
 Open access  Journal Article  DOI:10.1109/JSTSP.2020.3043590

Learning for Video Compression With Recurrent Auto-Encoder and Recurrent
Probability Model — Source link 

Ren Yang, Fabian Mentzer, Luc Van Gool, Radu Timofte

Institutions: ETH Zurich

Published on: 01 Feb 2021 - IEEE Journal of Selected Topics in Signal Processing (IEEE)

Topics: Motion compensation, Reference frame, Data compression, Encoder and Probability mass function

Related papers:

 DVC: An End-To-End Deep Video Compression Framework

 Multiscale structural similarity for image quality assessment

 Neural Inter-Frame Compression for Video Coding

 UVG dataset: 50/120fps 4K sequences for video codec analysis and development

 Video Compression Through Image Interpolation

Share this paper:    

View more about this paper here: https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-
1uh02kqpu5

https://typeset.io/
https://www.doi.org/10.1109/JSTSP.2020.3043590
https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-1uh02kqpu5
https://typeset.io/authors/ren-yang-316xphidzg
https://typeset.io/authors/fabian-mentzer-2e7p4cnezo
https://typeset.io/authors/luc-van-gool-3vvkqjzpe0
https://typeset.io/authors/radu-timofte-1411fb7502
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/journals/ieee-journal-of-selected-topics-in-signal-processing-8tjhcbv1
https://typeset.io/topics/motion-compensation-2q2yfysm
https://typeset.io/topics/reference-frame-2jvuq43p
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/topics/encoder-15olagr2
https://typeset.io/topics/probability-mass-function-2eth2c31
https://typeset.io/papers/dvc-an-end-to-end-deep-video-compression-framework-c7ouihdwr5
https://typeset.io/papers/multiscale-structural-similarity-for-image-quality-5a7vl3othe
https://typeset.io/papers/neural-inter-frame-compression-for-video-coding-25xoq6p7zt
https://typeset.io/papers/uvg-dataset-50-120fps-4k-sequences-for-video-codec-analysis-2jvif673et
https://typeset.io/papers/video-compression-through-image-interpolation-10p9lz0ymp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-1uh02kqpu5
https://twitter.com/intent/tweet?text=Learning%20for%20Video%20Compression%20With%20Recurrent%20Auto-Encoder%20and%20Recurrent%20Probability%20Model&url=https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-1uh02kqpu5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-1uh02kqpu5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-1uh02kqpu5
https://typeset.io/papers/learning-for-video-compression-with-recurrent-auto-encoder-1uh02kqpu5


1

Learning for Video Compression with Recurrent

Auto-Encoder and Recurrent Probability Model
Ren Yang, Student Member, IEEE, Fabian Menzter, Student Member, IEEE,

Luc Van Gool, Member, IEEE, and Radu Timofte, Member, IEEE

Abstract—The past few years have witnessed increasing inter-
ests in applying deep learning to video compression. However,
the existing approaches compress a video frame with only a
few number of reference frames, which limits their ability to
fully exploit the temporal correlation among video frames. To
overcome this shortcoming, this paper proposes a Recurrent
Learned Video Compression (RLVC) approach with the Re-
current Auto-Encoder (RAE) and Recurrent Probability Model
(RPM). Specifically, the RAE employs recurrent cells in both
the encoder and decoder. As such, the temporal information
in a large range of frames can be used for generating latent
representations and reconstructing compressed outputs. Further-
more, the proposed RPM network recurrently estimates the
Probability Mass Function (PMF) of the latent representation,
conditioned on the distribution of previous latent representations.
Due to the correlation among consecutive frames, the conditional
cross entropy can be lower than the independent cross entropy,
thus reducing the bit-rate. The experiments show that our
approach achieves the state-of-the-art learned video compression
performance in terms of both PSNR and MS-SSIM. Moreover,
our approach outperforms the default Low-Delay P (LDP) setting
of x265 on PSNR, and also has better performance on MS-SSIM
than the SSIM-tuned x265 and the slowest setting of x265.

The code and pre-trained models will be released on the project
page: https://github.com/RenYang-home/RLVC.git.

Index Terms—Deep learning, video compression, representa-
tion learning.

I. INTRODUCTION

NOWADAYS, video contributes to the majority of mo-

bile data traffic [1]. The demands of high resolution

and high quality video are also increasing. Therefore, video

compression is essential to enable the efficient transmission of

video data over the band-limited Internet. Especially, during

the COVID-19 pandemic, the increasing data traffic used for

video conferencing, gaming and online learning forced Netflix

and YouTube to limit video quality in Europe. This further

shows the essential impact of improving video compression

on today’s social development.

During the past decades, several video compression algo-

rithms, such as MPEG [2], H.264 [3] and H.265 [4] were

standardized. These standards are handcrafted, and the mod-

ules in compression frameworks cannot be jointly optimized.

Recently, inspired by the success of Deep Neural Networks

(DNN) in advancing the rate-distortion performance of image

compression [5]–[7], many deep learning-based video com-

pression approaches [8]–[12] were proposed. In these learned

The authors are with the Department of Information Technology and
Electrical Engineering, ETH Zürich, 8092 Zurich, Switzerland (e-mail:
ren.yang@vision.ee.ethz.ch). This work is partly supported by ETH Zurich
General Fund (OK) and Amazon AWS Grant.

RAE
(encoder)

yt¡1yt¡1

RPM

RAE
(decoder)

RAE
(encoder)

ytyt

RPM

RAE
(decoder)

q(ytjy<t)q(ytjy<t)

Arithmetic 
coding

Bit stream

Hidden state

Hidden state

Hidden state

xt¡1xt¡1

x̂t¡1x̂t¡1

xtxt

x̂tx̂t

Latent 
representation

Fig. 1. The recurrent structure in our RLVC approach. In this figure, two
time steps are shown as an example.

video compression approaches, the whole frameworks are

optimized in an end-to-end manner.

However, both the existing handcrafted [2]–[4] and learned

video compression [8]–[12] approaches utilize non-recurrent

structures to compress the sequential video data. As such,

only a limited number of references can be used to compress

new frames, thus limiting their ability for exploring temporal

correlation and reducing redundancy. Adopting a recurrent

compression framework enables to fully take advantage of

the correlated information in consecutive frames, and thus

facilitates video compression. Moreover, in the entropy cod-

ing of previous learned approaches [8]–[12], the Probability

Mass Functions (PMF) of latent representations are also in-

dependently estimated on each frame, ignoring the correlation

between the latent representations among neighboring frames.

Similar to the reference frames in the pixel domain, fully

making use of the correlation in the latent domain benefits the

compression of latent representations. Intuitively, the temporal

correlation in the latent domain also can be explored in a

recurrent manner.

Therefore, this paper proposes a Recurrent Learned Video

Compression (RLVC) approach, with the Recurrent Auto-

Encoder (RAE) and Recurrent Probability Model (RPM). As

shown in Fig. 1, the proposed RLVC approach uses recurrent

networks for representing inputs, reconstructing compressed

outputs and modeling PMFs for entropy coding. Specifically,

the proposed RAE network contains recurrent cells in both the

encoder and decoder. Given a sequence of inputs {xt}
T
t=1,

the encoder of RAE recurrently generates the latent repre-

sentations {yt}
T
t=1, and the decoder also reconstructs the

ar
X

iv
:2

0
0
6
.1

3
5
6
0
v
3
  
[e

es
s.

IV
] 

 7
 O

ct
 2

0
2
0

https://github.com/RenYang-home/RLVC.git


2

compressed outputs {x̂t}
T
t=1 from {yt}

T
t=1 in a recurrent

manner. As such, all previous frames can be seen as references

for compressing the current one, and therefore our RLVC

approach is able to make use of the information in a large

number of frames, instead of the very limited reference frames

in the non-recurrent approaches [8]–[10], [12].

Furthermore, the proposed RPM network recurrently models

the PMF of yt conditioned on all previous latent repre-

sentations y<t = {y1, . . . ,yt−1}. Because of the recurrent

cell, our RPM network estimates the temporally conditional

PMF q(yt |y<t), instead of the independent PMF q(yt) as

in previous works [8]–[12]. Due to the temporal correlation

among {y1, . . . ,yt}, the (cross) entropy of yt conditioned

on the previous information y<t is expected to be lower

than the independent (cross) entropy. Therefore, our RPM

network is able to achieve lower bit-rate to compress yt.

As Fig. 1 illustrates, the proposed RAE and RPM networks

build up a recurrent video compression framework. The hidden

states for representation learning and probability modeling are

recurrently transmitted from frame to frame, and therefore

the information in consecutive frames can be fully exploited

in both the pixel and latent domains for compressing the

upcoming frames. This results in efficient video compression.

The contribution of this paper can be summarized as:

• We propose employing the recurrent structure in learned

video compression to fully exploit the temporal correla-

tion among a large range of video frames.

• We propose the recurrent auto-encoder to expand the

range of reference frames, and propose the recurrent

probability model to recurrently estimate the temporally

conditional PMF of the latent representations. This way,

we achieve the expected bit-rate as the conditional cross

entropy, which can be lower than the independent cross

entropy in previous non-recurrent approaches.

• The experiments validate the superior performance of

the proposed approach to the existing learned video

compression approaches, and the ablation studies verify

the effectiveness of each recurrent component in our

framework.

In the following, Section II presents the related works.

The proposed RAE and RPM are introduced in Section III.

Then, the experiments in Section IV validate the superior

performance of the proposed RLVC approach to the existing

learned video compression approaches. Finally, the ablation

studies further demonstrate the effectiveness of the proposed

RAE and RPM networks, respectively.

