
Learning Force Control Policies for Compliant Manipulation

Mrinal Kalakrishnan∗, Ludovic Righetti∗, Peter Pastor∗, and Stefan Schaal∗†

Abstract— Developing robots capable of fine manipulation
skills is of major importance in order to build truly assistive
robots. These robots need to be compliant in their actuation
and control in order to operate safely in human environments.
Manipulation tasks imply complex contact interactions with
the external world, and involve reasoning about the forces and
torques to be applied. Planning under contact conditions is
usually impractical due to computational complexity, and a lack
of precise dynamics models of the environment. We present an
approach to acquiring manipulation skills on compliant robots
through reinforcement learning. The initial position control
policy for manipulation is initialized through kinesthetic demon-
stration. We augment this policy with a force/torque profile
to be controlled in combination with the position trajectories.
We use the Policy Improvement with Path Integrals (PI2)
algorithm to learn these force/torque profiles by optimizing a
cost function that measures task success. We demonstrate our
approach on the Barrett WAM robot arm equipped with a 6-
DOF force/torque sensor on two different manipulation tasks:
opening a door with a lever door handle, and picking up a
pen off the table. We show that the learnt force control policies
allow successful, robust execution of the tasks.

I. INTRODUCTION

Developing robots capable of fine manipulation skills is

of major importance in order to build truly assistive robots.

Manipulation tasks imply complex contact interactions with

an unstructured environment and require a controller that is

able to handle force interactions in a meaningful way. In

order for robots to co-exist in an environment with humans,

safety is a prime consideration. Therefore, touching and

manipulating an unstructured world requires a certain level

of compliance while achieving the intended tasks accurately.
Methods for planning kinematic trajectories for manipula-

tors are well-studied and widely used. Rigid body dynamics

models even allow us to plan trajectories that take the robot

dynamics into account. However, once the robot comes into

contact with the environment, planning algorithms would

require precise dynamics models of the resulting contact

interactions. These models are usually unavailable, or so im-

precise that the generated plans are unusable. This seems to

suggest alternate solutions that can learn these manipulation

skills through trial and error.
Acquisition of manipulation skills using reinforcement

learning has been previously demonstrated [1], [2], [3],

[4], [5]. In most of these approaches, the policy encodes

positions which are tracked by a controller. These position

∗Computational Learning and Motor Control Lab, University of Southern
California, Los Angeles, CA 90089, USA. †Max-Planck-Institute for Intelli-
gent Systems, 72076 Tübingen, Germany. Email: {kalakris, pastorsa,
sschaal}@usc.edu, ludovic.righetti@a3.epfl.ch

This research was supported in part by National Science Founda-
tion grants ECS-0326095, IIS-0535282, IIS-1017134, CNS-0619937, IIS-
0917318, CBET-0922784, EECS-0926052, CNS-0960061, the DARPA pro-
gram on Advanced Robotic Manipulation, the Army Research Office, the
Okawa Foundation, and the ATR Computational Neuroscience Laboratories.

(a) (b)

Fig. 1. Force control policies for two different manipulation tasks were
learnt using our method: (a) opening a door, and (b) picking up a pen from
the table.

trajectories are adapted in order to achieve the task, thus

indirectly exerting forces on the objects being manipulated.

A desired position trajectory must penetrate into the object

being manipulated, in order to apply a force on it. This

can potentially be dangerous, for example, if the object is

wrongly positioned, and the resulting forces generated are

too high. In contrast, we propose to learn the forces and

torques to be controlled at the end-effector in conjuction with

a demonstrated kinematic trajectory. This corresponds more

directly to the physical quantities that need to be controlled.

Control of forces instead of positions allows the system

to deal with position and state estimation errors that are

unavoidable when acting in the real world. Furthermore, in

tasks that involve contact with the environment, exploration

in high gain position control mode could be damaging to the

robot and its surroundings.

Methods for learning force profiles from demonstrations

provided via haptic input have been proposed [6]. The

method does not explicitly consider task performance: it

merely reproduces the demonstrated trajectories. In the con-

text of our work, such techniques could be used to initialize

a force profile for futher optimization to improve task per-

formance.

