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Abstract Animated graphics are extensively used in multimedia instructions explaining

how natural or artificial dynamic systems work. As animation directly depicts spatial

changes over time, it is legitimate to believe that animated graphics will improve com-

prehension over static graphics. However, the research failed to find clear evidence in

favour of animation. Animation may also be used to promote interactions in computer-

supported collaborative learning. In this setting as well, the empirical studies have not

confirmed the benefits that one could intuitively expect from the use of animation. One

explanation is that multimedia, including animated graphics, challenges human processing

capacities, and in particular imposes a substantial working memory load. We designed an

experimental study involving three between-subjects factors: the type of multimedia

instruction (with static or animated graphics), the presence of snapshots of critical steps of

the system (with or without snapshots) and the learning setting (individual or collabora-

tive). The findings indicate that animation was overall beneficial to retention, while for

transfer, only learners studying collaboratively benefited from animated over static

graphics. Contrary to our expectations, the snapshots were marginally beneficial to learners

studying individually and significantly detrimental to learners studying in dyads. The

results are discussed within the multimedia comprehension framework in order to propose

the conditions under which animation can benefit to learning.
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Introduction

Given their dynamic nature, animated graphics are often considered as ideally suited for

conveying explanations about dynamic phenomena that involve change over time, like

mechanical, biological, or meteorological systems. As evidenced by the popularity of

computer animations in web sites providing teaching resources, this assumption is mostly

accepted by educational practitioners. However, research did not provide consistent evi-

dence that animation improves the understanding of dynamic phenomena. In this paper, we

claim that animation can help the understanding of dynamic systems, provided that the

instructional material and the learning setting are designed in order to overcome the

cognitive limitations of animation. Before examining when and why animation may

support comprehension, it is necessary to consider the cognitive processes involved when

using multimedia instruction for understanding how dynamic systems work.

Models of multimedia comprehension

In this paper we define multimedia instruction as instruction containing both symbolic

(verbal information, formula, etc.) and analogical information (graphics, pictures, schemas,

etc.). Originally derived from the domain of text comprehension, models of multimedia

comprehension assume that verbal and pictorial information are first processed separately

before being integrated in a common representation, or mental model. Schnotz and Bannert

(2003) proposed that multimedia information is processed in two distinct paths, symbolic

and analogical. In the symbolic path, semantic processing is applied to verbal information

and leads to a propositional representation. On the analogical path, visual information is

first organized according to perceptive rules into a visual image. The propositional rep-

resentation and the visual image are then integrated into a unique analogical structure, the

mental model.

Derived from multimedia information and from previous knowledge, the mental model

makes it possible to generate new information and inferences during and after reading the

instruction. Mayer’s selection, organisation and integration model (Mayer 2001, 2005)

also postulates a similar combination of ascending and descending processes and a dual

processing principle. Information is first selected in two distinct sensory channels

according to whether information is conveyed in a visual or auditory mode. Verbal and

visual elements are then organized in two distinct representations, irrespective of their

initial sensory mode, that are finally integrated in a single mental model. Mayer’s model

particularly focuses on the assumption that working memory capacity is limited for novel

elements (Baddeley 1986). A large body of research using this model established principles

for designing multimedia instruction in order to avoid cognitive overload at different stages

of processing (Mayer 2005; Mayer and Moreno 2003).

A specific case is the construction of mental models of dynamic systems, which involve

spatial changes over time. According to Narayanan and Hegarty (2002), constructing a

dynamic mental model is a five-step process. A first organisation leads to static mental

models (one verbal and one visual), followed by the identification of referential links

between modalities. The dynamic mental model is achieved after the identification of

cause-effect relationships and a final integration. It is then possible to mentally simulate the

system in motion, and therefore to infer its functioning under different conditions.

According to the mental model theories reviewed above, it is legitimate to believe that

animations are ideally suited to support the construction of a dynamic mental model, since

spatio-temporal relations in the mental model can be directly mapped to spatio-temporal
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changes in the display, saving the learner from engaging in a cognitively demanding

mental simulation. However, the literature does not support this assumption. Considering

only the studies that involved carefully designed experiments comparing animated and

static graphics, Tversky et al. (2002) reported that most studies found little if no benefit

from animated graphics over static ones on learning outcomes. Several studies, designed in

agreement with principles derived from multimedia learning theories, suggest that ani-

mated graphics may not improve learning compared to their static equivalents (e.g.,

Catrambone and Seay 2002; Hegarty et al. 2003; Lowe 2003). For example, Scheiter et al.