II. RELATED WORKS

Auto-encoders and RNNs. Auto-encoders [13] have been

popularly used for representation learning in the past decades.

In the field of image processing, there are plenty of auto-

encoders proposed for image denoising [14], [15], enhance-

ment [16], [17] and super resolution [18], [19]. Besides,

inspired by the development of Recurrent Neural Networks

(RNNs) and their applications on sequential data [20], e.g.,

language modeling [21], [22] and video analysis [23], some re-

current auto-encoders were proposed for representation learn-

ing on time-series tasks, such as machine translation [24],

[25] and captioning [26], etc. Moreover, Srivastava et al. [27]

proposed learning for video representations using an auto-

encoder based on Long Short-Term Memory (LSTM) [28],

and verified the effectiveness on classification and action

recognition tasks on video. However, as far as we know,

there is no recurrent auto-encoder utilized in learned video

compression.

Learned image compression. In recent years, there are

increasing interests in applying deep auto-encoders in the end-

to-end DNN models for learned image compression [5]–[7],

[29]–[37]. For instance, Theis et al. [32] proposed a compres-

sive auto-encoder for lossy image compression, and reached

competitive performance with JPEG 2000 [38]. Later, various

probability models were proposed. For instance, Ballé et

al. [33], [34] proposed the factorized prior [33] and hyper-

prior [34] probability models to estimate entropy in the end-

to-end DNN image compression frameworks. Later, based

on them, Minnen et al. [5] proposed the hierarchical prior

entropy model to improve the compression efficiency. Besides,

Mentzer et al. [35] utilized 3D-CNN as the context model for

entropy coding, and proposed learning an importance mask

to reduce the redundancy in latent representation. Recently,

the context-adaptive [6] and the coarse-to-fine hyper-prior [7]

entropy models were designed to further advance the rate-

distortion performance, and successfully outperform the tradi-

tional image codec BPG [39].

Learned video compression. Deep learning is also at-

tracting more and more attention in video compression. To

improve the coding efficiency of handcrafted standard, many

approaches [40]–[45] were proposed to replace the compo-

nents in H.265 by DNN. Among them, Liu et al. [41] utilized

DNN in the fractional interpolation of motion compensation,

and Choi et al. [42] proposed a DNN model for frame

prediction. Besides, [43]–[45] employed DNNs to improve

the in-loop filter of H.265. However, these approaches only

advance the performance of one particular module, and the

video compression frameworks cannot be jointly optimized.

Inspired by the success of learned image compression, some

learning-based video compression approaches were proposed

[46], [47]. However, [46], [47] still adopt some handcrafted

strategies, such as block matching for motion estimation and

compensation, and therefore they fail to optimize the whole

compression framework in an end-to-end manner. Recently,

several end-to-end DNN frameworks have been proposed for

video compression [8]–[12], [48], [49]. Specifically, Wu et

al. [8] proposed predicting frames by interpolation from

reference frames, and compressing residual by the image

compression model [30]. Later, Lu et al. [9] proposed the

Deep Video Compression (DVC) approach, which uses optical

flow for motion estimation, and utilizes two auto-encoders

to compress the motion and residual, respectively. Then,

Djelouah et al. [11] employs bi-directional prediction in to

learned video compression. Liu et al. [49] proposed a deep

video compression framework with the one-stage flow for

motion compensation. Most recently, Yang et al. [12] proposed

learning for video compression with hierarchical quality layers

and adopted a recurrent enhancement network in the deep

decoder. Agustsson et al. [50] proposed the scale-space flow



3

Motion 
estimation

Encoder

f̂tf̂t

ftft

xm

t
xm

t

Quantize

ym

t
ym

t

Decoder

x̂m

t
x̂m

t

Recurrent
Auto-

Encoder
(RAE)

Motion 
compensation

f 0

t
f 0

t

xr

t
xr

t

x̂r

t
x̂r

t

Motion 
estimation

Motion 
compensation

Raw frame

Compressed frame

Encoder

Quantize

Decoder

Encoder

yr

t
yr

t

Decoder

Quantize

Encoder

Decoder

Quantize

Motion 
estimation

Encoder

f̂t¡2f̂t¡2

Quantize

Decoder

Motion 
compensation

Encoder

Decoder

Quantize

f̂t¡1f̂t¡1

ft¡1ft¡1

xm

t¡1xm

t¡1

ym

t¡1ym

t¡1

x̂m

t¡1x̂m

t¡1 f 0

t¡1f 0

t¡1

xr

t¡1xr

t¡1

x̂r

t¡1x̂r

t¡1

yr

t¡1yr

t¡1

f̂t+1f̂t+1

ft+1ft+1

xm

t+1xm

t+1

ym

t+1ym

t+1

x̂m

t+1x̂m

t+1 f 0

t+1f 0

t+1

xr

t+1xr

t+1

x̂r

t+1x̂r

t+1

yr

t+1yr

t+1

Hidden
state

Fig. 2. The framework of our RLVC approach. The details of the proposed RAE are shown in Fig. 3. The proposed RPM, which is illustrated in Fig. 5, is
applied on the latent representations y

m

t
and y

r

t
to estimate their conditional PMF for arithmetic coding.

for learned video compression, which learns to adaptively blur

frame if the bilinearly warped frame is not a good prediction.

Nevertheless, none of them learns to compress video with

a recurrent model. Instead, there are at most two reference

frames used in these approaches [8]–[12], [49], and therefore

they fail to exploit the temporal correlation in a large number

of frames.

Although Habibian et al. [48] proposed taking a group of

frames as inputs to the 3D auto-encoder, the temporal length is

limited as all frames in one group have to fit into GPU memory

at the same time. Instead, the proposed RLVC network takes as

inputs only one frame and the hidden states from the previous

frame, and recurrently moves forward. Therefore, we are able

to explore larger range of temporal correlation with finite

memory. Also, [48] uses a PixelCNN-like network [51] as

an auto-regressive probability model, which makes decoding

slow. On the contrary, the proposed RPM network benefits our

approach to achieve not only more efficient compression but

also faster decoding.

III. THE PROPOSED RLVC APPROACH

A. Framework

The framework of the proposed RLVC approach is shown in

Fig. 2. Inspired by traditional video codecs, we utilize motion

compensation to reduce the redundancy among video frames,

whose effectiveness in learned compression has been proved

in previous works [9], [12]. To be specific, we apply the

pyramid optical flow network [52] to estimate the temporal

motion between the current frame and the previously com-

pressed frame, e.g., ft and f̂t−1. The large receptive field of

the pyramid network [52] benefits to handle large and fast

motions. Here, we define the raw and compressed frames

as {ft}
T
t=1 and {f̂t}

T
t=1, respectively. Then, the estimated

motion xm
t is compressed by the proposed RAE, and the

compressed motion x̂m
t is applied for motion compensation. In

our framework, we use the same motion compensation method

as [9], [12]. In the following, the residual (xr
t ) between ft

and the motion compensated frame f ′
t can be obtained and

compressed by another RAE. Given the compressed residual as

x̂r
t , the compressed frame f̂t = f ′

t + x̂r
t can be reconstructed.

The details of the proposed RAE is described in Section III-B.

In our framework, the two RAEs in each frame generate the

latent representations of ym
t and yr

t for motion and residual

compression, respectively. To compress ym
t and yr

t into a bit

stream, we propose the RPM network to recurrently predict

the temporally conditional PMFs of {ym
t }Tt=1 and {yr

t }
T
t=1.

Due to the temporal relationship among video frames, the

conditional cross entropy is expected to be lower than the

independent cross entropy used in non-recurrent approaches

[8]–[10], [12]. Hence, utilizing the conditional PMF estimated

by our RPM network effectively reduces bit-rate in arithmetic

coding [53]. The proposed RPM is detailed in Section III-C.

B. Recurrent Auto-Encoder (RAE)

As mentioned above, we apply two RAEs to compress xm
t

and xr
t . Since the two RAEs share the same architecture, we

denote both xm
t and xr

t by xt in this section for simplicity.

Recall that in the non-recurrent learned video compression

works [9], [10], [12], when compressing the t-th frame, the

auto-encoders map the input xt to a latent representation

ỹt = E(xt;θE) (1)



4

xtxt

C
o

n
v

 ↓
2

ConvLSTM ~yt~yt
ytyt

Quantize
x̂tx̂t

ConvLSTM

C
o

n
v

 ↓
2

C
o

n
v

 ↓
2

C
o

n
v

 ↓
2

C
o

n
v

 ↑
2

C
o

n
v

 ↑
2

C
o

n
v

 ↑
2

C
o

n
v

 ↑
2

Encoder Decoder

Fig. 3. The architecture of the proposed RAE network. In convolutions layers, ↑ 2 and ↓ 2 indicate up- and down-sampling with the stride of 2, respectively.
In RAE, the filter sizes of all convolutional layers are set as 3× 3 when compressing motion, and set as 5× 5 for residual compression. The filter number
of each layer is set as 128.

through an encoder E parametrized with θE . Then, the

continuous-valued ỹt is quantized to the discrete-valued yt =
⌊ỹt⌉. The compressed output is reconstructed by the decoder

from the quantized latent representation, i.e.,

x̂t = D(yt;θD). (2)

Taking the inputs of only the current xt and yt to the encoder

and decoder, they fail to take advantage of the temporal

correlation in consecutive frames.

On the contrary, the proposed RAE includes recurrent cells

in both the encoder and decoder. The architecture of the RAE

network is illustrated in Fig. 3. We follow [34] to use four

2× down-sampling convolutional layers with the activation

function of GDN [33] in the encoder of RAE. In the middle

of the four convolutional layers, we insert a ConvLSTM [54]

cell to achieve the recurrent structure. As such, the information

from previous frames flows into the encoder network of the

current frame through the hidden states of the ConvLSTM.

