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Abstract. We present a technique for learning the parameters of a continuous-

state Markov random field (MRF) model of optical flow, by minimizing the train-

ing loss for a set of ground-truth images using simultaneous perturbation stochas-

tic approximation (SPSA). The use of SPSA to directly minimize the training loss

offers several advantages over most previous work on learning MRF models for

low-level vision, which instead seek to maximize the likelihood of the data given

the model parameters. In particular, our approach explicitly optimizes the error

criterion used to evaluate the quality of the flow field, naturally handles missing

data values in the ground truth, and does not require the kinds of approximations

that current methods use to address the intractable nature of maximum-likelihood

estimation for such problems. We show that our method achieves state-of-the-art

results and requires only a very small number of training images. We also find

that our method generalizes well to unseen data, including data with quite differ-

ent characteristics than the training set.

1 Introduction

Optical flow is among the most widely studied problems in low-level vision. While the

development of better matching and regularization criteria as well as more effective op-

timization techniques has significantly advanced the state of the art [1,2,3,4,5,6,7,8,9],

the parameters of these methods are generally set by hand on the same data that is

used for evaluation. Although there has recently been some work on learning for op-

tical flow, such as [10], the relative lack of investigation of learning techniques stands

in sharp contrast with higher-level vision such as object recognition, where learning

techniques are ubiquitous. Hand tuning of models not only involves substantial human

effort, more importantly it limits our understanding of how well optical flow methods

generalize to unseen data and thus will perform in practice. This is illustrated by the

recently developed Middlebury optical flow evaluation database [11], where methods

that perform best on the classical “Yosemite” sequence tend not to perform as well on

new imagery for which they were not hand tuned.

In this paper, we present a continuous-state Markov random field (MRF) [12,13,14]

based model for optical flow. This is in contrast to most recent applications of MRF

methods in computer vision, for problems such as stereo, where relatively small sets

of discrete states are used. We learn the parameters of this model using simultaneous

perturbation stochastic approximation (SPSA) [15] to minimize the training loss – that

is the error on the training data under some error function. In particular, we measure
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training loss using the average end-point error (AEPE) [16] which is one of the error

metrics employed in the Middlebury evaluation [11].

Directly optimizing for training loss as opposed to a maximum likelihood approach

(e.g. as pursued in [10]) has a number of advantages. First, the likelihood of the data

under models with loopy spatial dependency is intractable to compute. In order to obtain

the maximum likelihood estimate, one thus has to resort to approximation techniques

such as estimating the mode (i.e. the maximum a posteriori estimate) [17], sampling

[10], or some type of local training [18]. These approximations, however, tend to be

imprecise and may lead to noisy and unreliable estimates, as noted in [17]. Moreover,

from a statistical learning point of view, the maximum likelihood estimate is not well

justified for problems such as optical flow that have structured outputs, such as a label

at each pixel, as opposed to a single overall right-or-wrong answer. Thus an attractive

alternative approach is to minimize some specific loss function, or error metric, on the

training data (e.g., [19]) as we discuss further in Section 3.

Learning model parameters that minimize the loss on the training data is a chal-

lenging optimization problem, since the relationship between the target function (i.e.

the training loss) and the model parameters cannot be determined analytically except

in some special cases (e.g. [20]). SPSA [15] is a convenient choice in this situation,

since it only requires the target function to be smooth and to have non-vanishing gra-

dient (with respect to the parameters being optimized), a rather generous condition that

is usually satisfied, but does not require the analytical form or the true gradient to be

known. Hence it can be used to optimize for a wide range of loss functions, including

the commonly used error metrics on which optical flow quality is judged such as AEPE.

Given the large number of problems in computer vision that have structured outputs and

the breadth of applicability of SPSA [21], the approach that we develop here is likely

to be of broader interest for other problems in computer vision.

