
Sadhana, Vol. 21, Part 3, June 1996, pp. 291-315. © Printed in India.

Learning for efficient search

SUDESI-LNA SARKAR t, SUJOY GHOSE and P P CHAKRABARTI

Department of Computer Science & Engineering, Indian Institute of Techno-

logy, Kharagpur 721 302, India

tPresent address: Department of Computer Science and Engineering, Indian

Institute of Technology, Guwahati 781 001, India

email: sudeshna@iitg.emet.in; {sujoy, ppchak} @cse.iitkgp.emet.in

Abstract. Learning for problem solving involves acquisition and storage of

relevant knowledge from past problem solving instances in a domain in such a

form that the information can be used to effectively solve subsequent problems

in the same domain. Our interest is in the role of learning in problem solving

systems that solve problems optimally. Such problems can be solved by an

informed search algorithm like A*. Learning a stronger heuristic function leads

to more effective problem solving. A set of arbitrary features of the domain

induce a clustering of the state space. The heuristic information associated with

each cluster may be learned. We discuss the use of a new form of information

in the form of h ' se t (the set of optimum cost values of all nodes of the cluster)

and present an algorithm for using the information that is more effective than

A*. A possibilistic (fuzzy set theoretic) extension of this algorithm is also

presented. This version can handle incomplete information and is expected

to find solutions faster in the average case with controlled relaxation in the

optimality guarantee. We also discuss how to make the best use of the features,

when the system has memory restrictions that limit the number of classes that

can be stored.

Keywords. Learning; best first search; features; heuristic estimate; clustering.

1. Introduction

1.1 Search and A *

A search problem consists of finding a sequence of operators to transform a given ini-

tial state to a state matching the given goal description such that the sum of the costs

of the operators along the path is minimum (Nitsson 1980). For uninformed systematic

search strategies like depth first search and breadth first search and their variants, the num-

ber of node expansions is an exponential function of the optimum solution length (Pearl

1984).

291

292 Sudeshna Sarkar et al

In order to reduce the number of node expansions, informed search algorithms use

some domain dependent information of a node, known as a heuristic estimate of the node,

usually in the form of a function of the node. Under certain assumptions on the value

of the heuristic estimate, these estimates can be suitably used by search algorithms for

reduced search complexity. A* is an informed search algorithm, that uses an estimate

(underestimate) of the actual solution cost of the node as the heuristic information. A*

guarantees that the goal found will be the one with an optimum solution cost when the

heuristic information is an underestimate. If A* has access to perfect information, the

number of nodes expanded will only be linear in the solution cost.

1.2 Role of learning

Most problem solving systems are expected to solve problems repeatedly from the same

domain and often the same population of problems over their lifetime. In the course of

problem solving an intelligent system can be expected to acquire additional experience or

knowledge that will help it to solve subsequent problems of the domain more effectively.

The time taken by best first search algorithms depends on the accuracy of the heuristic

estimate. Therefore learning a more accurate cost function associated with a state will help

to speed up the search process.

For learning to be effective, we make the following assumption: problems come from the
same arbitra~ but fixed distribution in the learning phase as in the problem solving phase.
This is the framework of distribution free learning, and we will claim that if the underlying

distribution is the same in both cases, with high probability, the information acquired by

the system in the learning phase will be sufficient to solve most of the problems in the

problem solving phase effectively.

1.3 Background

In traditional heuristic search, a heuristic function is used as a direct estimate of the cost

of a node. This restricts the types of features that can be used as information. Efficient

performance of an admissible heuristic search algorithm depends on finding a good easy

way to compute underestimating feature. Such features are often hard to find.

A major problem with the use of heuristic functions is that the information content of

an individual feature may not be very high. Often we come across features that capture

some aspects of the problem domain only. Several features taken together can characterize

a problem domain much better than any of the features taken individually by providing

more discriminatory- information. Use of multiple features has been explored by several

researchers. Given a set of features, best first search algorithms traditionally compute the

values of the corresponding heuristic functions and combine the values to yield the heuristic

estimate of a node. The appropriate combination of the different feature values that will

yield a more informed estimate of a node, while leaving the search procedure admissible, is

an interesting problem. The standard form of combination is a linear polynomial (Samuel

1963; Christensen & Korf 1986; Lee & Mahajan 1988; Bramanti-Gregor & Davis 1993).

Learning in this context is used to determine optimal coefficients of such a polynomial. This

method may not yield good results when there is no effective linear mapping from feature

Learning for efficient search 293

vector values to the actual cost of nodes. A linear discriminator of the features is very

restrictive and some form of nonlinearity has been proposed (Samuel 1967). Bramanti-

Gregor & Davis (1993) present a method of combining features based on linear regression.

They propose a linear combination of certain ad-hoc nonlinear forms of features.

Politowski (1986) has used a model where the feature values are used to partition

the state space into a number of equivalence classes. He advocates that the information

corresponding to a class be explicitly represented as a mapping from the class to the

information. This mapping can be learned during the training phase. We adopt this model

as our basic model.

1.4 Model

The state space is first divided into classes by the features. Information associated with the

classes is learned during the learning phase, and the acquired information is used to solve

problems more effectively in the problem solving phase.

Classification
Following Politowski (1986), we look upon the features as discriminators that determine

the cost of a node. A feature, h, of a problem domain is a function which can assume a

number of distinct values when applied to different states of the problem. When multiple

features of a problem domain are available, a feature set can be used which will provide a

vector of values for every state. Suppose that we have m features of the problem domain

k = (hl, h2 hm).
The feature vector values induce a clustering of the state space. Each k-element vector

identifies a class containing some number of nodes that are heuristically indistinguishable

from each other. Consider the set Sk of all nodes which have the identical value, k as their

feature vector value.

Sk = {n : hvec(n) = k}.

We advocate that information be associated and stored with each such set Sk, to be used

during a best first search algorithm.

Information associated with a class
Corresponding to any specific value of the feature vector k at a node, we may store the

minimum of the h* values of all elements of the class. We may also store the set of h*

values of the elements of a class, represented by h *set (k).

h'set(k) = {v : h*(n) = v, n ~ Sk}.

Algorithm
The h'set corresponding to the value of the feature vector at the node can provide more

information to an informed best first search algorithm than what can be provided by a single

underestimate value. We present algorithms CS*, FS* and their variants that use h'set
and its distribution as information and performs better than A* using the corresponding

single-valued estimate.

294 Sudeshna Sarkar et al

1.5 Work done

• Given any set of features, the minimum element of h'set can be used as a heuristic

underestimate at a node that can" be used by the algorithm A*. In this framework,

we show how the use of multiple features drastically reduces the search time, while

solving problems optimally.

• Given a set of features of the problem domain, we show that the h ' se t corresponding

to each feature vector value can be learned in the limit by solving a sufficient number of

example problems in the training phase. We have devised best first search algorithms

that make effective use of the information of the entire h ' s e t to further reduce the

number of node expansions.