In this paper, we present an approach to learning ma-

nipulation tasks on compliant robots through reinforcement

learning. An initial kinesthetic demonstration of the task is

provided. Execution of this demonstration on a robot with

compliant control fails to execute the task succesfully, be-

cause the demonstration does not include information about

forces to be exerted at the end-effector. We propose to learn

the required end-effector forces through trial and error rein-

forcement learning. This allows the robot to acquire a robust

strategy to perform the manipulation task, while remaining

compliant in its control. We demonstrate our approach on

two different manipulation tasks: opening a door with a lever

door handle, and picking up a pen off the table (Fig. 1). We

show that our approach can learn the force profiles required

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 4639

to achieve both tasks successfully. The contributions of this

paper are two-fold: (1) we demonstrate that learning force

control policies enables compliant execution of manipulation

tasks with increased robustness as opposed to stiff position

control, and (2) we introduce a policy parameterization

that uses finely discretized trajectories coupled with a cost

function that ensures smoothness during exploration and

learning. The remainder of this paper is structured as follows:

in Section II, we review the Policy Improvement with Path

Integrals (PI2) algorithm [7], and describe how it can used

to optimize desired trajectories subject to certain smoothness

constraints. We then discuss the application of PI2 to learning

force control policies in Section III. In Section IV, we show

experimental results from the application of these ideas to

two different manipulation tasks. Finally, we conclude and

present ideas for future work in Section V.

II. POLICY IMPROVEMENT WITH PATH INTEGRALS (PI2)

We first review the application of the path integral

stochastic optimal control framework to the optimization

of parameterized policies, specifically Dynamic Movement

Primitives [8], as was originally developed [7]. We then apply

these results to a policy which encodes discretized desired

trajectories directly, subject to a smoothness cost.

A. PI2 with Dynamic Movement Primitives

PI2 is a model-free reinforcement learning method that

optimizes the parameters of a policy to minimize a given cost

function. We merely introduce the notation and the algorithm

here; detailed derivations may be found in [7].
We consider control systems of the following form:

ẋt = f(xt, t) +G(xt)(ut + ǫt), (1)

where xt ∈ R
n denotes the state of the system at time t,

ut ∈ R
p the control vector at time t, f(xt, t) the passive

dynamics, G(xt) the control transition matrix, and ǫt ∈
R

p Gaussian noise with variance Σǫ. The immediate cost

function is defined as:

rt = qx(x, t) +
1

2
uT

tRut, (2)

where qx(x, t) is an arbitrary state-dependent cost function,

and R ∈ R
p×p is the positive definite weight matrix of the

quadratic control cost. The cost of a trajectory τ of fixed

duration T , discretized into N time-steps is then defined as:

S(τ) =

N−1
∑

i=1

rti + φtN , (3)

where φtN is a terminal cost assigned at time tN . The

parameterized policy to be optimized is of the form of the

control system (1), with only one controlled equation and a

one-dimensional controllable state:

ẋt = f(xt, t) + gT

t (θ + ǫt), (4)

where xt is the one-dimensional state, gt ∈ R
p are time-

dependent basis functions, and θ ∈ R
p is the policy parame-

ter vector. Dynamic Movement Primitives (DMPs) [8] are a

special case of such a parameterized policy which guarantee

attractor properties towards the goal of the movement while

remaining linear in the policy parameters θ.

The pseudocode for one iteration of the PI2 algorithm for

optimizing the policy parameters θ is listed below:

• Create K roll-outs of the system τ 1 . . . τK from the

same start state x0 using stochastic parameters θ + ǫt

at every time step.

• For k = 1 . . .K, and time-steps i = 1 . . . N , compute:

Mti =
R−1gtig

T
ti

gT
ti
R−1gti

(5)

S(τ i,k) = φtN ,k +

N−1
∑

j=i

qtj ,k+

1

2

N−1
∑

j=i

(θ +Mtjǫtj)
TR(θ +Mtjǫtj) (6)

P (τ i) =
e−

1

λ
S(τ i,k)

∑K

j=1 e
−

1

λ
S(τ i,j)

(7)

• For time-steps i = 1 . . . N , compute:

δθti =
K
∑

k=1

P (τ i,k)Mti,kǫti,k (8)

• Compute δθ = 1
N

∑N−1
i=0 δθti

• Update θ ← θ + δθ

Mti is a matrix that projects the noise ǫti onto the range

space of the basis vector gti under the metric R−1, at time

ti. P (τ i) is a discrete probability assigned to the sampled

trajectory τ i based on its cost: the lower the cost, the

higher the probability. δθti is the vector of parameter updates

computed at time ti, which is a weighted combination of

the noise ǫti projected onto Mti . δθ is the final parameter

update, computed as the average of updates for each time

step. This algorithm is iterated until convergence of the

noise-less trajectory cost.

