Computational Linguistics and Intelligent Text Processing: Proceedings of the Sth International Conference, CICLing 2007, Mexico City
(invited paper), A. Gelbukh (Ed.), pp. 311-324, Springer, Berlin, Germany, February 2007.

Learning for Semantic Parsing

Raymond J. Mooney

Department of Computer Sciences, University of Texas at Austin
1 University Station C0500, Austin, TX 78712-0233, USA
mooney@cs.utexas.edu

Abstract. Semantic parsing is the task of mapping a natural language
sentence into a complete, formal meaning representation. Over the past
decade, we have developed a number of machine learning methods for in-
ducing semantic parsers by training on a corpus of sentences paired with
their meaning representations in a specified formal language. We have
demonstrated these methods on the automated construction of natural-
language interfaces to databases and robot command languages. This
paper reviews our prior work on this topic and discusses directions for
future research.

1 Introduction

Semantic parsing is the task of mapping a natural language (NL) sentence into
a complete, formal meaning representation (MR) or logical form. A meaning
representation language (MRL) is a formal unambiguous language that allows
for automated inference and processing, such as first-order predicate logic. In
particular, our research has focused on applications in which the MRL is “ex-
ecutable” and can be directly used by another program to perform some task
such as answering questions from a database or controlling the actions of a real
or simulated robot. This distinguishes the task from related tasks such as se-
mantic role labeling [8] and other forms of “shallow” semantic parsing which do
not generate complete, formal representations.

Over the past decade, we have developed a number of systems for learning
parsers that map NL sentences to a pre-specified MRL [44, 35, 37,24, 17, 39, 23].
Given a training corpus of sentences annotated with their correct semantic in-
terpretation in a given MRL, the goal of these systems is to induce an efficient
and accurate semantic parser that can map novel sentences into this MRL. Some
of the systems require extra training input in addition to (NL, MR) pairs, such
as syntactic parse trees or semantically annotated parse trees.

In this paper, we first describe the applications we have explored and their
corresponding MRLs, and then review the parsing and learning systems that we
have already developed for these applications, along with experimental results
on their performance. We then discuss important areas for future research in
learning for semantic parsing.



2 Sample Applications and their MRLs

We have previously considered two MRLs for performing useful, complex tasks.
The first is a database query language, primarily using a sample database on
U.S. geography. The second MRL is a coaching language for robotic soccer de-
veloped for the RoboCup Coach Competition, in which Al researchers compete
to provide effective instructions to a coachable team of agents in a simulated
soccer domain [9].

When exploring NL interfaces for databases, the MRL we have primarily
used is a logical query language based on Prolog. We have primarily focused on
queries to a small database on U.S. geography. This domain, GEOQUERY, was
originally chosen to test corpus-based semantic parsing due to the availability of
a hand-built natural-language interface, GEOBASE, supplied with Turbo Prolog
2.0 [3]. The language consists of Prolog queries augmented with several meta-
predicates [44]. Below is a sample query with its English gloss:

answer (A, count (B, (state(B) ,const(C,riverid(mississippi)),traverse(C,B)),A))

“How many states does the Mississippi run through?”

The same query language has also been used to build NLI’s for databases of
restaurants and CS-job openings, including a component that translates our
logical queries to standard SQL database queries [36,35]. The resulting formal
queries can be executed to generate answers to the corresponding questions.

RoboCup (www.robocup.org) is an international Al research initiative using
robotic soccer as its primary domain. In the Coach Competition, teams of agents
compete on a simulated soccer field and receive advice from a team coach in a
formal language called CLANG. In CLANG, tactics and behaviors are expressed
in terms of if-then rules. As described in [9], its grammar consists of 37 non-
terminal symbols and 133 productions. Below is a sample rule with its English
gloss:

((bpos (penalty-area our)) (do (player-except our {4}) (pos (half our))))

“If the ball is in our penalty area, all our players except player 4 should stay in our
half.”

The robots in the simulator can interpret the CLANG instructions which then
strongly affect their behavior while playing the game. The semantic parsers we
have developed for this MRL were part of a larger research project on advice-
taking reinforcement learners that can accept advice stated in natural language
[25].