• However these algorithms assume complete information about the h'set corresponding

to every feature vector value. A bounded risk model has been devised that will always

find some solution, and is guaranteed to find an optimum solution with a specified con-

fidence level. The algorithm uses the possibility distribution of the individual elements

of the h ' s e t .

While a lot of stress has been laid in previous work on the importance of accuracy

and precision as the necessary quality of a good heuristic estimator, making use of the

discriminatory power of the heuristic feature set has been largely overlooked. We lay

special emphasis on devising more effective best first search algorithms by making use of

the discriminatory power of a set of features that may help to make a distinction between

on-track and off-track nodes.

This paper is organized as follows:

Section 2 provides the basic notations and definitions. Section 3 discusses the learning

phase. Section 4 presents admissible search algorithms for effective use of the information

learned. Section 5 provide the corresponding algorithms for the fuzzy set model. Section 6

concludes the paper.

2. Features, feature vectors and h'set

Let $ be the set of states of the problem space. The problem space has a set of operators

that change the state of the problem. For example, in 8-puzzle, the states are the different

permutations of tiles, and the operators are single step moves of the blank position. Cor-

responding to each application of an operation in moving from state si to state sj, a cost,

c(si, sj) is associated.

A search problem instance is an element of 79, where 79 = S x S. In other words, a

search problem is a 2-tuple (s, y). s is called the start node, and y is the goal node. A

problem can also be of the form (s, I') where F is a set of goal states. In optimum search,

the problem solving task is to find a sequence of operators that map the initial state to one

of the goal states such that the sum of the costs of the operators along the path is minimum.

First we provide certain preliminary, definitions:

s : A node designated a start node for a specified problem.

~/ : A goal node for a specific problem.

Learning f o r efficient search 295

F : A set of goal nodes for a specific problem.

(ni, nj) : Arc connecting the node ni and the node nj .

c(n i, nj) : Cost of the arc connecting the node ni and the node nj .

P = (n0, n 1 n k) : Path in a graph consisting of a sequence of arcs connecting no

through nk.

P i n : I f P = (no, nl nk), P In = (no, nl nk, n).

Phi_n2 : A path from nl to n2. Phi-n2 = (nl n2).

P P s - n : Pointer Path in a graph obtained by tracing the pointers back from n to s in the

current search tree. It is the cheapest known path from s to n at any given point during

the search.

Cp0P) : Cost of path e . I f e = (no, n l , • • • , nk), C p (P) = ~_i=k-Âi=O c(ni , ni+l).

C~(n 1, n 2) : Cost of minimal cost path from nl to n2.

g* (n) : Cost of cheapest path from the implicit start state s to the node n. g* (n) = C~ (s, n).

g(n) "Cost of cheapest known path from the start state s to the node n.at any given point

during the search.

g(n) --- m i n p (C p (P)) V P = (s n) .

In other words, g(n) = cp(P Ps-n) .

h*(n) : Cost of cheapest path from n to the goal state y of the given problem, h*(n) =
c~ (n, y) where y is the implicit goal. It may be noted that the goal may vary from

problem to problem. However, for notational convenience, y has been dropped.

f (n , P) : Estimate of cost of cheapest solution path which is an extension of path P Ps-n.

h : A feature of the problem domain.

k = (h 1, h 2 hk) The set of features used (feature vector), h l , h2 hk are features.

v = (v 1, v 2 Vk) Instantiated value of the feature vector, where vi is the value of hi
for the given state.

hvec(n) : The feature vector value corresponding to node n. hvec (n) = (vl, v2 vk)

if vi -" h i (n) .

2.1 What are features?

A heuristic feature is traditionally an estimate of the cost of an optimum cost path from

the current state to the goal state of the current problem instance. We consider a feature to

be any function of the goal state F, the start state s, and the partial search tree generated

so far. However, for convenience, we will use h (n) to denote the value of a feature h at

node n.

296 Sudeshna Sarkar et al

2.2 Role of features in clustering

We will show how a set of features can be effectively used to strengthen the heuristic

estimate of a node. We look upon features of the problem domain as a means of dividing

the problem state space into a number of classes. Increase in the number of features leads

to further refinement of the classes, each original class being subdivided into a number

of classes based on the values of the new feature set. Instead of associating information

with a state, information can be associated explicitly with every class. We shall see that

with the types of information that we consider, the more refined the classes, the greater

the accuracy of the information.

Example 1. Consider the 8-puzzle problem. The number of distinct states is about 181440

(9!/2). The misplaced tiles heuristics takes on 9 different values 0 8, and divides the

state space into 9 different classes. Similarly the Manhattan distance estimate divides the

state space into about 25 different classes. Taken together, they divide the state space into

about 78 different classes. The information associated with these subclasses induced by a

set of features is stronger than the information that can be associated with classes induced

by each of the component features. []

Note that the above scheme gives rise to a finite number of classes only for features

which take on a finite number of distinct values. To be able to handle features that take on

continuous values, or a large number of values, we will have to divide the feature values

into intervals. The feature vector in this case will be a vector of intervals, rather than a

vector of values.

2.3 minh and h'set

After classification, some information must be associated with the classes, which can be

used as the heuristic information for the nodes belonging to the class. Search algorithms use

estimates of the optimum cost as the heuristic information. A class may contain nodes with

several different optimum cost values. The simplest form of information is the minimum

possible cost value corresponding to a class, denoted by minh. We introduce the concept

of h'set associated with a class.

DEFINITION 1

The minh of a given feature vector value k is the minimum of the h* values of the nodes

comprising the class identified by the feature vector value k.

minh(k) = minn{h*(n)} Vn s.t. hvec(n) = k.

DEFINITION 2

The h'set of a given feature vector value k is the set of feasible optimum cost values i.e.,

h*(n) for all nodes with feature vector value k and is denoted by h'set(k) .

There will exist many nodes nl, n2, n3 which have the same feature vector k i.e.,

hvec(nl) = hvec(n2) = hvec(n3) k.

Learning for efficient search 297

Table 1. Examples of h'set in 8-puzzle.

Feature set Feature vector value minh h 'se t

(hi)

(hl, h2)

(hl, h2, h3)

(10) 10 10 12 14 16 18 20 22

(10, 8) 10 10 12 14 16 18

(10, 8, 8) 12 12 14

(10, 8, 9) 10 10 12 16

(10, 8, 11) 10 12 14

(10, 8, 12) 16 16

(10, 8, 13) 14 14 16

(10, 8, 15) 18 18

These different nodes may have different values of h*. The h ' se t corresponding to the

feature vector is the set of the h* values for all nodes with that feature vector i.e.,

h 'se t (k) = [_Jh*(n) ¥n s.t. hvec(n) = k.
11

Corresponding to every element x of h'se t (k) , there will exist some node n with feature

vector value k and optimum solution cost = x.

