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Abstract 

Recently some researchers in the areas of database data modelling and 
knowledge representations in artificial intelligence have recognized that they 
share many common goals. In this survey paper we show the relationship 
between database and artificial intelligence research. We show that there has 
been a tendency for data models to incorporate more modelling techniques 
developed for knowledge representations in artificial intelligence as the desire 
to incorporate more application oriented semantics, user friendliness, and 
flexibility has increased. Increasing the semantics of the representation is the 
key to capturing the "reality" of the database environment, increasing user 
friendliness, and facilitating the support of multiple, possibly conflicting, 
user views of the information contained in a database. 



Introduction 

Traditionally, little interaction existed between researchers in the areas of 

databases and artificial intelligence (AI). Database management systems and AI 

knowledge representation formalisms evolved as solutions to apparently quite dif­

ferent problems. Recent trends have shown, however, that techniques developed 

in each of these areas may be adapted for use in the other area. Our major in­

terest, in this context, is in the evolution of more expressive database modelling 

formalisms and the development of enhanced database management systems. It 

is from this one-sided perspective that we examine the potential overlap between 

these two major thrusts in computer science research. 

Database management systems evolved in response to the need for efficiently 

maintaining increasingly large amounts of data. The relatively slow speed of sec­

ondary storage devices holding the data is one of the main limitations to database 

design. Hence, the internal organization and structuring of databases has been the 

primary focus of research in the past. Another major force that influenced database 

research was the need to share information among a variety of users. In such an 

environment, strict rules governing the manipulation of data had to be imposed 

to preserve the integrity of the database and to guarantee privacy for each user. 

These needs lead to the development of several basic data models, the best known 

of which are the relational, the hierarchical, and the network models. 

With the steadily increasing needs for user-oriented systems, new trends in 

database technology have evolved outside of the scope of traditional data models. 

In this paper we are concerned with two closely related efforts: 

1. The incorporation of more semantic modelling capabilities into database 

models. 

1 



2. The development of better user environments which include user friendly 

interfaces and the support of different user views of the information 

content and:·organization of the data. 

There is a definite relationship between the above two issues: A more pow­

erful and flexible user environment necessarily requires a system with increased 

semantics in the stored data, and vice versa. Hence, the two issues may jointly 

be viewed as pointing toward a new goal - the development of database systems 

which incorporate a higher degree of intelligence. 

As computers have become commonplace, the number and type of users have 

changed dramatically. This change has had a significant effect on researchers in 

the database field. Many applications although conceptually simple (e.g. report 

generation) require extensive manipulation of low level data structures which is 

a significant task for even an experienced programmer. Unfortunately, experi­

enced programmers are no longer the majority of database users. More intelligent 

database management systems capable of interacting with both the casual user and 

the database structure have become a necessity. In order to construct more in­

telligent user interfaces, meta-knowledge must be included in the database. This 

is information about the objects and relationships which collectively represent the 

world of the database enterprise being modelled - in other words, it is information 

about the database itself. Unfortunately the traditional record-oriented data mod­

els do not have the facilities for representing meta-knowledge. \Ve will look at two 

basic approaches to solving this problem. The first is the development of new "more 

powerful" semantic data models that model database concepts at a higher, more 

user oriented level. The second is to build a higher level conceptual database on top 

of a conventional database. Both solutions are promising; however, neither is with­

out problems of its own. Semantic data models tend to be extremely complex and, 
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therefore, are at best only partially implemented. The major problem with many 

conceptual data models occurs because they are mapped onto a data model which 

is incapable of incorporating meta-knowledge. In such cases it becomes necessary 

to record the database semantics separately from the data. 

Similar problems are being studied extensively by researchers in AI1
•
2

•
3

•
4

. While 

their motivations may be quite distinct, many results are closely related to the needs 

of modern database management systems. Techniques and knowledge from AI may 

be usefully applied, however, to problems in database development. A number of 

novel approaches demonstrate that a major shift from traditional database tech­

nology towards AI has already started and will influence the development of new 

generations of data management systems. 

The Three Classical Models 

The need to organize data in some well defined, rigorous manner has lead to 

the development of a number of data models, the best known of which are the 

relational, the network and the hierarchical models. 

According to Kent5 all three of the classical models are based on the record 

model. In a record based system, data are arranged in fixed linear sequences of 

field values. Records are machine oriented - they provide an efficient basis for 

storing and processing data but are not, in the least, user oriented. Each of the 

classical models is based on some idealized data structure and has a set of operations 

associated with this structure. 

The Relational Data Model 

In a relational database6 information is organized in tables. Each table has a 

unique name and is a special case of the set-theoretic relation. The rows of a relation 
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table are called tuples; columns are called attributes. Each column within a relation 

has a unique name. The set of values from which actual values in a column are 

selected is called th-e domain of the attribute and may be shared among different 

columns. A relation name and its set of attribute names is called a relational schema 

and a collection of relational schemas is a relational database. One of the most 

important features, and perhaps the biggest draw back, of the relational approach 

is that associations between tuples are exclusively represented by attribute values 

drawn from a common domain. 

The main attraction of the relational model is its mathematical clarity which 

facilitates the formulation of non-procedural, high level queries and thus separates 

the user from the internal organization of data. Among the three classical database 

models, the relational model is, therefore, considered the most user oriented. It is, 

however, far from being able to satisfy the needs and requirements of an increasingly 

diversified user community. 

The Hierarchical Data Model 

Data in the hierarchical model7 is organized in simple tree structures; a hierar­

chical database is a collection of such trees - afore st. This organization necessarily 

requires that some types of records are subordinate to others. In fact, a crucial char­

acteristic of the hierarchical model is that any given record takes on its full meaning 

only when seen in the context of the hierarchy. Furthermore, operations are usually 

procedurally oriented and are at a lower level than relational database operations 

since much of the internal data organization must be visible to the user. 