Therefore, the proposed RAE generates latent representation

based on the current as well as previous inputs. Similarly,

the recurrent decoder in RAE also has a ConvLSTM cell

in middle of the four 2× up-sampling convolutional layers

with IGDN [33], and thus also reconstructs x̂t from both the

current and previous latent representations. In summary, our

RAE network can be formulated as

yt = ⌊E(x1, . . . ,xt;θE)⌉,

x̂t = D(y1, . . . ,yt;θD).
(3)

In (3), all previous frames can be seen as reference frames for

compressing the current frame, and therefore our RLVC ap-

proach is able to make use of the information in a large range

of frames, instead of the very limited number of reference

frames in the non-recurrent approaches [8]–[10], [12].

C. Recurrent Probability Model (RPM)

To compress the sequence of latent representations {yt}
T
t=1,

the RPM network is proposed for entropy coding. First, we use

p(yt) and q(yt) to denote the true and estimated independent

PMFs of yt. The expected bit-rate of yt is then given as the

cross entropy

H(p, q) = Eyt∼p[− log2 q(yt)]. (4)

Note that arithmetic coding [53] is able to encode yt at the

bit-rate of the cross entropy with negligible overhead. It can be

seen from (4) that if yt has higher certainty, the bit-rate can be

smaller. Due to the temporal relationship among video frames,

the distribution of yt in consecutive frames are correlated.

Therefore, conditioned on the information of previous latent

representations y1, . . . ,yt−1, the current yt is expected to

be more certain. That is, defining pt(yt |y1, . . . ,yt−1) and

qt(yt |y1, . . . ,yt−1) as the true and estimated temporally

conditional PMF of yt, the conditional cross entropy

H(pt, qt) = Eyt∼pt
[− log2 qt(yt |y1, . . . ,yt−1)] (5)

can be smaller than the independent cross entropy in (4).

To achieve the expected bit-rate of (5), we propose the

RPM network to recurrently model the conditional PMF

qt(yt |y1, . . . ,yt−1).
Specifically, adaptive arithmetic coding [53] allows to

change the PMF for each element in yt, and thus we estimate

different conditional PMFs qit(yit |y1, . . . ,yt−1) for different

elements yit. Here, yit is defined as the element at the i-th 3D

location in yt, and the conditional PMF of yt can be expressed

as

qt(yt |y1, . . . ,yt−1) =

N
∏

i=1

qit(yit |y1, . . . ,yt−1), (6)

in which N denotes the number of 3D positions in yt. As

shown in Fig. 4, we model qit(yit |y1, . . . ,yt−1) of each

element as discretized logistic distribution in our approach.

Since the quantization operation in RAE quantizes all ỹit ∈
[yit − 0.5, yit + 0.5) to a discrete value yit, the conditional

PMF of the quantized yit can be obtained by integrating

the continuous logistic distribution [55] from (yit − 0.5) to

(yit + 0.5):

qit(yit |y1, . . . ,yt−1) =

∫ yit+0.5

yit−0.5

Logistic(y;µit, sit)dy,

(7)

in which the logistic distribution is defined as

Logistic(y;µ, s) =
exp(−(y − µ)/s)

s(1 + exp(−(y − µ)/s))2
, (8)

and its integral is the sigmoid distribution, i.e.,
∫

Logistic(y;µ, s)dy = Sigmod(y;µ, s) + C. (9)

Given (7), (8) and (9), the estimated conditional PMF can be

simplified as

qit(yit |y1, . . . ,yt−1) = Sigmoid(yit + 0.5;µit, sit)

− Sigmoid(yit − 0.5;µit, sit).
(10)



5

Logistic(¹i; si)Logistic(¹i; si)

yit ¡ 0:5yit ¡ 0:5 yit + 0:5yit + 0:5yityit

Sigmoid(¹i; si)Sigmoid(¹i; si)

qitqit

yy

yy

Fig. 4. Modeling the conditional PMF with a discretized logistic distribution.

It can be seen from (10), the conditional PMF at each location

is modelled with parameters µit and sit, which are varying

for different locations in yt. The RPM network is proposed

to recurrently estimate µt = {µit}
N
i=1 and st = {sit}

N
i=1

in (10). Fig. 5 demonstrates the detailed architecture of our

RPM network, which contains a recurrent network P with

convolution layers and a ConvLSTM cell in the middle. Due

to the recurrent structure, µt and st are generated based on

all previous latent representations, i.e.,

µt, st = P (y1, . . . ,yt−1;θP ), (11)

where θP represents the trainable parameters in RPM. Be-

cause P takes previous latent representations y1, . . . ,yt−1

as inputs, µt and st learn to model the probability of each

yit conditioned on y1, . . . ,yt−1 according to (10). Finally,

the conditional PMFs qit(yit |y1, . . . ,yt−1) are applied to the

adaptive arithmetic coding [53] to encode yt into a bit stream.

D. Training

In this paper, we utilize the Multi-Scale Structural SIM-

ilarity (MS-SSIM) index and the Peak Signal-to-Noise Ra-

tio (PSNR) to evaluate compression quality, and train two

models optimized for MS-SSIM and PSNR, respectively. The

distortion D is defined as 1 − MS-SSIM when optimizing

for MS-SSIM, and as the Mean Square Error (MSE) when

training the PSNR model. As Fig. 2 shows, our approach

uses the uni-directional Low-Delay P (LDP) structure. We

follow [12] to compress the I-frame f0 with the learned image

compression method [6] for the MS-SSIM model, and with

BPG [39] for the PSNR model. Because of lacking previous

latent representation for the first P-frame f1, ym
1 and yr

1 are

compressed by the spatial entropy model of [33], with the

bit-rate defined as R1(y
m
1 ) and R1(y

r
1), respectively. The

following P-frames are compressed with the proposed RPM

yt¡2yt¡2

Conv

Conv

ConvLSTM

Conv

Conv

¹t¡1¹t¡1 st¡1st¡1

qi;t¡1(yi;t¡1jy1;:::; yt¡2)qi;t¡1(yi;t¡1jy1;:::; yt¡2)

Conv

Conv

ConvLSTM

Conv

Conv

Adaptive 

arithmetic coding

Conv

Conv

ConvLSTM

Conv

Conv

Bit stream

ytytyt¡1yt¡1

¹t¹t stst ¹t+1¹t+1 st+1st+1

qit(yitjy1;:::;yt¡1)qit(yitjy1;:::;yt¡1) qi;t+1(yi;t+1jy1;:::; yt)qi;t+1(yi;t+1jy1;:::; yt)

Adaptive 

arithmetic coding

Fig. 5. The architecture of the RPM network, in which all layers have 128
convolutional filters with the size of 3× 3.

network. For t ≥ 2, the actual bit-rate can be calculated as

RRPM(yt) = − log2(qt(yt |y1, . . . ,yt−1))

=

N
∑

i=1

− log2(qit(yit |y1, . . . ,yt−1)),
(12)

in which qt(yt |y1, . . . ,yt−1) is modelled by the proposed

RPM according to (6) to (11). Note that, assuming that

the distribution of the training set is identical with the true

distribution, the actual bit-rate RRPM(yt) is expected to be the

conditional cross entropy in (5). In our approach, two RPM

networks are applied to the latent representations of motion

and residual, and their bit-rates are defined as RRPM(ym
t ) and

RRPM(yr
t ), respectively.

Our RLVC approach is trained on the Vimeo-90k [56]

dataset, in which each training sample has 7 frames. The first

frame is compressed as the I-frame and the other 6 frames

are P-frames. First, we warm up the network on the first P-

frame f1 in a progressive manner. At the beginning, the motion

estimation network is trained with the loss function of

LME = D(f1,W (f0,x
m
1 )), (13)

in which xm
1 is the output of the motion estimation network

(as shown in Fig. 2) and W is the warping operation. When

LME is converged, we further include the RAE network for

compressing motion and the motion compensation network

into training, using the following loss function

LMC = λ ·D(f1,f
′
1) +R1(y

m
1 ). (14)

After the convergence of LMC, the whole network is jointly

trained on f1 by the loss of

L1 = λ ·D(f1, f̂1) +R1(y
m
1 ) +R1(y

r
1). (15)



6

0.10 0.15 0.20 0.25 0.30 0.35
bpp

0.96

0.97

0.98

(a) MS-SSIM on UVG

Our MS-SSIM model

Agustsson et al . (CVPR’20)

Liu et al . (AAAI’20)

HLVC (CVPR’20)

Habibian et al . (ICCV’19)

DVC (CVPR’19)

Wu et al . (ECCV’18)

0.1 0.2 0.3 0.4
bpp

0.96

0.97

0.98

(b) MS-SSIM on JCT-VC

Our MS-SSIM model

Liu et al . (AAAI’20)

HLVC (CVPR’20)

DVC (CVPR’19)

0.05 0.10 0.15 0.20 0.25 0.30
bpp

34

35

36

37

38

(c) PSNR (dB) on UVG

Our PSNR model

Agustsson et al . (CVPR’20)

HLVC (CVPR’20)

DVC (CVPR’19)

Wu et al . (ECCV’18)

0.10 0.15 0.20 0.25 0.30 0.35 0.40
bpp

29

30

31

32

33

34

(d) PSNR (dB) on JCT-VC

Our PSNR model

HLVC (CVPR’20)

DVC (CVPR’19)

Fig. 6. The rate-distortion performance of our RLVC approach compared with the learned video compression approaches on the UVG and JCT-VC datasets.