Note that minh(k) = rain{h'set(k)}.
Given a node n, we will, for convenience, refer to the h 'se t at the node, n to mean the

h'set corresponding to the feature vector value at the node (h*set(hvec(n))).

Example 2. In table 1 we show some typical examples of h 'se t values in the domain of

8-puzzle. The example illustrates how the addition of more features induces a finer cluster-

ing of the state space, and stronger information may be associated with these subclasses.

The heuristic features used are

• Manhattan distance 1 represented by hi ,

• Misplaced tiles 2 represented by h2,

• Sequence count 3 represented by h3, []

3. Learning phase

This phase must precede problem solving. In this phase, the mapping from feature values

at states to the corresponding estimates are learnt. In this section, we discuss the number

of problems that must be solved in this training phase for effective problem solving using

1 Manhattan distance: R is the sum of distances that each tile is from home and is denoted by manhattan.

2Misplaced tiles: The number of tiles not in their correct position as in the goal state.

3Sequence count: It is obtained by checking around nonccntral squares in turn, allotting 2 for every file not followed
by its proper successor, and allotting 0 for every other tile; a piece in the centre scores 1. We denote this by sequence
count.

298 Sudeshna Sarkar et al

this information. In Bramanti-Gregor & Davis (1993), the mapping function from features

to estimate is assumed to be linear. If a close linear fit does exist to the actual function, the

equation of the line can be obtained by using a few examples for training. We need to learn

the function without assuming that the function is to be approximated to any particular

form.

Let (hi, h2 hk) be a given set of features of the domain. The system solves rep-

resentative problems in the domain, using some guaranteed admissible search algorithm;

and learns the full range of feasible h* values (optimum cost from a node to the goal node),

h'set(k), corresponding to all nodes having the feature vector k.

For a particular start state s, a necessary condition that our algorithm will terminate

with an optimum solution is that there exists an optimum cost path from s to y, such that

corresponding to every state in the path, some state was encountered in the learning phase

with the same feature vector value and the same value of h*.

We define S(hi, h*) to be the equivalence class of states containing all nodes n s.t.

Vn e S(hi, h*), hvec(n) = hi & h*(n) = h*.

Let P*_y be an optimum path from s to y, given by

P = (no -~-- s, nl, n2 nk = y) .

The necessary condition that this path will be found in the problem solving phase is" For all

i, 0 < i < k, at least one member of S(hvec(ni), h*(ni)) was encountered in the problem

solving phase.

Suppose we are working with a feature set < hi , h2 hk >, which induces M

clusters in the state space. These clusters are represented as Co, C1 CM. We run a

number of example problems and obtain T points which are used for learning. We assume

a model where the examples come from any arbitrary distribution, from a given population

of problems. The distribution from which problems come from is assumed to be the same

in the problem solving phase as in the learning phase. To be able to learn the class Ci it

is required that the set of T sample points contain some examples of class Ci. Suppose

the probability distribution is not uniform, but states occur according to some arbitrary but

fixed distribution D +. In this case perfect learning of the h'set is guaranteed only in the

limit. But suppose we relax the guarantee of completeness of learning - - and only require

that with confidence > (1 - 3) we want to get the optimum solution. The class Ci will be

correctly learnt if

• for A* (minh), an example is found where a node belonging to class Ci has its h* value

as minh(hvec(Ci)).

• for CS* : for each x in h*set(Ci), an example is found where a node belonging to class

Ci has a h* value of x.

The class Ci will be approxiamtely correctly learnt if

• for A* (minh), an example is found where a node belonging to the class Ci maps to the

h* value of e cut of the distribution corresponding to hvec(Ci).

• for CS* : for each x in h*set(Ci) where the probability of the point x is > e, an example

is found where a node belonging to class Ci has the h* value o fx .

Learning for efficient search 299

Let the probability of occurrence of a class be > e. Let N be the maximum length of an

optimum solution path; and let X be the number of trials necessary for the (8) guarantee.

Let the number of sample points be T. Then the probability that at least one of the classes

containing some state in the optimum path was not encountered in the X trial phases is

N(1 - E) x. The 8 confidence guarantee means that

N(1 - e) X < 8

~.. Ne -~x < 8

i.e., e eX > N / 8

or, X > (N/G) log(N/8) .

Therefore if we want to find optimum solutions with a (8) guarantee, it suffices to have

collected data for h 'se t from O(l log ~) random examples from the same 'distribution as

the example problems.

Let us look at classes with probability < 6.

Maximum probability that a class falls in one of these classes = Te.

The probability of that at least one of the states on the solution path has probability <

is given by = TNe .
We want this probability to be less than 8.

This is true if e < 8 / T N , i.e., 1/e > T N / 8 .
Therefore, if we look at

(T N / 8) log(N/8)

examples, we can ensure that the probability of failure will be < 8.

Once we are able to learn the information corresponding to every feature vector value,

we are ready to use it to solve future problems more effectively.

4. Perfect in format ion mode l wi th crisp h'set

In this section, we discuss algorithms making use of the information learnt to perform

admissible search. In § 4.1, we discuss using of minh as the heuristic evaluation function

in A*. Results are provided for the domain of 8-puzzle which serves as a benchmark for

comparison of the performance of the other algorithms.

4.1 Using minh as information

The simplest type of information that we can associate with every class is an estimate of

the cost value of the nodes belonging to the class. To be able to run algorithm A*, the best

underestimate that can be associated with any cluster, C1, with feature vector value kl, is

the minimum of the h* values of the nodes comprising the cluster. This is the scheme used

by Politowski (1986). It attempts to capture the full information available by all the given

features.

We have run several randomly generated examples in the domain of 8-puzzle using a

guaranteed underestimating heuristic function. From the solution paths obtained, we have

computed the minimum element of the h 'se t corresponding to each feature vector. This

300 Sudeshna Sarkar et al

Table 2. Results of running A* with minimum of h* set for various feature sets.

Features used Manhattan Manhattan Manhattan Manhattan

misplaced tiles sequence count misplaced tiles

sequence count

% Nodes expanded 100 81 77 42

value is then used in the second phase as the heuristic estimate of a node in algorithm

A*. 10000 different random examples were then run with this new heuristic estimate. We

observed that the number of node expansions was reduced from that of A* with Manhattan

distance heuristics. All the solutions obtained were optimum. The results of running the

algorithm after learning with different feature sets are presented in table 2. The table

illustrates how the combination of different features drastically reduce node expansions.

Note that though Misplaced tiles heuristics is dominated by the Manhattan estimate, using

both the estimates together gives rise to significant improvement in search performance.

4.2 Using h 'set as information

Our objective is to find out if other stronger forms of information can be associated with

the classes, such that they can be effectively used for more effective searching. If a best

first search algorithm uses a single value as information, minh is the best estimate that

can be associated with a class to guarantee admissibility. However, if the set of feasible

optimum cost values of the states comprising the class is associated with a class, then

stronger reinforcement to the heuristic estimate of a node can be made by using the path

information. In this section we present algorithm CS* that makes use of the information

of h'set to make search more effective.