A typical hierarchical database contains trees of many different heights, where 

trees of height 1 are not uncommon. This reveals a misfit between the information 

to be modelled and the rigid hierarchical structure into which it must be forced. 
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Another indication that a strict hierarchical structure is not a natural model for 

many database applications is the necessary use of the virtual logical record type, 

which is a pointer to -another record type. These pointers provide a mechanism 

which allows a record type to "exist" in several trees or even in two places in the 

same tree. Without this concept, large numbers of records would have to be repli­

cated when transforming many-to-many relationships into a hierarchical structure, 

resulting in an unnecessarily high degree of redundancy in the data representation. 

The Network Data Model 

The network data model8 was introduced by the Data Base Task Group (DBTG) 

of the Conference on Data Systems Languages. In this model, information is rep­

resented by records, interconnected via links to form a directed graph. Records are 

grouped into sets, each of which consists of one owner record and zero or more 

member records. 

The set concept is the most important single aspect of the DBTG model. The 

set type is defined in the schema by specifying the types of the owner and the 

member records. The major deficiency of the DBTG model is that many-to-many 

relationships cannot be represented directly. In order to accommodate many-to­

many relationships, the concept of connect£on record type is included in the DBTG 

model. A connection record would contain the information common to the two 

record types linked by the many-to-many relationship. 

The network data model is, in general, more symmetrical than the hierarchical 

data model. The basic operations on a network database are, therefore, more sym­

metrical than those on a hierarchical database. However, they tend to be procedural, 

implying that the user must be familiar with the lower level of data representation 

and, consequently, are more complicated than operations on a relational database. 
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The User Environment 

The User Int~rface: In terms of providing users with friendlier interfaces, 

the relational model is the most interesting of the classical models because of 

its inherent suitability for supporting high-level, non-procedural languages. Non­

procedural languages allow users to express queries (and updates) in terms of the 

properties of the resulting set rather than the organization of the database. Each 

provides a simple query language which, compared with a general purpose program­

ming language, is relatively easy to master. The user is, however, forced to explicitly 

manipulate the data structures (e.g. tables) in the database. Furthermore, facilities 

for adapting the database to new uses - a problem of deriving multiple user views 

- are very limited. 

Supporting Multiple User Views: The second aspect of providing user 

oriented interfaces is the support of multiple user views. In any multi-user envi­

ronment the needs of various users will be multifarious. In order to support this 

variety of user expectations, the interface to an integrated database must support 

multiple user views of the data. Most research concerned with user views in the 

classical data models focused on the relational model. Relational views are usually 

simple variations of base relations. In particular, virtual relations, representing a 

type of derived data, are defined in terms of existing relations. A user view of the 

database is then the collection of base and virtual relations. Virtual relations may 

be defined using data abstraction techniques9
, which hide the original underlying 

base relations. This means that a user cannot, in general, tell which relations are 

base and which are virtual. Internally, however, just the virtual schema is stored 

with the database and not the relation itself. One of the major problems with 

defining views in this way is the difficulty of performing update operations via a 

user view. It is not always possible to translate an update request on derived rela-
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tions to an unambiguous request on base relations; therefore, in order to maintain 

data integrity, it may not be permissible to perform unrestricted modifications on 

derived relations; Rowe and Shoens9 describe several strategies for dealing with this 

problem. The facility for defining and maintaining user views is often embedded in 

the language of the user interface. In this case, the interface must automatically 

handle the translation of a query from virtual to base relations and then translate 

the result back to the form expected by the user. 

In addition to facilitating user views, virtual relations have several other po­

tential uses. They can be employed, for example, to predefine certain information 

retrieval operations which are complicated to specify yet frequently executed. Vir­

tual relations may also be used to produce snapshots, i.e. materializations of a 

view at some point in time. Snapshot relations are read-only relations and can be 

useful when applications require access to earlier versions of the database. In a 

distributed environment local snapshots may be used to approximate remote data, 

thus avoiding the expensive maintenance of a local replica. 

Higher Level Models 

Inadequacies of Classical Database Models 

As users of computer systems have become more diversified, the need for better 

ways to model concepts and processes of the application domain has increased. 

Unfortunately, the classical models are highly machine oriented; user friendliness 

is only of secondary importance. For this reason, all three classical models are 

considered to be syntactic data models. Attempts have been made to extend the 

classical models to incorporate more semantics into data as well as to embed them 

into environments with more user oriented interfaces. We will first examine the most 

significant deficiencies of the classical database models, and then discuss several 
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approaches that database researchers have taken to enhance their capabilities. 

1. Because the primary concern of most database research was efficiency 

in accessing stored data, classical data models are machine rather than 

user oriented. 

2. Most database models have only two levels: the database schema, which 

describes the data types constituting the database, and the actual col­

lection of records, which are instances of the existing types. There are 

no provisions to extend the two levels into a more general hierarchy or 

taxonomy of types, subtypes, and instances, even though this extension 

would increase the model's expressive power and take advantage of the 

concepts of property inheritance across different levels of the hierarchy. 

3. Another problem is the inability to distinguish between a type and a 

set - records which form the schema usually represent both. Consider, 

for example, an employee database. The schema will describe the form 

of an employee record by listing the names of possible attributes each 

employee might have. The actual attribute values are kept with each 

employee record. From this point of view, the schema contains the 

description of a "typical employee". Alternately, the schema could be 

interpreted as representing the "set of all employees" constituting the 

database. Taking the latter point of view, it should be possible to include 

attributes that apply to the set as a whole but not to each individual 

element (e.g. the set cardinality or the average salary of an employee). 

Unfortunately, most conventional database models have no facilities for 

making this distinction. 

4. When modelling an enterprise, elements and concepts representing it 

may be viewed from different perspectives depending on the application. 
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In particular, the concepts of entity (object), relationship, and attribute 

are interchangeable. Similarly, what is considered a type from one user's 

point of view may be seen as an instance in another. The ability to model 

such phenomena, referred to as relativism, is missing in conventional 

database models. 

5. The distinction between data and program in a database system was al­

ways clear in the past but is disappearing as behavioral aspects of mod­

eling are considered. The need for recording events, which require the 

inclusion of temporal information has recently been recognized. With 

the inclusion of events a new area of problems related to time-oriented 

integrity constraints has emerged. 