We evaluate our method in the standard setup of supervised learning, namely by

training the model on a set of sequences with ground truth and testing it on a different

set that does not include any of the training sequences. This allows one to assess the

generalization power of the learnt model. We compare our results to those of previous

methods and show that our model both generalizes well to unseen data and achieves

state-of-the-art performance for optical flow.

The rest of the paper is organized as follows. We provide some background and dis-

cuss related work in Section 1.1, and then define our model for optical flow in Section 2.

The learning method is described in more detail in Section 3, and the experimental re-

sults are presented in Section 4. We conclude in Section 5.

1.1 Background and Related Work

Optical flow is a highly challenging low-level vision problem due to inherent ambigu-

ity in local regions of the image, known as the aperture problem [22]. This is further

complicated by phenomena such as motion discontinuity, untextured regions, and sen-

sor noise. To address these issues, many early methods utilize local support windows

over which some matching cost is aggregated (e.g. [23]). Window-based approaches ap-

proaches, however, suffer from the generalized aperture problem [24], namely that they

are either too small to provide sufficient support or too big that they span over motion
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boundaries. Although this can be alleviated by using parametric and mixtures models

(e.g. [24]), support windows have not proven to be good for accurately estimating the

motion of non-rigid bodies undergoing deformation. Moreover, purely local methods

are susceptible to erroneous matches in poorly-textured regions even with the aid of

support windows. Global models for optical flow, first proposed in [25], compute the

flow field by minimizing a global energy function. The energy function is usually com-

posed of a data term that encourages agreement between frames and a spatial term (i.e.

regularization) that enforces consistency of the flow field. Markov random fields (MRF)

are closely related to energy-based models [19] in that the node and clique potentials

of an MRF are often defined in terms of energy or cost functions in general exponential

families. Thus equivalence can be drawn between the negative log-posterior of MRF

models and global energy functions. MRF models, however, have explicitly-defined

topology and are convenient to model higher-order and non-local (i.e. long-range) in-

teractions (e.g. in [26,10]), which would otherwise be more difficult to express.

Learning for optical flow is a challenging subject, which has not been studied exten-

sively. A major difficulty for learning optical flow models is the scarcity of ground-truth

data. Despite the challenges, considerable progress has been made over the past decades

that has improved our understanding of the problem. The robust estimation framework

introduced in [5] makes a key observation that the brightness constancy and spatial

smoothness assumptions are often violated near motion boundaries, and hence robust

energy functions such as the Lorentzian should be used instead of quadratics to account

for these violations. Although that work proposes a variety of robust function forms,

it does not attempt to automatically estimate their parameters. Probability distributions

of optical flow are studied in [27], where they are used to represent uncertainties and

account for errors. Nevertheless, the parameters of the models used to compute opti-

cal flow are still set by hand. In [28], linear bases of parameterized models are learnt

from examples using principal component analysis. Pioneering for its time, these mod-

els mainly target certain specific motion types and are not designed for general motion

estimation. The work most closely related to ours is that of [10], where field-of-expert

(FoE) models [29] are learnt from ground-truth flow fields inferred from range-scan

data. To our knowledge, it is the first work to employ supervised learning technique

for general optical flow estimation. However, their model differs from ours in several

important respects, including the use of decoupled large-clique (5 × 5) filters and an

approximation to maximum likelihood estimation rather than considering training loss.

Simultaneous perturbation stochastic approximation (SPSA) is a stochastic optimiza-

tion method that iteratively minimizes a given target function. At each iteration all

model parameters are simultaneously perturbed at random, and the loss function is eval-

uated at the perturbed positions in the parameter space to estimate its pseudo-gradient

with respect to the parameter vector. This information is then used to determine the

direction of descent and to subsequently update the model parameters. Since exact con-

vergence is difficult to determine, the algorithm is usually run for either a fixed number

iterations or until the reduction in loss becomes insignificant.