4.2a Some definitions: If the h'set is known for each class, the possible values of

optimum solution costs of the problem that can be obtained by extending the current path

is given by f s e t which represents the set of feasible values of the optimum solution cost

of a path that is constrained to pass through n with a g value equal to the cost of the current

pointer path.

DEFINITION 3

The f s e t of a node n, given the pointer path P from s to n, and the value of h'set at the

node (i.e., h*set(hvec(n))), is given by

f se t (n , P) = {x] x = g(n) + y Vy ~ h* set(hvec(n))}.

DEFINITION 4

We define the minf value of a node n, minf(n, P) to be the minimum element of the

corresponding fset.

minf (n, P) = rain { (fset(n, P))}.

Learning for efficient search 301

We make use of the following property : if C* is the optimum solution cost from node

s to a node y, then if a node n lies on any optimum solution path from s to F, the sum

of the optimum cost from start node s to the node n and that from node n to a goal node

3/equals C*. This implies that the intersection of thefset of nodes lying on an optimum

solution path must be non-empty. We introduce the notion ofpathint which has a parallel

in the concept of pathmaz (Mere 1984; Dechter & Pearl 1985) in best first algorithms

using single valued estimate.

DEFINITION 5

The pathint of a node n along a pointer path P = (no, nl nk), is defined to be the

intersection of the fsets of all nodes belonging to the path. It is denoted by Pset(n, P).

k

Pset(n, P) = ~']fset(ni , (no, nl hi)).
i = 0

This means that if C* is the optimum solution cost, it will be a member of the pathint of

all nodes on any optimal cost solution path. Retaining the Pset at every expanded node

results in better selection of nodes for expansion than what is provided by A*.

DEFINITION 6

We define the minP value of a node n along a path P, minP(n, P) to be the minimum

element of its Pset.

Example 3. The above definitions are illustrated below with reference to the example graph

in figure 1.

SS
N ~ {6,7,8} N ~ {I,7}

{1,8}

Note: The set shown against each node denotes the value of h'set at the node.

Figure 1. A search graph.

302 Sudeshna Sarkar et al

fset(nl, (hi)) = {4, 6, 11} Pset(nl, (nl)) = {4, 6, 11}

fset(n3, (nl ,n3)) = {4, 7, 8, 11} Pset(n3, (nl ,n3)) = {4, 11}

fset(n2, (nt ,n2)) = {5,6,7} Pset(n2, (nl ,n2)) = {6}

fset(n3, (nl ,n2, n3)) = {3, 6, 7, 10} Pset(n3, (nl ,n2, n3)) = {6}

fset(ns,(nl,n2, ns)) = {3, 5, 10} Pset(ns, (nl ,n2, ns)) = ~b

minf(n2, (nl ,n2)) = 5 minP(n2, (nl ,n2)) -- 6 D

DEFINITION 7

The upper bound to the solution cost obtained at node n denoted by ub(n, P) is the

maximum cost of an optimum solution path constrained to be an extension of path P. At

any point during the search process, when the set of nodes S have been expanded, minub
is defined to be the minimum of the upper bound of the nodes.

minub = minnes{ub(n, P Ps-n)}.

In this section, we outline a best first search algorithm which uses the information

about the h'set to direct its search process. We show that the use ofpathint with h'set
provides a more informed and stronger pruning criterion than pathmax using a single

valued estimate. We outline algorithm CS* that uses h'set as state information and pathint
for path information. It is guaranteed not to be worse than algorithm A* using similar

information. We also present the iterative deepening version of the algorithm, CIDS*. In

addition to making use ofpathint to convey path information, it uses front-union to transfer

additional information from one iteration to the next.

4.2b Algorithm CS*: Observation 1. If an extension of the path Ps-n* is an optimum

solution from s to a goal y, then

C* ~ fset(n*, Ps-n*).

Suppose node n2 is a child of node nl. A necessary condition that the arc (nl, n2) is

included in an optimum cost solution path is that C* ~ fset(nl, PPs-n~) and C*

fset(n2, PPs-n2), which is possible only if the intersection of these two fsets is non-

empty, because, we must have

C* E fset(nl, P Ps-nl) Nfset(n2, P Ps-n2).

When a node nk is generated, let P Ps-nk be the pointer path from s to nk. We note that if

an optimum solution path can be reached by expanding the node nk along this path, then

the optimum solution cost C* must be a member of all nodes included in the pointer path.

This leads to the following observation.

Observation 2. If the pathint at a node becomes empty, that branch of the search tree can

be pruned as it is guaranteed not to lead to an optimum solution.

We may therefore consider retaining the pathint information at every node. The concept

ofpathint corresponds to the concept ofpathmax (Dechter & Pearl 1985) in traditional A*

Learning for efficient search 303

search using a single estimate at a node, but provides a much stronger pruning criterion. It

enables us to remove from consideration those values of feasible optimum solution costs

of the path such that there exists at least one node along the path whose set of feasible

optimum solution costs does not contain that particular cost.

Observation 3. The minP value of a node can be effectively used as the estimate of a node

during the node selection process.

We outline the algorithm CS* below which is a best first algorithm that uses minP as the

heuristic estimate at a node.

Algorithm

With every node we associate the following information:

(n,fset(n, P), Pset(n, P), parent)

1. [INITIALIZE:] minub = MAXh* ;; The maximum cost of a solution in the domain.

OPEN ~-- (s,fset(s, (s)), Pset(s, (s))) where fset(s, (s)) = Pset(s, (s)) = h'set
(hvec(s))
CLOSED *-- q~

LOOP:

2. [TERMINATE:] If OPEN is empty, exit with failure.

3. [SELECT:] Select the node from OPEN with minimum value for minP(n, Ps-n)

4. [CHECK FOR GOAL:] If n is a goal node, exit with solution, P Ps-n.

5. [EXPAND and PRUNE:] Expand node n, generating the set M of its successors, and

attach to them pointers back to n.

For all m ~ M,

If me OPEN or CLOSED

add the tuple (m,fset(m, P Ps-m),Pset(m, P Ps-m)) to OPEN if PsetO ~ dp.

If me OPEN or CLOSED

direct its pointers along the path of lowest value of g(m).

If m required pointer adjustment and was on CLOSED, reopen it.

If max{fset(m, P Ps-m)} < minub,
set minub = max{ fset (m , P Ps -m) }
Remove from OPEN those nodes whose lower bound > minub

6. [CONTINUE:] Go to LOOP.

Computation ofPset(n, P Ps-n): If ni and nj lie on an optimum path from s to g,

f * E f se t (n i , PPs-ni) N f se t (n j , PPs-nj) .

304 Sudeshna Sarkar et al

The pathint for a path is computed incrementally as follows:

Pset(s, (s)) = f se t (s , (s)),

Pset(n, P) = Pset(m, pr) N f se t (n , P) I f P = (P~ I n).