(2006) used an hypermedia environment to teach probability theory and showed that the

frequent use of animations led to higher learning times and a decrease in performance

compared to a static-pictures condition. A recent meta-analysis (Höffler and Leutner 2007)

using the results of 26 studies comparing static and animated visualizations found that

animation was beneficial when the learning content involved procedural knowledge, but

not when it involves declarative knowledge.

Why and when animation helps understanding dynamic systems

Schnotz and Rasch (2008) develop the idea of three possible effects of animated pictures

on the learner. In the first, facilitating effect, animations can facilitate the construction of a

dynamic mental model, mainly by preventing the learners from having to engage in

demanding mental simulation. The second effect, called enabling, refers to the potential

animated graphics have for allowing the comprehension of dynamic systems that novice

learners are unable to mentally simulate. According to Tversky et al. (2002), the main

benefit of animated over static graphics is to convey the microsteps between larger steps,

specifically the precise spatial-temporal actions of components. Many of the static graphic

displays portray the coarse segments whereas the animations portray both the coarse and

fine segments. Without the microsteps, novice learners would simply not be able to form an

accurate dynamic mental model. Moreover, since animation shows the microsteps of the

dynamics process, learners do not have to mentally infer how the system functions.

Cognitive resources can thus be allocated to processing the verbal and pictorial informa-

tion, ensuring a better memorization. The third effect described by Schnotz and Rasch

(2008) is negative to learning and is called inhibiting effect. As change over time is directly

perceived from animation and does not have to be inferred, the use of animated pictures

can inhibit the learners from mentally animating the dynamic phenomenon, leading to a

shallow processing of information. Though animation directly conveys the succession of

steps and transformations, the underlying conceptual dynamics still required active inte-

gration processes by the learner. Similarly, Lowe (2004) described the underwhelming

effect as the risk that the direct visualization of dynamic information in animation may

induce an illusion of understanding and consequently lead to a cognitive involvement

withdrawal. This concern agrees well with Mayer’s (2005) focus on the need of learner to

be active, also underlined by Ainsworth and Van Labeke (2004).

Another drawback of animation mentioned in the literature deals with the delivery of

dynamic information. As animation involves change over time, information is transient and

cannot be reinspected, contrary to a series of static pictures (Tversky et al. 2002). As a

result, some critical information can be missed or inaccurately perceived, especially

because novice learners tend to focus on perceptually salient changes that are not neces-

sarily conceptually relevant (Lowe 2004). Moreover, animation imposes a heavy working

memory load, since each and every change needs to be memorized (initial point, type of

change, inter-dependency, etc.). According to the cognitive load theory (Sweller 2003), the

Animation and collaboration 473

123



cognitive demand due to the processing of the instructional material (extraneous load)

should be kept to a minimum in order to save resources for the construction of the mental

schema (germane load) and for the processing of the content (intrinsic load).

Given these cognitive difficulties imposed by animation, we propose to use recapitu-

lative snapshots of critical steps of the dynamic phenomenon depicted in the animation, in

order to offload working memory and to support the construction of a dynamic mental

model. Since a graphic representation of the critical steps remains on the screen, the initial

and final position of objects can be reinspected. The learners can adopt a ‘‘piecemeal

strategy’’ (Hegarty and Sims 1994) and construct first local representations that are then

integrated in a coherent mental model. Catrambone and Seay (2002) found that providing

frames of critical steps of a dynamic process was as effective as animation to explain the

functioning of computer algorithms, except for complex transfer problems where anima-

tion was slightly more effective.

In a preliminary study, Bétrancourt et al. (2003) used a translated version of Mayer and

Chandler’s (2001) instructional material about the formation of lightning. In one condition,

eight snapshots of the main steps of the process were displayed above the commented

animation. Participants studying with the animated version outperformed participants

studying with the static version. But participants studying the material with snapshots did

not perform differently from participants without the snapshots. However, the relative low

complexity and absence of concurrent changes in the lightning instructional material might

be responsible for the lack of effects. We assume that snapshots can still be useful when

visual changes are concurrent and sufficiently complex to overwhelm learner’s attention

and working memory capacity.

