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Abstract. Learning for problem solving involves acquisition and storage of 

relevant knowledge from past problem solving instances in a domain in such a 

form that the information can be used to effectively solve subsequent problems 

in the same domain. Our interest is in the role of learning in problem solving 

systems that solve problems optimally. Such problems can be solved by an 

informed search algorithm like A*. Learning a stronger heuristic function leads 

to more effective problem solving. A set of arbitrary features of the domain 

induce a clustering of the state space. The heuristic information associated with 

each cluster may be learned. We discuss the use of a new form of information 

in the form of h ' se t  (the set of optimum cost values of all nodes of the cluster) 

and present an algorithm for using the information that is more effective than 

A*. A possibilistic (fuzzy set theoretic) extension of this algorithm is also 

presented. This version can handle incomplete information and is expected 

to find solutions faster in the average case with controlled relaxation in the 

optimality guarantee. We also discuss how to make the best use of the features, 

when the system has memory restrictions that limit the number of classes that 

can be stored. 
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1. Introduction 

1.1 Search and A * 

A search problem consists of finding a sequence of operators to transform a given ini- 

tial state to a state matching the given goal description such that the sum of the costs 

of the operators along the path is minimum (Nitsson 1980). For uninformed systematic 

search strategies like depth first search and breadth first search and their variants, the num- 

ber of node expansions is an exponential function of the optimum solution length (Pearl 

1984). 
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In order to reduce the number of node expansions, informed search algorithms use 

some domain dependent information of a node, known as a heuristic estimate of the node, 

usually in the form of a function of the node. Under certain assumptions on the value 

of the heuristic estimate, these estimates can be suitably used by search algorithms for 

reduced search complexity. A* is an informed search algorithm, that uses an estimate 

(underestimate) of the actual solution cost of the node as the heuristic information. A* 

guarantees that the goal found will be the one with an optimum solution cost when the 

heuristic information is an underestimate. If A* has access to perfect information, the 

number of nodes expanded will only be linear in the solution cost. 

1.2 Role of learning 

Most problem solving systems are expected to solve problems repeatedly from the same 

domain and often the same population of problems over their lifetime. In the course of 

problem solving an intelligent system can be expected to acquire additional experience or 

knowledge that will help it to solve subsequent problems of the domain more effectively. 

The time taken by best first search algorithms depends on the accuracy of the heuristic 

estimate. Therefore learning a more accurate cost function associated with a state will help 

to speed up the search process. 

For learning to be effective, we make the following assumption: problems come from the 
same arbitra~ but fixed distribution in the learning phase as in the problem solving phase. 
This is the framework of distribution free learning, and we will claim that if the underlying 

distribution is the same in both cases, with high probability, the information acquired by 

the system in the learning phase will be sufficient to solve most of the problems in the 

problem solving phase effectively. 

1.3 Background 

In traditional heuristic search, a heuristic function is used as a direct estimate of the cost 

of a node. This restricts the types of features that can be used as information. Efficient 

performance of an admissible heuristic search algorithm depends on finding a good easy 

way to compute underestimating feature. Such features are often hard to find. 

A major problem with the use of heuristic functions is that the information content of 

an individual feature may not be very high. Often we come across features that capture 

some aspects of the problem domain only. Several features taken together can characterize 

a problem domain much better than any of the features taken individually by providing 

more discriminatory- information. Use of multiple features has been explored by several 

researchers. Given a set of features, best first search algorithms traditionally compute the 

values of the corresponding heuristic functions and combine the values to yield the heuristic 

estimate of a node. The appropriate combination of the different feature values that will 

yield a more informed estimate of a node, while leaving the search procedure admissible, is 

an interesting problem. The standard form of combination is a linear polynomial (Samuel 

1963; Christensen & Korf 1986; Lee & Mahajan 1988; Bramanti-Gregor & Davis 1993). 

Learning in this context is used to determine optimal coefficients of such a polynomial. This 

method may not yield good results when there is no effective linear mapping from feature 
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vector values to the actual cost of nodes. A linear discriminator of the features is very 

restrictive and some form of nonlinearity has been proposed (Samuel 1967). Bramanti- 

Gregor & Davis (1993) present a method of combining features based on linear regression. 

They propose a linear combination of certain ad-hoc nonlinear forms of features. 

Politowski (1986) has used a model where the feature values are used to partition 

the state space into a number of  equivalence classes. He advocates that the information 

corresponding to a class be explicitly represented as a mapping from the class to the 

information. This mapping can be learned during the training phase. We adopt this model 

as our basic model. 

1.4 Model 

The state space is first divided into classes by the features. Information associated with the 

classes is learned during the learning phase, and the acquired information is used to solve 

problems more effectively in the problem solving phase. 

Classification 
Following Politowski (1986), we look upon the features as discriminators that determine 

the cost of  a node. A feature, h, of a problem domain is a function which can assume a 

number of  distinct values when applied to different states of the problem. When multiple 

features of  a problem domain are available, a feature set can be used which will provide a 

vector of values for every state. Suppose that we have m features of  the problem domain 

k = (hl, h2 . . . . .  hm). 
The feature vector values induce a clustering of  the state space. Each k-element vector 

identifies a class containing some number of nodes that are heuristically indistinguishable 

from each other. Consider the set Sk of  all nodes which have the identical value, k as their 

feature vector value. 

Sk = {n : hvec(n) = k}. 

We advocate that information be associated and stored with each such set Sk, to be used 

during a best first search algorithm. 

Information associated with a class 
Corresponding to any specific value of  the feature vector k at a node, we may store the 

minimum of  the h* values of  all elements of  the class. We may also store the set of  h* 

values of  the elements of  a class, represented by h *set (k). 

h'set(k) = {v : h*(n) = v, n ~ Sk}. 

Algorithm 
The h'set corresponding to the value of  the feature vector at the node can provide more 

information to an informed best first search algorithm than what can be provided by a single 

underestimate value. We present algorithms CS*,  FS* and their variants that use h'set 
and its distribution as information and performs better than A* using the corresponding 

single-valued estimate. 
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1.5 Work done 

• Given any set of features, the minimum element of h'set  can be used as a heuristic 

underestimate at a node that can" be used by the algorithm A*. In this framework, 

we show how the use of multiple features drastically reduces the search time, while 

solving problems optimally. 

• Given a set of features of the problem domain, we show that the h ' se t  corresponding 

to each feature vector value can be learned in the limit by solving a sufficient number of  

example problems in the training phase. We have devised best first search algorithms 

that make effective use of the information of  the entire h ' s e t  to further reduce the 

number of node expansions. 

• However these algorithms assume complete information about the h'set  corresponding 

to every feature vector value. A bounded risk model has been devised that will always 

find some solution, and is guaranteed to find an optimum solution with a specified con- 

fidence level. The algorithm uses the possibility distribution of  the individual elements 

of the h ' s e t .  

