
I
f it is indeed true that we cannot fully understand our 

present without knowledge of our past, there is perhaps 

no better time than the present to attend to the history of 

arti�cial intelligence. Late 2017 saw Sundar Pichai, the CEO 

of Google, Inc., opine that “AI is one of the most important 

things that humanity is working on. It’s more profound than, 

I don’t know, electricity or �re” (Schleifer 2018). Pichai’s 

notable enthusiasm for, and optimism about, the power of 

multilayer neural networks coupled to large data stores is 

widely shared in technical communities and well beyond. 

Indeed, the general zeal for such arti�cial intelligence sys-

tems of the past decade across the academy, business, gov-

ernment, and the popular imagination was re�ected in a 

recent New York Times Magazine article, “The Great AI Awak-

ening” (Lewis-Kraus 2016). Imaginings of our near-future 

promoted by the World Economic Forum under the banner 

of a Fourth Industrial Revolution place this “machine learn-

ing” at the center of profound changes in economic activity 

and social life, indeed in the very meaning of what it means 

to be human (Schwab 2016). 
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Previous Awakenings:  

The History of Expert Systems 
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n Much of the contemporary moment’s 

enthusiasms for and commercial inter-

ests in arti�cial intelligence, speci�cial-

ly machine learning, are pre�gured in 

the experience of the arti�cial intelli-

gence community concerned with expert 

systems in the 1970s and 1980s. This 

essay is based on an invited panel on 

the history of expert systems at the 

AAAI-17 conference, featuring Ed 

Feigenbaum, Bruce Buchanan, Randall 

Davis, and Eric Horvitz. It argues that 

arti�cal intelligence communities today 

have much to learn from the way that 

earlier communities grappled with the 

issues of intelligibility and instrumen-

tality in the study of intelligence. 

 



Far too often, these pronouncements and perspec-

tives fail to attend to arti�cial intelligence’s previous 

awakenings. Over 30 years ago, in 1985, Allen Newell 

— one of the key �gures in the emergence of arti�cial 

intelligence as a �eld in the 1950s and the �rst pres-

ident of the Association for the Advancement of Arti-

�cial Intelligence (AAAI) — wrote: “There is no doubt 

as far as I am concerned that the development of 

expert systems is the major advance in the �eld dur-

ing the last decade … The emergence of expert sys-

tems has transformed the enterprise of AI” (Bobrow 

and Hayes 1985). This article frames and presents the 

discussion at an invited panel, “AI History: Expert 

Systems,” held at the AAAI-17 conference in San 

Francisco, February 6. The panel’s purpose was to 

open up this history of expert systems, its transfor-

mational aspects, and its connections to today’s “AI 

awakening” (Brock 2017).1 

The history panel featured four key �gures in the 

story of expert systems and was moderated by the 

director of the Center for Software History at the 

Computer History Museum, David C. Brock. Edward 

Feigenbaum is the Kumagai Professor Emeritus at 

Stanford University. He was president of AAAI in 

1980–81, and he was awarded the ACM Turing Award 

for 1994 in part for his role in the emergence of 

expert systems. Bruce Buchanan is a university pro-

fessor emeritus at the University of Pittsburgh, and 

he was president of AAAI in 1999–2001. Randall 

Davis is a professor in the Electrical Engineering and 

Computer Science Department at the Massachusetts 

Institute of Technology. He was president of AAAI in 

1995–97. Eric Horvitz, MD, PhD, is a technical fellow 

of the Microsoft Corporation, where he also serves as 

the managing director of Microsoft Research. He was 

president of AAAI in 2007–09. 

Perspectives from two historians of science and 

technology provide a very useful framework for 

approaching the history of expert systems, and the 

discussion at the 2017 history panel. Michael 

Mahoney, a history professor at Princeton University, 

was a particularly in�uential �gure in the study of 

the history of computing. In a 2005 article, “The His-

tories of Computing(s),” Mahoney presented a con-

cise statement of several of his most fundamental 

insights from his many years of study in the �eld. 

“[T]he history of computing,” he wrote, “is the his-

tory of what people wanted computers to do and 

how people designed computers to do it. It may not 

be one history, or at least it may not be useful to treat 

is as one. Different groups of people saw different 

possibilities in computing, and they had different 

experiences as they sought to realize these possibili-

ties. One may speak of them as ‘communities of com-

puting,’ or perhaps as communities of practitioners 

that took up the computer, adapting to it while they 

adapted it to their purposes” (Mahoney 2005).  

For Mahoney, a de�ning activity of these various 

communities of computing was creating software 

that, for him, constituted the modeling of certain 

features of the physical or social world. Making soft-

ware for Mahoney was putting the world into the 

computer: “[Software] Design is not primarily about 

computing as commonly understood, that is, about 

computers and programming,” he explained, “It is 

about modeling the world in the computer … about 

translating a portion of the world into terms a com-

puter can ‘understand’ … [P]utting a portion of the 

world into the computer means designing an opera-

tive representation of it that captures what we take to 

be its essential features. That had proved, as I say, no 

easy task … If we want critical understandings of how 

various communities of computing have put their 

portion of the world into software, we must uncover 

the operative representations they have designed and 

constructed” (Mahoney 2005). 