The Entity-Relationship Model 

One of the first steps taken toward developing a higher level data model was the 

Entity-Relationship (ER-)model, introduced by Chen10
. It was aimed primarily at 

the first deficiency listed above - an increased orientation toward the user needs 

and expectations rather than machine efficiency. The ER-model may be viewed as 

a generalization of the three classical data models. Chen presented it as " ... a basis 

for unification of different views of data .. .'' - in other words, it emphasizes the 

similarities and not the differences in the classical models. 

The basic components of the ER-model are entity sets and relationship sets, 

where each entity set and each relationship set represents a generic classification of 

entities and relationships, respectively. The membership of entities in entity sets is 

determined by a predicate. Hence each entity may be a member of more than one 

set. For example, a person could be a student as well as an employee of a given 

university. 
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Relationships are associations among entities and are defined as mathematical 

n-ary relations of the form R = {[rtf e1, ... , rn/en] where ei E E1, ... ,en E En}. The 

terms ri represent roles played by the corresponding entity ei in the relationship 

R. For example, if "marriage" is represented as a relationship between a man and 

a woman, then the roles "husband" and "wife" may be associated with the two 

participating entities, "man" and "woman", respectively. 

Both entity and relationship sets may have properties called attributes associated 

with them, where each attribute is defined as a mapping between the entity or 

relationship set and a value set. Multivalued attributes are permitted in the ER­

model. 

The ER-model is used primarily as a database design tool; the actual database 

is then implemented with some other data model. The key step in designing a 

database enterprise is determining the point of view from which the real world is 

to be modelled. When the ER-model is used, the entity sets and the relationships 

among them are chosen by the designer. The procedure for this selection cannot be 

precisely defined - it is a rather subjective process. Once the entity and relation­

ship sets have been selected, the next crucial (and subjective) step is the selection 

of the relevant attributes. The design process is facilitated by a pictorial design 

tool called entity-relationship diagrams, in which rectangular nodes represent en­

tity sets, circular nodes represent attributes and diamond shaped nodes represent 

relationships. The arcs in an entity-relationship diagram are undirected and may 

be labelled with appropriate role names. The numbers on these arcs indicate the 

possible relationship type, that is, l-to-1, 1-to-many, or many-to-many. Figure 1 is 

an illustrative example of a simple ER-diagram. 

The richer semantic basis of the ER-model lead to the development of the lan­

guage CABLE11 (ChAin Based LanguagE), which provides a user friendly interface 
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SUPPLIED-BY 
>------;~ SUPPLIER 

n 

Figure 1: An Entity-Relationship Diagram. 
PARTS-SUPPLIED is a many-to-many relationship between PARTS 
and SUPPLIERS. Each SUPPLIER supplies m PARTs and each part 

is SUPPLIED-BY n suppliers. 

to an ER-database. CABLE queries are specified as chains of beads, where each 

bead specifies a set (entity or relationship) and some restrictions to be applied to 

elements of that set. These chains form a pattern which the system tries to match 

against the ER-database. Elements which conform to this pattern constitute the 

answer to the query. An important feature of CABLE, increasing its user friend­

liness, is that it permits beads to be omitted from the query as long as enough 

information is given to make each chain unique. 

While efficiency in the ER-model was not of major concern, it gave rise to an-

other project whose primary objective was to develop a database system suitable to 

execute on a highly parallel computer architecture. The resulting scheme, named 

the Active Graph Model12 , rejects the sequential von Neumann model of computa­

tion by adopting a data-driven view of processing. Since the need for centralized 

control is eliminated, the Active Graph Model is capable of exploiting the potential 

bandwidth of a significant number of disk units as well as the computational power 

of a correspondingly large number of asynchronous processing elements. 

In summary, the ER-model, together with its various extensions and deriva-

tives, is a significant improvement over the classical database models. In particular, 

the explicit distinction between entities and relationships and the introduction of 
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distinct types of arcs (i.e. role arcs) has significantly increased its expressive power. 

Unfortunately, it is not always easy to categorize things as either entities or rela­

tionships. This difftculty can be illustrated with the concept of marriage which, 

from one point of view, can be categorized as a relationship between a man and 

a woman, and from another, as a legal entity, in which the man and the woman 

participate as attributes. The ER-model does not allow any specific "thing" to be 

both an entity and a relationship. Hence a decision in favor of one or the other 

must be made by the database designer. Furthermore, the model does not allow 

for the fact that some information cannot be categorized as either an entity or a 

relationship. A marriage, for example, may be interpreted as an event or a contract, 

with which a certain time interval is to be associated. To resolve such problems, 

models with considerably greater expressive power must be introduced. 

Extending the Relational Data Model 

The Hierarchical Semantic Model: Numerous attempts have been made 

recently to extend the usefulness and the expressive power of the relational model. 

Most of these have their roots in the work of D. Smith and J. Smith, who introduced 

two important concepts to database modelling: aggregation and generalization 13 . 

The first of these permits a relationship between certain objects to be viewed as 

an aggregate object; at the same time, properties of the individual objects may be 

ignored, implying that aggregation is a form of abstraction. For example, an "em­

ployee" could be viewed as the aggregation of lower level objects, such as "name", 

"address", "salary", "dependents", etc. 

The second concept - generalization - is aimed at modelling a hierarchical 

ordering of objects constituting an enterprise. It is an abstraction which permits 

a class of objects to be viewed as a typical (generic) object of that class. It allows 

attributes with a common value for all members of the class to be recorded with 
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the generic object, rather than being replicated many times at lower levels. For 

example, the fact that all secretaries have typing skills may be kept with the generic 

object "secretary" and inherited by each individual belonging to that class. The 

generalization concept, however, does not distinguish between attributes which are 

inheritable by individuals and those which apply to the set as a whole. Thus the 

model would, for example, permit the recording of the average age of all employees 

as a value attached to the generic object "employee" even though it applies only to 

the set as a whole; i.e., it may not be inherited by any individual in that set. 