While a lot of stress has been laid in previous work on the importance of  accuracy 

and precision as the necessary quality of a good heuristic estimator, making use of  the 

discriminatory power of the heuristic feature set has been largely overlooked. We lay 

special emphasis on devising more effective best first search algorithms by making use of 

the discriminatory power of a set of features that may help to make a distinction between 

on-track and off-track nodes. 

This paper is organized as follows: 

Section 2 provides the basic notations and definitions. Section 3 discusses the learning 

phase. Section 4 presents admissible search algorithms for effective use of  the information 

learned. Section 5 provide the corresponding algorithms for the fuzzy set model. Section 6 

concludes the paper. 

2. Features, feature vectors and h'set 

Let $ be the set of states of the problem space. The problem space has a set of  operators 

that change the state of the problem. For example, in 8-puzzle, the states are the different 

permutations of tiles, and the operators are single step moves of  the blank position. Cor- 

responding to each application of an operation in moving from state si to state sj, a cost, 

c(si, sj) is associated. 

A search problem instance is an element of 79, where 79 = S x S. In other words, a 

search problem is a 2-tuple (s, y).  s is called the start node, and y is the goal node. A 

problem can also be of the form (s, I') where F is a set of goal states. In optimum search, 

the problem solving task is to find a sequence of operators that map the initial state to one 

of the goal states such that the sum of the costs of the operators along the path is minimum. 

First we provide certain preliminary, definitions: 

s : A node designated a start node for a specified problem. 

~/ : A goal node for a specific problem. 
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F : A set of goal nodes for a specific problem. 

(ni, nj) : Arc connecting the node ni and the node nj .  

c(n i, nj) : Cost of  the arc connecting the node ni and the node nj .  

P = (n0, n 1 . . . . .  n k) : Path in a graph consisting of  a sequence of  arcs connecting no 

through nk. 

P i n  : I f P  = (no, nl . . . . .  nk), P In = (no, nl . . . . .  nk, n). 

Phi_n2 : A  path from nl to n2. Phi-n2 = (nl . . . . .  n2). 

P P s - n  : Pointer Path in a graph obtained by tracing the pointers back from n to s in the 

current search tree. It is the cheapest known path from s to n at any given point during 

the search. 

Cp0P) : Cost of path e .  I f  e = (no, n l ,  • • • , nk),  C p ( P )  = ~_i=k-Âi=O c(ni ,  ni+l).  

C~(n 1, n 2) : Cost of  minimal cost path from nl to n2. 

g* (n) : Cost of  cheapest path from the implicit start state s to the node n. g* (n) = C~ (s, n). 

g(n) "Cost of  cheapest known path from the start state s to the node n.at any given point 

during the search. 

g(n)  --- m i n p ( C p ( P ) )  V P = (s . . . . .  n) .  

In other words, g(n)  = cp( P Ps-n) .  

h*(n) : Cost of  cheapest path from n to the goal state y of the given problem, h*(n)  = 
c~ (n, y )  where y is the implicit goal. It may be noted that the goal may vary from 

problem to problem. However, for notational convenience, y has been dropped. 

f (n ,  P)  : Estimate of  cost of  cheapest solution path which is an extension of path P Ps-n.  

h : A feature of  the problem domain. 

k = (h 1, h 2 . . . . .  hk) The set of  features used (feature vector), h l , h2 . . . . .  hk are features. 

v = (v 1, v 2 . . . . .  Vk) Instantiated value of the feature vector, where vi is the value of  hi 
for the given state. 

hvec(n)  : The feature vector value corresponding to node n. hvec (n )  = (vl, v2 . . . . .  vk) 

if vi -" h i (n) .  

2.1 What are features? 

A heuristic feature is traditionally an estimate of  the cost of an optimum cost path from 

the current state to the goal state of  the current problem instance. We consider a feature to 

be any function of  the goal state F, the start state s, and the partial search tree generated 

so far. However, for convenience, we will use h (n) to denote the value of  a feature h at 

node n. 
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2.2 Role of features in clustering 

We will show how a set of features can be effectively used to strengthen the heuristic 

estimate of a node. We look upon features of the problem domain as a means of dividing 

the problem state space into a number of classes. Increase in the number of features leads 

to further refinement of the classes, each original class being subdivided into a number 

of classes based on the values of the new feature set. Instead of associating information 

with a state, information can be associated explicitly with every class. We shall see that 

with the types of  information that we consider, the more refined the classes, the greater 

the accuracy of the information. 

Example 1. Consider the 8-puzzle problem. The number of distinct states is about 181440 

(9!/2). The misplaced tiles heuristics takes on 9 different values 0 . . . . .  8, and divides the 

state space into 9 different classes. Similarly the Manhattan distance estimate divides the 

state space into about 25 different classes. Taken together, they divide the state space into 

about 78 different classes. The information associated with these subclasses induced by a 

set of features is stronger than the information that can be associated with classes induced 

by each of the component features. [] 

Note that the above scheme gives rise to a finite number of classes only for features 

which take on a finite number of distinct values. To be able to handle features that take on 

continuous values, or a large number of values, we will have to divide the feature values 

into intervals. The feature vector in this case will be a vector of intervals, rather than a 

vector of values. 

2.3 minh and h'set  

After classification, some information must be associated with the classes, which can be 

used as the heuristic information for the nodes belonging to the class. Search algorithms use 

estimates of the optimum cost as the heuristic information. A class may contain nodes with 

several different optimum cost values. The simplest form of information is the minimum 

possible cost value corresponding to a class, denoted by minh. We introduce the concept 

of h'set  associated with a class. 

DEFINITION 1 

The minh of a given feature vector value k is the minimum of the h* values of the nodes 

comprising the class identified by the feature vector value k. 

minh(k) = minn{h*(n)} Vn s.t. hvec(n) = k. 

DEFINITION 2 

The h'set  of a given feature vector value k is the set of feasible optimum cost values i.e., 

h*(n) for all nodes with feature vector value k and is denoted by h'set(k) .  

There will exist many nodes nl,  n2, n3 . . . .  which have the same feature vector k i.e., 

hvec(nl) = hvec(n2) = hvec(n3) . . . . .  k. 
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Table 1. Examples of h'set in 8-puzzle. 

Feature set Feature vector value minh h 'se t  

(hi) 

(hl, h2) 

(hl, h2, h3) 

(10) 10 10 12 14 16 18 20 22 

(10, 8) 10 10 12 14 16 18 

(10, 8, 8) 12 12 14 

(10, 8, 9) 10 10 12 16 

(10, 8, 11) 10 12 14 

(10, 8, 12) 16 16 

(10, 8, 13) 14 14 16 

(10, 8, 15) 18 18 

These different nodes may have different values of h*. The h ' se t  corresponding to the 

feature vector is the set of the h* values for all nodes with that feature vector i.e., 

h 'se t (k )  = [_Jh*(n) ¥n s.t. hvec(n) = k. 
11 

Corresponding to every element x of h'se t (k) ,  there will exist some node n with feature 

vector value k and optimum solution cost = x. 