B. PI2 with discretized trajectories

In this paper, we apply PI2 to the optimization of a

parameterized policy whose parameters represent the trajec-

tory states discretized in time. Most policy representations,

including DMPs involve the use of basis functions in order

to reduce the parameter space, and achieve smoothness in

the resulting trajectories. This requires apriori selection of

the number of basis functions, which in turn influences

the complexity of the trajectory that can be learnt. We

propose to instead represent trajectories by finely discretizing

them, and control their complexity using a smoothness cost

function imposed over the entire trajectory. While this is

not the primary focus of this paper, it is nevertheless a

novel component, and is potentially useful for other learning

applications.
The main challenge with using a finely discretized tra-

jectory representation is that adding noise directly to this

trajectory would make the resulting trajectory jerky and dif-

ficult to execute on a real robot. To address this problem, we

impose a control cost on the trajectory (via the quadratic cost

matrix R) that measures its squared derivatives (velocities,

accelerations and jerk). The PI2 algorithm relies on the

central assumption [7] that the noise ǫ in the parameters

is proportional to R−1. Conversely, it imposes restrictions

4640

(a) (b)

Fig. 2. (a) Each curve depicts a column/row of the symmetric matrix R
−1,

when R measures the sum of squared accelerations along the trajectory. (b)
20 random samples of ǫ, drawn from a zero mean normal distribution with
covariance Σǫ = R

−1.

on the generation of exploration noise, such that the noise

minimally impacts the control cost. In our case, this allows

generation of exploration trajectories that are smooth. The

structure of the R−1 matrix ensures that the trajectory does

not diverge from the start or goal. Finally, the projection step

in the PI2 update equation (Eq. (8)) maintains smoothness

at every iteration.
We assume a desired trajectory of duration T , discretized

into N timesteps, represented by θ ∈ R
N . These discretized

waypoints can be tracked with the following controller:

ẋt = K (gT

t (θ + ǫ)− xt) , (9)

where xt is the desired state at time t, K is a control gain,

and gt ∈ R
N is a vector that contains 1 at position t and

0 at all other indices. This system, with a sufficiently high

gain K, ensures that the state x tracks the desired trajectory

θ over time. This control system is of the same form as

Eq. (4), allowing PI2 to optimize the parameter vector θ.
Next, we choose the quadratic control cost matrix R such

that the control cost θ
TRθ measures the sum of squared

derivatives along the entire trajectory. Similar to previous

work on optimization-based motion planning [9], [10], we

define R using finite differencing matrices A1 . . .AD:

R =

D
∑

d=1

wd‖Ad‖
2, (10)

where d is the order of differentiation, and wd is the weight

of each term in the cost function. In our experiments, we

choose to minimize squared accelerations, i.e., w2 = 1, and

all other weights are 0. The corresponding finite differencing

matrix A2 is of the form:

A2 =





















1 0 0 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 0 0 0

...
. . .

...

0 0 0 1 −2 1
0 0 0 · · · 0 1 −2
0 0 0 0 0 1





















(11)

Note that R is always both symmetric and positive definite

when constructed in this fashion.
This particular choice of the R matrix exhibits a few

interesting properties. Fig. 2(a) shows the structure of R−1.

Fig. 2(b) shows samples of the noise ǫ, drawn from the

distribution N (0,R−1). The covariant structure of the noise

Initial Policy

Kinematic demonstration

+

Zero forces/torques

Fig. 3. A high-level overview of our approach to learning force control
policies for manipulation.

makes exploration in discrete trajectory space possible, since

these samples can be executed without trouble on a real

system. Since our policy parameter vector θ is constant over

time, we also sample the noise ǫ just once and keep it fixed

over the entire trajectory. If the noise were resampled at every

time-step, it would lose its covariant property. Additionally,

the noise samples do not cause the trajectory to diverge from

the start or goal, which is a property that facilitates learning

of point to point movements [11]. The level of discretization

used does not affect convergence rates, since exploration and

learning is performed covariantly across the entire trajectory,

not independently for each parameter. If adaptation of the

start or goal point is required, the construction of the finite

differencing matrices can be suitably adapted to treat the start

or goal point as a variable instead of a constant [12]. This

representation thus affords a significant amount of flexibility

to adapt the learning process to the problem at hand.

The PI2 update equations are the same as in the case

of the DMPs, with the sparse nature of gt allowing for

some simplifications. These update equations are strikingly

similar to those used in STOMP [10], a stochastic trajectory

optimizer used for kinematic motion planning, although

derived differently. There is, however, one key difference:

the planning problems considered by STOMP contain no

dynamics, hence it optimizes the immediate cost at every

time-step. For reinforcement learning on a dynamical system,

an action at time t influences all future costs, and hence

requires optimization of the cost-to-go (computed in Eq. (6).)