An historical expert on a very different subject — 

the Scienti�c Revolution of the 16th and 17th cen-

turies — and a history professor at Cornell Universi-

ty, Peter Dear provides an account of the two funda-

mental purposes toward which scienti�c and 

technical communities, including Mahoney’s com-

munities of computing, direct their activities: intelli-

gibility and instrumentality. Crudely summarized, 

Dear proposes that there are two distinct, separate, 

but intertwined purposes that have motivated these 

communities. One is a pursuit of the “intellectual 

understanding of the natural world,” including our-

selves. This is the striving to make sense of the world, 

to provide satisfying answers to basic questions about 

how things are, and why they are. Dear notes, “Evi-

dently … there are not timeless, ahistorical criteria 

for determining what will count as satisfactory to the 

understanding. Assertions of intelligibility can be 

understood only in the particular cultural settings 

that produce them.” The other purpose is the cre-

ation of effective techniques that afford, as Dear puts 

it, “… power over matter, and indirectly, power over 

people.” Here the goal is the creation and re�nement 

of an “operational, or instrumental, set of techniques 

used to do things … Such accomplishments … in fact 

result from complex endeavors involving a huge 

array of mutually dependent theoretical and empiri-

cal techniques and competences” (Dear 2006, pp. 1–

14). 

Both goals of intelligibility and instrumentality 

can clearly be seen in the community of computing 

— perhaps, more properly, communities — involved 

in arti�cial intelligence. On the side of intelligibility 

lie questions about our understanding of human 

intelligence: how is it that we reason, learn, judge, 

perceive, and conduct other mental actions? On the 

side of instrumentality reside myriad activities to cre-

ate computer systems that match or exceed human 

performance in tasks associated with the broad con-

cept of “intelligence.” This instrumental dimension 

in the history of arti�cial intelligence is of a piece 

with a major through-line in the history of comput-
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ing more generally, in which scientists and engineers 
developed machines to, at �rst, aid human practices 
of mathematical calculation, but these machines 
quickly came to exceed human intelligence’s unaid-
ed capacity for calculation by many orders of magni-
tude. From one angle, the pursuit of instrumentality 
in arti�cial intelligence may be seen as an effort to 
extend this surpassing of the human capacity for 
mathematical calculation to additional capabilities 
and performances. 

It is nonetheless very clear that intelligibility was 
an enormously motivating goal for the emergence of 
arti�cial intelligence. In his re�ections on the histo-
ry of arti�cial intelligence to 1985 cited above, Allen 
Newell also powerfully surfaced the importance of 
intelligibility to the arti�cial intelligence communi-
ty of which he was a part: “One of the world’s deep-
est mysteries — the nature of mind — is at the center 
of AI. It is our holy grail. Its discovery (which will no 
more be a single act than the discovery of the nature 
of life or the origins of the universe) will be a major 
chapter in the scienti�c advance of mankind. When 
it happens (that is, as substantial progress becomes 
evident), there will be plenty of recognition that we 
have �nally penetrated this mystery and in what it 
consists. There will be a coherent account of the 
nature of intelligence, knowledge, intention, desire, 
etc., and how it is possible for the phenomena that 
cluster under these names to occur in our physical 
universe.” (Bobrow and Hayes 1985, 378) 

As Ed Feigenbaum explained in the AAAI-17 panel 
on the history of expert systems, and in terms that 
directly echo Mahoney’s view of software as model-
ing, the roots of expert systems begin in the �rst 
decade of the AI community’s pursuit of intelligibili-
ty: 

Let me go back to the first generation, 1956–1965. The 

AI field began with a set of ideas like a Big Bang about 

the nature of human thought and how to model it by 

computer. The ideas came from some truly remarkable 

individuals. Their ideas about problem-solving, recog-

nition, and learning were fundamental but few. There 

was a focus on deductive [emphasis added] reasoning 

processes — logic-based or based on heuristic search 

— and on the generality of these reasoning processes.  

In 1962, I wrote about the need to move beyond 

deductive tasks to the study of inductive [emphasis 

added] processes and tasks, which I viewed as domi-

nant in human thought. But it took me two years 

until 1964 to frame this pursuit in a way that I 

thought would be fruitful. Being an empirical scien-

tist, I was looking for some people to observe with the 

idea of modeling their behavior. Now why did I 

choose to model the thinking of scientists? Because I 

saw them as being skilled, professional, induction spe-

cialists constructing hypotheses from data, and I 

thought they would be reflectively curious and reduc-

tionist enough to enjoy allowing others like me to 

explore their thought processes. 