Individual and collaborative learning situation

The collaborative learning setting may be a good candidate to overcome the underwhelming

effect, a major drawback of animation described by Lowe (2004). The assumption under-

lying collaborative learning theories is that learning is improved through learners’ efforts to

integrate their different perspectives. Learners studying collaboratively have to negotiate

meanings, share and compare their points of view and construct common knowledge. A

common representation of the learning task has to be constructed and maintained all along

the task, by a process called grounding (Clark and Brennan 1991; Roschelle and Teasley

1995). Dillenbourg (1999) claimed that the benefit of collaboration for learning is a ‘‘side-

effect’’ of the cognitive involvement needed to build and maintain a shared representation of

the problem at hand. The grounding process can be supported through artefacts, external

elements used as symbols or information sources to create an array of accessible knowledge

around an individual and his peers (Moore and Rocklin 1998). The research in computer-

supported collaborative learning (CSCL) focuses mainly on designing computerized arte-

facts that support the elaboration and updating of the common representation.

Collaborative learning has rarely been used in multimedia learning research. Schnotz

et al. (1999) designed two experiments involving either an individual or a collaborative

setting (dyads of participants). The instructional material was either an interactive ani-

mation or a static representation that explains time zones on earth. In the individual

learning setting, students using these animations showed better detail encoding than the

ones using static pictures, but no difference was found on a mental simulation task. In the

collaborative setting, participants achieved poorer performance when learning from the

dynamic material than from the static material (for both detail encoding and mental

simulation tasks). The authors suggested that participants in dyads experienced a cognitive
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overload with the materials used since they had to handle both the collaboration and the

information flow of the animation. However, in Schnotz et al. (1999) experiment, the

learning material was an interactive system which asked for a high level of user control.

With an animation involving a minimal user control, collaboration might intensify the

processing of the animation and thereby foster learning outcomes. Another issue with the

experiment of Schnotz et al. (1999) might be related to grounding: As information in

the animation was transient, dyads would suffer from the lack of permanent references, or

artefacts, to ground their mutual understanding, while they could use the permanent static

representation as a grounding artefact. Thus, the conditions for ‘‘optimal collaboration

load’’ (Dillenbourg and Bétrancourt 2006) were not fulfilled in this experiment.

In this research, we designed an experimental study to investigate the effect of ani-

mation when an external memory device (recapitulative snapshots) is provided or not, in

individual and collaborative learning settings. We claim that animation can be beneficial

for learning under specific conditions currently investigated in the multimedia learning

literature. First, animation will be more adequate than static pictures if the depicted phe-

nomenon is intrinsically dynamic, which means that its understanding implies the con-

struction of a dynamic mental model. Second, the instructional material has to be designed

to support the individual processes involved in the construction of a dynamic mental

model. Following Mayer and Chandler’s (2001) recommendation, we used a segmented

animation with a limited control device (to run the next sequence) in order to give learners

time to integrate each chunk of information before presenting the next one. Finally, the

learning setting has to be arranged to avoid cognitive underwhelming. One solution is to

involve engagement from the learner through the learning task. In this study, we use a

collaborative setting to ensure a deeper cognitive involvement of the learners through the

elaboration of a shared understanding of the situation (Dillenbourg 1999). It is important to

note that the goal of this experiment is not to investigate the conditions under which

collaboration is optimally designed, but to use collaboration as a particular learning con-

dition for studying multimedia material.

Based on these considerations, our hypotheses are the following: First, animation will

improve learning as compared with static pictures since it provides the microsteps of the

dynamic process that novices may not be able to mentally infer from static pictures

(enabling effect). Second, collaboration is not expected to provide any benefit overall,

since it was not scaffolded in a detailed manner. However, learning from animation will

particularly benefit participants studying in dyads, since collaboration induces a higher

cognitive involvement in the task, thus preventing the underwhelming risk. The higher

cognitive involvement of dyads will be reflected through longer time spent studying the

learning material than participants in individual setting. Third, the presence of snapshots

will have an overall positive effect since they offload working memory. We expect an

interaction between the presence of snapshots and the collaborative setting since dyads will

use the snapshots as artefacts to help grounding their mutual understanding. Accordingly,

the snapshots will benefit more to the dyads than to the individual learners.