III. LEARNING FORCE FEEDBACK CONTROL

Fig. 3 shows a high-level overview of our approach to

learning manipulation tasks on a compliant robot. The policy

is initialized from a user-provided kinematic demonstration.

The PI2 reinforcement learning algorithm is used to optimize

the policy and acquire the right force/torque profiles through

trial and error. We further discuss some of the steps involved:

A. Demonstration

We record the end-effector position and orientation trajec-

tories during a kinesthetic demonstration of the task provided

by the user. Since forces and torques applied by the robot on

the object being manipulated cannot be observed correctly

during kinesthetic demonstration, the force-torque profiles

are initialized to zero. When controlling zero forces, the

robot is maximally compliant, i.e., the end-effector gives

in to contact forces easily. This forms a safe starting point

4641

for exploration, and ensures that only the forces required to

satisfy the task are learnt. We use the discretized policy rep-

resentation discussed in Sec. II-B, Eq. (9) for both position

and force trajectories.

B. Cost Function

In order to acquire the correct force/torque profiles, the

reinforcement learning algorithm requires a measure of task

success for every trial that it executes. This feedback could

be provided by the user for every trial, but it is more

convenient if task success can be evaluated in an automated

fashion. PI2 has previously been used to optimize boolean

cost functions [3], but learning tends to be faster if the cost

function has a gradient to follow.

C. Execution

The combined position/force trajectory needs to be con-

trolled by the robot in a suitable way. Numerous methods can

be found in the literature that control forces and positions

simultaneously [13]. PI2, being a model-free reinforcement

learning algorithm, is indeed agnostic to the type of con-

troller used. It simply optimizes the policy parameters to

improve the resulting cost function, treating the intermediate

controllers and unmodeled system dynamics as a black box.

However, the generalization ability of the learnt policy to

different parts of the workspace will depend on the force

and position tracking performance of the controller.

D. Rollout reuse

In every iteration of PI2, K noisy rollouts are generated,

evaluated, and used to update the policy. We instead prefer

to preserve a few good rollouts from previous iterations, so

that we continue to learn from them in future iterations,

and achieve stable convergence. However, if the task itself

is stochastic in nature, this procedure may be counter-

productive. For example, if a noisy rollout happens to achieve

a low cost during its evaluation, but is not repeatable, it

nevertheless continues to contribute to future policy updates.

In order to mitigate this effect, we reevaluate all the reused

rollouts at every iteration. This ensures that only rollouts that

consistently generate low costs are carried forward at each

iteration. This feature was critical for PI2 to converge to a

robust policy in the pen grasping experiment presented in

Sec. IV-B.

IV. EXPERIMENTS

Our approach was verified using two different manipula-

tion tasks: opening a door and picking up a pen lying on a

table. These tasks were chosen because each one involves

significant contact with the environment, and are thus ap-

propriate test-beds for the use of force control policies. The

learning process and final executions of both tasks are shown

in the attached video [14].
Both tasks were performed on the 7 degree of freedom

(DOF) Barrett WAM arm, equipped with a three-fingered

Barrett Hand and a 6-DOF force-torque sensor at the wrist.

Fig. 4 shows an overview of the controllers running on our

system. Our control law for the 7-DOF arm is as follows:

τ arm = τ inv. dyn. + τ joint + τ force

Desired task-space position/orientation trajectories are con-

+

Endeffector

Force/Torque

 PI Control

Finger

Low Gain

PD Control
Inverse

Dynamics
Low Gain

PD Control

WAM Robot

Inverse

Kinematics

Desired Cartesian

Position Trajectories
Desired Finger

Position Trajectories

Desired Cartesian

Force/Torque Trajectories

Fig. 4. Overview of the controllers used in our experiments.

verted into joint space using the Jacobian pseudo-inverse.

The resulting joint velocities are integrated and differenti-

ated, to get joint positions and accelerations respectively.

τ inv.dyn. are the inverse dynamics torques obtained from a

recursive Newton Euler algorithm [15]. τ joint is obtained

from low-gain joint PD controllers. Finally, τ force is obtained

from a PI controller in task space on the desired force/torque

trajectory, converted to joint space torques using the Jacobian

transpose. The fingers are position controlled using low-gain

PD controllers. All our controllers run at a rate of 300Hz on

a desktop computer running the Xenomai real-time operating

system.