0.10 0.15 0.20 0.25 0.30 0.35
bpp

0.96

0.97

0.98

(a) MS-SSIM on UVG

Our MS-SSIM model

x265 (SSIM slowest)

x265 (slowest)

x265 (SSIM default)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

0.1 0.2 0.3 0.4
bpp

0.96

0.97

0.98

(b) MS-SSIM on JCT-VC

Our MS-SSIM model

x265 (SSIM slowest)

x265 (slowest)

x265 (SSIM default)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

0.05 0.10 0.15 0.20 0.25 0.30
bpp

34

35

36

37

38

(c) PSNR (dB) on UVG

Our PSNR model

x265 (slowest)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

0.10 0.15 0.20 0.25 0.30 0.35 0.40
bpp

29

30

31

32

33

34

(d) PSNR (dB) on JCT-VC

Our PSNR model

x265 (slowest)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

Fig. 7. The rate-distortion performance of our RLVC approach compared with different settings of x265 on the UVG and JCT-VC datasets.



7

TABLE I
BDBR CALCULATED BY MS-SSIM WITH THE ANCHOR OF X265 (LDP VERY FAST). BOLD IS THE BEST RESULTS IN LEARNED APPROACHES.

Learned Non-learned

DVC Cheng Habibian HLVC RLVC x265 x265 x265 x265 x265
Dataset Video [9] [10] [48] [12] (Ours) LDP def. default SSIM def. slowest SSIM slowest

UVG

Beauty −14.85 - −44.63 −41.39 −49.22 −3.35 3.18 −0.76 6.31 −23.72

Bosphorus 10.03 - −13.77 −51.22 −62.02 −2.63 −45.35 −48.07 −46.01 −55.27

HoneyBee −21.63 - −4.13 −42.87 −43.49 −54.90 −70.78 −67.57 −66.96 −66.58

Jockey 104.82 - 56.38 6.97 −12.54 −13.41 −15.15 −27.32 −20.98 −44.95

ReadySetGo 2.77 - 89.06 −7.32 −20.98 −13.54 −36.94 −40.96 −43.07 −52.11

ShakeNDry −20.94 - −35.10 −32.82 −40.10 −24.08 −38.64 −40.96 −45.02 −51.36

YachtRide −3.83 - −21.85 −42.17 −55.96 −0.09 −20.76 −23.32 −25.68 −31.69

Average 8.05 - 3.71 −30.12 −40.62 −16.00 −32.06 −35.57 −34.49 −46.52

JCT-VC
Class B

BasketballDrive 15.47 - - −34.98 −48.10 2.19 −18.05 −30.26 −22.88 −42.68

BQTerrace 15.08 - - −22.52 −44.10 −30.97 −55.70 −50.36 −56.55 −57.09

Cactus −21.40 - - −43.63 −53.96 −26.22 −41.15 −45.28 −45.32 −52.98

Kimono −2.67 - - −46.79 −56.73 −7.24 −13.57 −25.03 −18.63 −34.77

ParkScene −20.17 - - −39.31 −49.18 −9.46 −43.61 −47.04 −48.54 −55.94

Average −2.74 - - −37.44 −50.42 −14.34 −34.42 −39.60 −38.38 −48.69

JCT-VC
Class C

BasketballDrill 5.54 17.97 - −18.45 −32.57 −18.59 −41.12 −42.70 −46.53 −50.39

BQMall 4.84 −38.59 - −20.33 −36.88 −12.56 −34.05 −39.04 −43.13 −50.79

PartyScene −23.60 −6.53 - −30.29 −38.81 −11.70 −41.53 −42.67 −48.07 −52.30

RaceHorses (480p) −14.29 41.07 - −25.45 −35.50 −8.08 −21.69 −22.89 −30.82 −36.61

Average −6.88 3.48 - −23.63 −35.94 −12.73 −34.60 −36.82 −42.14 −47.52

JCT-VC
Class D

BasketballPass 0.67 −44.96 - −36.24 −51.40 −14.45 −32.55 −32.89 −39.03 −42.69

BlowingBubbles −29.38 −22.92 - −39.84 −49.57 −11.04 −39.02 −41.12 −45.49 −51.35

BQSquare −25.50 −39.60 - −97.56 −44.71 −14.16 −57.31 −56.04 −62.24 −60.37

RaceHorses (240p) −19.82 12.60 - −36.59 −49.75 −7.63 −23.15 −24.70 −37.22 −41.15

Average −18.51 −23.72 - −52.56 −48.85 −11.82 −38.01 −38.69 −45.99 −48.89

Average on all videos −2.94 - - −35.14 −43.78 −14.10 −34.35 −37.45 −39.29 −47.74

In the following, we train our recurrent model in an end-to-end

manner on the sequential training frames using loss function

of

L = λ ·

6
∑

t=1

D(ft, f̂t)

+R1(y
m
t ) +R1(y

r
t ) +

6
∑

t=2

(

RRPM(ym
t ) +RRPM(yr

t )
)

.

(16)

During training, quantization is relaxed by the method in

[33] to avoid zero gradients. We follow [12] to set λ as 8, 16,

32 and 64 for MS-SSIM, and as 256, 512, 1024 and 2048 for

PSNR. The Adam optimizer [57] is utilized for training. The

initial learning rate is set as 10−4 for all loss functions (13),

(14), (15) and (16). When training the whole model by the final

loss of (16), we decrease the learning rate after convergence

by the factor of 10 until 10−6.

IV. EXPERIMENTS

A. Settings

The experiments are conducted to validate the effectiveness

of our RLVC approach. We evaluate the performance on the

same test set as [12], i.e., the JCT-VC [58] (Classes B, C

and D) and the UVG [59] datasets. The JCT-VC Class B

and UVG are high resolution (1920 × 1080) datasets, and

the JCT-VC Classes C and D are with the resolution of

832×480 and 416×240, respectively. We compare our RLVC

approach with the latest learned video compression methods:

HLVC [12] (CVPR’20), Liu et al. [49] (AAAI’20), Habibian et

al. [48] (ICCV’19), DVC [9] (CVPR’19), Cheng et al. [10]

(CVPR’19) and Wu et al. [8] (ECCV’18). To compare with

the handcrafted video coding standard H.265 [4], we first

include the LDP very fast setting of x265 into comparison,

which is used as the anchor in previous learned compression

works [9], [12], [49]. We also compare our approach with

the LDP default, the default and the slowest settings of x265.

Moreover, the SSIM-tuned x265 is also compared with our

MS-SSIM model. The detailed configurations of x265 are

listed as follows:

• x265 (LDP very fast):

ffmpeg (input) -c:v libx265

-preset veryfast -tune zerolatency

-x265-params "crf=CRF:keyint=10"

output.mkv

• x265 (LDP default):

ffmpeg (input) -c:v libx265

-tune zerolatency

-x265-params "crf=CRF" output.mkv

• x265 (default):

ffmpeg (input) -c:v libx265

-x265-params "crf=CRF" output.mkv



8

• x265 (SSIM default):

ffmpeg (input) -c:v libx265 -tune ssim

-x265-params "crf=CRF" output.mkv

• x265 (slowest):

ffmpeg (input) -c:v libx265

-preset placebo1

-x265-params "crf=CRF" output.mkv

• x265 (SSIM slowest):

ffmpeg (input) -c:v libx265

-preset placebo -tune ssim

-x265-params "crf=CRF" output.mkv

In above settings, “(input)” is short for “-pix_fmt

yuv420p -s WidthxHeight -r Framerate -i

input.yuv”. CRF indicates the compression quality, and

lower CRF corresponds to higher quality. We set CRF = 15,

19, 23, 27 for the JCT-VC dataset, and set CRF = 7, 11, 15,

19, 23 for the UVG dataset.

Please refer to the Supporting Document for the experimen-

tal results on more datasets, such as the conversational video

dataset and the MCL-JCV [60] dataset.

B. Performance

Comparison with learned approaches. Fig. 6 illustrates

the rate-distortion curves of our RLVC approach in comparison

with previous learned video compression approaches on the

UVG and JCT-VC datasets. Among the compared approaches,

Liu et al. [49] and Habibian et al. [48] are optimized for

MS-SSIM. DVC [9] and Wu et al. [8] are optimized for

PSNR. HLVC [12] and Agustsson et al. [50] train two models

for MS-SSIM and PSNR, respectively. As we can see from

Fig. 6 (a) and (b), our MS-SSIM model performs competitively

to Agustsson et al. [50], and outperforms all other learned

approaches, including the state-of-the-art MS-SSIM optimized

approaches Liu et al. [49] (AAAI’20), HLVC [12] (CVPR’20)

and Habibian et al. [48] (ICCV’19). In terms of PSNR, Fig. 6

(c) and (d) indicate the superior performance of our PSNR

model to the PSNR optimized models Agustsson et al. [50],

HLVC [12] (CVPR’20), DVC [9] (CVPR’19) and Wu et al. [8]

(ECCV’18). It is worth pointing out that our RLVC approach

employs the same motion estimation network as HLVC [12]

and DVC [9], and applying the space-scale motion proposed

in [50] may further improve the performance of RLVC.

We further tabulate the Bjøntegaard Delta Bit-Rate

(BDBR) [61] results calculated by MS-SSIM and PSNR with

the anchor of x265 (LDP very fast) in Tables I and II,

respectively.2 Note that, BDBR calculates the average bit-rate

difference in comparison with the anchor. Lower BDBR value

indicates better performance, and negative BDBR indicates

saving bit-rate in comparison with the anchor, i.e., outperform-

ing the anchor. In Tables I and II, the bold numbers are the best

results in learned approaches. As Table I shows, in terms of

MS-SSIM, the proposed RLVC approach outperforms previous

learned approaches on all videos in the high resolution datasets

1Placebo is the slowest setting among the 10 speed levels in x265.
2Since [8], [49] do not release the result on each video, their BDBR values

cannot be obtained.