Note that minh(k ) = rain{h'set(k)}. 
Given a node n, we will, for convenience, refer to the h 'se t  at the node, n to mean the 

h'set  corresponding to the feature vector value at the node (h*set(hvec(n))). 

Example 2. In table 1 we show some typical examples of h 'se t  values in the domain of 

8-puzzle. The example illustrates how the addition of more features induces a finer cluster- 

ing of the state space, and stronger information may be associated with these subclasses. 

The heuristic features used are 

• Manhattan distance 1 represented by hi ,  

• Misplaced tiles 2 represented by h2, 

• Sequence count 3 represented by h3, [] 

3. Learning phase 

This phase must precede problem solving. In this phase, the mapping from feature values 

at states to the corresponding estimates are learnt. In this section, we discuss the number 

of problems that must be solved in this training phase for effective problem solving using 

1 Manhattan distance: R is the sum of distances that each tile is from home and is denoted by manhattan. 

2Misplaced tiles: The number of tiles not in their correct position as in the goal state. 

3Sequence count: It is obtained by checking around nonccntral squares in turn, allotting 2 for every file not followed 
by its proper successor, and allotting 0 for every other tile; a piece in the centre scores 1. We denote this by sequence 
count. 
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this information. In Bramanti-Gregor & Davis (1993), the mapping function from features 

to estimate is assumed to be linear. If a close linear fit does exist to the actual function, the 

equation of the line can be obtained by using a few examples for training. We need to learn 

the function without assuming that the function is to be approximated to any particular 

form. 

Let (hi, h2 . . . . .  hk) be a given set of features of the domain. The system solves rep- 

resentative problems in the domain, using some guaranteed admissible search algorithm; 

and learns the full range of feasible h* values (optimum cost from a node to the goal node), 

h'set(k), corresponding to all nodes having the feature vector k. 

For a particular start state s, a necessary condition that our algorithm will terminate 

with an optimum solution is that there exists an optimum cost path from s to y,  such that 

corresponding to every state in the path, some state was encountered in the learning phase 

with the same feature vector value and the same value of h*. 

We define S(hi, h*) to be the equivalence class of states containing all nodes n s.t. 

Vn e S(hi, h*), hvec(n) = hi & h*(n) = h*. 

Let P*_y be an optimum path from s to y,  given by 

P = (no -~-- s, nl,  n2 . . . . .  nk = y) .  

The necessary condition that this path will be found in the problem solving phase is" For all 

i, 0 < i < k, at least one member of S(hvec(ni), h*(ni)) was encountered in the problem 

solving phase. 

Suppose we are working with a feature set < hi ,  h2 . . . . .  hk >, which induces M 

clusters in the state space. These clusters are represented as Co, C1 . . . . .  CM. We run a 

number of example problems and obtain T points which are used for learning. We assume 

a model where the examples come from any arbitrary distribution, from a given population 

of problems. The distribution from which problems come from is assumed to be the same 

in the problem solving phase as in the learning phase. To be able to learn the class Ci it 

is required that the set of T sample points contain some examples of class Ci. Suppose 

the probability distribution is not uniform, but states occur according to some arbitrary but 

fixed distribution D +. In this case perfect learning of the h'set is guaranteed only in the 

limit. But suppose we relax the guarantee of completeness of learning - -  and only require 

that with confidence > (1 - 3) we want to get the optimum solution. The class Ci will be 

correctly learnt if 

• for A* (minh), an example is found where a node belonging to class Ci has its h* value 

as minh(hvec( Ci ) ). 

• for CS* : for each x in h*set(Ci), an example is found where a node belonging to class 

Ci has a h* value of x. 

The class Ci will be approxiamtely correctly learnt if 

• for A* (minh), an example is found where a node belonging to the class Ci maps to the 

h* value of e cut of the distribution corresponding to hvec(Ci). 

• for CS* : for each x in h*set(Ci) where the probability of the point x is > e, an example 

is found where a node belonging to class Ci has the h* value o fx .  
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Let the probability of occurrence of a class be > e. Let N be the maximum length of an 

optimum solution path; and let X be the number of trials necessary for the (8) guarantee. 

Let the number of sample points be T. Then the probability that at least one of the classes 

containing some state in the optimum path was not encountered in the X trial phases is 

N(1  - E) x. The 8 confidence guarantee means that 

N(1 - e) X < 8 

~.. Ne  -~x < 8 

i.e., e eX > N / 8  

or, X > (N/G) log(N/8) .  

Therefore if we want to find optimum solutions with a (8) guarantee, it suffices to have 

collected data for h 'se t  from O( l log ~ )  random examples from the same 'distribution as 

the example problems. 

Let us look at classes with probability < 6. 

Maximum probability that a class falls in one of these classes = Te. 

The probability of that at least one of the states on the solution path has probability < 

is given by = TNe .  
We want this probability to be less than 8. 

This is true if e < 8 / T N ,  i.e., 1/e > T N / 8 .  
Therefore, if we look at 

( T N / 8 )  log(N/8) 

examples, we can ensure that the probability of failure will be < 8. 

Once we are able to learn the information corresponding to every feature vector value, 

we are ready to use it to solve future problems more effectively. 

4. Perfect in format ion  mode l  wi th  crisp h'set 

In this section, we discuss algorithms making use of the information learnt to perform 

admissible search. In § 4.1, we discuss using of minh as the heuristic evaluation function 

in A*. Results are provided for the domain of 8-puzzle which serves as a benchmark for 

comparison of the performance of the other algorithms. 

4.1 Using minh as information 

The simplest type of  information that we can associate with every class is an estimate of 

the cost value of the nodes belonging to the class. To be able to run algorithm A*, the best 

underestimate that can be associated with any cluster, C1, with feature vector value kl,  is 

the minimum of the h* values of the nodes comprising the cluster. This is the scheme used 

by Politowski (1986). It attempts to capture the full information available by all the given 

features. 

We have run several randomly generated examples in the domain of 8-puzzle using a 

guaranteed underestimating heuristic function. From the solution paths obtained, we have 

computed the minimum element of the h 'se t  corresponding to each feature vector. This 
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Table 2. Results of running A* with minimum of h* set for various feature sets. 

Features used Manhattan Manhattan Manhattan Manhattan 

misplaced tiles sequence count misplaced tiles 

sequence count 

% Nodes expanded 100 81 77 42 

value is then used in the second phase as the heuristic estimate of a node in algorithm 

A*. 10000 different random examples were then run with this new heuristic estimate. We 

observed that the number of node expansions was reduced from that of A* with Manhattan 

distance heuristics. All the solutions obtained were optimum. The results of running the 

algorithm after learning with different feature sets are presented in table 2. The table 

illustrates how the combination of different features drastically reduce node expansions. 

