algorithms both for learning and

for performing the translation of new sentences (searching). In practice, for the most sophis-

ticated models, only heuristic approximations have been implemented for training (Brown

et al., 1993; Ney et al., 2000), based on (approximations to) the expectation–maximization
(EM) algorithm (Och & Ney, 2003). The search with these models is also a computation-

ally difficult problem (Knight, 1999) and only suboptimal solutions are available. Some of

these approximations are based on A∗-like techniques (Berger et al., 1996), greedy algo-

rithms (Germann, 2003) and/or dynamic-programming strategies (Tillmann & Ney, 2003).

Syntactic aspects of the language can also be incorporated in this framework (Charniak,

Knight, & Yamada, 2003).

Several public-domain toolkits are available for training these statistical models: the first

one was EGYPT, developed by the statistical machine translation team during the summer

workshop in 1999 at the Center for Language and Speech Processing, Johns-Hopkins

University (Knight et al., 1999). An improved version of this toolkit is GIZA++ (Och &

Ney, 2003). Recently, the toolkit THOT has been presented for learning phrase-based mod-

els (Ortiz, Garcı́a-Varea, & Casacuberta, 2005). On the other hand, toolkits implementing

search engines for translation are scarce; an example is PHARAOH, a beam search engine

for phrase-based models (Koehn, 2004).

We consider here MT, STSMT and CAT models that can be be automatically learned

through suitable combinations of GI and statistical methods from training pairs of sentences.

More specifically, we focus on stochastic finite-state transducers (SFST), which constitute

an important family of models within the theory of formal languages (Vidal et al., 2005).

With respect to SMT, SFSTs offer the availability of more efficient searching algorithms

and the promise of effective, possibly faster learning techniques. On the other hand, SFSTs

permit a simple integration with other information sources (such as acoustic models), which

makes it easy to apply SFSTs to more difficult tasks such as speech translation (Casacuberta

et al., 2004). SFSTs and the corresponding training and search techniques have been studied

by several authors, in many cases explicitly motivated by MT applications (Vidal, Garcı́a, &

Segarra, 1989; Oncina, Garcı́a, & Vidal, 1993; Knight & Al-Onaizan, 1998; Alshawi, Ban-

galore, & Douglas, 2000; Bangalore & Riccardi, 2003; Kumar & Byrne, 2003; Casacuberta

& Vidal, 2004; Tsukada & Nagata, 2004; Kumar, Deng, & Byrne, 2006).

Other models that can be considered generalizations of STSTs are the inversion transduc-
tion grammars (Wu, 1995) and the head transducers (Alshawi, Bangalore, & Douglas, 2000).
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These models are theoretically more powerful than SFSTs, but they are more expensive from

a computational point of view.

This paper summarizes our work for more than ten years of applied research on SFST

learning, mainly aimed at MT applications, which has been supported by several projects

funded by National and European agencies, as well as by private companies (Tracom, 1995;

Extra, 1997; EuTrans, 2000; SisHiTra, 2001; TransType2, 2001; TeFaTe, 2003). The devel-

opments carried out in these projects have always been competitive with other state-of-the-art

technologies: from knowledge-based and memory-based, to “pure” statistical techniques.

The MT, STSMT and CAT tasks considered in these works have entailed ever increasing

demands in task complexity, i.e. larger vocabularies, less restricted domains, more difficult

pairs of languages and relatively smaller amounts of training data. So, the present article is

devoted to review how our initial, GI-based, SFST learning technology has evolved in order

to cope with these growing challenges.

The general (probabilistic) statement of MT problems is presented in Section 2 and the

SFSTs are introduced in Section 3. A simple taxonomy of the techniques to infer SFST is

introduced in Section 4. Some of these techniques are reviewed in Sections 5 and 6. Section 7

briefly overviews one of the most popular “pure” statistical techniques used in MT, for which

some comparative results are presented in Section 9. A summary of the main experiments

carried out and the corresponding results are presented in Sections 8 and 9, respectively.

Finally, some conclusions are drawn in Section 10.

2. General statement of MT problems

The (text-to-text) MT problem can be statistically stated as follows. Given a sentence s from

a source language, search for a target-language sentence t̂ which maximizes the posterior

probability:1

t̂ = argmax
t

Pr (t|s). (1)

It is commonly accepted that a convenient way to deal with this equation is to transform

it by using the Bayes’ theorem:

t̂ = argmax
t

Pr (t) · Pr (s|t), (2)

where Pr(t) is a target language model –which gives high probability to well formed target

sentences– and Pr(s|t) accounts for source-target word(-position) relations and is based on

stochastic dictionaries and alignment models (Brown et al., 1993; Ney et al., 2000; Och &

Ney, 2003). These models have been extended to model alignments between word sequences

instead of single words (Tomás & Casacuberta, 2001; Marcu & Wong, 2002; Zens, Och, &

Ney, 2002; Och & Ney, 2004).

Alternatively, the conditional distribution in Eq. (1) can be transformed into a joint distri-

bution:

t̂ = argmax
t

Pr(s, t), (3)

1 For simplicity, Pr(X = x) and Pr(X = x | Y = y) are denoted as Pr(x) and Pr(x | y).
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which, among other possibilities, can be adequately modeled by means of SFSTs. This is

the kind of models considered in the present work. As previously mentioned, one attractive

feature of these models is that a good approximate solution to Eq. (3) can be efficiently

obtained by the well-known Viterbi algorithm (Picó & Casacuberta, 2001).

Let us now consider the STSMT problem. Here, an acoustic representation of a source-

language utterance x is available and the problem is to search for a target-language sentence

t̂ that maximizes the posterior probability:2

t̂ = argmax
t

Pr(t| x). (4)

Every possible decoding of a source utterance x in the source language can be considered as

the value of a hidden variable, s (Casacuberta et al., 2004). Therefore, assuming that Pr(x|s, t)
does not depend on t, Eq. (4) can be rewritten as:

t̂ = argmax
t

∑
s

Pr(s, t) · Pr(x|s). (5)

As in plain MT, Pr(s, t) can be modeled by a SFST. The term Pr(x|s), on the other hand, can

be modeled through hidden Markov models (HMM), which are the standard acoustic models

in automatic speech recognition (Jelinek, 1998).