3 Systems for Learning Semantic Parsers

Our earliest system for learning semantic parsers called CHILL [44, 35] uses In-
ductive Logic Programming (ILP) [26] to learn a deterministic parser written in
Prolog. In our more recent work, we have developed three different approaches
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Fig. 1. The SAPT and its Compositional MR Construction for a CLANG Sentence.

to learning statistical semantic parsers that are more robust and scale more ef-
fectively to larger training sets. Each exploits a different advanced technology
in statistical natural language processing. SCISSOR [17, 18] adds detailed seman-
tics to a state-of-the-art statistical syntactic parser (i.e. the Collins parser [12]),
WasP [39] adapts statistical machine translation methods to map from NL to
MRL, and KRIsP [23] uses Support Vector Machines (SVM’s) [13] with a subse-
quence kernel specialized for text learning [27]. We briefly review each of these
systems below. A version of our GEOQUERY data has also been used to eval-
uate a system for learning semantic parsers using probabilistic Combinatorial
Categorial Grammars (CCG) [45].

3.1 SCISSOR

ScISsOR (Semantic Composition that Integrates Syntax and Semantics to get
Optimal Representations) [17,18] learns a statistical parser that generates a
semantically augmented parse tree (SAPT), in which each internal node is given
both a syntactic and a semantic label. We augment Collins’ head-driven model
2 [12] to incorporate a semantic label on each internal node. By integrating
syntactic and semantic interpretation into a single statistical model and finding
the globally most probable parse, an accurate combined analysis can be obtained.
Once an SAPT is generated, an additional step is required to translate it into a
final MR.

In an SAPT, each internal node in the parse tree is annotated with a semantic
label from the MRL. The left half of Fig. 1 shows the SAPT for a simple sentence
in the CLANG domain. The semantic labels (shown after the dashes) are concepts
in the MRL. Some type concepts do not take arguments, like team and unum



(uniform number). Some concepts, referred to as predicates, take an ordered list
of arguments, like player and bowner (ball owner). Each predicate has a set of
known semantic constraints on its arguments, specified in terms of concepts that
can fill each argument, such as player(team, unum) and bowner(player). A special
semantic label null is used for nodes that do not correspond to any concept in
the domain. Training data for SCISSOR consists of (NL, SAPT, MR) triples.

First, an enhanced version of Collin’s parser is trained to produce SAPTs
instead of purely syntactic parse trees by adapting it to predict two labels for
each node instead of one (see [17] for details). Next, a recursive procedure is
used to compositionally construct the MR for each node in the SAPT given
the MRs of its children. The right half of Fig. 1 illustrates the construction of
the MR for the SAPT in the left half of the figure (nodes are numbered in the
order in which the construction of their MRs are completed). In this process,
semantic constraints are used to determine how to properly fill the arguments
of a predicate for a node with the MRs of the node’s children.

3.2 WaAsp

Wasp (Word Alignment-based Semantic Parsing) [39] uses state-of-the-art Sta-
tistical Machine Translation (SMT) techniques [4,5,41,10] to learn semantic
parsers. SMT methods learn effective machine translation systems by training
on parallel corpora consisting of human translations of documents into one or
more alternative natural languages. The resulting translators are typically sig-
nificantly more effective than manually developed systems and SMT has become
the dominant approach to machine translation. We have adapted such methods
to learn to translate from NL to MRL rather than from one NL to another.

WASP requires no prior knowledge of the NL syntax, although it assumes that
an unambiguous, context-free grammar (CFG) of the target MRL is available.
Since MRLs are formal computer-interpretable languages, such a grammar is
usually easily available. First, an SMT word alignment system, GIZA++ [28, 5],
is used to acquire a bilingual lexicon consisting of NL substrings coupled with
their translations in the target MRL. As formal languages, MRLs frequently
contain many purely syntactic tokens such as parentheses or brackets, which are
difficult to align with words in NL. Consequently, we found it was much more
effective to align words in the NL with productions of the MRL grammar used
in the parse of the corresponding MR. Therefore, GIZA++ is used to produce
an N to 1 alignment between the words in the NL sentence and a sequence
of MRL productions corresponding to a top-down left-most derivation of the
corresponding MR. A sample partial alignment is shown in Fig. 2.