Note that though Misplaced tiles heuristics is dominated by the Manhattan estimate, using 

both the estimates together gives rise to significant improvement in search performance. 

4.2 Using h 'set  as information 

Our objective is to find out if other stronger forms of information can be associated with 

the classes, such that they can be effectively used for more effective searching. If a best 

first search algorithm uses a single value as information, minh is the best estimate that 

can be associated with a class to guarantee admissibility. However, if the set of feasible 

optimum cost values of the states comprising the class is associated with a class, then 

stronger reinforcement to the heuristic estimate of a node can be made by using the path 

information. In this section we present algorithm CS* that makes use of the information 

of h'set  to make search more effective. 

4.2a Some definitions: If the h'set  is known for each class, the possible values of 

optimum solution costs of the problem that can be obtained by extending the current path 

is given by f s e t  which represents the set of feasible values of the optimum solution cost 

of a path that is constrained to pass through n with a g value equal to the cost of the current 

pointer path. 

DEFINITION 3 

The f s e t  of a node n, given the pointer path P from s to n, and the value of h'set  at the 

node (i.e., h*set(hvec(n))), is given by 

f se t (n ,  P) = {x ] x = g(n) + y Vy ~ h* set(hvec(n))}. 

DEFINITION 4 

We define the minf value of a node n, minf(n, P) to be the minimum element of the 

corresponding fset. 

minf  (n, P) = rain { (fset(n, P))}. 
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We make use of the following property : if C* is the optimum solution cost from node 

s to a node y, then if a node n lies on any optimum solution path from s to F, the sum 

of the optimum cost from start node s to the node n and that from node n to a goal node 

3/equals C*. This implies that the intersection of thefset of nodes lying on an optimum 

solution path must be non-empty. We introduce the notion ofpathint which has a parallel 

in the concept of pathmaz (Mere 1984; Dechter & Pearl 1985) in best first algorithms 

using single valued estimate. 

DEFINITION 5 

The pathint of a node n along a pointer path P = (no, nl . . . . .  nk), is defined to be the 

intersection of the fsets of all nodes belonging to the path. It is denoted by Pset(n, P). 

k 

Pset(n, P) = ~']fset(ni , (no, nl . . . . .  hi)). 
i = 0  

This means that if C* is the optimum solution cost, it will be a member of the pathint of 

all nodes on any optimal cost solution path. Retaining the Pset at every expanded node 

results in better selection of nodes for expansion than what is provided by A*. 

DEFINITION 6 

We define the minP value of a node n along a path P, minP(n, P) to be the minimum 

element of its Pset. 

Example 3. The above definitions are illustrated below with reference to the example graph 

in figure 1. 

SS 
N ~  {6,7,8} N ~  {I,7} 

{1,8} 

Note: The set shown against each node denotes the value of h'set at the node. 

Figure 1. A search graph. 
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fset(nl,  (hi)) = {4, 6, 11} Pset(nl, (nl)) = {4, 6, 11} 

fset(n3, (nl ,n3))  = {4, 7, 8, 11} Pset(n3, (nl ,n3))  = {4, 11} 

fset(n2, (nt ,n2))  = {5,6,7} Pset(n2, (nl ,n2))  = {6} 

fset(n3, (nl ,n2,  n3)) = {3, 6, 7, 10} Pset(n3, (nl ,n2,  n3)) = {6} 

fset(ns,(nl,n2, ns)) = {3, 5, 10} Pset(ns, (nl ,n2,  ns)) = ~b 

minf(n2, (nl ,n2))  = 5 minP(n2, (nl ,n2))  -- 6 D 

DEFINITION 7 

The upper bound to the solution cost obtained at node n denoted by ub(n, P) is the 

maximum cost of an optimum solution path constrained to be an extension of path P.  At 

any point during the search process, when the set of nodes S have been expanded, minub 
is defined to be the minimum of the upper bound of  the nodes. 

minub = minnes{ub(n, P Ps-n)}. 

In this section, we outline a best first search algorithm which uses the information 

about the h'set to direct its search process. We show that the use ofpathint with h'set 
provides a more informed and stronger pruning criterion than pathmax using a single 

valued estimate. We outline algorithm CS* that uses h'set as state information and pathint 
for path information. It is guaranteed not to be worse than algorithm A* using similar 

information. We also present the iterative deepening version of the algorithm, CIDS*. In 

addition to making use ofpathint to convey path information, it uses front-union to transfer 

additional information from one iteration to the next. 

4.2b Algorithm CS*: Observation 1. If an extension of the path Ps-n* is an optimum 

solution from s to a goal y,  then 

C* ~ fset(n*, Ps-n*). 

Suppose node n2 is a child of node nl. A necessary condition that the arc (nl, n2) is 

included in an optimum cost solution path is that C* ~ fset(nl, PPs-n~) and C* 

fset(n2, PPs-n2), which is possible only if the intersection of these two fsets is non- 

empty, because, we must have 

C* E fset(nl, P Ps-nl) Nfset(n2, P Ps-n2). 

When a node nk is generated, let P Ps-nk be the pointer path from s to nk. We note that if 

an optimum solution path can be reached by expanding the node nk along this path, then 

the optimum solution cost C* must be a member of all nodes included in the pointer path. 

This leads to the following observation. 

Observation 2. If the pathint at a node becomes empty, that branch of the search tree can 

be pruned as it is guaranteed not to lead to an optimum solution. 

We may therefore consider retaining the pathint information at every node. The concept 

ofpathint corresponds to the concept ofpathmax (Dechter & Pearl 1985) in traditional A* 
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search using a single estimate at a node, but provides a much stronger pruning criterion. It 

enables us to remove from consideration those values of feasible optimum solution costs 

of the path such that there exists at least one node along the path whose set of feasible 

optimum solution costs does not contain that particular cost. 

Observation 3. The minP value of a node can be effectively used as the estimate of a node 

during the node selection process. 

We outline the algorithm CS* below which is a best first algorithm that uses minP as the 

heuristic estimate at a node. 

Algorithm 

With every node we associate the following information: 

(n,fset(n, P), Pset(n, P), parent) 

1. [INITIALIZE:] minub = MAXh* ;; The maximum cost of a solution in the domain. 

OPEN ~-- (s,fset(s, (s)), Pset(s, (s))) where fset(s, (s)) = Pset(s, (s)) = h'set 
(hvec(s)) 
CLOSED *-- q~ 

LOOP: 

2. [TERMINATE:] If OPEN is empty, exit with failure. 

3. [SELECT:] Select the node from OPEN with minimum value for minP(n, Ps-n) 

4. [CHECK FOR GOAL:] If n is a goal node, exit with solution, P Ps-n. 

5. [EXPAND and PRUNE:] Expand node n, generating the set M of its successors, and 

attach to them pointers back to n. 