A. Opening a door

The aim of this experiment is to learn a control policy to

successfully operate a lever door handle and open the door

shown in Fig. 1(a). A kinesthetic demonstration provides the

desired cartesian positions and orientations, while the desired

force/torque trajectories are initialized to 0. The trajectory

was 10 seconds long, discretized into 100 time-steps. Direct

playback of the demonstration fails to achieve the task due to

the compliance of the robot and failure to apply the required

forces and torques on the door handle.
In order to measure task success, we attached a Mi-

croStrain 3DM-GX3-25 Inertial Measurement Unit (IMU)

to the door handle. The resulting orientation measurement

gives us the angle of the handle and of the door itself. We

recorded the desired trajectories of the door angle and handle

angle during the demonstration: tracking these trajectories

forms the primary task success criterion. The immediate

cost function at time t is: rt = 300qdoor + 100qhandle +
100qpos+10qorient+0.1qfmag +0.02qtmag +0.02qttrack +
0.01qftrack + 0.0001θTRθ, where qdoor and qhandle are

the squared tracking errors of the door and handle angles

respectively, qpos and qorient are the squared tracking errors

of the position and orientation of the hand, qfmag and qtmag

are the squared magnitudes of the desired forces and torques,

qftrack and qttrack are the squared force and torque tracking

errors, and θ
TRθ is the control cost.

We use PI2 to learn policies for all 6 force/torque dimen-

sions. A relatively small exploration noise is also simulta-

4642

Fig. 5. Learnt force/torque control policy and tracking errors for the
door opening task. The green solid lines show the learnt desired forces
and torques respectively. The blue dashed lines indicate the corresponding
measured force/torque values.

(a) (b)

Fig. 6. Evolution of cost functions during learning for the two manipulation
tasks: (a) door opening, and (b) pen grasping.

neously introduced in the cartesian position and orientation,

to correct for imperfections in the demonstrated trajectory.

Fig. 6(a) shows the improvement in the cost with the number

of trials executed. After 110 trials, we obtained a policy

which achieved the task successfully 100% of the time, with

a cost of 498.1 ± 5.3, averaged over 23 trials. Learning

was terminated when all the noisy rollouts in a particular

learning iteration successfully achieved the task, indicating

that the learnt policy was robust to the exploration noise.

Fig. 5 shows the learnt force/torque profiles and their tracking

performance. Fig. 9 shows snapshots from an execution of

the final policy.
For this experiment, the proportional gains for the force

controller were set to 1, while integral gains are set to

0. In theory, a proportional gain of 1 should compensate

for the difference in desired and sensed forces. However,

due to the addition of the joint-space position controller,

these forces cannot be perfectly realized. Despite the force

tracking inaccuracies seen in Fig. 5, the algorithm learns to

achieve the task successfully. This is possible because the

PI2 learning algorithm treats the controllers as a black box;

it simply learns the required sequence of control inputs that

minimize the task cost function.

B. Grasping a pen

The next task is to pick up a pen from the table, as shown

in Fig. 1(b). This task is considered difficult, because the size

of the pen is comparable to the size of the finger-tips, making

the chance of slippage very high. In addition, this task would

be quite difficult to achieve using a pure position-control

Fig. 7. Learnt force/torque control policy and tracking errors for the pen
grasping task. The green solid line shows the learnt desired force in the z
axis. The blue dashed line indicates the corresponding measured force.

Fig. 8. This table shows the extent of position and orientation errors that
the final pen grasping force control policy was able to handle. Position error
was introduced along the direction of closing of the fingers. The ’O’ in the
center marks the original position of the pen during learning. The red ’X’
squares indicate failure, while the green empty squares indicate success.
Negative position errors were tolerated much better than positive errors,
because the hand has two fingers on this side, versus only one on the other.

strategy, since this would require very precise knowledge of

the pen position and the table height.

We use the following initial policy: we keep the desired

position and orientation of the hand fixed over the pen, while

closing the fingers to perform the grasp. The kinematics of

the fingers are such that the fingers dig into the table during

the motion (see Fig. 9 for a visual depiction of the grasping

motion). Servoing zero forces at the wrist allows the hand

to move up when the fingers come into contact with the

table. While this simple strategy works for larger objects, it

was not successful at grasping the pen. Hence, we would

like to learn a profile of downward forces to be applied into

the table that can help in robustly grasping the pen. We use

both proportional and integral gains in the force controller

in order to achieve good force tracking. We use PI2 to learn

the desired force in the z axis, while fixing desired x and

y torques to 0. Force control gains for the remaining 3 axes

are set to zero.