Complete MRs are then formed by combining these NL substrings and their
translations under a parsing framework called a synchronous CFG (SCFG) [1],
which forms the basis of most existing statistical syntax-based translation mod-
els [41, 10]. In an SCFG, the right hand side of each production rule contains two
strings, in our case one in NL and the other in MR. Derivations of the SCFG si-
multaneously produce NL sentences and their corresponding MRs. The bilingual
lexicon acquired from word alignments on the training data is used to construct
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Fig. 2. Partial word alignment for the CLANG statement and its English gloss

a set of SCFG production rules. A probabilistic parser is then produced by train-
ing a maximum-entropy model using expectation maximization (EM) to learn
parameters for each of these SCFG productions, similar to the methods used in
[30, 45]. To translate a novel NL sentence into its MR, a probabilistic chart parser
[34] is used find the most probable synchronous derivation that generates the
given NL, and the corresponding MR, generated by this derivation is returned.

3.3 KRIsP

KRrisp (Kernel-based Robust Interpretation for Semantic Parsing) [23] uses SVMs
with string kernels to build semantic parsers that are more robust in the pres-
ence of noisy training data. SVMs are state-of-the-art machine learning meth-
ods that learn maximum-margin separators to prevent over-fitting in very high-
dimensional data such as natural language text [22]. They can be extended to
non-linear separators and non-vector data by exploiting kernels that implicitly
create an even higher dimensional space in which complex data is (nearly) lin-
early separable [32]. Recently, kernels over strings and trees have been effectively
applied to a variety of problems in text learning and NLP [27,43, 11,6, 7]. In par-
ticular, KRISP uses the string kernel introduced in [27] to classify substrings in
an NL sentence.

First, KrIsP learns classifiers that recognize when a word or phrase in an
NL sentence indicates that a particular concept in the MRL should be intro-
duced into its MR. Like WASP, it uses production rules in the MRL grammar
to represent semantic concepts, and it learns classifiers for each production that
classify NL substrings as indicative of that production or not. When semantically
parsing a sentence, each classifier estimates the probability of each production
covering different substrings of the sentence. This information is then used to
compositionally build a complete MR for the sentence.

KRISP learns a semantic parser iteratively, each iteration improving upon
the parser learned in the last iteration. In each iteration, for every production
7 in the MRL grammar, KRISP collects positive and negative examples. In the
first iteration, the set of positive examples for production 7 contains all sen-
tences whose MR parse tree uses the production 7. The set of negative examples



includes all of the other training sentences. Using these positive and negative
examples, an SVM classifier! is trained for each production 7 using a string
kernel. In subsequent iterations, the training examples are refined to more spe-
cific substrings within the sentences until the classifiers converge, analogous to
iterations in EM [14].

NL: “Which rivers run through the states bordering Texas?”
Functional query language: answer (traverse(next_to(stateid(‘texas’))))

Parse tree of the MR in functional query language:
ANSWER

answer RIVER

TRAVERSE STATE
NEXT_TO STATE
nexlt_to STA’lI‘EID
stateid ‘texas’

Productions:
ANSWER — answer(RIVER) RIVER — TRAVERSE(STATE)
STATE — NEXT_TO(STATE) STATE — STATEID
TRAVERSE — traverse NEXT_TO — next_to
STATEID — stateid(‘texas’)

Fig. 3. An example of an NL query and its MR and its parse tree.

(ANSWER — answer(RIVER), [1..9])

|
(RIVER — TRAVERSE(STATE), [1..9])

(TRAVERSE —traverse, [1..4]) (STATE — NEXT_TO(STATE), [5..9])

whichq riversg rung throughy

(NEXT_TO— next_to, [5..7]) (STATE — STATEID, [8..9])

|
(STATEID — stateid ‘texas’, [8..9])

thes statesg borderingy
Texasg 79

Fig. 4. Semantic derivation of the example in Fig. 3

During semantic parsing, KRISP uses these classifiers to find the most prob-
able semantic derivation of a sentence. A semantic derivation of an NL sentence
is a parse tree of an MR such that each node in the tree covers a substring of
the sentence. The substrings covered by the children of a node are not allowed
to overlap, and the substring covered by the parent must be the concatenation
of the substrings covered by its children. Figure 4 shows a semantic derivation

! We use the LIBSVM package available at: http://www.csie.ntu.edu.tw/~cjlin/
libsvm/



of the geography query and its MR parse shown in Fig. 3. The MRL used is a
functional version of the formal database query language. The probability that a
given production covers its corresponding substring is estimated using the SVM
classifier for that production. Assuming independence, the probability of a se-
mantic derivation is computed as the product of the probabilities for each of
its productions. An adaptation of Earley’s context-free parsing algorithm [15] is
used to efficiently compute the most probable semantic derivation for a novel
sentence, and this derivation directly determines its output MR.