The aggregation and generalization abstractions form the basis for what became 

known as Smith and Smith's Hierarchical Semantic Model (HS-model). This system 

comprises a methodology for database modelling. Schemas are built by stepwise de-

composition of ·initial objects into smaller components along the aggregation and 

generalization hierarchies. A set of semantic and syntactic rules is provided, which 

guarantee that the decomposition process yields a collection of valid relations in 

Codd's relational model. Thus the HS-model may be viewed as a significant ex­

tension of the classical relational model toward a more accurate and more powerful 

modelling tool for database applications. 

The Tasmania Relational Model: Codd14 describes another extension of 

the relational data model, named after the conference site at which it was originally 

presented. Like the HS-model, the objective is to capture more meaning in data to 

facilitate the process of database design and to permit the system itself to respond 

in a more intelligent manner. It encompasses many forms of abstraction (including 

aggregation and generalization); the approach, however, is much more theoretically 

oriented than in the HS-Model. 

As a first step, two kinds of data semantics are identified: atomic semantics, 

representing the basic building blocks of the model, and molecular semantics, which 
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permit clusters of atoms, constituting meaningful units of information, to be formed. 

Any n-ary relation is interpreted as an atomic fact. These may be combined ac­

cording to the following four rules of the molecular semantics: 

1. Cartesian aggregation is the type of aggregation described by Smith and 

Smith. 

2. Generalization (also defined by Smith and Smith). 

3. Cover aggregation extension~lly describes a subset of objects - a convoy 

of ships is often used as an example of this type of aggregation. 

4. Event precedence - entities of type event have a start time and an 

end time. For some applications, ordering events is important. This 

is facilitated by alternative and unconditional successor and precedence 

relations which, respectively, define what may and must follow and pre­

cede a given event. For example, suppose we have an inventory database 

that includes two event entities called ORDERS and SHIPMENTS. It 

is desirable to ensure that only those goods ORDERed are received in 

SHIPMENTS. An uncondt'tional precedence relation would be used to 

specify that all shipments must be preceded by an order for the goods 

delivered. 

These enhancements allow the relational model to represent situations that 

can be represented by any semantic data model. Unfortunately, incorporating the 

additional semantics, together with the corresponding operators, has made this 

model extremely complicated. For this reason, no claim regarding the ease of use 

is made for the extended relational model. In fact, it is " ... intended primarily for 

database designers and sophisticated users ... " 14
. 

Although the extended relational model is more data structure than user ori-
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ented (and, therefore, by many definitions would not be considered to be a semantic 

data model), it does provide four different types of user interface: tables are used 

for extensional information, a set-theoretic interface can be used to specify searches 

without including navigational information, an interface based on inferential predi­

cate logic for stringwise expression of intensional information, and a graph-theoretic 

interface which provides a pictorial medium to aid in the design and maintenance 

of the database. 

The Semantic Data Model (SDM) 

The Semantic Data Model (SDM) 15 was developed as an alternative to the 

classical data models, which were considered to be " ... too low level and machine 

oriented, requiring the users to think in terms of representation rather than in terms 

of meaning ... ". SDM was designed to be a high level user oriented model for 

database application environments. Contrary to knowledge representation systems 

in AI, the objective of SDM is not to model the "real" world; rather, it is a model 

of a database enterprise which is quite different. 

An SDM database is a collection of classes which represent "relevant abstrac­

tions" in a particular application environment. There are two types of class - base 

and nonbase classes. The former are defined independently of other classes while 

nonbase classes are defined in terms of other classes. Classes are logically linked to 

other classes via interclass connections and are composed of entities called mem­

bers. There are five types of entity: the concrete object (e.g. Cars, Students), point 

and duration events (actions and activities), abstractions (e.g. the generalizations 

described previously) and names which are identifiers for objects and events. Both 

classes and entities have attributes, which may fall into three categories: member 

attributes (each member of a class has this property), class-determined attributes 

(all members of a class have the same value associated with this property) and class 

15 



attributes (which are properties of the class as a whole). 

SDM has a stru_ctured user interface that provides facilities for three different 

classes of users: naive non programmers, routine users and experienced programmers. 

For naive nonprogrammers, SDM provides an interactive query system that can 

make suggestions, offer advice, and generally help the user to formulate queries. 

Routine users are those executing predictable, repetitive tasks. This class of user 

performs the "busy work" associated with database maintenance, i.e. database 

editing, which involves simple updates requiring only minor changes to the database 

contents, but not to its structure, and periodic report generation. Finally, for the 

experienced programmer, it is suggested that the SDM formalism could be integrated 

into a conventional general purpose programming language (like COBOL) - a non­

trivial, and for the most part unexplored area. 

When comparing the higher level models presented above we notice that all of 

them present methodologies for designing more intelligent database environments. 

The ER-model presents a unifying view of data, which permits the designer to or­

ganize knowledge in terms of his own human perception of the enterprise to be 

modelled, rather than in response to the constraints imposed by a computer ar­

chitecture. Together with the language CABLE, the ER-model also presents a 

step toward a high-level user oriented interface. While the HS-model and the Tas­

mania relational model are extensions of the classical relational data model, the 

ER-model is meant to aid in the design of databases that will be implemented with 

a classical data model. Finally, SDM, with its built-in structured user interface, 

is more user oriented than either the extended relational model or the ER-model; 

thus it is both an improvement and an alternative to these models. Although all 

these approaches fulfill many of the requirements and expectations of information 

management systems, the desire to include more "intelligence" (for example, in-
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ferential information, human oriented semantics, and more flexible user interfaces) 

still persists. The higher level models described above are representative of research 

done by database researchers on "semantic data models". We will now briefly ex­

amine some closely related work on "conceptual database models" which attempt 

to exploit techniques and results from AI in order to produce intelligent database 

systems. 