Allen Newell and Herbert Simon created perhaps 
the �rst arti�cial intelligence program, Logic Theo-

rist, in 1955–56 as a model of deductive reasoning, 
and also as a kind of self-modeling of their own 
familiarity with creating proofs in formal logic and 
mathematics. That this model reproduced a set of 
proofs created by Bertrand Russell and Alfred North 
Whitehead in their seminal Principia Mathematica, 
and even arguably improved upon one, was taken as 
strong con�rmation of their model. 

In contrast, Feigenbaum’s interest was in modeling 
the inductive reasoning that he believed was vital in 
human intelligence generally. From his study of and 
with Newell and Simon, Feigenbaum drew the lesson 
that such modeling of human reasoning in the com-
puter needed speci�city. He believed that a particular 
“test bed” was required to exercise and re�ne the 
model, and to draw conclusions from it. After 
extended deliberation, Feigenbaum decided that 
“professional inducers,” people who were paid to 
make inductions, would make for a productive test 
bed. He would model, therefore, the reasoning of 
empirical scientists. To his surprise, Feigenbaum 
found that a prominent empirical scientist, indeed 
one of the world’s leading geneticists, shared his 
interest in the possibilities for computational models 
of scienti�c reasoning: 

AAAI Archive File Photo. 

Edward Feigenbaum.



In 1964, I was fortunate to find an enthusiastic col-

laborator, Joshua Lederberg, Professor of Genetics and 

Nobel Prize winner at Stanford. He too was interested 

in the question “Can AI model scientific thinking?” So 

our work together began in 1965, after I joined Stan-

ford. As an aside, Lederberg’s mind was one of great 

vision and insight, one of the top minds of the 20th 

century, in my view. But Lederberg was the gift that 

kept giving. In 1966, Lederberg recruited for us Pro-

fessor Carl Djerassi, one of the most influential 

chemists of all time, the father of the Pill [birth con-

trol pill] and the head of Stanford’s mass spectrometry 

laboratory. 

As I said, I’m an empirical scientist, not at theoretical 

one. I needed a test bed in which to do these AI exper-

iments. Lederberg suggested the problem that he was 

working on, inferring hypotheses about organic 

molecular structures from the data taken by an instru-

ment called a mass spectrometer. Lederberg was doing 

research for NASA on the design of a Mars probe, 

designing a mass spectrometer system for detecting 

life-precursor molecules such as amino acids.  

In this experimental setting, the test bed, we could 

measure, month by month, how well our program — 

which was called Heuristic DENDRAL, or later just 

DENDRAL for short — was performing compared with 

the performance of Djerassi’s PhD students and post-

docs on the same problem.  

Throughout the 1960s, Feigenbaum — in collabo-

ration with Bruce Buchanan and others — continued 

to evolve the model of the organic chemists in Carl 

Djerassi’s laboratory, and in particular their capabili-

ty to interpret the data about particular sorts of 

organic compounds from their mass spectrometry 

instrumentation. This modeling had two basic fea-

tures. For one, the arti�cial intelligence researchers 

developed the model of inductive reasoning process-

es in DENDRAL. In addition, they modeled the 

organic chemists’ knowledge as a store of rules, 

roughly in the form of “If, Then” statements. 
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The development of DENDRAL along these two 

lines served both intelligibility and instrumentality. 

On intelligibility, the motivating question was how 

to explain different abilities in human reasoning. 

How is it that experts render better judgments? Is it 

that some people possess a fundamentally superior 

way of reasoning than others? Or is it rather that 

accumulated, organized experience is the key, with 

people reasoning in more or less the same fashion?  

Research in the nascent �eld of expert systems 

sought to address the question of special reasoning 

versus accumulated knowledge as the basis for expert 

judgments. With this also lay the promise of instru-

mentality. If the key to expert performance could be 

unlocked by investigations of a computer system, 

might such a system come to match and then exceed 

the performance of any human expert, as was already 

the case with mathematical calculation? This co-

implication of intelligibility and instrumentality was 

not lost on the primary sponsor of arti�cial intelli-

gence research in the United States, at least until very 

recently: The US Department of Defense’s famous 

Defense Advanced Research Projects Agency 

(DARPA).  

As Feigenbaum recalled, by 1968 he and his col-

leagues were prepared to draw conclusions from 

work on DENDRAL, from what the performance of 

their model of this human expertise had shown 

them. The conclusions were, themselves, an induc-

tion from a model of chemists’ expertise in the inter-

pretation of mass spectra of particular families of 

organic molecules: 

So we proceeded experiment by experiment in this 

test bed … moving toward higher levels of perform-

ance in mass spectral analysis, that propelled the 

movement to higher levels of behavior. What allowed 

that was the knowledge that we were systematically 

extracting from the experts in Djerassi’s lab. Most of 

this knowledge was specific to mass spectrometry, 

including much heuristic knowledge, but some was 

general chemistry knowledge.  