TABLE II
BDBR CALCULATED BY PSNR WITH THE ANCHOR OF X265 (LDP VERY

FAST). BOLD IS THE BEST RESULTS IN LEARNED APPROACHES.

Learned Non-learned

DVC HLVC RLVC x265 x265 x265
Video [9] [12] (Ours) LDP def. default slowest

Beauty −39.63 −48.48 −56.46 3.84 4.01 −2.41

Bosphorus 17.57 −23.16 −35.75 −4.06 −44.24 −47.72

HoneyBee 24.53 −26.63 −21.98 −48.55 −79.03 −80.69

Jockey 90.02 105.21 82.58 −9.62 −21.29 −28.96

ReadySetGo 9.03 26.69 0.03 −12.68 −39.76 −47.52

ShakeNDry −25.07 −26.88 −31.52 −21.58 −43.43 −50.68

YachtRide −14.19 −16.34 −31.30 −1.95 −19.47 −27.04

Ave. (UVG) 8.89 −1.37 −13.48 −13.51 −34.74 −40.72

BasketballDrive 35.24 13.21 4.40 −1.92 −20.70 −28.08

BQTerrace 2.28 −4.56 −20.12 −28.03 −60.29 −63.44

Cactus −5.19 −29.09 −34.71 −23.66 −48.60 −53.60

Kimono −10.79 −18.71 −34.40 −5.13 −15.41 −22.46

ParkScene −11.63 −19.59 −36.16 −7.73 −45.64 −51.89

Ave. (Class B) 1.98 −11.75 −24.20 −13.29 −38.13 −43.89

BasketballDrill 18.03 −3.67 −11.75 −21.41 −42.21 −50.16

BQMall 62.28 13.68 −0.32 −12.82 −35.31 −45.86

PartyScene 8.61 2.08 −18.03 −9.81 −42.35 −50.74

RaceHorses 14.61 19.25 11.43 −8.05 −20.53 −30.83

Ave. (Class C) 25.88 7.83 −4.67 −13.02 −35.10 −44.40

BasketballPass 42.34 −3.44 −19.16 −17.16 −28.73 −37.97

BlowingBubbles −12.15 −19.19 −31.67 −10.96 −38.53 −46.52

BQSquare 22.01 −19.10 −35.27 −16.59 −58.64 −68.40

RaceHorses 9.18 −8.55 −21.93 −7.90 −22.43 −37.74

Ave. (Class D) 15.34 −12.57 −27.01 −13.15 −37.08 −47.66

Ave. (all videos) 11.85 −4.36 −17.10 −13.29 −36.13 −43.64

UVG and JCT-VC Class B. In all the 20 test videos, we

achieve the best results in learned approaches on 18 videos,

and have the best average BDBR performance among all

learned approaches. Moreover, Table II shows that, in terms

of PSNR, our PSNR model has better performance than all

existing learned approaches on all test videos.

Note that, the latest HLVC [12] (CVPR’20) approach in-

troduces bi-directional prediction, hierarchical structure and

post-processing into learned video compression, while the

proposed RLVC approach only works in the uni-directional

IPPP model without post-processing (as shown in Fig. 2).

Nevertheless, our approach still achieves better performance

than HLVC [12], validating the effectiveness of our recurrent

compression framework with the proposed RAE and RPM

networks.

Comparison with x265. The rate-distortion curves com-

pared with different settings of x265 are demonstrated in

Fig. 7. As Fig. 7 (a) and (b) show, the proposed MS-SSIM

model outperforms x265 (LDP very fast), x265 (LDP default),

x265 (default) and x265 (SSIM default) on both the UVG

and JCT-VC datasets from low to high bit-rates. Besides, in

comparison with the slowest setting of x265, we also achieve

better performance on UVG and at high bit-rates on JCT-VC.

Moreover, at high bit-rates, we even have higher MS-SSIM

performance than the SSIM-tuned slowest setting of x265,

which can be seen as the best (MS-)SSIM performance that



9

x265     
0.1452 / 0.9677

Ours (MS-SSIM)
0.1367 / 0.9684

Raw
bpp / MS-SSIM

x265 
0.1377 / 33.69 dB / 0.9623

Ours (PSNR)
0.1233 / 33.29 dB / 0.9625

Raw
bpp / PSNR / MS-SSIM

x265    
0.0663 / 0.9551

Ours (MS-SSIM)
0.0619 / 0.9673

Raw
bpp / MS-SSIM

x265 
0.1951 / 29.49 dB / 0.9543

Ours (PSNR)
0.1780 / 29.17 dB / 0.9603

Raw
bpp / PSNR / MS-SSIM

Fig. 8. The visual results of the MS-SSIM and PSNR models of the proposed RLVC approach in comparison with the default setting of x265.

x265 is able to reach.

Similar conclusion can be obtained from the BDBR re-

sults calculated by MS-SSIM in Table I. That is, our RLVC

approach averagely reduces 43.78% bit-rate of the anchor

x265 (LDP very fast), and outperform x265 (LDP default),

x265 (default), x265 (SSIM default) and x265 (slowest). In

comparison with x265 (SSIM slowest), we achieve better

performance on 8 out of the 20 test videos. We also have better

average BDBR result than x265 (SSIM slowest) on JCT-VC

Class B, and reach almost the same average performance as

x265 (SSIM slowest) on JCT-VC Class D.

In terms of PSNR, Fig. 7 (c) and (d) show that our PSNR

model outperforms x265 (LDP very fast) from low to high

bit-rates on both the UVG and JCT-VC test sets. Besides,

we are superior to x265 (LDP default) at high bit-rates on

UVG and in a large of bit-rates on JCT-VC. The BDBR results

calculated by PSNR in Table II also indicate that our approach

achieves 17.10% less bit-rate than x265 (LDP very fast), and

reduces 3.81% more bit-rate than x265 (LDP default). We

do not outperform the default and the slowest settings of

TABLE III
COMPLEXITY (FPS) ON 240P VIDEOS.

DVC HLVC Habibian RLVC
[9] [12] [48] (Ours)

Encoding 23.3 28.8 31.3 15.9
Decoding 39.5 18.3 0.004 32.1

x265 on PSNR. However, x265 (default) and x265 (slowest)

apply advanced strategies in video compression, such as bi-

directional prediction and hierarchical frame structure, while

our approach only utilizes the uni-directional IPPP mode. Note

that, as far as we know, there is no learned video compression

approach beats the default setting of x265 in terms of PSNR.

The proposed RLVC approach advances the state-of-the-art

learned video compression performance and contributes to

catching up with the handcrafted standards step by step.

Visual results. The visual results of our MS-SSIM and

PSNR models are illustrated in Fig. 8, comparing with the



10

0.10 0.15 0.20 0.25 0.30
bpp

29

30

31

32

33

34
P
S
N
R

(d
B
)

BL+RAE+RPM (Proposed)

BL+RAE+hyperprior[34]

BL+RAE

BL+RD

BL+RE

Baseline (BL)

Fig. 9. Ablation results of PSNR (dB) on the JCT-VC dataset.

default setting of x265. It can be seen from Fig. 8 that our MS-

SSIM model reaches higher MS-SSIM with lower bit-rate than

x265, and produces the compressed frame with less blocky

artifacts. For our PSNR model, as discussed above, we do not

beat the default setting of x265 in terms of PSNR. However,

as Fig. 8 shows, our PSNR model also achieves less blocky

artifacts and less noise than x265, and is able to reach similar

or even higher MS-SSIM than the default setting of x265 in

some cases.

Computational complexity. We measure the complexity

of the learned approaches on one NVIDIA 1080Ti GPU.

The results in terms of frame per second (fps) are shown

in Table III. As Table III shows, due to the recurrent cells

in our auto-encoders and probability model, the superior

performance of our approach is at the cost of the higher

encoding complexity than previous approaches. Nevertheless,

we have faster decoding than [12], [48], and achieve the real-

time decoding on 240p videos with frame rate ≤ 30. Note that,

HLVC [12] adopts an enhancement network in the decoder

to improve compression quality, which increases decoding

complexity. Our RLVC approach (without enhancement) still

reaches higher compression performance than HLVC [12], and

also has faster decoding speed. Besides, the auto-regressive

(PixelCNN-like) probability model used in [48] leads to slow

decoding, while the proposed RPM network is more efficient.

C. Ablation studies

The ablation studies are conducted to verify the effective-

ness of each recurrent component in our approach. We define

the baseline (BL) as our framework without recurrent cells,

i.e., without recurrent cells in auto-encoders and replacing our

RPM network with the factorized spatial entropy model [33].

In the following, we enable the recurrent cell in the encoder

(BL+RE) and in the decoder (BL+RD), respectively. Then,

both of them are enabled, i.e., the proposed RAE network

(BL+RAE). Finally, our RPM network is further applied to

replace the spatial model [33] (BL+RAE+RPM, i.e., our full

model). Besides, we also compare our RPM network with the

hyperprior spatial entropy model [34].

The proposed RAE. As Fig. 9 shows, the rate-distortion

curves of BL+RE and BL+RD are both above the baseline.

I P P P P P P

Hidden states in 
ConvLSTM

Motion 
compensation

6-th P-frame

(a) The proposed RLVC with sequential prior

I P P P P P P

Hidden states in 
ConvLSTM

Motion 
compensation

6-th P-frame

× 

Reset 
hidden states

(b) Ablation study of one-frame prior

Fig. 10. The ablation study of (a) the proposed sequential prior and (b)
one-frame prior.