The AI Connection 

We have shown a shift in database research away from the traditional machine 

oriented data model toward more user oriented semantic models. In this context, 

database researchers have begun to recognize the value of AI research in knowledge 

representation. There are, however, a number of significant differences between the 

type of information that database researchers are concerned with and the type of 

information studied in Al. In the former, representations tend to be biased toward 

a large number of instances of a small number of formatted data types. Knowledge 

representations in AI, on the other hand, are designed to deal with a small number of 

instances of a much larger variety of types and classes. This implies that knowledge 

bases tend to be rather amorphous while databases are highly structured. Another 

significant difference is in the amount of implicit information. Knowledge base 

queries must often use inferential information inherent in the structure of the data 

to produce a result. In databases, such capabilities either have a very rudimentary 

form or, more typically, are not present at all. Finally, knowledge bases are usually 

special-purpose systems, aimed at a particular application, while databases are often 

constructed to facilitate the needs of a community of users whose requirements may 

be quite diverse. 

Despite these fundamental differences, there are a number of concerns common 

to both areas. In particular, the experience gained by AI researchers in attempt-
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mg to model the real world is invaluable when applied to data modelling in a 

database environment. Database researchers are beginning to apply AI techniques 

to database problems particularly in the areas of conceptual modelling, user inter­

faces, and relativism and user views. 

Conceptual Modelling 

A conceptual database model is object- rather than record-oriented. The basic 

building blocks are entities which have fixed properties associated with them and 

can be created and destroyed for the duration of the application. Knowledge is 

organized along many dimensions - there may be aggregation, generalization and 

classification hierarchies, or the information may be partitioned into spaces corre­

sponding to particular user views. Conceptual models are usually built on top of 

an existing (classical) database management system. Thus knowledge must be or­

ganized, structured and represented so that the translation from conceptual model 

to data model is easy. 

To illustrate how AI has influenced this area of research, we present several 

conceptual models that have applied one or more of the following knowledge rep­

resentation techniques developed in Al: semantic networks, logic, procedural repre­

sentations, and frame based representations. It should be noted that the following 

discussion is not intended as an exhaustive survey of existing conceptual models; the 

goal is to demonstrate the four approaches to knowledge representation in databases, 

so we consider only general-purpose conceptual application models. We have chosen 

to group them according to the four categories of knowledge representation in AI, 

but most approaches combine more than one of these techniques. 

Using Semantic Networks: Semantic networks16 were originally developed 

as a psychological model of the human mind. They have since been used by com-
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puter scientists to model knowledge in various intelligent systems. Semantic net­

works are a knowledge representation formalism that have labelled nodes and labelled 

arcs. Nodes usually. represent objects, concepts or situati'ons in the domain being 

modelled while arcs represent relationships between nodes. 

Roussopoulos and Mylopoulos17 present a data model in which semantic net­

works are used in the design and implementation of relational databases. A database 

is designed with the semantic network formalism, then translated into a relational 

database schema. Semantic operators are defined on the semantic networks, not 

directly on the database. Since there is a strong similarity between the semantic 

operators and ordinary relational operators, mapping is simple. One major prob­

lem with this approach is a substantial loss of meaning during the translation of 

the semantic network into a relational schema. To compensate it is necessary to 

store the semantic network together with the schema and use it, for example, to 

maintain database consistency. 

In a later work, Mylopoulos et al18 developed a system called TAXIS, charac­

terized as " ... a language for the design of interactive information systems ... ". Its 

semantic network structure is based on procedural semantic networks. The under­

lying data model is once again relational. This time, however, it is extended to 

include classes (of objects) and a generali'zation relationship, which can be used to 

implement an JS-A hierarchy. 

Following the principles of data abstraction, TAXIS uses appropriate proce­

dures to integrate the database. In addition to exploiting knowledge representation 

techniques from AI, it combines ideas from programming language research with 

the basic principles of the relational data model. This cross-fertilization process 

simplifies use of the system. Applications are described at a higher level than the 

underlying relational database, and the application description can itself be manip-
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ulated by programming language commands. Since TAXIS also provides a higher 

level application specific user interface, it goes a step beyond the semantic network 

database system, 17 described- previously. 

Using Logic: Mathematical logic was used as a formal language by philoso­

phers and mathematicians long before the first electronic computers emerged. Its 

value to computer science was recognized by AI researchers during early attempts 

to construct automatic theorem provers. Since then the principles of logic have been 

developed further and have given rise to a new discipline called logic programming, 

which has gained considerable attention in both AI and database technology. 19 

A logic program is a set of clauses of the form po +-- PI, ... , Pn. Each Pi is called 

a /£teral and has the form p(ti, ... , tm), where p is a predicate symbol and ti, ... , tm 

are terms. Terms may be constants, variables, or functors. po is called the head or 

conclusion, and PI through Pn form the body or conditions of the clause. In terms 

of operational semantics, the meaning of a clause may be paraphrased as follows: 

in order to prove that Po is true it is sufficient to prove that PI through Pn are true. 

A clause with an empty set of conditions is always true; it is called an assertion. A 

clause with an empty head, on the other hand, is interpreted as a goal which the 

system tries to solve using Robinson's resolution principle.20 

A logic program can be considered a natural extension of the relational database 

model because any relational tuple can be expressed as an assertion, i.e., a pred­

icate of the form p(t1, ... , tm)· The use of mathematical logic in describing such 

(conventional) database models has helped to solve a number of important prob­

lems. Among these are the definition of formal query languages, the treatment of 

incomplete information (null values) in databases, and the definition and enforce­

ments of integrity constraints. ( Gallaire et al21 provide a comprehensive survey.) 

The primary attraction of logic here is the elegant formalism capable of express-
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ing facts, deductive information, meta-information (such as integrity constraints), 

and queries, in a uniform way. For example, to represent the fact that "Bill is 

Jan e's father," the following single clause, consisting of a head literal only, might 

be used: father(jane, bill) +-. To formulate a query such as "Who is Jane's father?", 

a similar clause, this time with an empty head literal, would be constructed: +­

father(jane, X), where X is a variable to be bound to the desired answer. Thus 

a single scheme - logic programming - can serve as both a database definition 

language and as a practical high-level query language. Consequently, the distinc­

tion between "database" and "program," which was always clear in the past, is 

beginning to disappear. 