Method

Participants and design: One-hundred and sixty first year university students were dis-

tributed depending on three factors in a between-subjects experimental design (8 groups).

The first factor was the type of multimedia instruction (static/animated): The learning

material was either a series of 12 static pictures or a series of 12 animated sequences. The
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key picture from each animated sequence was used for the static version. The same audio

explanations were used for both versions of the material.

The second factor was the presence of snapshots (with/without) depending on whether a

snapshot of each sequence was displayed alongside the presentation or not (see Fig. 1).

The third factor was the learning setting (individual/collaborative) depending on whe-

ther learners studied the instructional material individually or in dyads.

Material: The learning material consisted of two successive multimedia instructions.

The first one exposed how and why sometimes Venus can be seen in front of the Sun

(Venus transit, see Fig. 1 for a snapshot). The second multimedia instruction explained the

geological phenomenon of rift and subduction (see Fig. 2 for a screenshot). Each multi-

media instruction was divided in 12 sequences representing a critical step in the phe-

nomenon as defined by experts in the domain. After each multimedia sequence, the

presentation paused and participants had to click on a button to run the next sequence.

Two versions of the material were designed according to the type of multimedia

instruction. In the static version, we used the most informative and complete frame of each

sequence. In the animated version, the sequences were short animations. Since the

description and depiction of elements varied in complexity, the duration of each sequence

could vary between 8 and 35 s. The audio commentary was identical for the static and

animated version. The presentation durations of the static pictures were equal to their audio

commentaries while the length of the animated sequences was occasionally longer than

their audio commentary. As a result, the total duration for the static version of the mul-

timedia instruction was shorter than for the animated one. The total duration of the ani-

mated sequences for Venus transit was 304200 in contrast to 203200 in the static version; this

large difference was due to the depiction of three possible transits which took a long time

to display in the dynamic presentation, but only a short sentence to describe. The duration

of the sequence for the rift instruction was more constant across versions, 302000 for the

static version and 303000 for the animated one.

Snapshots of 
previous
sequences

Snapshots of 
next sequences 
(inaccessible)

Enlarged snapshot 

Key frame of the 
last sequence 

Fig. 1 Screenshot of the display during the pause after the seventh sequence of the astronomical animation

in condition with snapshots. Note: The key picture of previous sequences could be accessed by moving the

mouse over the corresponding snapshot during the pauses between two sequences
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Two displays were designed in order to implement the snapshots factor. In the display

without snapshots, the static and animated pictures had the same size (800 9 600 pixels),

and were displayed on the top-right part of the interface. In the version with snapshots, 12

empty areas for each multimedia instruction were provided on the left side of the screen

(see Fig. 1). After each sequence was shown (static or animated according to the type of

multimedia presentation), a snapshot of this frame (320 9 200 pixels) appeared in one of

the empty areas. Participants could enlarge the snapshot (640 9 480 pixels) by moving the

mouse over the corresponding field, but only during the pauses between sequences. The

snapshots in the static version were the same as those in the animated version.

Dependent measures: We assessed learning outcomes, elaboration time, and subjective

cognitive load as dependent measures. To measure learning outcomes for the astronomy

instruction, participants had to answer a knowledge test with 16 multiple choice questions.

The correct answers to nine of these questions were explicitly depicted or explained during

the presentation and assessed learners’ retention of elements. Seven questions involved

transfer of knowledge; they evaluated the same principles but applied to other phenomena

(e.g., a moon eclipse). For the geology instruction, 9 multiple-choice items were used to

measure retention, and another 7 to assess transfer performance. Learners always received

one point for a correct answer. Retention and transfer score from both instructions were

added up into a total retention score and a total transfer score and were then transformed

into percentages of correct answers for easier interpretation.