For all m ~ M, 

If me OPEN or CLOSED 

add the tuple (m,fset(m, P Ps-m),Pset(m, P Ps-m)) to OPEN if PsetO ~ dp. 

If me OPEN or CLOSED 

direct its pointers along the path of lowest value of g(m). 

If m required pointer adjustment and was on CLOSED, reopen it. 

If max{fset(m, P Ps-m)} < minub, 
set minub = max{ fset ( m , P Ps -m ) } 
Remove from OPEN those nodes whose lower bound > minub 

6. [CONTINUE:] Go to LOOP. 

Computation ofPset(n, P Ps-n): If ni and nj lie on an optimum path from s to g, 

f *  E f se t (n i ,  PPs-ni)  N f se t (n j ,  PPs-nj) .  
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The pathint for a path is computed incrementally as follows: 

Pset(s, (s)) = f se t ( s ,  (s)), 

Pset(n, P) = Pset(m, pr) N f se t (n ,  P) I f  P = (P~ I n). 

Example 4. We will illustrate the algorithm by showing how it works for the example 

graph of  figure 1. s = n l is initially on OPEN. It is put on CLOSED, and its successors 

n2(PsetO = (6)), n3 (PsetO = (4,11)) and n4(PsetO = (4,11)) are generated and put in OPEN. 

At this point, minub = 7 (from node n2). 

n3 is first selected for expansion(minP(n3, (n 1, n3)) = 4). Its successors are y (PsetO = 
4,) and n7(Pset 0 = (11)). y is not put in OPEN because its Pset is empty and n7 is not put 

in OPEN because its m i n f  value(10) exceeds the value of  minub(7).  
n4 is next expanded with a minP value o f  4, and n6 is generated with Pset = (4). Its 

minP value is 4, and it is the next candidate for expansion. The successor n8 is pruned 

because its Pset is empty. Now n2 is expanded, n5 is pruned because its Pset is empty, 

and n3 is put in OPEN with Pset = {6}. n3 is now expanded, n7 is pruned(empty Pset), 
and T is put in OPEN. y is next selected for expansion, found to be a goal node, and the 

solution path (nl,  n2, n3, y)  is output. 

To summarize, nodes are expanded in this order: n l ,  n3, n4, n6, n2, n3, y .  It may be 

observed that the nodes expanded by the algorithm A* using minf as the evaluation function 

at a node are n l ,  n4, n6, n3, n2, n5, n3, n8, y .  [] 

4.2c Properties o f  CS*: 

Lemma 1. I f  a node n* expanded by CS* lies on an optimum path from s to a goal node 
t" E F, then C* E f set(n*). 

Proof The result follows from observation 1. [] 

Lemma 2. The value of  minub provides a global upper bound to the optimum solution cost 
value C* for  the given problem. 

Proof minub = max { fset(n,  P)} for some node n, and some path Ps-n. Therefore,  

minub = g(n, P)  + x where x = max {h*set(hvec(n))]. A finite value of  x implies 

that a finite solution path must exist from node n to a goal node y with opt imum solution 

cost < x. Since we have already found a path of  cost g(n, P) from s to n, there must exist 

a solution path from s to ~, of  cost < g(n, P) + x = minub. [] 

The value of  minub can be used to restrict the Pset value of  a node by removing from 

consideration those values that are greater than minub. 

COROLLARY 1 

I f  P is a path from s to n, and minP(n, P) > minub, P cannot be part o f  an optimum cost 
path from s to goal y. 
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While this has no effect on the number of nodes expanded, this property enables us to 

prune from the OPEN set. 

Lemma 3. At any time before CS* terminates, there exists on OPEN a node ni which is on 
an optimum path P*_~,, s.t. C* E Pset(ni, Ps-ni). 

Proof. The proof is similar to that of  A*(Nilsson 1980). [] 

COROLLARY 2 

I f  hi is the shallowest node belonging to an optimum solution path P*-n" then g(ni) = 
g*(ni). 

Note. Note that our evaluation function at a node is path dependent, and the same node may 

be expanded more than once. However it is ensured that the minP values of  the expanded 

nodes are non-decreasing. 

Theorem 1. Algorithm CS* is admissible. 

Proof. Suppose the algorithm terminates with goal node y e I" and solution cost g(y) = 
minP(y, PPs-~,) > C*. When t was chosen for expansion, 

minP(t, PPs-t)  < minP(n, PPs-n) Vn ~ OPEN. 

Therefore immediately prior to termination, all nodes on OPEN satisfied the condition 

minP(n, PPs-n) > minP(t, PPs-t)  > C*. 

But according to the previous lemma, there must have existed on OPEN, just before 

termination, at least one node n p on an optimum path with C* ~ Pset(n ~, PPs-n') i.e., 
minP(n', P) < C*. This is a contradiction. Hence algorithm CS* must terminate with an 

optimum solution. Therefore it is admissible. [] 

The minP value of a node obtained by using pathint can be effectively used as the estimate 

of a node during the node selection process and provides a stronger estimate than minfthat 
makes use ofpathmax. 

Lemma 4. CS*(h) never expands more nodes than algorithm A*(h) that uses minf as the 
heuristic function. 

Proof. For any node, n, selected for expansion by CS*,  minP(n, P) < f *  if n lies on an 

optimum solution to the goal along path P. 

Because Pset(n, P) c_ f set(n, P), minf(n, P) <_ minP(n, P) <_ f *  A*(h) expands all 

nodes n such that f (n) < c* = f *  
CS* (h) does not expand any node n such that f (n )  > c*. 
Also, if A* and CS* use the same tie-breaking rule, CS* does not expand any more nodes 

whose f (node) = c* than A* does. 

In fact A* is a special case of CS* such that A*(h) =-- CS*(h') where h*seth,(n) is the 

continuous range from h(n) to oo. [] 
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In some cases CS* expands less nodes than A* The extra pruning in CS* can be attributed 

to these two factors: 

1. By using pathint, it takes the intersection of the possible values of f for every node 

along a path. For a good set of  features h, thepathint for off-track nodes may be empty. 

This results in pruning of these paths. 

2. By using a global Upper Bound on the value of f* ,  it is possible to further tighten the 

value ofpathint at nodes, which is effective in reducing the size of the OPEN set. 

Size of OPEN: Let .7 r be the frontier set of  the implicit search tree generated by A*, i.e., 

the set of  all tip nodes. In the case of A*, OPEN contains all successors of ~" that are not 

members of ~ .  In CS*, OPEN contains only those successors of j r  s.t. Pset(n, P) # ¢b 
and minP(n, P) < minub. 

Also we have proved that any node expanded by CS* is also expanded by A*. This 

means that the largest size of the OPEN set for algorithm CS* cannot be more than that of 

A*, but it can be less. 