In 1968, I was writing a paper with Bruce [Buchanan] 

and Josh Lederberg in which we chose to summarize 

the evidence from the many DENDRAL experiments 

from mid-1965 to mid-1968. It was evident that the 

improvement in DENDRAL’s performance as a mass 

spectrum analyst was almost totally a function of the 

amount and quality of the knowledge that we had 

obtained from Djerassi’s experts, and that it was only 
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weakly related to any improvements that the AI sci-

entists like me and Bruce had made to the reasoning 

processes used in DENDRAL’s hypothesis formation.  

So in 1968, I called this observation the “Knowledge is 

Power Hypothesis.” One data point. Later, as the evi-

dence accumulated from dozens of — or hundreds of 

— expert systems, I changed the word “hypothesis” to 

“principle.” The title of the 1968 paper was specifical-

ly worded to contrast what we called the DENDRAL 

case study with the main paradigm of the first gener-

ation of AI that focused on the generality of problem-

solving. Those of you who are old enough in the audi-

ence remember GPS [General Problem Solver]. This 

was a major paradigm shift for AI research, but it took 

more than five years for the new paradigm to take 

hold. 

Continued modeling of human experts, and in 

particular scientists and engineers, led to expert sys-

tems that, for very speci�c kinds of expertise, could 

meet and even exceed the performance of human 

experts. This achievement of instrumentality — a 

novel capability to do things, namely to exceed some 

performances of human experts — eventually led to 
a great enthusiasm for expert systems within the arti-
�cial intelligence community and its military 
patrons, then quickly drawing in corporations, 
investors, entrepreneurs, and the popular press.  

Yet the route to these enthusiasms was painstaking 
work along the same two developmental lines for 
modeling human expertise as computer systems: 
changes to the inductive reasoning processes and 
also to the representation of expert knowledge and 
the means of making that representation. Bruce 
Buchanan concentrated his efforts on the latter, 
which, he explained eventually became known as 
knowledge engineering: 

Well, we didn’t use the term “knowledge engineering” 

until the 1970s, but we did talk, in a 1969 paper that 

Ed and I were coauthors of with Georgia Sutherland, 

about knowledge elicitation in AI. It was at a machine 

intelligence workshop and people there were some-

what stunned that we were talking about organic 

chemistry. John McCarthy rescued me during a talk by 

saying to somebody who was giving me a hard time, 

“Sit down, be quiet, you might learn something.” I 

forever after loved that man. 

Well, there were other groups working on knowledge 

representation at the same time. Harry Pople and Jack 

Myers at [the University of Pittsburgh] were working 

with an emphasis on ontologies and mechanisms. 

Peter Szolovits was working with Dr. Bill Schwartz, and 

that led to a lot of work on the object-oriented frames 

paradigm. Cas Kulikowski was working on knowledge 

engineering with Dr. Aaron Safir at Rutgers. There was 

work in Europe … There was a lot of isolated work in 

France replicating some of the early expert systems 

work, and several projects in France from commercial 

firms, Schlumberger and Elf Aquitaine being two of 

the most important. The Japanese Institute for New 

Generation [Computer] Technology, ICOT, was work-

ing on fifth-generation computing largely from a 

point of view of logic. The French were using Prolog 

and so did the Japanese.  

So I think our lesson there, the important part, was in 

coding knowledge. The language you use — Prolog or 

LISP or something else — it didn’t matter nearly so 

much as the paradigm of starting with an expert’s 

knowledge. But we also saw in that time that knowl-

edge engineering could focus on the objects and their 

relationships in an ontology: a hierarchy. They could 

focus on the inferential mechanisms that were going 

on, and in DENDRAL we were very much interested in 

what we called the “situation-action rules” at the time. 

There was an action in the right-hand side of the rule, 

not just a Prolog kind of logical assertion. 

For Buchanan, as with Feigenbaum, the motiva-
tion of intelligibility was, at least initially, primary for 
the development of expert systems. Buchanan 
recalled: 

Well, I was fascinated with the reasoning process.... 

My dissertation [on the philosophy of science] was on 

the process of discovery and trying to orient it into a 

framework. In the middle of my dissertation, I got to 

know Ed Feigenbaum in 1963 and began reading the 
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early AI work, mostly by Newell and Simon, and the 

RAND Corporation publications. And it convinced me 

that we could make a logic of discovery out of the par-

adigm of search, a constrained search. So that was the 

focus within which I got to know Ed and came into 

this field.  

So when Ed offered the opportunity to work on DEN-

DRAL, it was just a godsend because here was an 

opportunity — one of the early experiments in com-

putational philosophy [emphasis added] — to try to do 

philosophy but with an empirical bent, namely writ-

ing programs that would actually produce something 

that was testable. Then started these discussions with 

Carl Djerassi’s postdoc Alan Duffield and his reasoning 

process about mass spectrometry and the interpreta-

tion of mass spectra was just exactly what I needed in 

order to instantiate some of those ideas about captur-

ing knowledge, about data interpretation, and then, 

subsequently, theory formation. 