Most STSMT systems presented in the last few years are based on a trivial architecture,

often called “serial” or “loosely-coupled”: Source-language speech is first decoded into a

sequence of source-language words, using a standard automatic speech recognizer and the

resulting source word sequence is translated into a target sentence as in conventional text-

to-text MT. This architecture constitutes a very crude approximation to Eq. (5) (Casacuberta

et al., 2004). However, if the underlying source–target mapping is modeled by a SFST, the

integrated architecture, where all the acoustic, syntactic and translation models are tightly

combined into a single (maybe huge) finite-state model, allows for a potentially better ap-

proximation. Moreover, the Viterbi algorithm can also be used thanks to the homogeneous

finite-state nature of both SFST and HMMs.

Finally, let us consider a simple statement of CAT (Langlais, Foster, & Lapalme, 2000).

Given a source text s and a fixed prefix of the target sentence tp –previously validated by the

human translator–, the problem is to search for a suffix of the target sentence t̂s that maximizes

the posterior probability:

t̂s = argmax
ts

Pr(ts |s, tp). (6)

This equation can be equivalently written as:

t̂s = argmax
ts

Pr(s, tp, ts). (7)

Equation (7) is similar to Eq. (3), but here the maximization is constrained to a set of suffixes,

rather than full sentences. As in Eq. (3), this joint distribution can be adequately modeled by

means of SFSTs and the Viterbi algorithm can be adequately adapted for searching (Civera

et al., 2004).

2 From t̂, a text-to-speech synthesizer can be used to produce a target utterance.

Springer



Mach Learn (2007) 66:69–91 73

All the above problem statements share the common learning problem of estimating

Pr(s, t), which can be approached by training a SFST from a parallel text corpus. This will

be discussed in detail in the following sections.

3. Stochastic finite-state transducers

Stochastic finite-state transducers (SFST) are similar to stochastic finite-state grammars or

automata, but in this case two different alphabets are involved: Source and target alphabets.

Each transition in a SFST has attached a source word and a (possible empty) string of target

words.3 A SFST TP is defined as tuple 〈�, �, Q, q0, p, f 〉, where (Vidal et al., 2005):

– � is a finite set of source (input) words;

– � is a finite set of target (output) words;

– Q is a finite set of states
– q0 ∈ Q is the initial state and

– p : Q × � × �� × Q → [0, 1] is a transition probability function
– f : Q → [0, 1] is a final-state probability function

The functions p and f must verify:

∀q ∈ Q, f (q) +
∑

(s,t̃,q ′)∈�×��×Q

p(q, s, t̃, q ′) = 1. (8)

The non-probabilistic counterpartT of a given a SFSTTP , called characteristic finite-state
transducer of TP (FST), can be defined. The transitions are those tuples in Q × � × �� × Q
with probability greater than zero and the set of final states are those states in Q with final-state

probability greater than zero.

Given TP , a translation form with I transitions associated with the translation pair (s, t) ∈
�∗ × �∗ is a sequence of transitions φ = (q0, s1, t̃1, q1) (q1, s2, t̃2, q2) (q2, s3, t̃3, q3) . . .

(qI−1, sI , t̃I , qI ), such that s1 s2 . . . sI = s and t̃1 t̃2 . . . t̃I = t. Its probability is the product of

the corresponding transition probabilities, times the final-state probability of the last state in

the sequence:

PrTP (φ) =
I∏

i=1

p(qi−1, si , t̃i , qi ) · f (qI ). (9)

The set of translations forms associated with a translation pair (s, t) with probability higher

than zero is denoted as �(s, t).
The probability of a translation pair (s, t) according to TP is then defined as the sum of

the probabilities of all the translation forms associated with (s, t):

PrTP (s, t) =
∑

∀φ∈�(s,t)

PrTP (φ) . (10)

If TP has no useless states, PrTP (s, t) describes a probability distribution on �� × ��

which is called stochastic finite-state translation. This distribution is used to model the

3 The term “word” is used to refer a single token as in MT i.e. a “symbol” in formal language theory.
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joint probability introduced in Eq. (3) of the previous section. The terms regular or, more

properly, rational translations are also often used in the scientific literature to refer to (the

non-probabilistic counterpart of) these mappings (Berstel, 1979).

Any SFST has two embedded stochastic regular languages, one for the source alphabet

and another for the target alphabet. These languages correspond to the two marginals (Pri

and Pro) of the joint distribution modeled by the the SFST:

Pri (s) =
∑
t∈��

Pr(s, t), Pro(t) =
∑
s∈��

Pr(s, t).

In practice, the corresponding source or target finite-state grammars are obtained from the

finite-state transducer by dropping the target or source words of each transition, respectively.

A particularly interesting transducer model is the subsequential transducer (SST) which

is a finite-state transducer with the basic restriction of being deterministic (Vilar, 2000). This

implies that if two transitions have the same starting state and the same source word, then

both ending states are the same state and both the target strings are also the same target string.

In addition, SSTs can produce a target substring when the end of the input string has been

detected.

SFSTs exhibit properties and problems similar to those exhibited by stochastic regular

languages. One of these properties is the formal basis of the GIATI technique for transducer

inference presented in Section 6.2. It can be stated as the following theorem (Casacuberta,

Vidal, & Picó, 2005): Every stochastic finite-state translation can be obtained from a stochas-
tic regular language and two morphisms. This is a weaker version of the stochastic exten-

sion (Casacuberta, Vidal, & Picó, 2005) of a classical morphism theorem (Berstel, 1979):

Every rational translation can be obtained from a local language and two alphabetic mor-
phisms, where a local language is defined by a set of permitted two-word segments (and

therefore a stochastic local language is equivalent to a bigram distribution (Vidal et al.,

2005)). In both cases, the morphisms allow for building the components of a pair of the

finite-state translation from a string of the corresponding local language (Casacuberta, Vidal,

& Picó, 2005).

By using a SFST TP to approach the joint distribution Pr(s, t), Eq. (3) is rewritten as:

t̂ = argmax
t∈��

PrTP (s, t). (11)

That is, given TP and s ∈ ��, search for a target string t̂ which maximizes PrTP (s, t). While

this SFST stochastic translation problem is proved to be NP-Hard (Casacuberta and de la

Higuera, 2000), a generally good approximation can be obtained in polynomial time through

a simple extension of the Viterbi algorithm (Picó & Casacuberta, 2001). This approximation

consists in replacing the sum operator in Eq. (10) with the maximum operator:

PrTP (s, t) ≈ P̂rTP (s, t) = max
∀φ∈�(s,t)

PrTP (φ). (12)

This approximation to the SFST stochastic translation problem permits the computation of

the optimal translation form (with respect to Eq. (12)) in linear time with the number of source

words. The translation of the given source sentence is then approached as the sequence of

target strings which appear in this optimal translation form.
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4. Learning stochastic finite-state transducers

Following the statistical framework adopted in the previous sections, three main families of

techniques can be used to learn a SFST from a parallel corpus of source-target sentences:

– Traditional syntactic pattern recognition paradigm: (a) Learn the SFST structure or “topol-

ogy” (the characteristic transducer) and (b) Estimate its probabilities from the same data.