0.050 0.075 0.100 0.125 0.150 0.175 0.200
bpp

29

30

31

32

33

P
S
N
R

(d
B
)

Sequential prior (proposed)

One-frame prior

Fig. 11. The average performance of the 6-th P-frame in all GOPs of the JCT-
VC dataset. The two curves correspond to Fig. 10 (a) and (b), respectively.

This indicates that the recurrent encoder and the recurrent de-

coder are both able to improve the compression performance.

Moreover, combining them together in the proposed RAE,

the rate-distortion performance is further improved (shown as

BL+RAE). The probable reason is that, because of the dual

recurrent cells in both the encoder and decoder, it learns to en-

code the residual information between the current and previous

inputs, which reduces the information content represented by

each latent representation, and then the decoder reconstructs

the output based on the encoded residual and previous outputs.

This results in efficient compression.

The proposed RPM. It can be seen from Fig. 9 that the

proposed RPM (BL+RAE+RPM) significantly reduces the bit-

rate in comparison with BL+RAE, which uses the spatial

entropy model [33]. This proves the fact that at the same

compression quality, the temporally conditional cross entropy

is smaller than the independent cross entropy, i.e.,

Eyt∼pt
[− log2 qt(yt |y1, . . . ,yt−1)] < Eyt∼p[− log2 q(yt)].

Besides, Fig. 9 shows that our RPM network further out-

performs the hyperprior spatial entropy model [34], which

generates the side information zt to facilitate the compression



11

1 2 3 4 5 6
P-frame

30

31

32

P
S
N
R

(d
B
)

1 2 3 4 5 6
P-frame

0.05

0.07

0.09

0.11

b
p
p

(a) Change of PSNR (dB) and bpp at λ = 512

1 2 3 4 5 6
P-frame

31

32

33

34

P
S
N
R

(d
B
)

1 2 3 4 5 6
P-frame

0.08

0.10

0.12

0.14

b
p
p

(b) Change of PSNR (dB) and bpp at λ = 1024

Fig. 12. The changes of PSNR (dB) and bpp on consecutive P-frames at (a) λ = 512 and (b) λ = 1024.

of yt. This indicates that when compressing video at the same

quality, the temporally conditional cross entropy is smaller

than the spatial conditional cross entropy (with the overhead

cross entropy of zt), i.e.,

Eyt∼pt
[− log2 qt(yt |y1, . . . ,yt−1)]

< Eyt∼py|z
[− log2 qy|z(yt | zt)] + Ezt∼pz

[− log2 qz(zt)].

The proposed RPM has two benefits over [34]. First, our RPM

does not consume overhead bit-rate to compress the prior

information, while [34] has to compress zt into bit stream.

Second, our RPM uses the temporal prior of all previous latent

representations, while there is only one spatial prior zt in

[34] with much smaller size, i.e., 1

16
of yt. In conclusion,

these studies verify the benefits of applying temporal prior to

estimate the conditional probability qt(yt |y1, . . . ,yt−1) in a

recurrent manner.

Sequential prior vs. one-frame prior. Fig. 10 (a) shows

the recurrent framework of the proposed RLVC, in which the

hidden states are transferred through P-frames. This way, the

sequential prior can be utilized to compress the upcoming

P-frame, e.g., the 6-th P-frame. To show the advantage of

applying recurrent cells in RLVC, instead of only using the

prior of the intermediately previous frame, we conduct the

ablation to reset the hidden states to the initial state before

the 5-th P-frame (as shown in Fig. 10 (b)) and analyze

the decrease of compression performance on the 6-th frame.

Fig. 11 illustrates the performance of the 6-th frame in all

Group of Pictures (GOPs) of all videos in the JCT-VC test set.

It can be seen from Fig. 11 that only utilizing the one-frame

prior, i.e., resetting states before the 5-th P-frame, obviously

decreases the rate-distortion performance of the 6-th P-frame,

in comparison with using the sequential prior in our RLVC

approach. This validates the effectiveness and advantage of

the recurrent framework of RLVC.

Change of PSNR and bpp along consecutive P-frames.

Fig. 12 shows the change of PSNR (dB) and bit-rate along

sequential P-frames after the I-frame. The results are averaged

among all GOPs in the JCT-VC test set. It can be seen

from Fig. 12 that both PSNR and bit-rate decrease when the

distance from I-frame increases. This is probably because of

the combined effect of the richer prior transferred in recurrent

networks and the farther distance from I-frame. In terms of

PSNR, the decrease of quality on the frame which is used to

predict the next frame by motion compensation (refer to Fig. 2)

may lead to quality decrease of the next frame. However, given

more previous frames, the proposed Recurrent Auto-Encoder

(RAE) and Recurrent Probability Model (RPM) are both with

richer temporal prior. Therefore, the RAE learns to generate

more efficient latent representation and the RPM learns to

more accurately model the conditional probability function.

This way, the bit-rate drops along sequential P-frames.

D. Combining RPM with spatial probability models

It is worth pointing out that the proposed RPM network

is flexible to be combined with various spatial probability

models, e.g., [6], [7], [34]. As an example, we train a model

combining the proposed approach with the hyperprior spatial

probability model [34], which is illustrated in Fig. 13. This

combined model only slightly improves our approach, i.e.,

0.36% bit-rate reduction on the JCT-VC dataset. On the one

hand, such slight improvement indicates that due to the high

correlation among video frames, the previous latent represen-

tations are able to provide most of the useful information, and

the spatial prior, which leads to bit-rate overhead, is not very

helpful to further improve the performance. This validates the

effectiveness of our RPM network. On the other hand, it also

shows the flexibility of our RPM network to combine with

spatial probability models, e.g., replacing the spatial model in

Fig. 13 with [34], [6] or [7]3, and the possibility to further

advance the performance.

V. DISCUSSION

A. GOP structure

In this section, we first discuss the performance of our

approach when compressing video with different Group of

3Since [6], [7] do not release the training codes, we are not able to learn
the model combining RPM with [6], [7].



12

yt¡1yt¡1

Conv

Conv

ConvLSTM

Conv

Conv

ytyt

Hyper 

analysis

Hyper 

synthesis

ztzt

Concat

Conv

Conv

Bit stream

¹t¹t stst

qit(yitjy1;:::;yt¡1;zt)qit(yitjy1;:::;yt¡1;zt)

Adaptive arithmetic coding

Conv

Conv

ConvLSTM

Conv

Conv

Hyper 

analysis

Hyper 

synthesis

zt+1zt+1

Concat

Conv

Conv

Bit stream

¹t+1¹t+1 st+1st+1

qi;t+1(yi;t+1jy1;:::; yt;zt+1)qi;t+1(yi;t+1jy1;:::; yt;zt+1)

Adaptive arithmetic coding

yt+1yt+1

Spatial model Spatial model

Fig. 13. The probability model combining the proposed RPM with the spatial
hyperprior model [34].

Picture (GOP) structures. Fig. 14 shows two kinds of GOP

structures which are possible to be used for the proposed

RLVC approach. Fig. 14 (a) demonstrates a bi-directional

IPPP (bi-IPPP) structure, which reduces the longest distance

between I- and P-frames to suppress error propagation. Specif-

ically, N P-frames after the previous I-frame are compressed

recurrently by RLVC, then the next I-frame is compressed and

the M P-frames before it are recurrently compressed in the

reverse direction. This way, the GOP size equals to N+M+1.

Fig. 14 (b) shows the normal IPPP structure (uni-IPPP), which

compressed frames in the natural order.

Fig. 15 illustrates the rate-distortion curves of our RLVC

approach with various GOP structures on the JCT-VC dataset.

In Fig. 15, we first show the performance of GOP = 13
with bi-IPPP mode using N = M = 6. It achieves the best

performance, and this structure is used in the experiments in

Section IV. Moreover, Fig. 15 shows that when enlarging the

GOP size to 20 (bi-IPPP), the performance is still competitive

with GOP = 13 (bi-IPPP) with only slight degradation. Then,

we also analyze the uni-IPPP mode (dash lines) from small to

large GOP sizes, i.e., GOP = 10, 13 and 20. It can be seen

from Fig. 15 that the performance of the uni-IPPP mode are

very similar among different GOP sizes, which are lower than

the bi-IPPP mode by around 0.3 dB to 0.5 dB. Note that it

also happens to other traditional and learned video compres-

sion approaches that bi-directional prediction achieves better

performance than the uni-directional prediction. Also, the bi-

directional prediction is utilized in previous learned video

compression approaches, e.g., Wu et al. [8] and HLVC [12],

and we outperform [8], [12] as the results shown in Fig. 6.

In conclusion, the proposed RLVC approach is compatible

to various GOP sizes, and especially adjustable to GOP

= 20 (bi-IPPP) without obvious degradation of compression

performance.

I P P … P IPP

…

P P P …

N M

GOP

(a) The bi-directional IPPP structure (bi-IPPP)

I P PI P P P P P P…… …

GOP

(b) The uni-directional IPPP structure (uni-IPPP)

Fig. 14. Two kinds of GOP structures for our RLVC approach.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bpp

29

30

31

32

33

34

P
S
N
R

(d
B
)

GOP13 (bi-IPPP)

GOP20 (bi-IPPP)

GOP10 (uni-IPPP)

GOP13 (uni-IPPP)

GOP20 (uni-IPPP)

Fig. 15. The performance of different GOP structures on the JCT-VC dataset.

B. Error propagation

Learned video compression approaches usually suffer from

error propagation when the distance between I- and P-frames

increases. We analyzed the rate-distortion curves of 12 con-

secutive P-frames compressed by the proposed RLVC model.