You’ve got to, I think, want to contrast this work with 

other work that was going on at the same time in 

which people were acting as their own experts. I could 

not, by any means, claim to be an expert in chemistry 

or certainly not mass spectrometry. There were other 

people though: like Joel Moses [and his colleagues] at 

MIT, who was an expert in symbolic mathematics; and 

Tony Hearn in symbolic algebra; Ken Colby in psychi-

atry, Todd Wipke in chemistry. These people were also 

doing knowledge elicitation but it was from their own 

heads, so it was more like just introspection.  

As Buchanan showed, modeling the expertise of 
others as opposed to introspective self-modeling did 
not fully distinguish the sub�eld of expert systems 
from other areas of arti�cial intelligence work. 
Rather, the development of expert systems relied on 
mixtures of both kinds of modeling. 

Whether from self-modeling or modeling of oth-
ers, Buchanan and others created a particular kind of 
representation of the modeled knowledge known as 
production rules, a system of “If, Then” statements. 
Buchanan explained: 

There was a logician who published a paper, Emil Post 

in 1943, using “production rules” as a complete logi-

cal system. That certainly has to be one of the precur-

sors of our work on production systems. Although we 

weren’t following it directly, it was certainly there. 

Art Samuel’s work on the checker player: Art had inter-

viewed experts to understand … the feature vector and 

then he did a good deal of reading about checkers.… 

And the influential part about that was … his machine 

learning component — that once you had the expert-

ise in, in a first-order form, it could be improved … 

automatically. That impressed me a great deal and I 

always wanted to be able to do that. 

So we subsequently developed a learning program we 

called META-DENDRAL that did learn the rules of 

mass spectrometry from empirical data. A footnote on 

that. The data were very sparse. It took about one 

graduate student one year to obtain and interpret one 

mass spectrum, so we couldn’t ask for very much data. 

This was not a big data problem. And we substituted 

knowledge for data in that and we continued to 

believe, I continue to believe, that that’s a good trade-

off when you don’t have enough data for the big data 

kind of learning.  

So just three other things: 

John McCarthy’s paper “Programs with Common 

Sense” made a very strong case that whatever knowl-

edge a program was using, it had to be in a form that 

it could be changed from the outside … that was 

something Art Samuel was doing with the feature vec-

tor weights, but something also we were doing with 

the DENDRAL rules of mass spectrometry that made a 

very big difference.  

Now, Bob Floyd and Allen Newell developed a pro-

duction rule compiler at CMU [Carnegie Mellon Uni-

versity] and that led to [Feigenbaum’s PhD student] 

Don Waterman’s work on representing the knowledge 

about poker play in a production system. Don’s work 

was extremely influential in giving us the sense that 

that was the way to do it.  

And, finally, Georgia Sutherland had been working 

with Joshua Lederberg on knowledge elicitation and 

putting that knowledge into separate tables. They 

were not rules, they were constraints for the chemical 

structure generator, but they were referenced in a way 

that they could be changed as data. Those were in my 

mind the most important precursors. 

This is not to say that Buchanan and others 
believed that these production rules were the last 
word in modeling human expert knowledge in a 
computer. When asked if he believed that the repre-
sentation of knowledge as a rule had limitations, 
Buchanan replied, “We saw a lot.” He continued: 

And our friends at MIT and elsewhere were quick to 

point out others. We wanted to be testing the limits of 

a very simple production rule architecture and we 

knew it was limited, we just didn’t know quite where 

it would break and why. So that was the nature of 

many of the experiments that we subsequently pub-

lished in the MYCIN book [Rule-Based Expert Systems 

by Bruce Buchanan and Edward Shortliffe] and I 

would encourage people to take a look.  

But let me quote from that, “Our experience using 

EMYCIN to build several expert systems has suggested 

some negative aspects to using such a simple represen-

tation for all of the knowledge. The associations that 

are encoded in rules are elemental and cannot be fur-

ther examined except with,” some additional text that 

we put into some extra ad hoc slots. So, continuing the 

quote, “A reasoning program using only homogeneous 

rules with no internal distinctions among them thus 

fails to distinguish among several things, chance asso-

ciations, statistical correlations, heuristics based on 

experience, cause of associations, definitions, knowl-

edge about structure, taxonomic knowledge,” all of 

those were things that we were failing to capture in the 

very simple more or less flat organization. 

The modeling of human experts’ knowledge in 
expert systems as production rules was provisional, 
intended to reveal what kinds of performance they 
could produce and what they could not. 

From Buchanan’s involvement with knowledge 
engineering into the middle 1980s, he drew three 
fundamental lessons: 
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There are three different perspectives. From the point 

of view of computer science, I think the Knowledge is 

Power Principle is the most important lesson, and it’s 

one we certainly have said more than once. At the lev-

el of user acceptance, I think the main lesson is that a 

program needs to be able to explain its reasoning in 

any decision-making situation with high stakes. And 

third, at the implementation level, the main lesson is 

flexibility. In the final chapter of the MYCIN book, 

Chapter 36 … we wrote, “If we were to try to summa-

rize in one word why MYCIN works as well as it does, 

the word would be flexibility. By that, we mean that 

the designers’ choices about programming constructs 

and knowledge structures can be revised with relative 

ease and that the users’ interactions with the system 

are not limited to a narrow range in a rigid form.” So: 

knowledge, explanation, flexibility. 