The SPSA algorithm was first proposed in [15] as a gradient-free stochastic opti-

mization method, and it is closely related to the classical finite-difference stochastic ap-

proximation (FDSA) algorithm [30] since both methods estimate the gradient of the loss
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function by measuring its values only and hence avoid the necessity to know its closed-

form derivatives. However, by simultaneously perturbing all model parameters, SPSA

requires substantially fewer measurements of the loss function and hence achieves faster

convergence rates [15,21]. The gradient-free SPSA is well-suited for problems where

the input-output relationship of the system is difficult to determine. Since its introduc-

tion, SPSA has been applied to optimize for a variety of engineering systems ranging

from traffic control, weapon targeting, to buried object localization [21]. Nevertheless,

the method has received less attention in the vision community. To our knowledge, it

has not previously been applied to learning parameters for low-level vision problems.

2 An MRF Model for Optical Flow

We model the optical flow computation as a labeling problem on a continuous-state

Markov random field, where each node p, representing a pixel, receives a 2-dimensional

vector label wp ∈ R
2 indicating its flow (i.e. apparent motion). In our MRF model,

each node is connected to nodes that are either adjacent or two pixels away in both the

horizontal and vertical directions. Hence the resulting MRF consists of linear 3-cliques

(i.e. 3-node complete subgraphs) that are either horizontally or vertically oriented. The

3-clique MRF topology allows us to model both the first derivative (i.e. gradient) and

the second derivative (i.e. curvature) of the flow field, which are both important motion

statistics. On the other hand, the clique size is small enough that it doesn’t pose a severe

computational burden.

Let V be the set of nodes and C be the set of cliques of the graph. As is well known,

the posterior of a labeling w given data I decomposes into the product of maximal

clique potentials and node potentials,

p(w|I; θ) =
1

Z(θ)

∏

c∈C

φθ

c (wc)
∏

p∈V

φθ

p(wp, I), (1)

where θ represents the parameters of the model and Z(θ) is the partition function. The

notations wc and wp denote the labeling over clique c and node p respectively. Recall

that the MRF is continuous, and thus w is also in a continuous vector space. As is a

common practice, we represent the distribution in the general exponential family so

that φθ
c (wc) = exp(−fθ

c (wc)) and φθ
p(wc, I) = exp(−gθ

p (wp, I)). That is, fθ
c and gθ

p

are the energy functions for the spatial term and the data term respectively, and the total

energy of a labeling (i.e. flow field) w given input I can be written as

E(w; θ, I) = − log p(w|I; θ) − log Z(θ)

=
∑

c∈C

fθ

c (wc) +
∑

p∈V

gθ

p (wp, I). (2)

Therefore minimizing the energy E(w; θ, I) is equivalent to finding the maximum a

posteriori (MAP) labeling over the MRF. Although exact minimization of the energy

is generally intractable due to the loopy graph structure, methods based on gradient
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Fig. 1. A horizontal 3-clique over pixels (nodes) p, q, and r. Each pixel has a 2-D vector label

indicating the flow value (i.e. the apparent motion).

descent can be used to obtain an approximate solution (which we shall return to in

Section 2.2).

The input for our model is a pair of images, i.e. I = (I0, I1). Without loss of gener-

ality, we assume that the flow is computed for I0.

2.1 Energy Functions

We use robust energy functions as proposed in [5]; in particular, we choose the family

of Lorentzian functions for their ability to maintain spatial consistency and brightness

agreement while being tolerant to motion discontinuity in the spatial term and outliers

in the data term. The energy function for the spatial term is defined as

fθ

c (wc) = λS · ρ(
√

||β1d1||2 + ||β2d2||2) (3)

where λS , β1, and β2 are model parameters, the function

ρ(·) = log(1 +
1

2
| · |2) (4)

is the standard Lorentzian function, and

d1 = wr − wp

d2 = wp − 2wq + wr, (5)

with wp = (up, vp)
T denoting the flow vector at pixel p. Here p, q, and r are the three

pixels (i.e. nodes) belonging to the linear 3-clique c. If the clique c is horizontally ori-

ented, they are the left, middle, and right pixel of the clique respectively and hence d1

and d2 are the discrete first and second partial derivatives (up to a constant factor) of

the flow field along the horizontal direction; the case for clique c being vertically ori-

ented is analogous. Figure 1 illustrates the layout of a horizontal clique and the vector

labels of its nodes. Notice that the spatial energy function (and hence the clique po-

tential of the MRF) is symmetric with respect to x and y directions, and therefore its

value is unchanged if the coordinates are rotated by 90◦ or have the two axes switched.