– Hybrid methods: Under the traditional paradigm, use statistical methods to guide the

structure learning.

– Pure statistical approach: (a) Adequately parameterize the SFST structure and consider it

as a hidden variable and (b) estimate everything by expectation maximization (EM).

To estimate the probabilities in the traditional approach, maximum likelihood or other

possible criteria can be used (Picó & Casacuberta, 2001). As in every estimation problem,

an important issue is the modeling of unseen events. In our case, a general approach to

this smoothing problem consists in using stochastic error-correcting parsing (Amengual

& Vidal, 1998; Amengual et al., 2001). In this case, an explicit error model (for example,

the classical substitution/insertion/deletion errors) is assumed and its parameters estimated

from training data. Alternatively, smoothing techniques borrowed from the field of language

modeling (Ney et al., 1997) can be used. There are two known possibilities to apply these

techniques: Either within of the process of learning both the structural and probabilistic

SFST components (Casacuberta & Vidal, 2004), or in the estimation of the probabilities of

the SFST themselves (Llorens, Vilar, & Casacuberta, 2002). In the first case, the smoothed

model generated within the learning process is exported to the final SFST. The second case

is a generalization of the methods proposed for n-grams models. In each state of a n-gram

model there is only one equivalent class of paths that arrive to the state. In the states of

automata and finite-state transducers, there can be more than one equivalent class of paths.

We should mention that the computational demands of all the (structural) learning and

(statistical) estimation techniques here considered is low; typically they exhibit (close to)

linear complexity with the size of the training data. Given the huge training corpora gener-

ally needed in real MT applications, only low-cost learning and estimation algorithms can

be afforded in practice. Therefore we will not further discuss these computational details.

Instead, we will be interested in the relative amounts of training data required by the different

techniques in order to achieve reasonable generalizations.

5. Traditional syntactic pattern recognition paradigm: OSTIA

The formal model of translation used in this section is the SST. Thanks to the capability of

producing output substrings in its (final) states, a sub-sequential transducer can delay the

output of target words until enough source words have been seen to determine a correct

output. Therefore, the states of a SST hold the “memory” of the part of the sentence seen

so far. This allows the whole context of a word to be taken into account, if necessary, for

the translation of the next word. A very efficient technique for automatically learning these

models from a training set of sentence pairs is the so called onward subsequential transducer
inference algorithm (OSTIA) (Oncina, Garcı́a, & Vidal, 1993).

OSTIA starts building up an initial representation of the original paired data in the form

of a tree (the onward prefix tree transducer). Then appropriate states of this transducer are

merged to build a FST in which those transitions sharing some structural properties are

merged together in order to generalize the seen samples. To this end, the tree is traversed
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level by level and the states in each level are considered to be merged with those previously

visited. Only those pairs of states which are compatible according to the output strings of

their subtrees are effectively merged. If the training pairs were produced by an unknown SST,

T , –which can be considered true, at least for many common pairs of natural languages–

and the amount of training data is sufficiently large and/or representative, then OSTIA is

guaranteed to converge to a canonical (onward) SST which generates the same translation

pairs as T (Oncina, Garcı́a, & Vidal, 1993).

The state merging process followed by OSTIA tries to generalize the training pairs as

much as possible. This often leads to very compact transducers which adequately translate

correct source text of the learned task into the target language. However, this compactness

often entails an excessive generalization of the source and the target languages, allowing

meaningless source sentences to be accepted, and even worse target sentences to be produced.

This is not a problem for perfectly correct source text, but becomes important when not exactly

correct text or speech is to be used as input.

A possible way to overcome this problem consists in further restricting state merging

so that the resulting SST only accepts source sentences and produces target sentences that

are consistent with given source and target (regular) language models. These models are

known as domain and range language models, respectively. A version of OSTIA called

OSTIA-DR (Oncina & Varó, 1996; Castellanos et al., 1998) enforces these restrictions in

the learning process. N -grams (Jelinek, 1998), generally trained from the source and target

sentences in the given corpus, are usually adopted as domain and range language models for

OSTIA-DR.

OSTIA and OSTIA-DR have been applied to many relatively simple MT tasks, including

speech-input MT. Results will be reported in Section 9.

6. Hybrid methods: OMEGA and GIATI

OSTIA has proved able to learn adequate transducers for real (albeit limited) tasks if a

sufficiently large amount of training pairs is available. However, as the amount of training data

shrinks, its performance drops dramatically. Clearly, in order to convey enough information

to learn structurally rich transducers, prohibitively large amounts of examples are required.

Therefore, in order to render training data demands realistic, additional, explicit information

about the relation of source-target words involved in the translation seems to be needed. The

two techniques discussed in this section are explicitly based on this idea.

6.1. OMEGA

This algorithm, called “OSTIA modified for employing guarantees and alignments”

(OMEGA) (Vilar, 2000), is an improvement over OSTIA-DR to learn SSTs.

As with OSTIA, there are two main training phases: building an initial tree from the training

pairs and state-merging. Apart from the OSTIA-DR state-merging restrictions, including

those derived from (n-gram) source and target language models, two additional knowledge

sources can be employed to avoid overgeneralisation: a bilingual dictionary and/or word
alignments. They are used to label each state of the initial tree with two sets of target words

called “guarantees” and “needs”. The state-merging process is then further constrained by

the information contained in these sets (Vilar, 2000). This ensures that target words will never

be produced before having seen the source words they are translation of.
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These dictionaries and alignments can be obtained from the training pairs by means of pure

statistical methods such as those described in Brown et al. (1993) and Och and Ney (2003).

Results obtained using OMEGA both for MT and STSMT will be reported in Section 9.

Overall, OMEGA has proved adequate to cope with low and moderate-difficulty tasks.

However, as task complexity increases, results degrade rather sharply. This prompted the

need for even less data-hungry transducer learning techniques, leading to the approach

discussed below.

6.2. GIATI

The finite-state models underlying both OSTIA(-DR) and OMEGA rely on delaying the

output of target words until enough source text have been seen to guarantee a correct output.