These three issues — knowledge, explanation, and 

�exibility — have also become central to contempo-

rary discussions of multilayer neural networks and 

machine learning, with “knowledge” now taking the 

guise of the datasets used for training, and “�exibili-

ty” now largely couched in terms of the fragility or 

brittleness of machine learning systems. Explana-

tion, or the lack thereof, however remains a key chal-

lenge for today’s arti�cial intelligence efforts. 

Randall Davis, who has placed explanation at the 

center of his work in arti�cial intelligence, saw the 

development of expert systems from the middle 

1970s to the middle 1980s continue to evolve the 

two main strands of development that had been pres-

ent since the start: the reasoning processes and the 

representation of expert knowledge. Much of that 

continued development, in Davis’ view, was in the 

direction of generalization: 

One interesting lesson was the value in generalizing 

the work that had been done. Initially of course, this 

was the generalization from the individual applica-

tions to the so-called expert system “shells.” They 

were put into fairly wide use. Lots of applications got 

built using them. Not all of these things were 

acknowledged as expert systems, and some of them I 

think weren’t particularly true to the original inspira-

tion and architecture. 

But the real point is they adopted and spread the ideas 

— two good ideas, namely that to be good, a program 

needed a reasonably large collection of task-specific 

knowledge and, second, that there were at least semi-

principled ways to gather and represent that knowl-

edge. These tools were in some ways analogous to the 

open sourcing of deep learning tools that are being 

distributed now and, like those tools, they provide a 

substantial boost to people who are trying to build 

these systems. But, as always, it’s best if you are one of 

the anointed ones who know how to use the tools. 

That’s how you get the best use out of them. I think it 

was true then and I think it’s true now.  

Another interesting lesson was the way certain 

insights seemed to echo through the years. We kept 

seeing the value of explicit, readable representations 

of knowledge using familiar symbols in knowledge 

representation, expressing knowledge separately from 

its intended use.… The most immediate consequence 

of these ideas is to enable multiple uses of the same 

knowledge, so we had systems that were doing diag-

nosis with a body of knowledge, explaining the rea-

soning and the result using that same body of knowl-

edge, and then going ahead to teaching somebody 

with that same body of knowledge, all from a single 

representation. And just as when you’re building a 

program, the virtues of encoding something once 

saves you from version skew, it was the same thing 

here in version skew in the knowledge.  

One of the nice examples of this multiple uses of 

knowledge came out of the work of Bill Clancy where 

the basic inspiration was: if we can debrief experts and 

transfer their knowledge into the program, is it possi-

ble to get the program to transfer the same knowledge 

into the head of a student? That, in turn, led to lots of 

interesting work … in understanding what was insuf-

ficient about MYCIN’s very simple rule-based repre-

sentation. The systems got considerably more power 

when that knowledge which was implicit in the rules 

got explicitly captured and represented in some of the 

work that Bill Clancy did.  

Another outcome in that body of work and in other 

work on intelligent tutoring was the idea that explicit 

representations of knowledge permits a kind of mind 

reading, or at least mind inferring. If I have an explic-

it model of what someone needs to know to accom-

plish a task and they make a mistake in doing that 

task, say a diagnosis, I can plausibly ask myself given 
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my model of what they ought to know, what defect in 

that knowledge would have produced the error that 

they produced. It’s an interesting form of, if not mind 

reading, at least mind inferring.  

The final lesson was the ubiquity of knowledge, task-

specific knowledge. Of course, for example, medicine. 

Knowledge about debriefing: How do we get the knowl-

edge out of the head of the expert into the program? 

Knowledge about tutoring: How do we transfer that 

into the students and knowledge about the general 

task? Diagnosis as a particular variety of inference. 

Everywhere we looked there was more to know, more to 

understand, and more to write down in explicit forms. 

These matters of rendering implicit knowledge 
explicit, of mind inferring, and of knowledge trans-
fers are all of a kind with Davis’ concern for explana-
tion and transparency in arti�cial intelligence. He 
explained: 

I’ve been interested in these issues for several decades. 

The bad news, for me at least, is after all that time … 

the idea that AI programs ought to be explainable is 

now in wide circulation. Alas, where were you guys 40 

years ago? There’s a lot of interest, of course, in get-

ting understandable AI. There’s lots of experiments in 

getting deep learning systems to become more trans-

parent. As many of you know, Dave Gunning has a 

DARPA program on “explainable AI,” and the overall 

focus in looking at AI not as automation working 

alone but as having AI work together with people. All 

of these things are going to work better with systems 

that are explainable and transparent.  