Note that the length of 12 is twice as long as the training

samples (6 P-frames plus an I-frame). Fig. 16 shows the

average performance of different frames with the GOP =

13 (uni-IPPP) setting. The rate-distortion curves are averaged

among all GOPs in the JCT-VC dataset. In Fig. 16, frame

7 (the 6-th P-frame) and its previous frames are within the

training length of our models. It can be seen that after going

out of the training length, frames 11 and 13 indeed have lower

performance than frame 7, e.g., the PSNR drops around 0.5 dB

from frame 7 to frame 13. This indicates that error propagation

also exists in the proposed RLVC approach. However, the

performance on frame 13 is even better than frame 11 at low

bit-rates and maintains comparable performance with frame 11

at high bit-rates. A similar phenomenon can be observed from

frame 3 to frame 7, i.e., frame 7 achieves higher performance

at low bit-rates than frame 3. This is probably because the pro-

posed recurrent compression network contains richer temporal

prior when moving forwards frame-by-frame, thus facilitating

the compression of the frames which are farther from I-

frame. To a certain degree, this mechanism is able to combat



13

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
bpp

28

29

30

31

32

33

34
P
S
N
R

(d
B
)

Frame 3

Frame 7

Frame 11

Frame 13

Fig. 16. The average performance of different P-frames among all GOPs in
the JCT-VC dataset.

against the error propagation caused by the increasing distance

from I-frame. Therefore, as Fig. 15 shows, the compression

performance does not degrade obviously when enlarging the

GOP size.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a recurrent learned video com-

pression approach. Specifically, we proposed recurrent auto-

encoders to compress motion and residual, fully exploring the

temporal correlation in video frames. Then, we showed how

modeling the conditional probability in a recurrent manner

improves the coding efficiency. The proposed recurrent auto-

encoders and recurrent probability model significantly expands

the range of reference frames, which has not been achieved

in previous learned as well as handcrafted standards. The

experiments validate that the proposed approach outperforms

all previous learned approaches and the LDP default setting

of x265 in terms of both PSNR and MS-SSIM, and also

outperforms x265 (slowest) on MS-SSIM. The ablation studies

verify the effectiveness of each recurrent component in our

RLVC approach, and show the flexibility of the proposed RPM

network to combine with spatial probability models.

Moreover, the proposed method can inspire traditional

codecs, particularly the methods that integrate deep networks

in traditional codecs, to adopt recurrent networks to improve

their performance. For instance, Liu et al. [41] and Choi et

al. [42] improves the motion compensation of HEVC by

utilizing single deep network on each frame, and Li et al. [44],

[45] replace the in-loop of HEVC by non-recurrent deep

networks. These methods are possible to be advanced by

employing the recurrent networks (similar to the proposed

approach) to further improve the traditional codecs, such as

HEVC.

In this paper, the recurrent framework of the proposed

approach still relies on the warping operation and motion com-

pensation to reduce the temporal redundancy. Therefore, it is a

promising future work to eliminate the dependency on optical-

flow-based motion detection, and learn a fully recurrent net-

work or adopt an attention mechanism (e.g., transformer [62]

based) for learned video compression. Besides, the proposed

approach achieves superior performance at the cost of higher

encoding complexity. Another future work is to study reducing

complexity and the trade-off between complexity and rate-

distortion performance. For example, the proposed network

may be sped up by reducing the layer number and channel

numbers in the auto-encoders and the motion compensation

network, or by utilizing a more time-efficient optical flow

network for motion prediction.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile
data traffic forecast update, 2017-2022 white paper,”
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-738429.html.

[2] D. J. Le Gall, “The MPEG video compression algorithm,” Signal

Processing: Image Communication, vol. 4, no. 2, pp. 129–140, 1992.
[3] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of

the H.264/AVC video coding standard,” IEEE Transactions on circuits

and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.
[4] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of

the high efficiency video coding (HEVC) standard,” IEEE Transactions

on circuits and systems for video technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[5] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and
hierarchical priors for learned image compression,” in Advances in

Neural Information Processing Systems (NeurIPS), 2018, pp. 10 771–
10 780.

[6] J. Lee, S. Cho, and S.-K. Beack, “Context-adaptive entropy model
for end-to-end optimized image compression,” in Proceedings of the

International Conference on Learning Representations (ICLR), 2019.
[7] Y. Hu, W. Yang, and J. Liu, “Coarse-to-fine hyper-prior modeling for

learned image compression,” in Proceedings of the AAAI Conference on

Artificial Intelligence, 2020.
[8] C.-Y. Wu, N. Singhal, and P. Krahenbuhl, “Video compression through

image interpolation,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 416–431.
[9] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An

end-to-end deep video compression framework,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 11 006–11 015.

[10] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learning image and
video compression through spatial-temporal energy compaction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2019, pp. 10 071–10 080.
[11] A. Djelouah, J. Campos, S. Schaub-Meyer, and C. Schroers, “Neural

inter-frame compression for video coding,” in Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2019, pp. 6421–
6429.

[12] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, “Learning for video
compression with hierarchical quality and recurrent enhancement,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020.
[13] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description

length and helmholtz free energy,” in Advances in neural information

processing systems, 1994, pp. 3–10.
[14] K. Cho, “Simple sparsification improves sparse denoising autoencoders

in denoising highly corrupted images,” in Proceedings of the Interna-

tional Conference on Machine Learning (ICML), 2013, pp. 432–440.
[15] L. Gondara, “Medical image denoising using convolutional denoising

autoencoders,” in 2016 IEEE 16th International Conference on Data

Mining Workshops (ICDMW). IEEE, 2016, pp. 241–246.
[16] K. G. Lore, A. Akintayo, and S. Sarkar, “Llnet: A deep autoencoder

approach to natural low-light image enhancement,” Pattern Recognition,
vol. 61, pp. 650–662, 2017.

[17] S. Park, S. Yu, M. Kim, K. Park, and J. Paik, “Dual autoencoder network
for retinex-based low-light image enhancement,” IEEE Access, vol. 6,
pp. 22 084–22 093, 2018.

[18] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, “Coupled deep autoencoder
for single image super-resolution,” IEEE transactions on cybernetics,
vol. 47, no. 1, pp. 27–37, 2015.

[19] R. Wang and D. Tao, “Non-local auto-encoder with collaborative stabi-
lization for image restoration,” IEEE Transactions on Image Processing,
vol. 25, no. 5, pp. 2117–2129, 2016.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html


14

[20] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” 2016.

[21] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual

conference of the international speech communication association, 2010.
[22] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Explor-

ing the limits of language modeling,” arXiv preprint arXiv:1602.02410,
2016.

[23] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 2625–2634.

[24] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” in Proceedings

of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2014, pp. 1724–1734.
[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in neural information processing

systems, 2014, pp. 3104–3112.
[26] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A

neural image caption generator,” in Proceedings of the IEEE conference

on computer vision and pattern recognition (CVPR), 2015, pp. 3156–
3164.

[27] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-
ing of video representations using LSTMs,” in Proceedings of the

International Conference on Machine Learning (ICML), 2015, pp. 843–
852.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[29] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,

S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compres-
sion with recurrent neural networks,” in Proceedings of the International

Conference on Learning Representations (ICLR), 2016.
[30] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor,

and M. Covell, “Full resolution image compression with recurrent neural
networks,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 5306–5314.
[31] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte,

L. Benini, and L. V. Gool, “Soft-to-hard vector quantization for end-
to-end learning compressible representations,” in Advances in Neural

Information Processing Systems (NeurIPS), 2017, pp. 1141–1151.
[32] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image

compression with compressive autoencoders,” in Proceedings of the

International Conference on Learning Representations (ICLR), 2017.
[33] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized

image compression,” in Proceedings of the International Conference on

Learning Representations (ICLR), 2017.
[34] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational

image compression with a scale hyperprior,” in Proceedings of the

International Conference on Learning Representations (ICLR), 2018.
[35] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,

“Conditional probability models for deep image compression,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018, pp. 4394–4402.
[36] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional

networks for content-weighted image compression,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018, pp. 3214–3223.
[37] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen,

S. Jin Hwang, J. Shor, and G. Toderici, “Improved lossy image compres-
sion with priming and spatially adaptive bit rates for recurrent networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018, pp. 4385–4393.
[38] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still

image compression standard,” IEEE Signal processing magazine, vol. 18,
no. 5, pp. 36–58, 2001.

[39] F. Bellard, “BPG image format,” https://bellard.org/bpg/.
[40] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing

complexity of HEVC: A deep learning approach,” IEEE Transactions

on Image Processing, vol. 27, no. 10, pp. 5044–5059, 2018.
[41] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-all: Grouped

variation network-based fractional interpolation in video coding,” IEEE

Transactions on Image Processing, vol. 28, no. 5, pp. 2140–2151, 2018.
[42] H. Choi and I. V. Bajić, “Deep frame prediction for video coding,” IEEE

Transactions on Circuits and Systems for Video Technology, 2019.

[43] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach
for post-processing in HEVC intra coding,” in Proceedings of the

International Conference on Multimedia Modeling (MMM). Springer,
2017, pp. 28–39.

[44] T. Li, M. Xu, R. Yang, and X. Tao, “A DenseNet based approach
for multi-frame in-loop filter in HEVC,” in Proceedings of the Data

Compression Conference (DCC). IEEE, 2019, pp. 270–279.
[45] T. Li, M. Xu, C. Zhu, R. Yang, Z. Wang, and Z. Guan, “A deep learning

approach for multi-frame in-loop filter of HEVC,” IEEE Transactions

on Image Processing, 2019.
[46] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma, “DeepCoder: A

deep neural network based video compression,” in Proceedings of the

IEEE Visual Communications and Image Processing (VCIP). IEEE,
2017, pp. 1–4.