Example 4. We will illustrate the algorithm by showing how it works for the example

graph of figure 1. s = n l is initially on OPEN. It is put on CLOSED, and its successors

n2(PsetO = (6)), n3 (PsetO = (4,11)) and n4(PsetO = (4,11)) are generated and put in OPEN.

At this point, minub = 7 (from node n2).

n3 is first selected for expansion(minP(n3, (n 1, n3)) = 4). Its successors are y (PsetO =
4,) and n7(Pset 0 = (11)). y is not put in OPEN because its Pset is empty and n7 is not put

in OPEN because its m i n f value(10) exceeds the value of minub(7).
n4 is next expanded with a minP value o f 4, and n6 is generated with Pset = (4). Its

minP value is 4, and it is the next candidate for expansion. The successor n8 is pruned

because its Pset is empty. Now n2 is expanded, n5 is pruned because its Pset is empty,

and n3 is put in OPEN with Pset = {6}. n3 is now expanded, n7 is pruned(empty Pset),
and T is put in OPEN. y is next selected for expansion, found to be a goal node, and the

solution path (nl, n2, n3, y) is output.

To summarize, nodes are expanded in this order: n l , n3, n4, n6, n2, n3, y . It may be

observed that the nodes expanded by the algorithm A* using minf as the evaluation function

at a node are n l , n4, n6, n3, n2, n5, n3, n8, y . []

4.2c Properties o f CS*:

Lemma 1. I f a node n* expanded by CS* lies on an optimum path from s to a goal node
t" E F, then C* E f set(n*).

Proof The result follows from observation 1. []

Lemma 2. The value of minub provides a global upper bound to the optimum solution cost
value C* for the given problem.

Proof minub = max { fset(n, P)} for some node n, and some path Ps-n. Therefore,

minub = g(n, P) + x where x = max {h*set(hvec(n))]. A finite value of x implies

that a finite solution path must exist from node n to a goal node y with opt imum solution

cost < x. Since we have already found a path of cost g(n, P) from s to n, there must exist

a solution path from s to ~, of cost < g(n, P) + x = minub. []

The value of minub can be used to restrict the Pset value of a node by removing from

consideration those values that are greater than minub.

COROLLARY 1

I f P is a path from s to n, and minP(n, P) > minub, P cannot be part o f an optimum cost
path from s to goal y.

Learning for efficient search 305

While this has no effect on the number of nodes expanded, this property enables us to

prune from the OPEN set.

Lemma 3. At any time before CS* terminates, there exists on OPEN a node ni which is on
an optimum path P*_~,, s.t. C* E Pset(ni, Ps-ni).

Proof. The proof is similar to that of A*(Nilsson 1980). []

COROLLARY 2

I f hi is the shallowest node belonging to an optimum solution path P*-n" then g(ni) =
g*(ni).

Note. Note that our evaluation function at a node is path dependent, and the same node may

be expanded more than once. However it is ensured that the minP values of the expanded

nodes are non-decreasing.

Theorem 1. Algorithm CS* is admissible.

Proof. Suppose the algorithm terminates with goal node y e I" and solution cost g(y) =
minP(y, PPs-~,) > C*. When t was chosen for expansion,

minP(t, PPs-t) < minP(n, PPs-n) Vn ~ OPEN.

Therefore immediately prior to termination, all nodes on OPEN satisfied the condition

minP(n, PPs-n) > minP(t, PPs-t) > C*.

But according to the previous lemma, there must have existed on OPEN, just before

termination, at least one node n p on an optimum path with C* ~ Pset(n ~, PPs-n') i.e.,
minP(n', P) < C*. This is a contradiction. Hence algorithm CS* must terminate with an

optimum solution. Therefore it is admissible. []

The minP value of a node obtained by using pathint can be effectively used as the estimate

of a node during the node selection process and provides a stronger estimate than minfthat
makes use ofpathmax.

Lemma 4. CS*(h) never expands more nodes than algorithm A*(h) that uses minf as the
heuristic function.

Proof. For any node, n, selected for expansion by CS*, minP(n, P) < f * if n lies on an

optimum solution to the goal along path P.

Because Pset(n, P) c_ f set(n, P), minf(n, P) <_ minP(n, P) <_ f * A*(h) expands all

nodes n such that f (n) < c* = f *
CS* (h) does not expand any node n such that f (n) > c*.
Also, if A* and CS* use the same tie-breaking rule, CS* does not expand any more nodes

whose f (node) = c* than A* does.

In fact A* is a special case of CS* such that A*(h) =-- CS*(h') where h*seth,(n) is the

continuous range from h(n) to oo. []

306 Sudeshna Sarkar et al

In some cases CS* expands less nodes than A* The extra pruning in CS* can be attributed

to these two factors:

1. By using pathint, it takes the intersection of the possible values of f for every node

along a path. For a good set of features h, thepathint for off-track nodes may be empty.

This results in pruning of these paths.

2. By using a global Upper Bound on the value of f* , it is possible to further tighten the

value ofpathint at nodes, which is effective in reducing the size of the OPEN set.

Size of OPEN: Let .7 r be the frontier set of the implicit search tree generated by A*, i.e.,

the set of all tip nodes. In the case of A*, OPEN contains all successors of ~" that are not

members of ~ . In CS*, OPEN contains only those successors of j r s.t. Pset(n, P) # ¢b
and minP(n, P) < minub.

Also we have proved that any node expanded by CS* is also expanded by A*. This

means that the largest size of the OPEN set for algorithm CS* cannot be more than that of

A*, but it can be less.

4.2d When is a heuristic determiner more powerful than another? In the general case,

it is difficult to evaluate the relative merits of two heuristic determiners, hi and h2. Loosely

speaking, hi is better than h2 if hi discriminates between on-track and off-track nodes

more effectively. However it is possible to make some simple observations:

Lemma 5. A heuristic determiner hi dominates a heuristic determiner h2 i f

Vk h* sethl (k) c h* seth2(h2)

if h*seth~ denotes the h'set when using hi as the feature set.

We have assumed that the cardinality of h'set is finite and reasonable so that it is possible

to store the set directly. If h* assumes real values, it may be the case that the range of h'set
is continuous. In this case we can just keep the lower bound and upper bound of the range.

This is equivalent to using the lower bound (the value ofminf) as the heuristic estimate and

using the upper bound to compute minub. A suitable representation can also be designed

if the range of h'set is piecewise continuous.

4.2e Experimental results: In table 3 we show how running of the CS* algorithm using

the information of h'set corresponding to each feature vector value can further reduce

node expansions. The results can be compared with that of table 2.

4.3 CIDS* - Iterative deepening version

Consider the iterative deepening version of the above algorithm. In an iterative deepening

algorithm, a threshold is selected for the current iteration and depth first search is executed

until the estimates of the frontier nodes cross the threshold. For an iterative deepening

algorithm, at the end of any iteration, the OPEN list defines the frontier of the implicit

Learning for e~cient search 307

Table 3. Results of running CS* with h'set for various feature sets.