In fact, every finite-state device must rely on a similar principle as applied to MT. This

delaying process can be seen from a different point of view involving a left-to-right bilingual
segmentation of the source and target sentences: Each sequence of source words we have

to wait for, determines a source segment, while the corresponding sequence of target words

constitutes the associated target segment.
For most language pairs of interest, these segments are typically rather short; less then

five words on the average in many cases. Therefore, we can capitalize on this fact to develop

transducer learning techniques that explicitly rely on left-to-right segmentations of the train-

ing pairs. While this idea can be considered unacceptable from a linguistic point of view, it is

quite reasonable in practice. MT techniques can take advantage of the word-order flexibility

allowed in many languages and of the fact that the system output sentences are aimed at being

acceptable by human beings. For instance, an English sentence such as “can you give me the
keys to my room, please?” can be translated into Spanish as “por favor, ¿puede darme las
llaves de mi habitación?”, which entails a long-term reordering for the words “por favor”
and “please”. This would prevent any left-to-right segmentation into bilingual segments

shorter than the whole sentence pair. However, other adequate Spanish translations are possi-

ble, such as “¿puede darme, por favor, las llaves de mi habitación?”, or even “¿puede darme
las llaves de mi habitación, por favor?”, which admit natural left-to-right segmentations into

very short bilingual segments. Of course, this kind of flexibility does appear in most training

sets, which adds to the difficulty of obtaining good generalizations from the given training

pairs. However, as the amount of training data becomes sufficiently large, learning algorithms

can find enough instances of the kind of data they can take advantage of in order to produce

adequate generalizations.

One of the techniques explicitly based on these ideas is called grammatical inference and
alignments for transducer inference (GIATI). It was first introduced in Casacuberta (2000)

and further developed in Casacuberta, Vidal, and Picó (2005). As in the case of OMEGA,

GIATI also makes use of information obtained by means of pure statistical methods. However,

in this case, the alignments are used to define the required bilingual segmentations.

More formally speaking, given a finite sample of string pairs, GIATI relies on the two-

morphisms theorem mentioned in Section 3, to propose the following steps for the inference

of a finite-state transducer:

1. Using a left-to-right bilingual segmentation of each training pair of sentences, the pair

is appropriately transformed into a single string from an extended alphabet, which is

composed of pairs of source-target word sequences.

2. A stochastic regular grammar, typically an n-gram, is inferred from the set of strings

obtained in first step.
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3. The terminal words of the grammar rules from the second step are transformed back

into source/target word strings by applying adequate morphisms. This converts the

stochastic grammars into the learned transducer.

The main problem with this approach is the first (and correspondingly the third) step(s), i.e. to

adequately transform a parallel corpus into a string corpus. The transformation of the training

pairs must capture the correspondences between words of the input and the output sentences

and must permit the implementation of the inverse transformation of the third step. As

previously mentioned, this is achieved with the help of bilingual segmentation (Casacuberta

& Vidal, 2004).

To illustrate this first step, we will use the pair (“un coche rojo” , “a red car”). A

suitable word-alignment would align “un” with “a”, “coche” with “car” and “rojo” with

“red”. From this alignment we could naively build the string “(un,a) (coche,car) (rojo,red)”.

However, this would imply a reordering of the words “red” and “car”, difficult to model in the

finite-state framework. Instead of reordering, the alignment can be used to produce a left-to-

right bilingual segmentation into two segments: (“un” , “a”) and (“coche rojo” , “red car”).

This segmentation directly yields the single string and the corresponding extended alphabet

required for GIATI. Nevertheless, by allowing empty target segments, a simpler segmentation

which has proved equivalently adequate in practice, can be produced as follows: If the source

segment of a pair has more than one word, the segment is further splitted into several single-

word segments, each paired with an empty target string, except the last one, which is paired

with the original whole target segment. In our example this results in the three bilingual

segment string: “(un,a) (coche,-) (rojo,red car)”.

The first step of the GIATI technique is based on statistical alignment models (Och &

Ney, 2003) which are based on functions from source sentence positions to target sentence

positions; that is, these models are based on asymmetric alignments. Some techniques to

symmetrize the alignments have been proposed in Och and Ney (2004) and Tomás, Lloret,

& Casacuberta (2005), but only marginal improvements were achieved by applying these

techniques to GIATI (Picó, Tomás, & Casacuberta, 2004).

The probabilities associated with the transitions of a SFST learned in this way are just those

of the corresponding stochastic regular grammar inferred in step 2. Therefore, an interesting

feature of GIATI is that it can readily make use of all the smoothing techniques known for n-

grams (Ney et al., 1997) and for stochastic regular grammars (Llorens, Vilar & Casacuberta,

2002). Note, however, that GIATI extended alphabets can be very large, specially for large

vocabularies and/or language pairs where left-right alignments are unnatural. In some cases,

this may entail severe a data sparseness, which makes the estimation problem difficult to solve,

even with the help of the mentioned smoothing techniques. Other interesting properties of

GIATI can be found in Casacuberta, Vidal, and Picó (2005).

GIATI has been applied to a variety of translation tasks, leading to good results in many

cases. These results will be reported in Section 9.

7. Statistical alignment templates

In the experiments to be presented in the following sections, the results of the SFST ap-

proaches described so far will be compared with those obtained by one popular technique

which is commonly considered to be among the best techniques available in the “pure”

statistical framework. Here we will briefly outline this approach, which is called statistical
alignment templates (Och & Ney, 2004). It can be considered as representative of the current
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tendencies of state-of-the-art statistical MT, where best results are typically obtained using

techniques based in phrases rather than in individual words (Och & Ney, 2004; Tomás &

Casacuberta, 2006).

In this approach, an entire group of adjacent words in the source sentence may be aligned

with an entire group of adjacent target words. As a result, the word context has a greater influ-

ence and the changes in word order from source to target language can be learned explicitly.

The alignment of word groups is carried out through templates. A template establishes the

alignment (possibly by means of reordering) between two sequences of word classes, which

are learned automatically using a bilingual corpus. However, the lexical model, which is an

integrated part of each template, is still to be based on word-to-word correspondences (Och

& Ney, 2004).

Learning such models consists of three phases: 1) Computation of word alignments (as in

the GIATI approach); 2) extraction of bilingual phrases including phrase alignments and 3)

generalization of these bilingual phrases to templates by including the word alignments within

the templates and by using word classes. These models are usually combined with other com-

plementary models (target language models, etc.) in a log-linear framework. The translation

is performed by using a breadth-first graph search algorithm with pruning (Och & Ney, 2004).

8. Experimental framework

The techniques described in the previous sections have been applied to a large variety of MT,

STSMT and CAT tasks. In this section the characteristics of the corpora used in the empirical

tests with these applications are described, along with the assessment measures adopted to

evaluate the quality of the inferred models.