Multimedia 

presentation

Button to run the 

next sequence 

Instructions 

Fig. 2 Screenshot of the display during the pause after the eleventh sequence of the geological animation in

a condition without snapshots. Note: The presentation could not be controlled, nor could be viewed a second

time. A prompt appeared during pauses to encourage participants to ‘‘figure out what has happened in the

last sequence’’. A button was provided to run the next sequence
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To assess subjective cognitive load, participants were asked to fill in a simplified

version of the NASA-TLX (Hart and Staveland 1988), where they had to rate their mental

demand, temporal demand, performance, effort and frustration each on a scale from 0 (low)

to 100 (high). The scores from both materials were added up for the analysis.

Finally, students’ elaboration time was recorded. After each sequence, the presentation

paused and the participants were invited to take as long as they wished to reflect (individual

setting) or discuss (collaborative settings) on the instruction. The time spent during these

pauses was measured and called elaboration time. We chose to analyse elaboration time

instead of total learning time since the duration of the instruction could vary across con-

ditions (see material section) and was not under participants’ control.

Procedure: All participants started the experiment with a short test on their knowledge

in astronomy. Then, participants in the collaborative learning condition were seated in

dyads in front of the same computer. Moreover, participants in the snapshots condition

were explained the use and role of these snapshots. After a short introduction to the

phenomenon of Venus transit, they were invited to study the first instruction. During the

pauses, an onscreen instruction asked them to explain what had occurred in the last step.

The goal of this instruction was to allow a reflective pause for learners in the individual

setting and to stimulate an interaction between learners in the collaborative setting.

Sequences could only be studied once; participants had no control over the pace and

direction of the instruction except for the duration of the pauses between them, thus the

total study time could vary across learners. When the learning session was over, partici-

pants were invited to fill in the simplified version of the NASA-TLX to assess their

subjective load. Subsequently, participants answered the knowledge test with 16 multiple

choice questions assessing retention and transfer performance.

Once the first part of the experiment was over, participants were invited to study the

second multimedia instruction. Following the same procedure, they started with a pre-test

on their knowledge of geology, followed by a quick introduction, the presentation (in the

same experimental condition as the first one), the simplified nasa-tlx and lastly the

retention and transfer tests.

Results

Learning performances

A multivariate analysis of variance was conducted with learning setting, snapshots and

type of multimedia instruction as between-subjects factors and retention and transfer scores

as dependent measures. Raw scores were collapsed across the two materials and the

percentage of correct answers was used for comparison between our conditions (see

Table 1). Significant overall differences were found between the animated and the static

instruction, F(2, 151) = 5.06, p\ .01. No significant differences were found between the

conditions with and without snapshots, F(2, 151) = 0.06, ns, nor between the individual

and the collaborative learning setting, F(2, 151) = 0.52, ns. The interaction between the

type of instruction and the learning setting was statistically significant, F(2, 151) = 5.02,

p\ .01, as well as the interaction between the snapshots factor and the learning setting,

F(2, 151) = 4.50 p\ .05. The interaction between the type of instruction and the snap-

shots was not significant, F(2, 151) = 0.69, ns. The triple interaction was not significant

either F(2, 151) = 0.99, ns. In the following, only the results of the ANOVAs performed
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for the retention and transfer scores that correspond to the aforementioned overall effects

will be described.

The mean retention and transfer scores are presented in Table 1. The analyses of var-

iance performed on retention and transfer scores showed a significant main effect of the

type of presentation. Participants in dynamic condition performed better than participants

in static condition, both in retention scores, F(1, 152) = 9.18, MSE = 217.67, p\ .01,

Cohen’s d = .49 (Cohen 1988), and transfer scores, F(1, 152) = 6.25, MSE = 265.33,

p\ .05, d = .38.

Concerning transfer scores, a significant interaction between the type of instruction and

the learning setting was found, p(1, 152) = 7.62, p\ .01. Participants in the collaborative

setting showed better transfer performances in the dynamic condition than in the static

condition F(1, 76) = 15.10, MSE = 242.68, p\ .01, d = .87, whereas no significant

effect was found in individual setting, F(1, 76) = .03, ns. Moreover, participants learning

from a dynamic presentation scored higher in the transfer test when learning in a collab-

orative setting than individually, F(1, 80) = 7.16, MSE = 265.12, p\ .01, d = .57,

whereas the difference was not significant when learning from a static presentation,

F(1, 72) = 1.60, ns.