Features used Manhattan Manhattan Manhattan

misplaced tiles sequence count

Manhattan

misplaced tiles

sequence count

% Nodes expanded 100 75 69 35

Number of classes 25 78 168 403

search tree generated, which consists of all the nodes that have been generated, but not yet

expanded.

DEFINITION 8

We define the frontier set at the end of the ith iteration of an iterative deepening algorithm

with cutoff f ' to be the set of nodes Jr, such that the minP values of these nodes exceeds

the threshold for the current iteration (fP), while the minP value of their parents lie within

the threshold.

Thus the set ~ defines a cut such that the start node s lies on one side, and any goal F,

if it exists, lies on the other side of the cut. If there exists a solution to the problem, any

optimum path to the solution must pass through at least one node included in the cut. Also,

when the shallowest such node, m, was expanded, the g-value of the node was g*(m) (by
corollary 2). Therefore the Pset value of the node m will include the optimCtm solution

cost. This motivates us to define the concept of front-union.

DEFINITION 9

The front-union of the ith iteration of the iterative deepening CS* algorithm is defined to

be the set of f values in the union of the pathint values of all nodes defining the cut.

Funi°n(3ri) = U Pset(n, PPs-n).
neff ~i

CIDS* is an iterative deepening algorithm that makes use of front-union. It is an ex-

tension of the IDA* algorithm, with pathint calculation and pruning by minub like that of

CS*. At the end of an iteration, the front-union is computed. This value is backed up as

the Pset of the start node s at the beginning of the next iteration. This enables the wisdom

gained in an iteration to be propagated to subsequent iterations. We present our justification

of the algorithm below:

A very important property of front-union is that if there exists a solution to the problem,

the front-union must contain the optimum solution cost.

Lemma 6. I f there exists a path from s to a goal y E V, and a goal has not yet been found
after the ith iteration of CIDS*, the optimum solution cost C* must be an element of the
ith front-union set .~i.

308 Sudeshna Sarkar et al

Proof We have noted that .~/ defines a cut in the search space. If there exists a path

from s to a goal node 7/ 6 F, the ith front-union set must intercept one o f the nodes

on the optimum solution path. Let that node be m. We note that when the node m was

selected for expansion, the optimum solution path to the node m has been found. There-

fore g(m, P P s - m) = g*(m), h*(m) ~ h*set (hvec(m)) by definition o f h 'se t . There-

fore f * (m) ~ f s e t (m , PPs-m). Since an extension of PPs-m is an opt imum cost path,

f * (m) ~ Pse t (m, P P s - m) . Therefore C* ~ Pse t (m, P P s - m) ,

3m ~ ~. s.t. C* ~ Pse t (m, P Ps-m) .

Therefore, C* ~ Funion(Ui).
[]

The above lemma implies that, for subsequent iterations, a cost value which is not included

in Funion(~.) need not be considered. This means that for the next iteration, we can set

Pset i+l (s, (s)) = Pset i (s, (s)) f3 Fun ion (~ i)

But Funion(3 ri) c_ Pset i (s). Therefore

Pset i+l (s) = Funion(.~ i)

Example 5. We show how the algorithm CIDS* works for the example graph of figure 1.

• At thebeginningof thef irs t i terat ion, Fun ion=(4 ,6 ,11) , t h re sho ld=4 .Nodesexpanded
are

1. n l , path = (nl) , Pset = (4, 6, 11),

2. n3, p a t h = (h i , n3) , P s e t = (4, 11),

3. n4, path = (n l , n4) , Pset = (4, 11),

4. ns, path = (n l , na , ns) , Pset = (4, 11).

The nodes that define the frontier at the end of the 1st iteration are:

1. n2, path = h i , n2, Pset = (6),

2. y, path = nl , n3, y, Pset = ok,

3. nT, path = h i , n3, nT, Pset = q~,

4. ns, path = n l , n4, n6, ns, Pset = ¢b.

Therefore .7 el = {n2, y, n7, n8} and F u n i o n (~ 1) = (6).

• At the beginning of the second iteration, Funion = (6).

Threshold = rain {minP(n)} Yn ~ Fun ion(~ l) = 6.

Nodes expanded are

1. n l , path = n l , Pset = (4, 6, 11),

2. n2, path = (nl , n2), Pset = (6),

3. n3, path = (nl , n2, n3), Pset = (6),

4. y, path = nl , n2, n3, y, Pset = (6).

Learning f o r efficient search 309

Table 4.
figure 1.

Nodes expanded by CIDS* in the example of

Iteration Threshold Nodes expanded F u n i o n (~)
by CIDS*

1 4 n l , n3, n4, n6 {6}

2 6 n l , n 2 , n3, y

The maximum nodes that can be generated are:

1. n5, path = (hi, n2, ns), Pset = ep,

2. n7, path -- (nl, n2, n3, n7), Pset = tb,

3. n3, path = (nl, n3), Pset - #b,

4. n4, path = (n l, n4), Pset = ~.

In table 4 we show the nodes expanded by algorithm CIDS* for the example in fig-

ure 1. For comparison we have also presented the nodes expanded by algorithm IDA*

which makes use of min f as the evaluation function at a node in table 5. We note that

CIDS* expands nodes n4 and n6 in the first iteration, but they are not expanded again in

the second iteration. D

The concept of front-union is often useful in being able to restrict the pathint set of

the start node from information that is deeper down the tree and hence expected to be

more accurate. This may prevent some nodes that are expanded in one iteration from being

expanded/generated in subsequent iterations, as illustrated by the above example.

5. 6-Risk algorithm using fuzzy set model

The algorithm presented above is not robust in the presence of incomplete information.

Only a completely error-free heuristic determiner can guarantee termination with an opti-

mum solution. In our learning scheme, this cannot be ensured except in the limit. Also, in

order to guarantee admissibility, the algorithm uses an over-cautions approach in selecting

nodes for expansion. In the learning phase, it is possible to acquire statistics about the

distribution of the values of h ' s e t . This information can then be fruitfully used to make

a better decision about which node to expand next at the risk of missing the optimum

solution sometimes. However the risk factor can he fed as a parameter to the algorithm.

Table $. Nodes expanded by IDA* in the example of figure 1.

Iteration # Threshold Nodes expanded by IDA*

1 4 n l , n3, n4, n6

2 5 nl , n3, n4, n6, ns, n2, n3, n5

3 6 n l , n3, n4, n6, ng, n2, n3, ns, F

310 Sudeshna Sarkar et al

We find that if we insist on solving problems faster on the average while using the same

features, we have to compromise on the solution quality obtained. However, we usually like

to have some control over the deterioration of the solution quality. We describe a scheme

where this poorness of quality can be parameterized so that we have a handle on the quality

of the solution cost. In addition to learning the minimum value of h'set corresponding to

every feature vector value, we may learn all the elements of h'set and their distribution

while solving problems. A typical h'set distribution in the domain of 8-puzzle is shown

below.

h j h2 h3 h'set distribution

frequency 0.024 0.138 0.289 ' 0.407 0.119 0.020 0.003

16 7 16

h* value 16 18 20 22 24 26 28

We augment the model outlined previously by keeping the distribution of h'set. The

results of the previous algorithms are still valid for these algorithms.