4 Experimental Evaluation

Two corpora of NL sentences paired with MRs were used to evaluate our ap-
proaches. For CLANG, 300 pieces of coaching advice were randomly selected from
the log files of the 2003 RoboCup Coach Competition. Each formal instruction
was translated into English by one of four annotators [24]. The average length
of an NL sentence in this corpus is 22.52 words. For GEOQUERY, 250 questions
were collected by asking undergraduate students to generate English queries for
the given database. Queries were then manually translated into logical form [44].
The average length of an NL sentence in this corpus is 6.87 words. The queries
in this corpus are more complex than those in the ATIS database-query corpus
used in the speech community [46] which makes the GEOQUERY problem harder,
as also shown by the results in [29)].

Semantic-parser learning was evaluated using standard 10-fold cross valida-
tion. A given system may be unable to parse a particular sentence and therefore
fail to produce an output MR. For each system, we measured the number of
novel test sentences that resulted in complete MRs, and the number of these
MRs that were correct. For CLANG, an MR is correct iff it exactly matches the
correct representation, up to reordering of the arguments of commutative oper-
ators like and. For GEOQUERY, an MR is correct iff the resulting query retrieved
the same answer as the gold-standard MR when submitted to the database. The
performance of each parser was then measured in terms of precision (the per-
centage of completed MRs that were correct) and recall (the percentage of all
sentences with correctly generated MRs).

We used the version of CHILL presented in [35], which uses the improved
CocCKTAIL ILP system and produces more accurate parsers than the original
version presented in [44]. In the GEOQUERY domain, we also compare to the
original hand-built semantic parser GEOBASE.

Figure 5 shows the precision and recall learning curves for GEOQUERY, and
Fig. 6 shows similar results for CLANG. Since CHILL is very memory intensive,
it could not be run with larger training sets from the more complex CLANG
corpus, where overall it does quite poorly. Although the precision of the com-
mercial manually-developed system GEOBASE is fairly high, its recall is very
low, illustrating the advantages of a learning approach. Overall, the three new
learning systems do very well in both domains, learning quite accurate parsers
after seeing a modest amount of training data. In general, SCISSOR gives the
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Fig. 5. Precision and Recall Learning Curves for GEOQUERY.

best results, but it also requires more detailed supervision in the form of SAPTs
in addition to MRs. SCISSOR does particularly well on longer sentences where
having a detailed traditional syntactic analysis helps in composing the correct
MR. CHILL, which performs quite well in the GEOQUERY domain, does quite
poorly on the longer, more complex sentences in the CLANG domain, where its
local, deterministic decisions are less accurate.

The GEOQUERY corpus has also been translated into Spanish, Turkish, and
Japanese. CHILL, KRISP, and WASP have also learned semantic parsers for these
languages [37,23,39] and the accuracy results are similar to those shown above
for English, demonstrating the generality of these approaches. SCISSOR has not
been tested on this data since it requires additional supervision in the form
of SAPTs, which are currently unavailable for these languages. Since KRISP
relies on probabilistic string classifiers and does not require sentences to be
parsable by a symbolic grammar, it is more robust to noisy input than the other
systems. Experiments on artificially adding noise to sentences by simulating
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speech-recognition errors have demonstrated that KRISP’s accuracy degrades
less rapidly as more noise is added to the corpus [23].