8.1. Translation tasks and the corresponding corpora

Here we briefly review some of the MT tasks we have considered and the corresponding

bi-text corpora. Table 1 summarizes the main features of these corpora and Table 2 shows

corresponding examples of sentence pairs. Most of these corpora were produced or compiled

to test the capabilities of systems developed in several MT projects. The data sets belong to

Table 1 Corpora used in the experiments. Languages: En = English, Sp = Spanish,

It = Italian, Ba = Basque, Fr = French and Ge = German. Vocabulary sizes are

the numbers of different words, while training and test sizes are the numbers of

running words

Task Languages Vocabularies Training sizes Test sizes

MLT Sp / En 29 / 25 128 K / 119 K 160 K /148 K

EUTRANS-0 Sp / En 0.7 K / 0.5 K 4.7 M / 4.8 M 35 K / 36 K

EUTRANS-I Sp / En 0.7 K / 0.5 K 97 K / 99 K 35 K / 36 K

EUTRANS-II It / En 2.5 K / 1.7 K 55 K / 64 K 6.1 K / 7.2 K

AMETRA-MET Sp / Ba 0.7 K / 1.3 K 87 K / 77 K 1.3 K / 1.2 K

TT2-Xrce En / Sp 8 K / 12 K 0.6 M / 0.7 M 8 K / 9 K

TT2-Xrce En / Fr 8 K / 10 K 0.6 M / 0.7 M 10 K / 10 K

TT2-Xrce En / Ge 7 K / 19 K 0.6 M / 0.5 M 10 K / 10 K

TT2-EU En / Sp 84 K / 97 K 5.9 M / 6.6 M 20 K / 23 K

TT2-EU En / Fr 85 K / 91 K 6.0 M / 6.6 M 20 K / 23 K

TT2-EU En / Ge 87 K /153 K 6.5 M / 6.1 M 20 K / 19 K
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Table 2 Examples of sentence pairs from the different corpora

MLT

Spanish: Se añade un ćırculo grande y oscuro muy por debajo del ćırculo pequeño y
oscuro y del triángulo.

English: A large dark circle is added far below the small dark circle and the triangle.

EUTRANS-0/I

Spanish: Deseamos reservar dos habitaciones individuales con aire acondicionado hasta
el próximo viernes.

English: We want to book two single rooms with air conditioning until next Friday.

EUTRANS-II

Italian: Buongiorno senta io avevo prenotato una stanza singola ma non la vorrei piu’,
vorrei disdire la prenotazione.

English: Good-morning listen I had reserved a single room but I would not like it
anymore, I would like to cancel the reservation.

AMETRA-MET

Spanish: En la primera mitad del d́ıa cielos nubosos a muy nubosos, con lloviznas,
sobre todo en el litoral y áreas de montaña y más probables al este.

Basque: Egunaren lehen zatian zerua hodeitsu edo oso hodeitsu azalduko da eta zirimiria
botako du, bereziki kostaldean eta mendi inguruetan eta aukera handiagoz ekialdean.

TT2-XRCE

English: Although these two types of scan jobs do not require network rights for the users,
the appropriate distribution template(s) must first be created by the system a dministrator
or a template user.

Spanish: A pesar de que estos dos tipos de trabajos de exploración no requieren derechos
de red para los usuarios, el administrador del sistema o el usuario de la plantilla deberán crear
primero las plantillas de distribución apropiadas.

German: Obwohl bei diesen beiden Auftragsarten kein e Netzwerkrechte für den Benutzer
nötig sind, müssen die geeigneten Verteilerpro file erst vom Systemadministrator oder
einem Profilbenutzer erstellt werden.

French: Bien que ces deux types de travaux ne nÈces sitent pas de droits d’accès pour
l’utilisateur, l’administrateur système ou un utilisateur de modèle doit créer le(s)
modèle(s) de distribution approprié(s).

TT2-EU

English: The threat posed by the Year 2000 problem is not restricted to particular sectors of
activity, nor to any specific country or region.

Spanish: La amenaza generada por el efecto 2000 no está restringida a sectores concretos
de actividad ni a ningún páıs o región determinados.

French: La menace que fait peser le problème du passage à l’an 2000 ne se limite pas à des
secteurs d’activité particuliers, ni à des pays ou des régions spécifiques.

German: Die von dem Computerprob lem der Jahrtausendwende ausgehenden Gefahren sind
nicht auf bestimmte Sektoren der Wirtschaftstätigkeit oder der Staatsverwaltung oder auf
bestimmte Länder oder Regionen beschränkt.

the corresponding consortia and, upon request, they can be made available free of charge for

non-commercial use.

The tasks in Table 1 are ordered according to increasing task-complexity. The complexity

of a translation task has many dimensions. Perhaps the most important factors are: (a) vo-

cabulary sizes, (b) word-order differences in the language pair and (c) scarcity of bilingual

data available for training the system.

The simplest application of Table 1, first described in Castellanos, Galiano and

Vidal (1994), was the Miniature Language Translation (MLT) task. It was a direct
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extension for MT of the so called Miniature Language Acquisition task (MLA),

originally introduced for testing the capabilities of (language) learning systems

(Feldman et al., 1990).

MLT was a small task, with vocabularies of about 30 words, involving the transla-

tion of sentences used to describe and manipulate simple visual scenes. Three languages

were considered: Spanish, English and German. Training and testing data were automat-

ically generated according to the task specifications (Feldman et al., 1990; Castellanos,

Galiano, & Vidal, 1994). For the experiments reviewed in the next section, 8K Spanish-

English sentence pairs (about 120K running words per language) were used for training.

Testing was performed on another 10K sentences different from those used in training

(Vilar et al., 1996a).

Next application in difficulty was the EUTRANS-0 task, called traveler task in Vidal (1997).

It was a much larger and practically motivated task established in the framework of the

European Union speech-to-speech MT project EUTRANS (EuTrans, 2000). The task involved

human-to-human communication situations in the front-desk of a hotel. Three large parallel

corpora for this task were produced in a semi-automatic way for three language pairs: Spanish-

English, Spanish-German and Spanish-Italian (Amengual et al., 2000).

The Spanish-English corpus contained 500K (171K different) sentence pairs, with

Spanish/English vocabulary sizes of 689/514 words and test-set bigram perplexities of

6.8/5.6, respectively. Since the total size of this corpus was considered unrealistically large

(almost 5M running words per language), a much reduced corpus, called EUTRANS-I, was

built by randomly selecting 10K (6.8K different) sentence pairs for training and 3K (all

different) for testing.