The main contribution of logic programming to database research, from the AI 

point of view, is the incorporation of deductive information. In many situations, it 

is advantageous to represent certain facts intensionally in terms of a logical impli­

cation, rather than extensionally as lists of assertions. For example, to represent 

relationships such as "grandfather," it is possible to state that grandfather is de­

fined as the father of a parent, i.e., grandfather(X, Y) +- father(X, Z), parent(Z, Y). 

Statements of this form make it unnecessary to store all the individual grandfather 

relationships between elements explicitly. Instead, the system applies inference rules 

using this definition when queried about any particular grandfather relationship. 

There is a strong relationship between logic programming and semantic networks. 22 

Deliyanni and Kowalski have shown that logic programs, restricted to binary predi­

cates, may be viewed as a form of extended semantic networks. Using this approach, 

a knowledge base, expressed in the form of a logic program, may be transformed 

into a semantic network of explicit facts (assertions) and a collection of network tem­

plates which represent deductive information and queries. Extracting information 

from such a know ledge base then corresponds to finding matches between portions 
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of the underlying network and the templates involved in a given query. 

The principles of data-driven computation may usefully be applied to this model 

to make it suitable to implementation on a highly parallel computer architecture.23 ,24 

In this approach, the semantic network, rather than being only a passive represen­

tation of knowledge, is a dataftow graph. That is, each node is an active component 

capable of accepting, processing, and emitting value tokens (messages) traveling 

asynchronously along the network arcs. These tokens are used to carry portions of 

the templates ,to be matched against the semantic network. Each token is injected 

into a node of the network, replicated and sent in possibly many directions in the 

search of patterns that match the given template. 

The processing and propagation of tokens is distributed throughout the network 

and is performed in a data-driven manner; i.e., each node of the network represents 

an independent unit of computation, whose execution is triggered solely by the 

arrival of a token. The main advantages of this approach are the lack of centralized 

control and the lack of a centralized memory, which, under the von Neumann model 

of computation, are the main limitations to high performance,. The data-driven 

model, on the other hand, permits many independent processing elements to be 

engaged simultaneously in the processing and forwarding of tokens, and thus a 

highly-parallel computer architecture can be constructed to support that model. 

Using Procedural Semantics: A procedural knowledge base system con­

sists of a collection of processes, an activation mechanism, and a control structure. 

Control structures, like heuristic search techniques, help limit the size of the problem 

being solved. The activation mechanism is usually some form of pattern matching 

operation; when a procedure's pattern is matched, it may execute. Frequently, a 

given pattern will match several procedures; which of these is to execute may be 

determined by a number of different selection strategies. At one extreme, a fixed 
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ordering of the procedures may be maintained and the first match executed (various 

production systems25 use this strategy). At the other end of the spectrum, the order 

may be completely undetermined; for example, in PLANNER,26 each procedure is 

a demon that watches for a particular pattern to occur and executes as soon as that 

pattern is detected. SWYSS and IM illustrate the use of procedural representation 

in database research. 

SWYSS27 (Say What You See System) was originally designed to answer ques­

tions about static scenes. The experience gained from this work is now being applied 

in the database domain to develop a model displaying a higher degree of intelligence. 

The system is based on a functional data model; its atomic units are unary and 

binary functions that roughly correspond to attributes and relationships in the 

entity-relationship model. Concepts denote elements of the world being modelled 

and may represent individuals, sets, or generalizations. It is possible for a single en­

tity to be represented by more than one concept, and it is even permissible for these 

concepts have conflicting properties. For example, the concepts "Dave is an good 

swimmer'' and "Dave is a bad worker" both describe some aspect of the individual 

"Dave". The system has a taxonomy hierarchy in which concepts are connected via 

ISA (subset) and INSTANCE-OF (set membership) arcs. 

The Information Management (IM) Project28 at the USC Information Sciences 

Institute is an information and computing system based on the concept of Active 

Databases. In an active database environment the emphasis is on providing the 

user with real time up-to-date information. Different from a conventional database 

which presents information based on a static snapshot of the database at the time 

that the query is processed, the information displayed by an active database is 

exactly the same as the information contained in the database at the moment that 

it is displayed. IM supports dynamic views that allow a user to make changes to 
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the data and see the results immediately. In addition, a user can move through 

the database by following a chain of associations between entities. Data objects 

can be accessed via/patterns; that is, instead of using a key to refer to an object, 

a user can reference objects by specifying a set of attributes and/or relationships 

associated with the object. A procedural representation scheme also helps automate 

repetitive actions and supports the use of demons to send mail, produce reports, 

etc. The underlying data model is similar to the entity-relationship model in that 

multi-valued attributes and n-ary relationships are supported. Furthermore, types 

of objects are arranged in a lattice to facilitate attribute inheritance. 

Using Frames: Frames 29 are a combination of two ideas, one from program­

ming language research and the other from Al. Similar to a well structured program, 

a frame is a collection of small "chunks" of information that are easy to understand 

and modify. The knowledge is domain-specific and, like the rules in a production 

system, is a list of facts that contain no information about how or in what order 

they are to be interpreted. Frames are a dynamic representation; they change con­

stantly as short-term memory is updated - when the system learns more facts or 

changes its orientation, a frame changes. 

The Knowledge-Based Management Systems (KBMS) Project30 at Stanford 

University addresses the problems of intelligent processing in large databases. It 

upgrades the database from a passive store of information to an active informa­

tion understander. The database must, therefore, contain knowledge about the 

application domain in addition to the actual data. KBMS combines two distinct 

conceptual models. The first of these, called the structural model, is used for de­

signing the database; the basic idea is to design separate models for each individual 

application, then integrate them into a single database. The second model is a 

frame-based representation, used to model domain-specific knowledge; it is partic-
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ularly useful for processing time-oriented data and has been successfully applied to 

the analysis of large medical databases. 