4.2d When is a heuristic determiner more powerful than another? In the general case, 

it is difficult to evaluate the relative merits of two heuristic determiners, hi and h2. Loosely 

speaking, hi is better than h2 if hi discriminates between on-track and off-track nodes 

more effectively. However it is possible to make some simple observations: 

Lemma 5. A heuristic determiner hi dominates a heuristic determiner h2 i f  

Vk h* sethl (k) c h* seth2(h2) 

if h*seth~ denotes the h'set  when using hi as the feature set. 

We have assumed that the cardinality of h'set  is finite and reasonable so that it is possible 

to store the set directly. If h* assumes real values, it may be the case that the range of h'set  
is continuous. In this case we can just keep the lower bound and upper bound of the range. 

This is equivalent to using the lower bound (the value ofminf)  as the heuristic estimate and 

using the upper bound to compute minub. A suitable representation can also be designed 

if the range of h'set  is piecewise continuous. 

4.2e Experimental results: In table 3 we show how running of the CS* algorithm using 

the information of h'set corresponding to each feature vector value can further reduce 

node expansions. The results can be compared with that of  table 2. 

4.3 CIDS* - Iterative deepening version 

Consider the iterative deepening version of the above algorithm. In an iterative deepening 

algorithm, a threshold is selected for the current iteration and depth first search is executed 

until the estimates of the frontier nodes cross the threshold. For an iterative deepening 

algorithm, at the end of any iteration, the OPEN list defines the frontier of the implicit 
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Table 3. Results of running CS* with h'set for various feature sets. 

Features used Manhattan Manhattan Manhattan 

misplaced tiles sequence count 

Manhattan 

misplaced tiles 

sequence count 

% Nodes expanded 100 75 69 35 

Number of classes 25 78 168 403 

search tree generated, which consists of  all the nodes that have been generated, but not yet 

expanded. 

DEFINITION 8 

We define the frontier set at the end of the ith iteration of an iterative deepening algorithm 

with cutoff f '  to be the set of  nodes Jr, such that the minP values of  these nodes exceeds 

the threshold for the current iteration (fP), while the minP value of their parents lie within 

the threshold. 

Thus the set ~ defines a cut such that the start node s lies on one side, and any goal F, 

if it exists, lies on the other side of the cut. If there exists a solution to the problem, any 

optimum path to the solution must pass through at least one node included in the cut. Also, 

when the shallowest such node, m, was expanded, the g-value of the node was g*(m) (by 
corollary 2). Therefore the Pset value of the node m will include the optimCtm solution 

cost. This motivates us to define the concept of front-union. 

DEFINITION 9 

The front-union of the ith iteration of the iterative deepening CS* algorithm is defined to 

be the set of  f values in the union of  the pathint values of  all nodes defining the cut. 

Funi°n(3ri) = U Pset(n, PPs-n). 
neff ~i 

CIDS* is an iterative deepening algorithm that makes use of front-union. It is an ex- 

tension of the IDA* algorithm, with pathint calculation and pruning by minub like that of  

CS*. At the end of an iteration, the front-union is computed. This value is backed up as 

the Pset of the start node s at the beginning of the next iteration. This enables the wisdom 

gained in an iteration to be propagated to subsequent iterations. We present our justification 

of the algorithm below: 

A very important property of front-union is that if there exists a solution to the problem, 

the front-union must contain the optimum solution cost. 

Lemma 6. I f  there exists a path from s to a goal y E V, and a goal has not yet been found 
after the ith iteration of CIDS*, the optimum solution cost C* must be an element of the 
ith front-union set .~i. 
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Proof  We have noted that .~/ defines a cut in the search space. If  there exists a path 

from s to a goal node 7/ 6 F, the ith front-union set must intercept one o f  the nodes 

on the optimum solution path. Let  that node be m. We note that when the node m was 

selected for expansion, the optimum solution path to the node m has been found. There- 

fore g(m,  P P s - m )  = g*(m),  h*(m) ~ h*set (hvec(m))  by definition o f  h 'se t .  There- 

fore f * ( m )  ~ f s e t ( m ,  PPs-m). Since an extension of  PPs-m is an opt imum cost path, 

f * ( m )  ~ Pse t (m,  P P s - m ) .  Therefore C* ~ Pse t (m,  P P s - m ) ,  

3m ~ ~.  s.t.  C* ~ Pse t (m,  P Ps-m) .  

Therefore, C* ~ Funion(Ui).  
[] 

The above lemma implies that, for subsequent iterations, a cost value which is not included 

in Funion(~. )  need not be considered. This means that for the next iteration, we can set 

Pset  i+l (s, (s) ) = Pset i (s, (s) ) f3 Fun ion (~  i) 

But Funion(3 ri) c_ Pset i (s). Therefore 

Pset  i+l (s) = Funion(.~ i) 

Example 5. We show how the algorithm CIDS* works for the example graph of  figure 1. 

• At thebeginningof thef irs t i terat ion,  Fun ion=(4 ,6 ,11 ) , t h re sho ld=4 .Nodesexpanded  
are 

1. n l ,  path = (nl) ,  Pset = (4, 6, 11), 

2. n3, p a t h =  (h i , n3 ) ,  P s e t =  (4, 11), 

3. n4, path = (n l , n4 ) ,  Pset = (4, 11), 

4. ns, path = (n l , na ,  ns) ,  Pset = (4, 11). 

The nodes that define the frontier at the end of  the 1st iteration are: 

1. n2, path = h i ,  n2, Pset = (6), 

2. y,  path = nl ,  n3, y, Pset = ok, 

3. nT, path = h i ,  n3, nT, Pset = q~, 

4. ns, path = n l ,  n4, n6, ns, Pset = ¢b. 

Therefore .7 el = {n2, y,  n7, n8} and F u n i o n ( ~  1) = (6). 

• At the beginning of  the second iteration, Funion = (6). 

Threshold = rain {minP(n)} Yn ~ Fun ion(~ l )  = 6. 

Nodes expanded are 

1. n l ,  path = n l ,  Pset = (4, 6, 11), 

2. n2, path = (nl ,  n2), Pset = (6), 

3. n3, path = (nl ,  n2, n3), Pset = (6), 

4. y,  path = nl ,  n2, n3, y, Pset = (6). 
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Table 4. 
figure 1. 

Nodes expanded by CIDS* in the example of 

Iteration Threshold Nodes expanded F u n i o n ( ~ )  
# by CIDS* 

1 4 n l ,  n3, n4, n6 {6} 

2 6 n l , n 2 ,  n3, y 

The maximum nodes that can be generated are: 

1. n5, path = (hi, n2, ns), Pset = ep, 

2. n7, path -- (nl, n2, n3, n7), Pset = tb, 

3. n3, path = (nl, n3), Pset - #b, 

4. n4, path = (n l, n4), Pset = ~. 