The EUTRANS task has proved very useful for development purposes and, recently,

three new EUTRANS-I corpora have been produced for MT and STSMT experimentation

for the following pairs of languages: Spanish-Catalan, Spanish-Basque and Portuguese-

English (González et al., 2002; Picó et al., 2005; Pérez et al., 2005). For the sake of brevity,

only Spanish-English data and results will be discussed here.

Apart from the multilingual corpora mentioned above, an additional Italian-English MT

corpus was produced in the EUTRANS project (EuTrans, 2000). This corpus, referred to as

EUTRANS-II, corresponds to a task significantly more complex and closer real life than those

previously considered. In this case, a speech corpus was acquired by recording real phone

calls to the (simulated) front desk of a hotel. An associated text corpus was obtained by

manually transcribing the acquired Italian utterances and translating them into English. The

resulting corpus is much smaller than the previous ones, while having four times larger

vocabularies (2.5K/1.7K words). From this corpus, approximately 3K pairs of sentences

(about 60K running words per language) were used for training the translation models and

about 300 sentences were used for testing.

One of the most challenging pairs of languages we have ever considered is Spanish-

Basque. The Basque is one of the official languages spoken in one part of Spain. The AMETRA

project (González et al., 2004) was devoted to the development of tools to increase produc-

tivity of official stationery. Two specific tasks were studied, but we will only focus on one of

them: AMETRA-MET. This corpus contains approximately 80K running words per language

and consists of transcriptions of meteorological forecasts from a Basque TV channel. This

corresponds to a relatively low-perplexity task with rather restricted semantic domain and

vocabulary sizes around 1K words.

Recently, other applications have been considered in the context of the computer assisted

translation (CAT) project Trans-Type 2 (TT2) (Civera et al., 2004). Two sets of corpora were

produced in this project: TT2-XRCE and TT2-EU, each set encompassing three language
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pairs, English-Spanish, English-French and English-German (six pairs, considering both

translation directions) (Khadivi & Goutte, 2003).

The first corpora, TT2-Xrce, is a collection of technical Xerox manuals which involve

relatively large vocabularies of 7–19 K words and contain around 0.6 M running words

per language. The second one, TT2-EU, corresponds to translations of the Bulletin of the

European Union, which are publicly available on the Internet. The corpora used in the ex-

periments reviewed in the next section contain about 6.3 M running words per language and

the vocabulary sizes range from 84 to 154 K words.

8.2. Speech data and acoustic models used for STSMT

To test the capabilities of STSMT (speech-to-speech MT) systems, several speech-input

corpora associated with some of the bi-text corpora described above have been collected.

The main features of these corpora are summarized below. A few details are also given about

the acoustic hidden Markov models (HMM) (Jelinek, 1998) trained with these corpora and

used in the experiments discussed in the next section.

– MLT: 120 phonetically balanced Spanish utterances from a different task, uttered by 10

speakers, were used to train 26 very simple monophone acoustic units, each modeled

by a discrete HMM with 3 states and 128 codewords. Testing was carried out on 100

Spanish sentences, randomly selected from the text test set, uttered by a four speakers

(400 utterances in total). One of the test speakers was included among the 10 training

speakers (Vilar et al., 1996a).

– EUTRANS-0 and EUTRANS-I: Acoustic models of 26 Spanish monophone units were also

used. In this case each model was a left-to-right continuous density HMM (CDHMM).

These models were trained with the HTK Toolkit (Young et al., 1997) using a Span-

ish corpus of 57K running words from 315 speakers (Albayzin corpus (Dı́az-Verdejo

et al., 1998)). 336 utterances (3K running words) by 4 speakers, not involved in train-

ing, were used for testing. Two versions of these speech data were used: The first one

had microphone quality; i.e., 7.8 kHz bandwidth, 16 kHz sampling rate and 16 bits per

sample linear resolution). From these data a second telephone-quality speech data set was

produced, with 3.8 kHz bandwidth, 8 kHz sampling rate and 10 bits per sample linear

resolution.

– EUTRANS-II: The speech corpus consisted of 7.9 hours of speech, uttered by 276 speakers

over standard telephone lines. 52K running words by 252 speakers were used to train

the acoustic HMMs and 278 utterances by 24 non-training speakers (5K running words)

were used for testing (Casacuberta et al., 2004). In this case, more sophisticated acoustic

modeling was adopted. More specifically, decision-tree clustered generalized CDHMM

triphones (CART with 1,500 tied states plus silence) were trained using the HMM training

tools of the RWTH (Aachen) speech processing group (Ney et al., 1998).

8.3. Performance measures

Measuring the accuracy of MT, STSMT and CAT systems is a difficult problem. In this article

only automatically computed objective scores will considered, thereby avoiding to discuss

assessment results based on subjective, human-expert based judgments. Generally speaking,

these objective measures correlate fairly well with the quality subjectively assessed by human

experts (Nießen et al., 2000; Nießen, 2003). However, given that a correct translation of a
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given source utterance is by no means unique, objective measures based on single-reference

test data always tend to be pessimistic.

– Translation Word error Rate (TWER) is the minimum number of word insertions, sub-

stitutions and deletions needed to match the system output with a single target sentence

reference divided by the total number of reference words (Amengual et al., 2000; Nießen

et al., 2000).

– Key-Stroke Ratio (KSR) is a measure used in the context of CAT to estimate the effort

needed by a human translator to produce correct translations with the help of the CAT

system. It is computed as the percentage of keys-strokes that a human translator had to

type with respect to those needed to type the entire text without the help of the system (Cubel

et al., 2003; Och, Zens, & Ney, 2003).

KSR is only relevant in CAT experiments and TWER applies both to STSMT and text-

input MT. In real MT applications involving large vocabularies, a TWER of 20–30% is

generally considered a reasonably good, useful result, and the same is true for the KSR in

CAT applications.

In the MT community another interesting measure has recently been proposed, which

is called BiLingual Evaluation Understudy metric (BLEU) (Papineni et al., 2002). Since

many of the results overviewed here are older than the introduction of BLEU, for the sake

of homogeneous presentation, this measure will not be reported in any of the experiments

of the next section. Other measures that aimed at being closer to human evaluation have

been proposed in Nießen et al. (2000) and Nießen (2003), but they were too expensive or

time-consuming to be applicable in many of the experiments here considered.