The interaction between the snapshot factor and the learning setting was significant with

regard to the transfer scores, F(1, 152) = 6.65, MSE = 265.33, p\ .05. Participants

learning individually performed better with than without the snapshots, but the difference

was only marginally significant, F(1, 76) = 3.28, MSE = 287.99, p = .074, d = .39.

Contrary to our expectations, participants learning collaboratively obtained inverse results;

that is, higher transfer scores without snapshots than with them, F(1, 76) = 3.39,

MSE = 242.68, p = .07, d = .39.

None of the other interactions was statistically significant. In particular, the two above-

mentioned significant interactions concerning the transfer scores were not present on the

retention scores (type of instruction 9 learning setting, F(1, 152)\ 1; snapshots 9

learning setting, F(1, 152)\ 1).

Since participants learned in dyads and then answered questionnaires separately, the

independence of measurements is arguable. To rule out this possible critique, we per-

formed a multilevel analysis and found no significant difference in the explained variance

when either taking or not taking the composition of the groups into account (only the type

of instruction factor was significant at the fixed level, b = .68, p\ .05 for retention and

b = .95, p\ .05 for transfer). Moreover, standard deviations were relatively similar in

Table 1 Mean and standard deviation of percentage of correct answers by type of presentation, with and

without snapshots

Learning setting Static Animated

Without With Without With

M SD M SD M SD M SD

Retention (%)

Individual 50.00 15.04 54.97 13.47 61.90 15.24 56.35 15.64

Collaborative 53.40 11.77 51.39 14.52 59.72 17.74 60.10 13.57

Transfer (%)

Individual 45.49 22.36 57.89 15.41 50.34 12.26 51.70 16.74

Collaborative 50.00 12.00 43.93 13.37 63.93 16.63 57.14 18.70
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both learning settings (individual learning retention M = 55.97, SD = 15.23; transfer

M = 51.34, SD = 17.20; collaborative learning: retention M = 56.32, SD = 14.84;

transfer M = 53.93, SD = 17.04). Consequently, we considered our measurements as

independent and performed statistical analysis accordingly (i.e., ANOVA).

Elaboration time

After each sequence, the presentation paused and the participants were invited to take as

long as they wished to reflect (individual setting) or discuss (collaborative settings) on the

instruction. The time spent during these pauses was measured and called elaboration time.

We chose to analyse elaboration time instead of total learning time since the duration of the

instruction could vary across conditions (see material section) and was not under partici-

pants’ control. As expected, participants in the collaborative learning conditions spent

considerably more time between the sequences than participants in the individual learning

conditions, F(1, 152) = 99.55, MSE = 123.94, p\ .001, d = 1.59, see Table 2 for

details. Participants with snapshots also spent more time elaborating between sequences

than participants without snapshots, F(1, 152) = 5.62, MSE = 123.94, p\ .05, d = .33.

There was no significant interaction concerning the elaboration time. No significant cor-

relations were found between elaboration time and retention (r = .07, ns) or transfer scores

(r = .09, ns) either. Thus, the increase in time was not directly related to an increase in

performance.

The time spent studying the snapshots (i.e., elaboration time with an open snapshot) was

relatively small (M = 53.38 s, SD = 79.30) as compared to the total elaboration time

(M = 427.76 s, SD = 342.08). Participants with snapshots spent on average an eighth of

their elaboration time with an open snapshot. Our other experimental conditions had no

effect on the usage of snapshots. In particular, contrary to our expectations, participants in

the collaborative learning setting did not spend more time with opened snapshots than

participants in the individual learning setting, F(1, 78) = 1.94, ns.

Subjective evaluation of mental workload

The simplified NASA-TLX scores were quite similar across our conditions (see Table 3). A

MANOVA revealed no significant overall differences between any of our experimental

conditions. No significant differences were found between static and dynamic presentations

F(5, 148) = 0.74, ns, between conditions with or without snapshots, F(5, 148) = 0.46, ns,

Table 2 Participants’ mean and standard elaboration time by type of presentation, with and without

snapshots

Learning setting Static Animated

Without With Without With

M SD M SD M SD M SD

Elaboration time (s)

Individual 7.69 5.40 9.63 3.95 7.52 4.33 10.89 6.85

Collaborative 23.22 14.62 28.54 12.95 24.13 15.76 30.22 15.70
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nor between individual and collaborative learning setting F(5, 148) = 1.43, ns. Moreover,

no interaction was significant (all ps[ .05). Accordingly, no ANOVA were performed on

the subjective load scales.