In table 4 we show the nodes expanded by algorithm CIDS* for the example in fig- 

ure 1. For comparison we have also presented the nodes expanded by algorithm IDA* 

which makes use of min f  as the evaluation function at a node in table 5. We note that 

CIDS* expands nodes n4 and n6 in the first iteration, but they are not expanded again in 

the second iteration. D 

The concept of  front-union is often useful in being able to restrict the pathint  set of 

the start node from information that is deeper down the tree and hence expected to be 

more accurate. This may prevent some nodes that are expanded in one iteration from being 

expanded/generated in subsequent iterations, as illustrated by the above example. 

5. 6-Risk algorithm using fuzzy set model 

The algorithm presented above is not robust in the presence of incomplete information. 

Only a completely error-free heuristic determiner can guarantee termination with an opti- 

mum solution. In our learning scheme, this cannot be ensured except in the limit. Also, in 

order to guarantee admissibility, the algorithm uses an over-cautions approach in selecting 

nodes for expansion. In the learning phase, it is possible to acquire statistics about the 

distribution of the values of h ' s e t .  This information can then be fruitfully used to make 

a better decision about which node to expand next at the risk of missing the optimum 

solution sometimes. However the risk factor can he fed as a parameter to the algorithm. 

Table $. Nodes expanded by IDA* in the example of figure 1. 

Iteration # Threshold Nodes expanded by IDA* 

1 4 n l ,  n3, n4, n6 

2 5 nl ,  n3, n4, n6, ns,  n2, n3, n5 

3 6 n l ,  n3, n4, n6, ng, n2, n3, ns, F 
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We find that if we insist on solving problems faster on the average while using the same 

features, we have to compromise on the solution quality obtained. However, we usually like 

to have some control over the deterioration of the solution quality. We describe a scheme 

where this poorness of quality can be parameterized so that we have a handle on the quality 

of the solution cost. In addition to learning the minimum value of h'set corresponding to 

every feature vector value, we may learn all the elements of h'set  and their distribution 

while solving problems. A typical h'set  distribution in the domain of 8-puzzle is shown 

below. 

h j h2 h3 h'set distribution 

frequency 0.024 0.138 0.289 ' 0.407 0.119 0.020 0.003 

16 7 16 

h* value 16 18 20 22 24 26 28 

We augment the model outlined previously by keeping the distribution of h'set. The 

results of the previous algorithms are still valid for these algorithms. 

There have been several algorithms aimed at finding solutions faster with controlled 

reduction in solution quality. Pohl (1970) uses an evaluation function fe = (1 - e)g + eh, 
for 0 < e < 1. For values of e > 1/2, we may expect solutions with less search effort in 

certain cases. Pearl (1984) has outlined algorithm R~' that works with limited risk using 

information about the uncertainty of the heuristic function. The uncertainty information 

of the h values at a node has been modelled as a probability distribution function at a 

node. He has proposed several alternatives for selecting the node to expand given the value 

of 6, and shown that these algorithms are 6-risk admissible. Bramanti-Gregor & Davis 

(1993), propose a statistical method of combination of features. The method provides a 

probabilistic estimate of the upper-bound to the solution error by calculating the certainty 

bounds of the supremums of the standard errors of the predicted values. Bramanti-Gregor 

& Davis (1992) evaluate the performance of this method using some methods aimed at 

producing near-optimal solutions with reduced node expansions. 

We model similar concepts as Pearl (1984); but since we are working with sets, the 

possibilistic model (Klir & Folger 1988) seems more appropriate in this situation. In 

the standard probabilistic search algorithms in literature, a necessary condition for the 

algorithms to work well is that the h'set has elements that are fairly concentrated around a 

central function (Chenoweth & Davis 1991). In our model, that is not a necessary criterion 

- -  a discriminatory set of features that can effectively discriminate between off-track and 

on-track nodes by applying the concept ofpathint will work well. In the last section, we 

had modelled the h'set  corresponding to each value of the feature vector, as well as the 

fset and the Pset as 'crisp sets'. If all members of the h'set  are not equally likely, we 

may use the information about the likelihood of the individual members of the h'set  to 

make a more informed decision provided that we relax the optimality requirement. We 

propose to assign "membership grades' to each element of  the h'set  proportional to the 

frequency of their past occurrences. We take this as a measure of the possibility of their 

future occurrence. Thus the h'set  can be modelled as a fuzzy set. We modify the algorithm 

CS* to work with fuzzy sets. min is taken as the intersection operation, and max as the 

union operation. Selection of a node for expansion is by taking the least of the f~ value of 
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the Pset for each set in OPEN, where 8 is our confidence parameter. This means that we 

initiaUy ignore those values of likely f* s  whose possibility of occurring is less than 8. 

Before outlining the algorithm, we give a few definitions. 

DEFINITION 10 

The distribution of h'set  at a node (denoted by Dh*set(n)) is the normalized 4 possibility 

distribution of feasible h* values corresponding to the feature vector value at the node 

( hvec(n ) ). 
Ch* (x, n) is the distribution of the exact/relative number of times that the value of h* 

was x for nodes with feature vector value hvec(n). 
Ph* (x, n) is the Possibility Density Function corresponding to DH*set  (n) that measures 

the relative possibility that the value of h* is x corresponding to the feature vector value 

hvec(n). 

DEFINITION 11 

Dfset(n, P): The distribution of fset at a node (n) along a path Ps-n from start to node 

n is the normalized possibility distribution of feasible f *  values corresponding to the 

feature vector value associated with the node (hvec(n)) and the g value corresponding to 

the current path at the node. 

Cf (x, n) is the distribution of the count of the f-value of a node induced by Ch* (x, n), 
pf  (x, n) is a density function corresponding to Dfset. It measures the relative possibility 

that the value of the optimum f value through the node is x. 

pf(y ,  n) = Ph*(Y -- g(n), n). 

DEFINITION 12 

DPset(n, P) is the possibility distribution function of the value of optimum solution that 

is an extension of path P. 

DPset(s, (s)) = Dfset(s) 

DPset(n, P I m, n) -- DPset(m, P I m) N Dfset(n) 

min is taken to be the intersection operation. 

Peset(X, P) iS the possibility that the value of the optimum solution through the 

path is x. 

PPset(X' P)= N pf(x, n) 
nEP 

= minn~p{pf(x,  n)). 

DEFINITION 13 

The f8 value of a fuzzy set is defined to be the minimum element of the 0t-cut of  the given 

4A possibility distribution is said to be normalized if the highest membership grade value is 1. To normalize an 
arbitra~ possibility distribution, we find the peak(s) of the possibility density function, and then scale the distribution 
such that the maximum peak becomes 1. 
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set with a = 6. Let A be a fuzzy set, Aa be the c~-cut of A. 

n 

A : ~ Pi/Xi, 
i=-1 

Aa = {x ~ X I pa(x) > a} , 

f~ : {x I x  E Aa, x < y Yy E A~} . 

5.1 Learning phase 

A set of random problems are generated according to the given distribution, and corre- 

sponding to the optimal solutions to these problems, the Ch* (x, h) values are updated for 

all sets of feature vectors h. We use Ch* (x, h) values in the problem solving phase. 