The User Interface 

Although these non-procedural database interfaces described previously are 

much more user oriented than those provided by procedural programming lan­

guages, such as COBOL, they are still based on formal query languages. The neces­

sity of learning a formal language, usually with little interactive help or guidance 

on the part of the system, is a serious deterrent to database users, especially those 

with little computer science background. To overcome this problem researchers are 

designing more intelligent interfaces which incorporate knowledge about the domain 

being modelled, the objects and organization of the database, and the needs of in­

dividual users or user classes. This information then may be used to facilitate the 

interaction with the system, for example, through a graphic or a menu driven inter­

face, or with natural language, each of which, in theory, requires less expertise from 

the user. In addition to accepting queries from users, it is desirable that the inter­

face be able to process and answer questions "intelligently" - a task which cannot 

be done in a conventional syntactic database system. Projects in AI-oriented solu­

tions to user/database interfaces illustrate the impact of AI on database interfaces. 

(Additional sources of information may be found in the references1
•
2

•
3

•
4

.) 

Using Natural Language: Natural language interfaces have two obvious 

advantages over non-procedural languages: users can express themselves in familiar 

terms without knowing about the logical structure of the information and with­

out having to learn a specialized formal language. Natural language interfaces do, 

however, suffer from some serious drawbacks. Because of the large body of domain 

specific knowledge needed by an intelligent interface, it is often difficult to adapt ex­

isting interfaces to different application environments. A more serious problem with 
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natural language interfaces is, however, the inherent ambiguity of natural language 

itself, which exacerbates describing problems to a machine. 

Current natural language based interfaces either use a very limited subset of 

natural language (in vocabulary and syntax, as well as semantics), or must interact 

with the user in the form of a dialog to clarify the query. Most existing systems take 

the first approach by restricting the interface to a domain specific subset of natural 

language. RESEDA31
, which deals exclusively with biographical data, SWYSS27

, 

which was designed to answer questions about static scenes, and HAM-ANS32
, 

which contains fishery information collected on two international expeditions, are 

examples of systems of this kind. Unfortunately, using a restricted subset of natural 

language may cause significant difficulties even for the sophisticated user. For exam­

ple, if a query is rejected by the system as unanswerable or if it is answered in some 

unexpected way, it may be very difficult to determine why the request failed. One 

solution to this problem is to use the second approach mentioned above, i.e., design 

an interface which interrogates the user and gradually formulates an unambiguous 

query. Codd's RENDEZVOUS33 was a fairly successful attempt to do just that. 

Unfortunately, a dialog with RENDEZVOUS is extremely cumbersome because the 

user is forced to deal with a more or less conventional database structure rather 

than conceptual objects. 

In contrast to special purpose knowledge systems developed in AI, database sys­

tems must be suited for a variety of different applications. A part of this requirement 

is the issue of adaptability of a natural language interface. Several recent research 

projects were devoted to studying this problem. In the PROLOG based Chat-8034 

horn-clause logic is used for formalizing and implementing all aspects of the rela­

tional database system. The natural language front end is unique in that it has 

been implemented in several languages (Spanish, English and French) and can be 
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fairly easily adapted to different database environments - small sample databases 

have been developed for both geographical information and employee records. The 

Chat-80 systems am-efficient and compare favorably with relational systems without 

natural language front ends. However, because the database is implemented entirely 

in PROLOG it must reside in virtual memory; therefore, Chat-80, in its present 

form, is not practical for implementing a large database. Another transportable 

natural language interface is currently under development at Duke U niversity35
. It 

differs from Chat-80 in several ways, the most significant of which are the following: 

( 1) it interacts with loosely structured text files, and (2) the system is capable of 

learning about new domains from its interactions with a user. The natural language 

processor is called the Layered Domain Class (LDC) system that consists of two 

subsystems called prep and the User-Phase processor. Prep is the "learning" part 

of the system. During a user's initial session, prep produces a description of the 

conceptual domain which is used subsequently by the user-phase subsystem. The 

latter is a real time interactive natural language interface. 

Semantic Query Optimization: Natural language processmg is not the 

only AI technique applied in the development of database interfaces. Another area 

in which AI had a significant impact is semantic query optimization, which permits 

the interface to act as an intelligent mediator between the database and the user. 

There are two distinct motivations for performing semantic query optimization -

performance and convenience. In the first case, the system uses knowledge about the 

domain being modelled, possible processing strategies, and the physical structure 

of the database to transform the original query into one that produces the same 

answer but can be processed more efficiently. In the second case, semantic query 

optimization is used to simplify the use of the system by attempting to find a 

"better'' answer to a query than a simple yes/no or a list of values satisfying the 

given restrictions. For example, if Jane is a secretary, the query "Which courses are 
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taught by Jane" should not simply produce an empty list; rather, it should inform 

the user that the question is semantically incorrect since Jane is not an instructor. 

The MRPPS 3.0 system36
, an experimental logic based relational data base, was 

designed to cope with such problems. It uses many-sorted logic (an extension of the 

more commonly used logic of first order predicate calculus) in which predicates and 

terms may belong to different semantic categories. These categories are organized 

into a semantic graph, which is an intrinsic part of the system. Since quantifiers are 

restricted to range over different categories it is possible to define the legal domain 

for each predicate attribute and thus detect statements that are syntactically correct 

but meaningless in terms of the semantic knowledge they represent. 

Semantic query optimization can go beyond a simple detection of semantically 

meaningless queries by offering more elaborate services to satisfy users' expecta­

tions. An example of such a system is the AI/Database project at the University 

of Pennsylvania (UP). Its major objective is to cope with the differences in the 

users' and the system's view of the stored information. To understand this type of 

problem, consider the following situation. Suppose the system is given the query 

"Which suppliers supply pencils?". If all suppliers supply pencils then producing 

a list of suppliers would imply that there are other suppliers who do not supply 

pencils thus misleading the user. A more appropriate response to eliminate this 

problem, referred to as an implicature37
, would be a statement informing the user 

that all suppliers currently represented in the database satisfy the given restriction. 