There have been several algorithms aimed at finding solutions faster with controlled

reduction in solution quality. Pohl (1970) uses an evaluation function fe = (1 - e)g + eh,
for 0 < e < 1. For values of e > 1/2, we may expect solutions with less search effort in

certain cases. Pearl (1984) has outlined algorithm R~' that works with limited risk using

information about the uncertainty of the heuristic function. The uncertainty information

of the h values at a node has been modelled as a probability distribution function at a

node. He has proposed several alternatives for selecting the node to expand given the value

of 6, and shown that these algorithms are 6-risk admissible. Bramanti-Gregor & Davis

(1993), propose a statistical method of combination of features. The method provides a

probabilistic estimate of the upper-bound to the solution error by calculating the certainty

bounds of the supremums of the standard errors of the predicted values. Bramanti-Gregor

& Davis (1992) evaluate the performance of this method using some methods aimed at

producing near-optimal solutions with reduced node expansions.

We model similar concepts as Pearl (1984); but since we are working with sets, the

possibilistic model (Klir & Folger 1988) seems more appropriate in this situation. In

the standard probabilistic search algorithms in literature, a necessary condition for the

algorithms to work well is that the h'set has elements that are fairly concentrated around a

central function (Chenoweth & Davis 1991). In our model, that is not a necessary criterion

- - a discriminatory set of features that can effectively discriminate between off-track and

on-track nodes by applying the concept ofpathint will work well. In the last section, we

had modelled the h'set corresponding to each value of the feature vector, as well as the

fset and the Pset as 'crisp sets'. If all members of the h'set are not equally likely, we

may use the information about the likelihood of the individual members of the h'set to

make a more informed decision provided that we relax the optimality requirement. We

propose to assign "membership grades' to each element of the h'set proportional to the

frequency of their past occurrences. We take this as a measure of the possibility of their

future occurrence. Thus the h'set can be modelled as a fuzzy set. We modify the algorithm

CS* to work with fuzzy sets. min is taken as the intersection operation, and max as the

union operation. Selection of a node for expansion is by taking the least of the f~ value of

Learning for efficient search 311

the Pset for each set in OPEN, where 8 is our confidence parameter. This means that we

initiaUy ignore those values of likely f* s whose possibility of occurring is less than 8.

Before outlining the algorithm, we give a few definitions.

DEFINITION 10

The distribution of h'set at a node (denoted by Dh*set(n)) is the normalized 4 possibility

distribution of feasible h* values corresponding to the feature vector value at the node

(hvec(n)).
Ch* (x, n) is the distribution of the exact/relative number of times that the value of h*

was x for nodes with feature vector value hvec(n).
Ph* (x, n) is the Possibility Density Function corresponding to DH*set (n) that measures

the relative possibility that the value of h* is x corresponding to the feature vector value

hvec(n).

DEFINITION 11

Dfset(n, P): The distribution of fset at a node (n) along a path Ps-n from start to node

n is the normalized possibility distribution of feasible f * values corresponding to the

feature vector value associated with the node (hvec(n)) and the g value corresponding to

the current path at the node.

Cf (x, n) is the distribution of the count of the f-value of a node induced by Ch* (x, n),
pf (x, n) is a density function corresponding to Dfset. It measures the relative possibility

that the value of the optimum f value through the node is x.

pf(y , n) = Ph*(Y -- g(n), n).

DEFINITION 12

DPset(n, P) is the possibility distribution function of the value of optimum solution that

is an extension of path P.

DPset(s, (s)) = Dfset(s)

DPset(n, P I m, n) -- DPset(m, P I m) N Dfset(n)

min is taken to be the intersection operation.

Peset(X, P) iS the possibility that the value of the optimum solution through the

path is x.

PPset(X' P)= N pf(x, n)
nEP

= minn~p{pf(x, n)).

DEFINITION 13

The f8 value of a fuzzy set is defined to be the minimum element of the 0t-cut of the given

4A possibility distribution is said to be normalized if the highest membership grade value is 1. To normalize an
arbitra~ possibility distribution, we find the peak(s) of the possibility density function, and then scale the distribution
such that the maximum peak becomes 1.

312 Sudeshna Sarkar et al

set with a = 6. Let A be a fuzzy set, Aa be the c~-cut of A.

n

A : ~ Pi/Xi,
i=-1

Aa = {x ~ X I pa(x) > a} ,

f~ : {x I x E Aa, x < y Yy E A~} .

5.1 Learning phase

A set of random problems are generated according to the given distribution, and corre-

sponding to the optimal solutions to these problems, the Ch* (x, h) values are updated for

all sets of feature vectors h. We use Ch* (x, h) values in the problem solving phase.

Computation of Dh*set(h) values: If R is the set of all feasible values of h'set(h), and
I R I ---- K, in the absence of any examples, we let the possibility at each point in the feasible

range be 1/K. After encountering N examples for nodes whose feature vector value is h,

we update the value of Ch* (x, h) as follows: Ch* (x, h) = nx where nx is the number of

times that the value of h* was x corresponding to a state having feature vector value = h.

Then we compute the distribution as follows following Hansson & Mayer (1989).

n x + l
Dh* set(x, h) -- - - where X = maxx{nx}.

X + t

5.2 Problem solving phase

If Pl is the possibility of having an optimum solution cost of C through node n l, and P2 is

the possibility of having an optimum solution cost of C through node n2, child of n l, then

the possibility of having an optimum solution cost of C including the arc (n l, n2) is given

by min(pl, P2). If D1 and D2 be the distributions of the fsets of the parent and the child

respectively, then the distribution of the possible optimum solution costs through the arc

is given by D1 f~ D2 where f3 uses the min operator to compose individual elements of the

distribution. If P is the current path terminated at node n, then the possibility distribution

of optimum solution cost values given the path information can be obtained by

N Dfset(m, PPs-m),
m ~ P

which is obtained by the possibility density function given by

pe(C, n) = minmee{pf(C, m)}.

To guarantee optimum solution we have to select for expansion that node from OPEN

s.t. the minimum non-zero f-value of the pathint of the node is minimum among all the

nodes in OPEN. If we are prepared to trade off the optimality requirement partially in

the hope of quickly reaching a solution, we may ignore those members of the distribution

whose possibility values lie below a certain threshold. This motivates us to choose a node

for expansion that has the minimum 'significant' f-value. The threshold of significance

Learning f o r efficient search 313

is controlled by the parameter 8.8 is a measure of the risk associated with missing the

optimum solution, and is called the confidence parameter. If no solution is found with

parameter 8, the value of 8 is reduced and the algorithm rerun. This continues until a

solution is obtained.