So there’s lots of reasons to want this, the most obvi-

ous ones are trust and training. Trust is obvious. If 

we’ve got autonomous cars or medical diagnosis pro-

grams, we want to know we can trust the result. But I 

think training is another issue. If the system makes a 

mistake, what ought we to do about it? Should we give 

it more examples? What kind of examples? Is there 

something it clearly doesn’t know? What doesn’t it 

know? How do we explain it to the system? So trans-

parency helps with making the system smarter.  

One key issue I think is the representation and infer-

ence model. In what sense is the representation and 

inference model in our programs either similar to or a 

model of human reasoning? It seems to me that the 

closer the system’s representations and model of rea-

soning are to human representations and reasoning, 

the easier it’s going to be to bridge that gap and make 

them understandable.  

A kind of counterexample of this is currently the 

vision systems, the deep learning vision systems that 

are doing a marvelously impressive job of image label-

ing for example. They’re said to derive their own rep-

resentations and that’s great, but it’s also a problem 

because they’re deriving their own representations. If 

you want to ask them why they thought a particular 

picture was George Washington, what could they pos-

sibly say? 

Now the issue is made a little bit worse by the collec-

tion of papers these days that show that deep learning 

vision systems can be thrown off completely by some 

image perturbations that are virtually invisible to peo-

ple but cause these systems to get the wrong answer 

with very high probability. Now the problem is that 

we don’t know what they’re doing and why they’re 

doing it so when you show the system an image that 

looks to us like a flagpole and it says, “That’s a 

Labrador, I’m sure of it,” if we asked them why you 

thought so, it’s not clear what kind of answer they can 

give us.  

Now there’s been some work in this area of course, and 

to the extent that these systems use representations 

that are human derived, they’re better off. There’s 

some clever techniques being developed for examin-

ing local segments of the decision boundary, but even 

so, when you start to talk about local segments of a 

decision boundary in a multidimensional space and 

hyperplanes, I suspect most people’s eyes are going to 

glaze over. It’s not my idea of an intuitive explanation.  

Now this work is in its very early stages and I certain-

ly hope that we can come up with much better ways 

to make these extraordinarily powerful and successful 

systems a whole lot more transparent. But I’m still 

fundamentally skeptical that views of a complex sta-

tistical process are going to do that.  

Which brings me to a claim that I will make, and then 

probably get left hung out to dry on, but I will claim 

that systems ought to have representations that are 

familiar, simple, and hierarchical and inference meth-

ods that are intuitive to people. The best test, I think, 

is simple. Ask a doctor why they came up with a par-

ticular diagnosis and listen to the answer and then ask 

one of our machine learning data systems why they 

came up with that answer and see about the differ-

ence. So let me summarize. If AI’s going to be an effec-

tive assistant or partner, it’s going to have to be able to 

be trained in focused ways and it’s going to have to be 

able to divulge its expertise in a way that makes sense 

to the user, not just to the machine learning special-

ist. 

For Davis, greater �delity in the modeling of 
human expertise into AI systems should serve both 
intelligibility and instrumentality. 

And yet, as Davis underscored, intelligibility — 
explainable AI — also comes with some instrumental 
cost. Asked if the requirement for explanation and 
transparency could limit other aspects of perform-
ance in an AI system, Davis answered: 

It will happen, and I actually know this from experi-

ence. I have a paper in Machine Learning from last 

spring [March 2016] that has to do with a medical 

diagnosis program of sorts where we built the best pos-

sible classifier we could in a system that had about a 

1,000-dimensional space. Its AUC [area under curve] 

was above 0.9 and the humans who were doing this 

task have an AUC of about 0.75. It was great except it 

was a black box. 

So then, working with Cynthia Rudin, who was then 

at MIT, we built machine learning models that were 

explicitly designed to be more transparent and sim-

pler, and we measured that performance and now it’s 

down to about 0.85. So not only do I know that expla-

nation and transparency will cost you something, 

we’re able to calibrate what it costs you in at least one 

circumstance. So I think there’s no free lunch, but we 

need both of those things. 
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Eric Horvitz, a key �gure in the statistical and 

probabilistic turn in arti�cial intelligence research, 

shared this same vision of the importance of expla-

nation especially in contemporary work: 

Working to provide people with insights or explana-

tions about the rationale behind the inferences made 

by reasoning systems is a really fabulous area for 

research. I expect to see ongoing discussions and a 

stream of innovations in this realm. As an example, 

one approach being explored for making machine-

learned models and their inferences more inspectable 

is a representation developed years ago in the statistics 

community named generalized additive models.  

With this approach, models used for inferences are 

restricted to a sum of terms, where each term is a sim-

ple function of one or a few observables. The repre-

sentation allows people in some ways to “see” and bet-

ter understand how different observations contribute 

to a final inference. These models are more scrutable 

than trying to understand the contributions of thou-

sands of distributed weights and links in top-perform-

ing multilayered neural networks or forests of decision 

trees. 

There’s been a sense that the most accurate models 

must be less understandable than the simpler models. 