We detect whether the pen has been grasped or not based

on the finger joint angles crossing a threshold value. We

assign a cost for every time-step that the joint angles are

above this threshold. This provides a gradient to the learning

algorithm, i.e., the longer the pen remains grasped without

slipping, the lower the cost. Costs are accumulated during the

6-second grasping phase as well as a subsequent 6-second

lifting phase, which verifies the stability of the grasp. As

with the previous experiment, trajectories were discretized

into 100 time-steps. The immediate cost function at time t
is: rt = 100qpen+1.0qftrack+0.5qfingertrack+0.1qfmag+
0.0001θTRθ, where qpen is an indicator cost which is 1 if the

pen has slipped out of the hand (as described above), qftrack
is the squared force tracking error, qfingertrack is the squared

finger position tracking error, qfmag is the squared force

magnitude, and θ
TRθ is the control cost. After 90 trials, we

4643

Fig. 9. Sequence of images from executions of the learnt policies for the two manipulation tasks: (top) opening a door with a lever handle, and (bottom)
picking up a pen from the table. The attached video shows the learning process and final executions of each of these tasks.

converged to a policy for which all noisy rollouts succeeded.

This final policy achieved a success rate of 100%, with a cost

of 47.1 ± 0.8, averaged over 21 trials. Fig. 6(b) shows the

evolution of costs during the learning process. For this task,

we set the proportional gains of the force controller to 1,

but also use an integral gain of 0.1. This allows better force

tracking when the fingers are in contact with the table. The

learnt force profile and its tracking performance are shown

in Fig. 7.

During learning, we keep the position and orientation of

the pen fixed, i.e. robustness to position and orientation

uncertainty was not incorporated in the learning process. We

found, however, that the final learnt policy was robust to

position and orientation uncertainty. Fig. 8 shows the extent

of position and orientation errors that could be tolerated by

our policy. We believe these robustness results could further

be improved upon if uncertainty were to be incorporated in

the learning process [3].

Finally, we recorded the cartesian position and orientation

trajectories from a successful grasp, and replayed these

trajectories without the force controller. This policy was

unsuccessful at grasping the pen, which shows that the learnt

force control policy plays a significant role in achieving the

task.

V. CONCLUSION

The need for compliant actuation in robotics is well

understood. In this paper, we have presented a learning

approach for compliant manipulation. The approach relies on

initialization of a desired position trajectory through kines-

thetic demonstration, followed by learning of a desired force

profile through reinforcement learning. We have successfully

demonstrated the application of this approach to two different

manipulation tasks. We have also shown that the use of force

control policies can potentially allow robots to increase their

robustness towards localization errors. Explicit training of

these policies for robustness is a promising direction for

future work. Another potential improvement can arise from

limiting the generation of noise in force/torque space to

directions constrained by contact.

REFERENCES

[1] J. Buchli, E. Evangelos Theodorou, F. Stulp, and S. Schaal, “Variable
impedance control - a reinforcement learning approach,” in Robotics
Science and Systems, 2010.

[2] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in IEEE
Intl. Conf. on Robotics and Automation, 2011.

[3] F. Stulp, E. Theodorou, J. Buchli, and S. Schaal, “Learning to grasp
under uncertainty,” in IEEE Intl. Conf. on Robotics and Automation,
2011.

[4] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with em-based reinforcement learning,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, October 2010, pp. 3232–
3237.

[5] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, pp. 1–33, 2009.

[6] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[7] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, pp. 3137–3181, 2010.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in Neural
Information Processing Systems 15. MIT Press, 2002, pp. 1547–
1554.

[9] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in IEEE Intl.
Conf. on Robotics and Automation, 2009, pp. 12–17.

[10] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
IEEE Intl. Conf. on Robotics and Automation, 2011.

[11] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682 – 697,
2008.

[12] A. Dragan, N. Ratliff, and S. Srinivasa, “Manipulation planning with
goal sets using constrained trajectory optimization,” in IEEE Intl. Conf.
on Robotics and Automation, May 2011.

[13] B. Siciliano, L. Sciavicco, and L. Villani, Robotics: modelling, plan-
ning and control. Springer Verlag, 2009.

[14] “Video,” http://www.youtube.com/watch?v=LkwQJ9 i6vQ.
[15] R. Featherstone, Rigid body dynamics algorithms. Springer-Verlag

New York Inc, 2008.

4644