Computation of  Dh*set(h) values: If R is the set of all feasible values of h'set(h), and 
I R I ---- K, in the absence of any examples, we let the possibility at each point in the feasible 

range be 1/K.  After encountering N examples for nodes whose feature vector value is h, 

we update the value of Ch* (x, h) as follows: Ch* (x, h) = nx where nx is the number of 

times that the value of h* was x corresponding to a state having feature vector value = h. 

Then we compute the distribution as follows following Hansson & Mayer (1989). 

n x + l  
Dh* set(x, h) -- - -  where X = maxx{nx}. 

X + t  

5.2 Problem solving phase 

If Pl is the possibility of having an optimum solution cost of C through node n l, and P2 is 

the possibility of having an optimum solution cost of C through node n2, child of n l, then 

the possibility of having an optimum solution cost of C including the arc (n l, n2) is given 

by min(pl, P2). If D1 and D2 be the distributions of the fsets of the parent and the child 

respectively, then the distribution of the possible optimum solution costs through the arc 

is given by D1 f~ D2 where f3 uses the min operator to compose individual elements of the 

distribution. If P is the current path terminated at node n, then the possibility distribution 

of  optimum solution cost values given the path information can be obtained by 

N Dfset(m, PPs-m),  
m ~ P  

which is obtained by the possibility density function given by 

pe(C,  n) = minmee{pf(C, m)}. 

To guarantee optimum solution we have to select for expansion that node from OPEN 

s.t. the minimum non-zero f-value of the pathint of the node is minimum among all the 

nodes in OPEN. If we are prepared to trade off the optimality requirement partially in 

the hope of quickly reaching a solution, we may ignore those members of the distribution 

whose possibility values lie below a certain threshold. This motivates us to choose a node 

for expansion that has the minimum 'significant' f-value. The threshold of significance 
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is controlled by the parameter 8.8 is a measure of the risk associated with missing the 

optimum solution, and is called the confidence parameter. If no solution is found with 

parameter 8, the value of 8 is reduced and the algorithm rerun. This continues until a 

solution is obtained. 

Algorithm FS~ 

1. [INITIALIZE:] minub = oo OPEN *-- (s, Dfset(s, (s)), DPset(s, (s)))) where 

Dfset(s, (s)) = DPset(s, (s)) = Dh*set(s). CLOSED *--- ~, delta = 8 

LOOP: 

2. [TERMINATE:] If OPEN is empty, exit with failure. 

3, [SELECT:] For all nodes m ~ OPEN, Select the node for expansion which has the 

minimum value for f s (m)  out ofaU nodes in OPEN. If no such node exists, set delta = 
delta~2 and repeat step 3. 

Call the selected node n. 

4. [CHECK FOR GOAL:] tf n is a goal node, exit with solution. 

5. [EXPAND and PRUNE:] Expand node n, generating the set M of its successors. 

For all m ~ M, 

If rng~ OPEN or CLOSED 

add the tuple (m, Dfset(m, P), DPset(m, P)) to OPEN if Pset (m)  # <#. 

If m ~ OPEN or CLOSED 

direct its pointers along the path of lowest value of g(m). 

If m required pointer adjustment and was on CLOSED, reopen it. 

If max{fset(m)} < minub, 
set minub = max{fset(m)] 
Remove from OPEN those nodes whose lower bound > minub 

6. [CONTINUE:] Go to LOOP. 

Computation o f  the pathint value at a node: 

If PPset(Y, parent)  = rl,  
p f  (y, child) = r2, 
then PPset(Y, child) = min(rl ,  r2). 

FS~ selects that node for expansion which has minimum value for f~(n) .  8 is defined to 

be our confidence parameter. It is a measure of the risk associated with missing a solution. 

Suppose our algorithm FS~ has found a solution C with some node m in OPEN, s.t. 

f o ( m )  < C. What is the possibility that we would have found a solution with cost < C 

by expanding m ? Our knowledge about the cost of optimum solutions containing the path 
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Pi ,((s . . .  m)) is represented by DPset(m, P Ps-m). Therefore the given possibility can be 

computed as 

max{pip = p(x,  m) & x < C}. 

If C* < f~ (n), this possibility is < 8. In other words, the possibility of the current solution 

being an optimum solution is > (1 - 8). 

5.3 Properties of FS* 

Observation 4. CS* is a special case of FS~ with 8 equal to a small positive value. When 

the scheme of computation of Dh*set is as above, FS~ with 8 = 0 is equivalent to A*(h) 

where h is the underestimating heuristic used in assigning the values of Dh*set. 

Lemma 7. The algorithm is robust and can be always made to terminate with a solution 
even if the h'set  is not complete. 

Proof While assigning the possibility distribution we allow for sufficient noise tolerance 

and assign some possibility value, however small, to values of h* that have even the 

remotest chance of being included in the set. Under such condition, there will always 

exist some positive value of 8 for which the algorithm will find a solution. Since the 

algorithm tries with progressive reductiong in the value of 6, termination with a solution 

is ensured. [] 

Table 6. Performance of algorithm FS* for different amounts of learn- 

ing and different values of g versus the performance of A*. 

NE : Average relative percentage of nodes expanded (compared to A* (h 1). 

SO : Average relative percentage of suboptimum solutions found (com- 

pared to A*(h~). 

8 FS*(hl, h2) FS*(h l, h3) FS*(hl, h2, h3) 

AveNE Ave SO AveNE Ave SO AveNE Ave SO 

0.1 75.6 0.3 75.9 0.1 39.5 0.2 

0.2 74.3 1.4 75.8 0.1 37.5 0.5 

0.3 71.4 3.0 73.8 1.0 37.4 0.6 

0.4 69.3 3.0 70.1 2.1 35.3 2.8 

0.5 64.7 5.1 68.2 3.9 33.8 4.1 

0.6 58.0 10.8 32.7 6.2 

0.7 60.5 8.0 50.6 13.5 31.2 8.9 

0.8 53.5 13.9 48.2 15.9 30.0 12.0 

0.9 53.3 15.6 42.0 18.6 27.1 17.1 

1.0 53.1 20.2 39.1 23.0 25.8 17.5 
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6. Conclusion 

This paper addresses the issue of learning in admissible search. The information require- 

ment for best first search has been studied. For this, we have distinguished the domain 

information as given by the feature values at the nodes from the heuristic determiner. The 

latter is learned from the former, and both can be of quite general form, the goal being to 

design a powerful determiner for a given domain, that can discriminate effectively between 

on-track and off-track nodes. The features can be arbitrary, and we have assumed a tabular 

form for representation of the heuristic determiner. Algebraic formulae for combining the 

features give constant space representations, but a particular algebraic form may not be 

suitable to combine effectively a given set of features for a domain. Furthermore, they 

cannot serve as a model for powerful algorithms like CS*. However they may lead to large 

space requirement. 
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