Discussion

Our study stands as one of the few experiments reporting a positive effect of animated

graphics over static ones for conceptual understanding of dynamic systems. However,

while animation was beneficial to retention both for learners studying individually and in

dyads, its positive effect on transfer tests was observed only for participants studying in

dyads. According to Mayer’s (2005) or Schnotz and Bannert’s (2003) model of multimedia

processing, the retention performance reflects the coherence and accuracy of propositional

and pictorial models, but not the quality of the mental model. Since animation directly

depicts changes over time, our results showing benefits of animation for retention can be

explained using Tversky et al. (2002) apprehension principle. Interestingly, the results are

not as straightforward for transfer questions, which reflect the quality of the elaborated

mental model. Indeed, the animated instruction led to higher transfer scores only for

participants in the collaborative learning setting. These results are strongly in favour of an

underwhelming effect of the animated instructions, as suggested by Lowe (2003). By

depicting the microsteps of the process, the animated presentations facilitated higher detail

encoding. However, in an individual setting, they may have inhibited a mental animation

of the system, hindering the construction of a dynamic mental model. When additional

cognitive processing induced by collaboration is involved it could be shown that the same

Table 3 Results of the five NASA-TLX scales depending on the experimental condition

Learning setting Static Animated

Without With Without With

M SD M SD M SD M SD

Mental demand

Individual 155.25 34.20 146.48 34.44 135.55 44.69 144.83 34.41

Collaborative 152.24 24.14 151.05 34.56 139.51 44.10 149.23 27.26

Temporal demand

Individual 116.61 38.41 105.00 32.82 103.62 37.55 100.07 29.39

Collaborative 110.97 38.36 98.02 37.18 95.27 44.54 115.57 28.70

Performance

Individual 90.88 22.95 91.54 33.29 93.56 37.36 91.62 42.30

Collaborative 92.04 36.80 90.49 36.51 73.28 26.24 85.75 32.61

Effort

Individual 117.79 32.28 111.20 30.84 110.44 35.16 115.14 38.91

Collaborative 103.61 35.17 104.12 33.95 95.19 27.74 102.46 37.14

Frustration

Individual 94.13 26.99 97.15 29.50 96.48 32.58 90.32 41.63

Collaborative 90.23 42.03 97.96 35.01 97.27 32.17 74.94 38.02

N.B. scores from both instructions were added up (min 0, max 200)
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animation would allow for the construction of a more coherent and accurate dynamic

mental model.

When collaboration facilitates learning from multimedia instruction

Obviously, the additional cognitive processing involved in a collaborative situation also

takes more time. In our study, dyads always spent more time studying the animation than

individual learners. The efficiency of the collaborative learning setting is thus questionable.

It is important to note that learning improvements in the collaborative setting could not be

attributed to the extra time spent studying the material. First, there was no correlation

between elaboration time and performance. Second, only dyads using the animated

instructions performed higher in the transfer test.

Individual and collaborative learning conditions are different on more than one

dimension. Creating and maintaining a shared representation is one aspect but so is the

verbalization. Participants in dyads had to talk together, so they had to verbalize their

representations. Having to explain to others could have an effect, even if it is often smaller

than collaboration itself (Ploetzner et al. 1999). In order to verify this hypothesis, we built a

control experiment using different levels of verbalization for individual learners (Berney

et al. 2005). The results did not confirm the hypothesis of an effect of verbalisation per se,

in the sense that learners who where instructed to verbalize or self-explain the changes did

not succeed better than learners who did not have to verbalize during the elaboration phase.

These complementary results support the interpretation of the differences found between

the individual and collaborative learning settings in this study in terms of grounding and

maintained representation.

Our results for collaborating learners are not consistent with those of Schnotz et al.