The spatial energy function is also isotropic (i.e. has perfect rotational symmetry) in the

motion domain, since only the magnitude of relative motion is computed. Thus rotating
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the flow vectors by the same angle everywhere would result in no change of the spatial

energy.

While the form of our energy function is similar to filter based models such as

[29,10,31], it differs in a subtle but important way. Those models use a linear com-

bination of functions over individual filter responses, which implicitly assumes that

the filters are independent of each other. In our case, both the first and second deriva-

tive filters are inputs to the same non-linear robust function. Hence the influence of one

derivative is reduced if the other is already large (due to the robust spatial term), thereby

avoiding double-penalties at motion boundaries.

The energy function for the data term is defined in terms of the difference between a

pixel in I0 and its matching position in I1 under the flow field w,

gθ

p (wp, I) = λD · ρ(βD||I1(p + wp) − I0(p)||), (6)

where p is used synonymously with its 2-vector coordinates (xp, yp)
T on the image

grid, ρ is the same Lorentzian function as defined in Equation 4, and λD and βD are

model parameters. For color images, I(p) is simply a 3-vector of the RGB values at

position p in image I . Although using more psychophysically motivated color spaces

such as Lab or XYZ may yield better matching models, it is beyond the scope of this

work. Since in general p + wp does not fall on integer grid positions, its value in I1 is

sampled using bilinear interpolation.

2.2 Optical Flow Estimation

To estimate optical flow, we perform approximate MAP inference on the MRF by min-

imizing the energy function in Equation 2 using gradient descent. Computing the gra-

dient of the spatial term energy ES =
∑

c∈C
fθ

c (wc) is straightforward since it has an

analytical form in w, and the gradient at each pixel is given by

(∇wES)p =
∑

c∈C:p∈c

∇wp
fθ

c (wc). (7)

Since the data term (Equation 6) involves the image input, it is not a closed-form ex-

pression with respect to w. Nevertheless, by using the chain rule, the gradient of the

data term energy ED =
∑

p∈V
gθ

p (wp, I) can be written as

(∇wED)p = ∇I1(p+wp)g
θ

p (wp, I)∇wp
I1(p + wp). (8)

The value of ∇I1(p+wp)g
θ
p (wp, I) is readily available, since it is analytical in I1(p +

wp) (cf. Equation 6). Moreover, ∇wp
I1(p + wp) is simply the image gradient of I1 at

position p + wp. (To see this, let z = (x, y)T = p + wp, i.e. z is the coordinates of the

matching position of p. Since ∇wp
z = 1 according to the definition of z, it follows that

∇wp
I1(p+wp) = ∇zI1(p+wp)∇wp

z = ∇zI1(p+wp).) We approximate the image

gradient using the 1
2 (−1, 0, 1) derivative filters and bilinear interpolation.

As is standard in the literature, the input images are preprocessed with a low-pass

filter. In our case, we use a small Gaussian kernel with σ = 0.25. For performing gra-

dient descent we use limited memory BFGS [32,33], which has faster converge speed
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than steepest descent. We also employ hierarchical coarse-to-fine strategy for optical

flow computation [2,3], since it is well known to produce globally more consistent and

hence more accurate flow estimations. As is commonly done, all flow values are initial-

ized to zero at the beginning of the optimization.