Algorithm FS~

1. [INITIALIZE:] minub = oo OPEN *-- (s, Dfset(s, (s)), DPset(s, (s)))) where

Dfset(s, (s)) = DPset(s, (s)) = Dh*set(s). CLOSED *--- ~, delta = 8

LOOP:

2. [TERMINATE:] If OPEN is empty, exit with failure.

3, [SELECT:] For all nodes m ~ OPEN, Select the node for expansion which has the

minimum value for f s (m) out ofaU nodes in OPEN. If no such node exists, set delta =
delta~2 and repeat step 3.

Call the selected node n.

4. [CHECK FOR GOAL:] tf n is a goal node, exit with solution.

5. [EXPAND and PRUNE:] Expand node n, generating the set M of its successors.

For all m ~ M,

If rng~ OPEN or CLOSED

add the tuple (m, Dfset(m, P), DPset(m, P)) to OPEN if Pset (m) # <#.

If m ~ OPEN or CLOSED

direct its pointers along the path of lowest value of g(m).

If m required pointer adjustment and was on CLOSED, reopen it.

If max{fset(m)} < minub,
set minub = max{fset(m)]
Remove from OPEN those nodes whose lower bound > minub

6. [CONTINUE:] Go to LOOP.

Computation o f the pathint value at a node:

If PPset(Y, parent) = rl,
p f (y, child) = r2,
then PPset(Y, child) = min(rl , r2).

FS~ selects that node for expansion which has minimum value for f~(n) . 8 is defined to

be our confidence parameter. It is a measure of the risk associated with missing a solution.

Suppose our algorithm FS~ has found a solution C with some node m in OPEN, s.t.

f o (m) < C. What is the possibility that we would have found a solution with cost < C

by expanding m ? Our knowledge about the cost of optimum solutions containing the path

314 Sudeshna Sarkar et al

Pi ,((s . . . m)) is represented by DPset(m, P Ps-m). Therefore the given possibility can be

computed as

max{pip = p(x, m) & x < C}.

If C* < f~ (n), this possibility is < 8. In other words, the possibility of the current solution

being an optimum solution is > (1 - 8).

5.3 Properties of FS*

Observation 4. CS* is a special case of FS~ with 8 equal to a small positive value. When

the scheme of computation of Dh*set is as above, FS~ with 8 = 0 is equivalent to A*(h)

where h is the underestimating heuristic used in assigning the values of Dh*set.

Lemma 7. The algorithm is robust and can be always made to terminate with a solution
even if the h'set is not complete.

Proof While assigning the possibility distribution we allow for sufficient noise tolerance

and assign some possibility value, however small, to values of h* that have even the

remotest chance of being included in the set. Under such condition, there will always

exist some positive value of 8 for which the algorithm will find a solution. Since the

algorithm tries with progressive reductiong in the value of 6, termination with a solution

is ensured. []

Table 6. Performance of algorithm FS* for different amounts of learn-

ing and different values of g versus the performance of A*.

NE : Average relative percentage of nodes expanded (compared to A* (h 1).

SO : Average relative percentage of suboptimum solutions found (com-

pared to A*(h~).

8 FS*(hl, h2) FS*(h l, h3) FS*(hl, h2, h3)

AveNE Ave SO AveNE Ave SO AveNE Ave SO

0.1 75.6 0.3 75.9 0.1 39.5 0.2

0.2 74.3 1.4 75.8 0.1 37.5 0.5

0.3 71.4 3.0 73.8 1.0 37.4 0.6

0.4 69.3 3.0 70.1 2.1 35.3 2.8

0.5 64.7 5.1 68.2 3.9 33.8 4.1

0.6 58.0 10.8 32.7 6.2

0.7 60.5 8.0 50.6 13.5 31.2 8.9

0.8 53.5 13.9 48.2 15.9 30.0 12.0

0.9 53.3 15.6 42.0 18.6 27.1 17.1

1.0 53.1 20.2 39.1 23.0 25.8 17.5

Learning for efficient search 315

6. Conclusion

This paper addresses the issue of learning in admissible search. The information require-

ment for best first search has been studied. For this, we have distinguished the domain

information as given by the feature values at the nodes from the heuristic determiner. The

latter is learned from the former, and both can be of quite general form, the goal being to

design a powerful determiner for a given domain, that can discriminate effectively between

on-track and off-track nodes. The features can be arbitrary, and we have assumed a tabular

form for representation of the heuristic determiner. Algebraic formulae for combining the

features give constant space representations, but a particular algebraic form may not be

suitable to combine effectively a given set of features for a domain. Furthermore, they

cannot serve as a model for powerful algorithms like CS*. However they may lead to large

space requirement.

References

Bramanti-Gregor A, Davis H W 1992 Strengthening heuristics for lower cost optimal and near

optimal solution in A* search In Proceedings of lOth European Conference on Artificial Intel-
ligence (New York: John Wiley & Sons) pp 6-10

Bramanti-Gregor A, Davis H W 1993 The statistical learning of accurate heuristics. In Proceedings
of the 13th International Joint Conference on Artificial Intelligence, pp 1079-1085

Chenoweth S V, Davis H W 1991 High-performance A* search using rapidly growing heuristics.

In Proceedings of the 12th International Joint Conference on Artificial Intelligence pp 198-203

Christensen J, Korf R E 1986 A unified theory of heuristic evaluation function learning. In Proc.
Natl. Conf. AAAI

Dechter R, Pearl J 1985 Generalized best-first search strategies and the optimality of A*. J. Assoc.
Comput. Mach. 32:505-536

Hansson O, Mayer A 1989 Heuristic search as evidential reasoning. In Proceedings of the Fifth
Workshop on Uncertainty in AI

Klir G J, Folger T A 1988 Fuzzy sets, uncertainty, and information (Englewood Cliffs, N J: Prentice

Hall)

Lee K E Mahajan S 1988 A pattern classification approach to heuristic function learning. Artif.
Intell. 36:1-25

Mero L 1984 A heuristic search algorithm with modifiable estimate. Artif. Intell. 23:13-27

Nilsson N J 1980 Principles of artificial intelligence (Palo Alto, CA: Tioga)

Pearl J 1984 Heuristics - - Intelligent search strategies for computer problem solving (Reading,

MA: Addison-Wesley)
Pohl I 1970 First results on the effect of error in heuristic search. In Machine intelligence (American

Elsevier) 5:219-236

Politowski G 1986 On the construction of heuristic functions. Ph D thesis, University of California,

Santa Cruz, CA

Samuel A L 1963 Some studies in machine learning using the game of checkers. In Computers
and thought (eds) A Feigenbaum, J Feldman (New York: McGraw-Hill)

Samuel A L 1967 Some studies in machine learning using the game of checkers, ii - - Recent

progress. IBM J. Res. Dev. 11:601-607