(1999). In their study, dyads performed better when using static rather than animated

graphics. Conversely, for individual learners, advantages were found when using animated

instead of static material. However, Schnotz et al. (1999) used interactive animations,

which learners had to explore and use to answer precise questions. In our setting, partic-

ipants had no control over the presentation (except for running the next sequence). These

differences with regard to the interaction demands imposed by the animation might create

meaningful differences in the management and outcomes of the learning session, as will be

discussed in the next section in greater detail.

Did snapshots help learning from multimedia instruction?

Contrary to our expectations, the presence of snapshots of previous sequences did not

effectively improve learning performances. However, individual learners obtained mar-

ginally higher transfer scores with snapshots, whereas collaborative learners obtained

marginally lower scores when snapshots were presents. This interaction is very interesting

since we expected the snapshots to serve as helpful artefacts for learner dyads in their

mutual explanations. Contrary to this expectation, the presence of recapitulative snapshots

helped learners studying individually but was detrimental to learners studying in dyads. In

the individual setting, the snapshots acted as memory cues for the succession of steps, thus

supporting the construction of a dynamic mental model. In a collaborative setting, par-

ticipants using snapshots had to interact both with their partner and with the instructional

material. Collaborative decisions had to be handled to decide which snapshot to open and

when. Our results suggest that this collaborative human-computer interaction management

prevented an otherwise efficient collaborative learning setting to take place. Referring to
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the split-attention effect (Chandler and Sweller 1991), we use the expression split-inter-

action effect to account for the interfering management of two sources of interaction. This

interpretation in terms of interference between the additional processing of information

induced by collaboration and the additional management of a supplementary source of

information (the snapshots) is congruent with the analysis of verbal productions of the

peers (Sangin et al. 2008). The main findings of this analysis showed that pairs provided

with snapshots produced fewer verbal interactions than pairs without snapshots. The verbal

utterances were also categorized and their analysis confirmed that less information on the

learning content and less interaction management utterances were made in the group with

snapshots than in the group without. The two categories of verbal productions were also

positively correlated with the learning performances.

In order to further investigate our split interaction hypothesis, we plan to design a follow

up study using the learning setting (collaborative or individual) and the level of interac-

tivity with the learning material (with or without) as independent variables. This design

would be more appropriate to reveal the existence of such a split-interaction effect.

The learning benefit of collaboration is a ‘‘side-effect’’ of efforts made by both peers, all

along their interaction, to maintain a shared representation of the task (Dillenbourg 1999).

This argument agrees quite well with our findings that show that adding active information

processing can prevent an underwhelming effect. Adding a collaborative learning setting to

increase the processing depth may not apply to very complicated animations, when many

elements and changes are shown at the same time. In this case, the overwhelming effect

would be close to a cognitive overload and asking participants to maintain a shared

representation all over would be too demanding. However, in our study, the animated

instruction contained both dynamic and static presentations since the last frame of each

sequence was displayed during the pauses. The snapshots also inserted static elements in

the animated instructions. These design decisions were made in order to keep the different

versions of the materials as realistic as possible to what would be used in an instructional

presentation; removing the static elements in the animated presentation did not make sense

from this perspective.

Conclusion

Our results clearly support a possible benefit of animated pictures over a series of static

ones for constructing an accurate mental model of a dynamic system. Nevertheless, this

potential benefit is constrained to very specific learning settings. Our results suggest that

supplementary cognitive processing such as a collaborative learning setting is necessary in

order to benefit from the additional information about microsteps conveyed by a dynamic

presentation. However, a collaborative learning setting—although effective—can be less

efficient, since dyads needed more time to finish their learning phase than individual

learners did. Future research will be carried out to investigate the possible split-interaction

observed in this study, thus providing more elements for explaining how animations

support understanding of dynamic processes and how collaborative learning can affect the

efficiency of multimedia instructions.
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Schnotz, W., Böckheler, J., & Grzondziel, H. (1999). Individual and co-operative learning with animated

pictures. European Journal of Psychology of Education, 14(2), 245–265.

Schnotz, W., & Rasch, T. (2008). Functions of animations in comprehension and learning. In R. K. Lowe &

W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 93–113).

New York: Cambridge University Press.

Sweller, J. (2003). Evolution of human cognitive architecture. In B. H. Ross (Ed.), The psychology of

learning and motivation (pp. 215–266). New-York: Academic Press.
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