3 Learning the Parameters

As noted above, we take the approach of learning models that yield low training loss

(e.g., [19]) rather than those that maximize the likelihood of the training data. There are

several advantages to this approach. First, as discussed in Section 1 maximum likeli-

hood estimation is intractable for labeling problems on large loopy graphs leading to the

use of a number of approximation techniques. Second, maximum likelihood estimation

may not be consistent with the error measure that one would like to optimize, which we

discuss further here. Finally, directly minimizing training loss is well suited to ground

truth from real scenes, as opposed to synthetic data, which generally contain pixels at

which the data is unknown.

We now turn to the second of these issues, training models that optimize for an

appropriate error measure. If we regard the training data as a sample drawn from some

unknown distribution characterizing the domain of the problem, then lower training

loss implies lower expected generalization loss (i.e. error rate on unseen testing data)

for a given class of models. The maximum likelihood estimate, other other hand, does

not take the specific error metric into account. Thus even if the correct (zero error)

output is assigned a high likelihood, it does not necessarily discriminate between bad

outputs (i.e. those with high loss) and reasonably good ones (i.e. those that are not

completely correct but nevertheless have low loss). For instance, suppose there are two

different loss functions for optical flow, each designed to suit a different need. One

of them heavily penalizes non-smooth flows in the uniform region but does not mind

having blurred motion boundaries, whereas the other does just the opposite. Given this

scenario, there is little reason to believe that the same model should be optimal for

both loss functions. By minimizing the training loss one finds model parameters best

suited to the particular loss function. Although in principle one could instead learn

the parameters using maximum likelihood and then take the error metric into account

during the inference stage, this would pose additional challenges of what optimization

problem to solve that took both the model and the metric into account, and whether

such a problem could be solved efficiently.

The third issue that is naturally handled by minimizing the training loss is that of

incomplete ground-truth. Currently available ground-truth data of real, as opposed to

synthetic, motion sequences contains a non-trivial number of pixels with unknown flow

values due to phenomena such as occlusion. While this may be improved to some degree

with the gathering of additional data, it is an inherent problem that some pixels will

have unknown values. Handling pixels with missing ground-truth values is easy with

pixel-based loss functions such as AEPE, as such pixels can simply be excluded from

consideration. Computing the likelihood of data with missing values, on the other hand,

is not so straightforward because of spatial interdependencies.
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3.1 Training Loss Minimization Using SPSA

Thus we seek parameters θ = (β1, β2, βD, λS , λD)T that minimize the average training

loss L(θ). 1 As noted above we do this using SPSA [15]. SPSA is an iterative pseudo-

gradient descent algorithm that updates its solution θ̂ = (θ̂1, . . . , θ̂i, . . . , θ̂m)T at each

step by

θ̂k+1 = θ̂k − akĝk(θ̂k), (9)

where ak is the step size at iteration k and ĝk(θ̂k) is the pseudo-gradient of the loss

function L. The pseudo-gradient is obtained using two-sided simultaneous perturbation,

(

ĝk(θ̂k)
)

i
=

l(θ̂k + ck∆k) − l(θ̂k − ck∆k)

2ck (∆k)i

, (10)

where l(·) is some noisy measurement of the true loss L(·) (l = L if the measurement is

noise-free), ∆k is a user-defined m-dimensional random perturbation vector satisfying

certain conditions [15], and ck is a scalar factor. The gain sequences ak and ck both

decrease over time, and are given by ak = a/(A + k)α and ck = c/kγ [15]. In our

case, we used the recommended values (0.602, 0.101) for (α, γ) and set (A, a, c) to

(50, 5, 0.001) following the guidelines given in [34].

Since all the parameters in our model are some type of scale parameters and have

a natural domain of (0, ∞), we transform them into the logarithm space during learn-

ing so that θ̂ = log θ ∈ R
m. Although the most commonly used distribution for the

random perturbation vector ∆ is the Bernoulli ±1 for each component, we find that

the Bernoulli distribution is somewhat overly restrictive on the possible directions of

descent. Thus we instead sample each component of ∆ uniformly at random from the

union of intervals [−1−δ, −1+δ]∪[1−δ, 1+δ]with δ = 0.99. Note that the distribution

has no probability mass at around zero, which is a condition that the perturbation vector

is required to satisfy [15]. Since measuring training loss given parameters is determin-

istic and can be considered essentially noise-free, we require that the loss function (i.e.