[47] Z. Chen, T. He, X. Jin, and F. Wu, “Learning for video compression,”
IEEE Transactions on Circuits and Systems for Video Technology, 2019.

[48] A. Habibian, T. van Rozendaal, J. M. Tomczak, and T. S. Cohen, “Video
compression with rate-distortion autoencoders,” in Proceedings of the

IEEE International Conference of Computer Vision (ICCV), 2019.
[49] H. Liu, L. Huang, M. Lu, T. Chen, and Z. Ma, “Learned video compres-

sion via joint spatial-temporal correlation exploration,” in Proceedings

of the AAAI Conference on Artificial Intelligence, 2020.
[50] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang, and

G. Toderici, “Scale-space flow for end-to-end optimized video compres-
sion,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2020, pp. 8503–8512.
[51] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves

et al., “Conditional image generation with pixelcnn decoders,” in Ad-

vances in neural information processing systems, 2016, pp. 4790–4798.
[52] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial

pyramid network,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 4161–4170.
[53] G. G. Langdon, “An introduction to arithmetic coding,” IBM Journal of

Research and Development, vol. 28, no. 2, pp. 135–149, 1984.
[54] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-

c. Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Advances in neural information processing

systems, 2015, pp. 802–810.
[55] N. Balakrishnan, Handbook of the logistic distribution. CRC Press,

1991.
[56] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhance-

ment with task-oriented flow,” International Journal of Computer Vision,
vol. 127, no. 8, pp. 1106–1125, 2019.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-

tations (ICLR), 2015.
[58] F. Bossen, “Common test conditions and software reference configura-

tions,” JCTVC-L1100, vol. 12, 2013.
[59] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K

sequences for video codec analysis and development,” in Proceedings

of the 11th ACM Multimedia Systems Conference, 2020, pp. 297–302.
[60] H. Wang, W. Gan, S. Hu, J. Y. Lin, L. Jin, L. Song, P. Wang,

I. Katsavounidis, A. Aaron, and C.-C. J. Kuo, “MCL-JCV: a JND-based
H.264/AVC video quality assessment dataset,” in Proceedings of the

IEEE International Conference on Image Processing (ICIP). IEEE,
2016, pp. 1509–1513.

[61] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” VCEG-M33, 2001.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998–
6008.

https://bellard.org/bpg/


15

Ren Yang is a doctoral student at ETH Zurich,
Switzerland. He received M.Sc. degree in 2019 at the
School of Electronic and Information Engineering,
Beihang University, China, and obtained the B.Sc.
degree at Beihang University in 2016. His research
interests mainly include computer vision and video
compression. He has published several papers in top
international journals and conference proceedings,
such as IEEE TPAMI, IEEE TIP, IEEE TCSVT,
CVPR, ICCV and ICME. He serves as a reviewer for
top conferences and journals, such as ECCV, IEEE

TIP, IEEE TCSVT, IEEE TMM and Elsevier’s SPIC and NEUCOM. He is
the winner of the Three Minute Competition at IEEE ICME 2019.

Fabian Mentzer is a doctoral student of the Com-
puter Vision Laboratory (CVL) at ETH Zurich,
Switzerland. He received his M.Sc. degree in Elec-
trical Engineering and Information Technology from
ETH Zurich in 2016, and received his B.Sc. degree
from ETH Zurich in 2014. His current research inter-
ests include deep learning, learned lossy and lossless
image compression, and learned video compression.
He has published several papers in top international
conferences, such as CVPR, ICCV and NeurIPS. He
regularly serves as a reviewer for top conferences

such as CVPR, ICCV, ECCV, and NeurIPS. He is a co-organizer of the CLIC
workshop at CVPR.

Luc Van Gool received the degree in electrome-
chanical engineering at the Katholieke Universiteit
Leuven, in 1981. Currently, he is a professor at
the Katholieke Universiteit Leuven in Belgium and
the ETH in Zurich, Switzerland. He leads com-
puter vision research at both places, where he also
teaches computer vision. He has been a program
committee member of several major computer vision
conferences. His main interests include 3D recon-
struction and modeling, object recognition, tracking,
and gesture analysis, and the combination of those.

He received several Best Paper awards and was nominated Distinguished
Researcher by the IEEE Computer Science committee. He is a co-founder
of 10 spin-off companies. He is a member of the IEEE.

Radu Timofte received his PhD degree in Electrical
Engineering from the KU Leuven, in 2013. He is
currently a lecturer and a group leader at ETH
Zurich, Switzerland. He is a member of the editorial
board of top journals such as IEEE TPAMI, Else-
vier’s CVIU and NEUCOM, and SIAM’s SIIMS.
He regularly serves as a reviewer and as an area
chair for top conferences such as CVPR, ICCV,
IJCAI, and ECCV. His work received several awards.
He is a co-founder of Merantix and a co-organizer
of NTIRE, CLIC, AIM, and PIRM workshops and

challenges. His current research interests include deep learning, implicit
models, compression, image restoration and enhancement.



1

Learning for Video Compression with Recurrent Auto-Encoder and

Recurrent Probability Model

– Supporting Document –

A. Performance on conversational video

To validate the generalization ability of the proposed approach, we test our approach on JCT-VC Class E, which is a

conversational video dataset. It can be seen from Fig. 17 (a) and (b) that our RLVC approach outperforms the learned

approaches DVC [9] and Liu et al. [49] in terms of both MS-SSIM and PSNR.4 Fig. 17 (c) shows that our MS-SSIM model

outperforms x265 (LDP default) and x265 (LDP very fast) for all bit-rates. We further outperform all other settings (including

the SSIM-tuned slowest setting) of x265 at medium and high bit-rates in terms of MS-SSIM, and we are comparable with

them at low bit-rates. In terms of PSNR, Fig. 17 (d) shows that our PSNR model is better than x265 (LDP veryfast), and

outperforms x265 (LDP default) when bpp > 0.05. The same as on UVG and JCT-VC Classes B, C and D, we do not

outperform x265 (default) and x265 (slowest) on JCT-VC Class E in terms of PSNR. Recall that, x265 (default) and x265

(slowest) use bi-directional prediction and hierarchical frame structure, but only the uni-directional IPPP mode is applied in

our approach.

0.05 0.10 0.15 0.20 0.25
bpp

0.980

0.985

0.990

(a) MS-SSIM on Class E (learned approaches)

Our MS-SSIM model

Liu et al . (AAAI’20)

HLVC (CVPR’20)

DVC (CVPR’19)

0.05 0.10 0.15 0.20
bpp

35

36

37

38

39

40

(b) PSNR (dB) on Class E (learned approaches)

Our PSNR model

DVC (CVPR’19)

0.05 0.10 0.15 0.20 0.25
bpp

0.980

0.985

0.990

(c) MS-SSIM on Class E (compared with x265)

Our MS-SSIM model

x265 (SSIM slowest)

x265 (slowest)

x265 (SSIM default)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

0.05 0.10 0.15 0.20
bpp

35

36

37

38

39

40

(d) PSNR (dB) on Class E (compared with x265)

Our PSNR model

x265 (slowest)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

Fig. 17. The rate-distortion performance on JCT-VC Class E in comparison with learned approaches and the different settings of x265.

B. Performance on the MCL-JCV dataset

Fig. 18 demonstrates the rate-distortion performance on the MCL-JCV dataset5, which contains 30 videos with the resolution

of 1920× 1080. As Fig. 18 shows, the proposed MS-SSIM model outperforms the LDP default and the LDP very fast settings

of x265, and also outperforms x265 (default), x265 (SSIM default), x265 (slowest) and x265 (SSIM slowest) at high bit-rates.

4Other learned approaches are not tested on JCT-VC Class E, and the MS-SSIM optimized approach Liu et al. [49] does not have results on PSNR.
5The MCL-JCV dataset is available at http://mcl.usc.edu/mcl-jcv-dataset/.

http://mcl.usc.edu/mcl-jcv-dataset/.


2

0.05 0.10 0.15 0.20 0.25 0.30 0.35
bpp

0.960

0.965

0.970

0.975

0.980

0.985

0.990
(a) MS-SSIM on MCL-JCV

Our MS-SSIM model

x265 (SSIM slowest)

x265 (slowest)

x265 (SSIM default)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

0.05 0.10 0.15 0.20 0.25
bpp

33.5

34.5

35.5

36.5

37.5

(b) PSNR (dB) on MCL-JCV

Our PSNR model

Djelouah et al . (ICCV’19)

x265 (slowest)

x265 (default)

x265 (LDP default)

x265 (LDP very fast)

Fig. 18. The rate-distortion performance on the MCL-JCV dataset. The learned approaches are shown in solid lines and x265 is shown in dash lines.

Our MS-SSIM model is comparable with x265 (default) at low bit-rates in terms of MS-SSIM. In terms of PSNR, the proposed

PSNR model achieves better performance than the learned video compression approach Djelouah et al. [11] (ICCV’19). Note

that Djelouah et al. [11] compresses video frame with bi-directional prediction, while the proposed approach only works in the

IPPP mode. This proves the superior performance of the proposed recurrent video compression approach. Fig. 18 also indicates

that we are comparable with x265 (LDP very fast) on PSNR when bpp > 0.1, and even better than x265 (LDP default) at

bpp = 0.2. The same as on other datasets, out PSNR model do not reach better performance than x265 (default) and x265

(slowest), which adopts complicated frame structure and coding strategies.