5 Future Research

Although overall SCISSOR is somewhat more accurate in our current experimen-
tal results, this is not surprising since it requires additional human annotation in
the form of SAPTs. Recent results have shown that WASP and KRISP can also
be adapted to benefit from the information in SAPTs; however, they still do not
quite match the accuracy of SCISSOR. Therefore, we are currently exploring how,
during training, the construction of SAPTs might be automated given only (NL
MR) pairs and a general syntactic parser for the given natural language.
Currently, our evaluation of semantic parsers has been restricted to limited
domains. This is largely due to the difficulty of developing an open-domain MRL
and constructing a large annotated corpus of (NL MR) pairs for domain gen-



eral text. As more general large corpora are developed that are annotated with
deeper semantic representations, such as the OntoNotes corpus currently being
assembled [21], we plan to test our systems on them. Given appropriately an-
notated large corpora, we are reasonably hopeful that our methods will scale to
more general domains. A related direction of research is adapting our systems
to learn “shallower” semantic parsers that produce incompletely formalized se-
mantic representations such as those used in the FrameNet project [16].

However, we also believe there are many practical applications of domain-
specific semantic parsers. Although the first NL database interfaces were devel-
oped in the 1970’s [40, 38, 20], the technology was never successfully commer-
cialized because of the significant manual software-engineering effort required to
develop specialized systems for individual databases. We believe that by using
learning techniques to automatically construct systems from annotated corpora,
NL database interfaces could finally become a commercial technology. By asking
existing database administrators to simply keep logs of the NL queries they re-
ceive and the formal (e.g. SQL) queries they construct in response, the requisite
corpus of annotated data could be assembled quite easily.

Another way to obtain the requisite supervision is to allow ordinary users
themselves to provide the necessary feedback. One approach to allowing a system
to learn from its user community after it is deployed is to ask users to confirm
a correct interpretation when the system finds a query to be ambiguous. If a
system (or an ensemble of several different systems) finds a query ambiguous
and produces multiple alternative formal interpretations, the competing queries
can be paraphrased back into NL and the user asked to pick the correct one. The
chosen interpretation can then be used as a new training example to improve the
system. We have recently produced a generation system that produces natural
language from formal queries by inverting our WASP system to translate in the
opposite direction. Such an NL generation system could be used paraphrase
alternative formal interpretations for the user.

Nevertheless, developing training corpora in which each sentence is manually
annotated with a detailed formal MR is typically a very difficult and time-
consuming process. Ideally, a system would be able to learn language like a
human child, by being exposed to utterances in a rich perceptual context. By
inferring the meaning of a sentence from the context in which it was uttered, a
sentence-meaning pair could be automatically constructed. Methods for inducing
semantic parsers from sentences annotated with MRs could then be applied
to the resulting data. Although in general it is not possible to infer a unique
meaning for a sentence from context, in the vast majority of cases, the context
greatly restricts its range of possible meanings. There has been some work on
inferring the meanings of individual words given a corpus of sentences each
paired with an ambiguous set of multiple possible MRs [33]; however, unlike
our work on semantic parsing, this work does not address the issues of learning
to disambiguate words and phrases and compose their meanings into semantic
representations of complete sentences.



The general problem of symbol grounding, how the meaning of abstract sym-
bols is grounded in an agent’s perceptual environment and experience, has been
argued to be a critical issue in developing truly intelligent artificial systems [19].
Clearly, a deep understanding of most natural language requires capturing the
connection between the abstract concepts underlying words and phrases and
their embodiment in the physical world. There has been some recent work on
inferring a grounded meaning of individual words or short referring expressions
from visual perceptual context [31,2,42]. However, the syntactic complexity of
the natural language used in this work is very restrictive, many of the systems use
existing knowledge of the language, and most of them use static images to learn
language describing objects and cannot use dynamic video to learn language de-
scribing actions. None of this existing work makes use of modern statistical-NLP
parsing techniques or learns to build detailed symbolic meaning representations
of complete, complex sentences. Developing robust systems that can learn to
semantically interpret complex natural language given only exposure to utter-
ances in a perceptual context is a very challenging and important problem for
future research. Addressing this problem will require tightly integrating a vari-
ety of techniques from computational linguistics, machine learning, knowledge
representation, computer vision, and robotics.

6 Conclusions

Semantic parsing is an important task that has a variety of interesting appli-
cations. This paper has reviewed several systems that we have developed for
learning semantic parsers from corpora annotated with formal meaning repre-
sentations. Results on automatically acquiring NL interfaces to databases and
simulated robotic systems were used to demonstrate the capabilities of our ex-
isting systems. There are a number of challenging problems for future research
and hopefully this paper will motivate more researchers to explore new methods
for automatically acquiring parsers that can produce complete, formal semantic
representations.
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