training error) decreases monotonically with time. Hence a solution θ̂k+1 is rejected,

i.e. remains the same as θ̂k, if the loss L(θ̂k+1) is greater than L(θ̂k). We also ob-

serve that most common types of parametric motions, such as affine transformation and

divergence, result in large first derivative, but much smaller second derivative, of the

optical flow field. Thus a large magnitude of the second derivative should reasonably

produce more energy (hence lower probability) than that of the first derivative. To this

end, we impose the constraint β2 ≥ β1 to reflect this prior knowledge. If the constraint

becomes violated during learning, we simply swap β1 with β2 and resume. This to some

extent resembles a restart, a common mechanism used by stochastic methods to depart

from undesired local optima. Finally, we run the SPSA algorithm multiple times and

choose from the solutions the one with the lowest training loss. This helps to reduce the

variance in the performance of learnt parameters.

1 One could reduce the dimensionality of θ by 1 by observing that only the ratio between λS and

λD is relevant under MAP inference. This, however, has little effect on the learning process,

since the dimensionality of the space of optimal solutions is also reduced. Thus we do not

carry out this explicit reduction in our learning formulation.
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4 Experimental Results

To evaluate our method, we trained our model on the “other” data set 2 from the Middle-

bury optical flow web site [11] and tested its performance on the “eval” data set from the

same web site. For learning, we use the average end-point error (AEPE) [16,11] as the

loss function. We initialized all parameters of the model to one and ran the SPSA algo-

rithm for 300 iterations. The procedure was repeated 5 times (i.e. five models trained),

and the model with the lowest training loss was chosen and used for testing on unseen

data. 3 Among the multiple runs, the losses (i.e. training error) of the three best models

are within 5% of each other while the other two have losses about 15% higher than the

best model. This shows that the results obtained by SPSA is quite reliable, especially

with multiple trials, given that the initial loss is many times higher. Figure 2 shows a

plot of the training errors against the number of iterations for all five trials.

Fig. 2. Average training error in terms of AEPE plotted against the number of iterations over

multiple trials of running the SPSA algorithm. The error rate generally decreases rapidly at the

beginning and much more slowly afterward, indicating a reasonably good solution can be ob-

tained with relatively few iterations.

For evaluation, we report error rates in both average angular error (AAE) [35] and

average end-point error (AEPE). Table 1 shows the performance of our learnt model

on the eight sequences for flow evaluation from the Middlebury optical flow web page

[11]. The error rates of some of the well-known methods are also shown for compar-

ison. These results demonstrate that our model achieves state-of-the-art performance,

surpassing the previous methods on most of the benchmark sequences. We want to em-

phasize that the performance of our model is achieved using parameters trained on a

2 Only sequences with ground-truth flow are used. We excluded “Venus” from the training set,

since it is a stereo sequence.
3 Note that the choice of the model is part of the learning procedure and is completely based on

the training data, without any knowledge of the data on which the model is evaluated.
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Table 1. Performance on the eight evaluation sequences from the Middlebury optical flow page

[11], measured in terms of both average angular error (upper row) and average end-point error

(lower row). The lowest error rates for each sequence are shown in bold fonts.