A related problem the UP project is investigating is that of misconceptions38
, 

which are incorrect beliefs a user might have about the information contained in 

the database. The objective is to identify the information a system must have in 

order to identify and rectify user misconceptions. Several types of misconception 

are identified: 
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I. Type Misconceptions occur when a user specifies a query in which some 

arguments to a relation are of the wrong type or which includes a rela­

tionship that does not exist. An example of such a misconception would 

be the query to find all courses taught by a person who was not an 

instructor. 

2. Object-related Misconceptions have to do with the properties of the ob­

jects modelled by the system. Consider the query "Find all employees 

whose wage is more than $1000 per hour". Instead of simply answering 

that there are no employees in this category the system should draw the 

user's attention to the fact that $1000 per hour is outside of the range 

of possible employee wages. The goal in this respect is to detect this 

type of error and then offer helpful advice even if the exact nature of 

the misconception is unknown. 

3. Event-related Misconceptions happen when a user is mistaken about 

the necessary order of events which may currently be taking place or 

may have taken place in the past. For example the query "Is John 

divorced?" should not respond with a simple "no" if John has never 

been married. Rather, it should inform the user that John does not 

satisfy the necessary precondition of having been married. 

Supporting Multiple User Views 

We stated earlier that user oriented interfaces should be able to maintain mul­

tiple user views of the data constituting a database in order to support the great 

variety of user needs and expectations. (For the purpose of this paper, user views 

are defined as a mapping between the conceptual database and the user interface 

and not as an inter model mapping.) 
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Most existing database interfaces do not support multiple user views; those 

that do provide very rudimentary customization facilities. Typically, these are 

limited to making certain portions of the database invisible to a given user and, 

in more sophisticated systems, to permit new derived objects and relationships to 

be included. An ideal system would, in addition, permit the same fragment of 

information to be perceived in different ways depending on a particular user's point 

of view. Such versatility, referred to earlier as relativism, requires a polymorphous 

representation, which goes beyond the capability of present-day systems. Some 

advocates of the relational model argue that the versatility of the relation allows 

the user to view an object in any way desired. While this is partially true, the 

problem of relativism is not solved. A model using relations as the only modelling 

concept is too amorphous; it captures little of the application's semantics and, 

therefore, offers little guidance for interpreting the data. 

AI provides a number of techniques for supporting different points of view, 

as well a..'3 contexts and beliefs. Among these are modal logic (where beliefs are 

treated as static objects), frame based representations (described previously), and 

partitioned semantic networks. The latter, because of their similarity to user views, 

show a strong potential for use in the realm of database modelling. Although these 

techniques seem promising as enhancements to database modelling they do not 

help solve the view update problem.9 AI research has traditionally concentrated on 

designing knowledge representations which, for example, facilitate natural language 

processing. In this kind of environment new data may be added to the knowledge 

base but old data is not removed. Because data and contextual information usually 

share the same data structures new information may be added to a local context 

without having any global side effects. 

Partitioned semantic networks, or K-Nets, are a knowledge representation 
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scheme developed by Fikes and Hendrix39 to enhance the expressive power of con­

ventional semantic networks. K-Nets incorporate the capabilities of first order pred­

icate calculus, facilitate linkage to external procedural knowledge, and, most sig­

nificantly, provide a mechanism that allows subnetworks to be grouped together 

and referred to as single objects. This grouping of subnetworks is accomplished by 

introducing the concepts of spaces and vistas. All nodes and arcs of a K-Net are 

elements of at least one space (also called a partition). Because each space can 

be referred to as a single unit it is possible to specify relationships between spaces. 

Vistas are lists of spaces; they are intended to give users a manageable perspective 

of the information. Any access to the knowledge base is performed through one (or 

more) of these vistas. The similarity between the concepts of vistas in partitioned 

semantic networks and the idea of customized user views is obvious. By apply­

ing this powerful modelling technique to the database interface, significant gains 

towards the support of individualized user environments should be realized. 

Concluding Remarks 

In this paper, we have studied the evolution of data models from the early record 

oriented systems to the user oriented semantic database models. Each database 

model examined has made some contribution to the organization, implementation 

or semantics of database systems. We also observed that significant progress has 

already been made in increasing the overall semantics of the stored data and pro­

viding tools, like high-level query languages and simple user views, which make 

data manipulation easier for the user. The relatively new trend of adapting AI 

techniques to database environments seems extremely promising. In the near fu­

ture we believe that such techniques will permit the construction of information 

management systems much more sophisticated than those in existence today. 

One major requirement on intelligent databases is the ability to use information 
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about the actual application domain to retrieve intentional data, i.e., data that is 

not explicitly represented in the database but can be deduced from explicit facts and 

the knowledge of the· application domain. Intelligent databases must also be capable 

of assisting users with query specification. Future systems based on AI formalisms 

will include a significant amount of contextual information. This kind of information 

may be used to help users formulate efficient unambiguous queries, correct users' 

misconceptions about the structure and content of the data, and provide answers 

to queries that are practical to use. An answer to a query is meaningful only if 

the user can actually use it. For example, it may not be helpful to a human user 

to simply list all data that satisfy a given query if such a list contains thousands 

or even millions of data items. In order for such information to be useful, future 

systems will have to be able to assist the user by producing responses to queries in 

a summarized form and/or to give additional (meta) information about the possible 

results. 

Other areas in which database research can benefit greatly from AI are the use 

of natural language as a user interface and the definition and maintenance of cus­

tomized user views of the data. To permit the latter in its full generality, it will 

be necessary to develop a framework for the support of relativism in which indi­

vidual user views will evolve independently of each other within a shared database 

environment. Such user friendly systems will also have to facilitate many different 

types of user interfaces, ranging from interactive, natural language based, for the 

novice, to general purpose programming language interfaces, for system developers 

and maintainers. 

The systems and techniques surveyed in this paper show that there is great 

promise for future application of AI techniques to database technology. It is our 

hope that this paper will help increase the level of interdisciplinary awareness and 
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cooperation and that it will spawn new ideas to advance the current state of infor-

mation management systems. 
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