9. Results

Three types of results are reported to check the feasibility of stochastic finite state transducers

for machine translation: Text-input MT, STSMT and CAT. Whenever available, these results

are accompanied by others obtained by the well known AT statistical approach outlined in

Section 7 (Och & Ney, 2004), using the very same training and test data. In many cases,

results obtained by other state-of-the-art “competitive” (i.e., not based on SFST technology)

MT techniques are also available. However, for the sake of presentation clarity, only the AT

results will be presented, even though, in some cases, somewhat better results were obtained

using the so called phrase-based approach (Tomás & Casacuberta, 2001).

9.1. Text-input translation results

Here we review the most significant MT experiments carried out with the different SFST

learning techniques outlined in this article as applied to some of the corpora described in the

previous section. A summary of selected results is given in Table 3.

OSTIA and OSTIA-DR have been applied to many relatively simple MT tasks. The first

works, reported in Castellanos, Galiano, and Vidal (1994), were carried out on the MLT task.

This task provided the first testbed for studying the capabilities and shortcomings of basic

SFST learning techniques. It allowed, for instance, to understand the need for source and/or

target language models in order to cope with insufficient training data and/or imperfect input

text. All in all, very good results (TWER below 1%) were achieved for the MLT corpus using

OSTIA-DR along error-correcting smoothing (Vilar, Vidal, & Amengual, 1996; Vilar et al.,

1996a).
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Table 3 Summary of Translation Word Error Rate (TWER %) for selected

tasks of increasing difficulty—see details in Table1. In all the cases languages

involved are Spanish-English, except for AMETRA-MET and EUTRANS-II

which involve Spanish-Basque and Italian-English, respectively. Best results

are typeset in boldface. AT stands for statistical alignment templates (see

text for details)

Task Year OSTIA OSTIA-DR OMEGA GIATI AT

MLT 1993 3 <1 – – –

EUTRANS-0 1996 ≈1 <1 <1 3 –

EUTRANS-I 1998 – >70 7 7 –

EUTRANS-II 1999 – >80 37 25 25
AMETRA-MET 2004 – – – 40 –

TT2-XRCE 2004 – – – 45 40
TT2-EU 2004 – – – 52 47

The application of OSTIA and OSTIA-DR to the more realistic EUTRANS task was first

described in Vidal (1997). Very good results with EUTRANS-0 were reported in Vidal (1997)

and additional results, both for EUTRANS-0 and EUTRANS-I, can be seen in Amengual et al.

(2000). Using a categorized4 version of the huge EUTRANS-0 training corpus, OSTIA-DR

produced almost perfect models, with TWER lower than 1%. However, results degraded

significantly when the more realistically sized EUTRANS-I training corpus was used. Since

the learned models were clearly under-trained, error-correcting smoothing was needed in this

case, leading to a text-input TWER close to 10% (EuTrans, 2000). Without using categories

the TWER was exceedingly high (>70%) to be considered useful.

OMEGA was also tested on the EUTRANS-0 and EUTRANS-I corpora. While results on

EUTRANS-0 were similar to or slightly worse than those of OSTIA, on the much smaller

EUTRANS-I corpus, OMEGA was clearly better. Without using categories, OMEGA achieved

error-correcting text-input TWER better than 7% (EuTrans, 2000) whereas, under the same

conditions, OSTIA(-DR) completely failed to produce useful results.

Regarding the more difficult EUTRANS-II task, OSTIA could not be used at all in this task

and OMEGA produced only moderately acceptable results (37% TWER) (Casacuberta et al.,

2004).

The GIATI technique was tested with all the corpora of the EUTRANS project. TWER

smaller than 7% and 25% were obtained for text input with EUTRANS-I and EUTRANS-II,

respectively (Casacuberta & Vidal, 2004). The EUTRANS-II results are clearly better than

those achieved by OMEGA under the same conditions. Overall, GIATI was among the best

techniques tested in the framework of the EUTRANS project (EuTrans, 2000).

GIATI was also extensively used in the TT2 project (Barrachina et al., 2006). Apart from

the CAT experiments which will be discussed later, plain MT empirical tests were also

carried out using the TT2 corpora involving three language pairs (six by considering both

translation directions of each pair). Table 3 shows only the Spanish-to-English results. For

the TT2-XRCE and TT2-EU corpora, GIATI achieved 45% and 52% TWER, respectively,

which were overcome by other statistical approaches. Results for the other languages pairs

roughly showed a similar tendency.

GIATI has recently been successfully applied to versions of the EUTRANS-I task

for Catalan-Spanish (González et al., 2002), Portuguese-English (Picó et al., 2005) and

4 Seven categories: proper names, dates, times of day, etc. Each instance of these categories was substituted

by a corresponding non-terminal symbol.
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Spanish-Basque (Pérez et al., 2005). Also in the Spanish-to-Basque pair, GIATI has been ap-

plied to the more practical, real task AMETRA-MET, where it achieved 40% TWER (González

et al., 2004).

9.2. Speech-input translation results

In all the experiments discussed in this subsection, source-language utterances are translated

into target-language sentences. These (text) sentences can be easily and accurately converted

into target-language utterances by using available text-to-speech synthesizers.

The relative quality of the translations obtained by using the serial or the integrated
architectures is discussed in Casacuberta et al. (2004). Here these details are omitted and, for

each translation task and technique, only the best results are discussed (a summary appears

in Table 4).

The first speech-input experiments were carried out with OSTIA-DR applied to the MLT

task, leading to very good performance (3% TWER) with very simple (discrete) acous-

tic models (Vidal, 1997). Using better (continuous-density) acoustic modeling, OSTIA-DR

also achieved very good results in (microphone) speech-input experiments with EUTRANS-0

(Vidal, 1997; Amengual et al., 2000).

OMEGA transducers learned with EUTRANS-0 and EUTRANS-I were also tested with

speech-input. Results were good for EUTRANS-0 and only moderately good for EU-

TRANS-I, with about 13% and 18% TWER for microphone and telephone speech, respec-

tively (Casacuberta et al., 2004). Regarding the significantly more difficult EUTRANS-II task,

OSTIA could not be used at all and OMEGA produced only moderately acceptable results:

less than 50% TWER (Casacuberta et al., 2004).

The GIATI technique was successfully tested with all the speech corpora of the

EUTRANS project. While results for EUTRANS-0 were slightly worse than those of

OSTIA-DR or OMEGA, GIATI clearly overcame these techniques when trained with

the more realistic EUTRANS-I and EUTRANS-II corpora. In EUTRANS-I, GIATI achieved

8% and 13% TWER for microphone and telephone speech-input, respectively, and in the

(telephone-input) experiments with EUTRANS-II it produced about 38% TWER. Overall,

GIATI was among the best techniques tested in the framework of the EUTRANS project

(EuTrans, 2000).