Method\Sequence Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy Average

Our model 6.84 8.47 12.5 8.40 3.88 6.32 2.56 7.29 7.03

0.18 0.57 0.84 0.52 1.12 1.75 0.13 1.32 0.804

- max-likelihood 6.86 9.11 15.1 8.60 3.84 10.1 2.15 10.3 8.26

0.18 0.65 0.99 0.62 1.28 1.98 0.11 1.81 0.953

Bruhn et al. [9] 10.1 9.84 16.9 14.1 3.93 6.77 1.76 6.29 8.71

0.28 0.69 1.12 1.07 1.24 1.56 0.10 1.38 0.930

Black/Anandan [5] 7.83 9.70 13.7 10.9 4.67 8.00 2.61 8.58 8.25

0.21 0.65 0.93 0.76 1.40 2.04 0.15 1.68 0.978

Horn/Schunk [25] 8.01 9.13 14.2 12.4 4.69 8.35 4.01 9.16 8.74

0.22 0.61 1.01 0.78 1.27 1.42 0.16 1.51 0.873

Lucas/Kanade [23] 13.9 24.1 20.9 22.2 18.9 22.0 6.41 25.6 19.25

0.39 1.67 1.50 1.57 2.95 3.30 0.30 3.80 1.94

Table 2. Error rates on the three training sequences, given in the form of AAE/AEPE, with “–”

indicating result not available

Method\Sequence Dimetrodon RubberWhale Hydrangea

Our model 2.92/0.152 5.22/0.149 2.43/0.198

Bruhn et al.[9] 10.99/0.43 – –

Black/Anandon [5] 9.26/0.35 – –

Lucas/Kanade [23] 10.27/0.37 – –

different set of sequences, which includes none of those used for evaluation. In other

words, the parameters are learnt completely without any knowledge of the testing data.

Thus the results demonstrate that our model has good generalization power. In addition

we also trained our model using the approximate maximum likelihood scheme of [17]

(second method in Table 1), so as to compare it with SPSA (first method in Table 1). The

results show that the model learnt with SPSA has better overall performance, demon-

strating the effectiveness of SPSA learning for optical flow.

For completeness, we show in Table 2 the error rates on the training sequences. Re-

sults from other methods are quoted from [11] whenever available. One can see that our

training data includes only three sequences, which is in contrast with the several hun-

dred used in [10]. The available training sequences are also significantly less compre-

hensive in terms of the variation of appearance and motion than are the test sequences.

For instance the training data does not have any synthetic sequences, which do appear

in the evaluation set. Thus learning with this limited training data is especially chal-

lenging. Nonetheless, our model obtained under such adverse circumstances performs

well on unseen data.
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Fig. 3. Output of our model for the sequences “Yosemite” (top), “Army” (middle), and

“Dimetrodon” (bottom). Left: A frame of the image sequence. Right: Estimated flow. Observe

the predominantly smooth flow field of “Yosemite” and “Dimetrodon” in contrast to the large

amount of motion discontinuity in “Army”.

Fig. 4. Output of our model for the sequence “Mequon”. Left: A frame of the image sequence.

Right: Estimated flow. Most of the errors occur in the shadows around the cartoon models, due to

their high relative motion with respect to the background.
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Figure 3 displays some sample flow fields produced by our model, color coded using

the scheme described in [11]. It can be seen that our model is capable of producing

smooth flows (as in “Yosemite”) while preserving motion boundaries (as in “Army”).

Figure 4 shows the result of a sequence on which our model did not perform particularly

well. Most of the errors lie inside the shadows (cast by the two cartoon models), which

have rather high motion relative to the background on which they lie. Since optical flow

is generally defined as the apparent motion, the flow inside a shadowed region can be

interpreted as either the motion of the background or that of the shadow itself. Thus this

is an inherent ambiguity in optical flow, which also occurs with transparent and specular

surfaces. A principled approach to dealing with these phenomena is to estimate the

multiple motions in such areas. This has attracted a fair amount of investigation from

researchers (e.g. [36,5]), and remains an interesting topic for future work.

5 Conclusion

We have presented a Markov random field based model for estimating optical flow

and a technique for learning its parameters using simultaneous perturbation stochastic

approximation. Experiments on publicly available benchmark data sets show that our

results compare favorably with previous methods and achieve the state-of-the-art per-

formance. Moreover, our model is learnt from a separate set of training sequences that

does not contain any of those used for evaluation. This demonstrates that our model

generalizes well to unseen data. Since many low-level vision problems involve para-

meters that are difficult to optimize deterministically, the learning technique that we

employed here may well prove useful in other research areas.
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