Further GIATI speech-input translation results for Catalan-to-Spanish, Portuguese-to-

English and Spanish-to-Basque tasks can be found in González et al. (2002), Picó et al.

(2005) and Pérez et al. (2005).

Table 4 Speech-input word error rate and translation word error rate
(TWER %) for different STSMT tasks. AT stands for statistical alignment
templates

Task Acoustics OSTIA-DR OMEGA GIATI AT

MLT microphone 3 – – –

EUTRANS-0 microphone 2 4 6 5

telephone – 8 11 10

EUTRANS-I microphone – 13 8 7

telephone – 18 13 13
EUTRANS-II telephone – 49 38 38
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Table 5 Key Stroke Ratio (KSR %) for two CAT tasks in different lan-

guages. AT stands for statistical alignment templates. Languages: En =

English, Sp = Spanish, Fr = French and Ge = German

Task Languages GIATI AT

XRCE En - Sp 22 23

Sp - En 27 24
En - Fr 44 40
Ge - En 47 46

EU En - Sp 33 33

Sp - En 31 31

En - Fr 30 34

Ge - En 39 38

9.3. Computer-assisted translation results

Recently, GIATI has also been used in the context of the CAT project Trans-Type 2
(TT2) (Civera et al., 2004; Cubel et al., 2005). Results on the TT2-XRCE task were promising

and were even better for most language pairs of the more difficult TT2-EU task (Table 5). As

with the results reported in Section 9.1, in these tasks of moderate/large difficulty, the CAT

performance of GIATI also tends to fall behind that of other statistical approaches. Further

results for French to English and English to German on TT2-XRCE and TT2-EU can be found

in Cubel et al. (2005).

Apart from these results, GIATI has been used in one of the prototypes which have shown

better practical behavior according to real human tests on the XEROX task (Macklovitch,

2004).

10. Conclusions

A number of techniques to learn stochastic finite-state transducers for machine translation

have been reviewed. One of the interesting reasons for the use of SFST in MT is the existence

of very efficient search algorithms for translation. On the other hand, finite-state transducer

inference techniques are generally less computationally expensive than most pure statistical

approaches. Although it can be argued that SFST are too simplistic models to cope with

the complex nature of natural language, it is also well known that many natural language

phenomena can be adequately represented by finite-state devices (Kornai, 1985). Finally,

SFST allow for an easy integration with other knowledge sources, such as acoustics models,

leading to very effective solutions to speech translation.

Our review has started with techniques mainly falling under the traditional grammatical

inference paradigm. While these techniques have proven able to learn very adequate MT

models for non-trivial tasks, the amount of training sentence pairs needed often becomes

prohibitive in real-world situations. Other techniques have also been reviewed that circumvent

this problem by increasingly relying on statistically-derived information.

As task complexity increases, we think that statistically-based learning is the most promis-

ing framework, particularly in those tasks where the assumption of left-to-right alignments

leads to huge SFSTs. By explicitly allowing non left-to-right alignments, statistical mod-

els can represent more complex natural language phenomena in a more compact form, but

they generally exhibit very high computational learning and translation costs as compared

Springer



Mach Learn (2007) 66:69–91 87

with the corresponding algorithms for finite-state models. This problem has been addressed

in Vilar, Vidal, and Amengual (1996), where a word-reordering of the target sentence, based

on statistical alignments, is proposed for SFST learning. The reordering algorithm adds some

meta-symbols to the resulting target sentences that can later help recover the correct word

order. While results presented in Vilar, Vidal, and Amengual (1996) for the (very simple)

MLT task were promising, further studies revealed that more work is actually needed to

develop adequate word/phrase reordering techniques that would lead to significant SFST

size reduction in real MT applications. Other promising techniques proposed to reduce the

size of SFST trained with large corpora are based on word categorization (Barrachina &

Vilar, 1999). However, again, further studies are needed to assess the possibilities of these

techniques to achieve significant size reductions, without losing translation accuracy.

With respect to the different SFST learning techniques tested, the results presented in this

article clearly suggest that GIATI is the only one that can cope with translation tasks under

real conditions of vocabulary sizes and amounts of training data available. However, as task

complexity increases, GIATI tends to fall behind other approaches that rely more explicitly

on statistics.

One of the shortcomings of GIATI comes from the fact that it needs a given bilingual

segmentation of the training pairs in order to determine the “extended alphabet” and the

corresponding morphisms. Clearly, for a given translation pair, there are many possible

bilingual segmentations; but the present version of GIATI does not take advantage of this

fact, thereby making less profit from the (always scarce) training data. A possible way to

deal with this problem is to develop a new GIATI version which is more explicitly based on

statistics, as proposed in Vidal and Casacuberta (2004) and Andrés (2005). The main idea is

to consider the bilingual segmentation of the training pairs as a “hidden variable”. The EM

algorithm is then used to simultaneously optimize the segment boundaries and the n-gram

parameters that model the concatenation of the bilingual segments. Therefore, an additional

advantage of this derivation is that it no longer has to rely on “external” statistical techniques

to obtain an “adequate bilingual segmentation”, or make use of heuristics to transform pairs

of sentences into conventional strings. Finally, it should be emphasized that this new GIATI

version can retain the interesting advantage that the learned models directly admit a simple

finite-state representation.

All the reviewed techniques have been tested on practical MT tasks considered in many

Spanish and European projects and company contracts, involving a large variety of languages

such as Spanish, English, Italian, German, French, Portuguese, Catalan and Basque. As a

result of these projects a number of prototypes have been implemented and successfully

tested under real (or at least realistic) conditions. On-line demonstrations of some of these

prototypes are available at http://prhlt.iti.es/demos/demos.htm.
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approaches to statistical and finite-state speech-to-speech translation. Computer Speech and Language,

18, 25–47.
Casacuberta, F., & Vidal, E. (2004). Machine translation with inferred stochastic finite-state transducers.

Computational Linguistics, 30(2), 205–225.
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Castellanos, A., Vidal, E., Varó, A., & Oncina, J. (1998). Language understanding and subsequential transducer

learning. Computer Speech and Language, 12, 193–228.
Charniak, E., Knight, K., & Yamada, K. (2003). Syntax-based language models for statistical machine trans-

lation. In Proceedings of the Machine Translation Summit IX, (pp. 40–46), New Orleans, Louisiana,

USA.

Civera, J., Vilar, J., Cubel, E., Lagarda, A., Barrachina, S., Casacuberta, F., Vidal, E., Picó, D., & González, J.
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en Tecnologı́as del Habla.
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