Recent work with inferences in healthcare show that 

it’s possible to squeeze out most of the accuracy 

shown by the more complex models with use of the 

more understandable, generalized, additive models. 

But even so, we are far from the types of rich explana-

tions provided by chains of logic developed during the 

expert systems era. Working with statistical classifiers 

is quite different than production systems, but I think 

we can still make progress. 

Feigenbaum too stressed the importance of expla-
nation — intelligibility — not just in the motivations 
behind arti�cial intelligence systems, but also, with 
Davis and Horvitz, as part of their instrumentality, 
their value in use: 

I’ve been engaged in giving extended tutorials to a 

group of lawyers at the very, very top of the food chain 

in law. And the message is: we (lawyers) need a story. 

That’s how we decide things. And we (lawyers) under-

stand about those networks and — we understand 

about, at the bottom, you pass up .825 and then it 

changes into .634 and then it changes into .345. 

That’s not a story. We (lawyers) need a story or we 

can’t assess liability, we can’t make judgments. We 

need that explanation in human terms. 

While Horvitz is most associated with the statisti-
cal turn in arti�cial intelligence that is seen as adding 
profound new challenges to explanation and trans-
parency, his route to this stance was through his 
engagement with and deep interest in expert sys-
tems. Horvitz explained: 

I came to Stanford University very excited about the 

principles and architectures of cognition, and I was 

excited about work being done on expert systems of 

the day. Folks were applying theorem-proving tech-

nologies to real-world tasks, helping people in areas 

like medicine. I was curious about deeper reasoning 

systems. I remember talking to John McCarthy early 

on. I was curious about his efforts in commonsense 

reasoning. In my first meeting with him, I happened 

to mention inferences in medicine and John very qui-

etly raised his hand and pointed to the left and said, 

“I think you should go see Bruce Buchanan.”  

And so [I] went to see Bruce and then met Ed [Feigen-

baum], Ted Shortliffe, and others. I shared their sense 

of excitement about moving beyond toy illustrations 

to build real systems that could augment people’s abil-

ities. Ted and team had wrestled with the complexity 

of the real world, working to deliver healthcare deci-

sion support with the primordial, inspiring MYCIN 

system. Ted had introduced a numerical representa-

tion of uncertainty, called “certainty factors,” on top 

of a logic-based production system used in MYCIN. 

I was collaborating with David Heckerman, a fellow 

student who had become a close friend around our 

shared pursuit of principles of intelligence. David and 

I were big fans of the possibilities of employing prob-

abilities in reasoning systems. We started wondering 

how certainty factors related to probabilities … David 

showed how certainty factors could be mapped into a 

probabilistic representation … We found that certain-

ty factors and their use in chains of reasoning were 

actually similar to ideas about belief updating in a the-

ory of scientific confirmation described by philoso-

pher Rudolf Carnap in the early 20th century. 

Relaxing the independence assumptions in proba-
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bilistic reasoning systems could yield the full power of 

probability but would also quickly hit a wall of 

intractability—both in terms of assessing probabilities 

from experts and in doing inferences for diagnosis, 

based on observations seen in cases. And this led us to 

start thinking more deeply about methods for backing 

off of the use of full joint-probability distributions and 

coming up with new models, representations, and lan-

guages.…  

Even Herb Simon, who had inspired me deeply, and 

who I took to be a spiritual guide and mentor, seemed 

to be skeptical at times. I remember talking with him 

on the phone and getting very excited about models 

of bounded rationality founded in probability and 

decision theory — and a concept I refer to as bounded 

optimality. “Wasn’t this an exciting and interesting 

approach to bounded rationality?” After a pause, Herb 

asked me, with what I took to be a bit of disappoint-

ment, “So, are you saying you’re a Bayesian?” And I 

answered, “Yes, I am.” My proclamation didn’t dimin-

ish our connection over the years, but I had the sense 

that Herb wasn’t excited by my answer.…  

I want to point out that it was the expert systems tra-

dition, and the aesthetics and goals of that rising field, 

that really framed the work on probabilistic expert sys-

tems or Bayesian systems. For example, we really 

thought about the acquisition of probabilistic knowl-

edge, how could you do that with tools that would 

ease the effort, via raising levels of abstraction. The 

whole tradition of knowledge engineering evolved 

into methods for acquiring features, relationships, and 

parameters.  

The expert systems zeitgeist framed the pursuit as one 

of working to harness AI to help people to make bet-

ter decisions. It would have been very surprising to 

hear, in 1985, that we’d be at meetings on AI in 2017 

and have folks saying, “We have a new idea: we’re 

going to augment rather than replace human reason-

ing.” In the world of expert systems, this was assumed 

as an obvious, shared goal — the fact that we would be 

helping people to work on tasks at hand, whether it be 

decisions about treating patients or with helping peo-

ple to understand spectra coming out of a mass spec-

trometer. And so these notions I think unfortunately 

have faded with time. We have powerful tools now, 

but in many ways, folks are only starting to get back 

to questions about how AI systems should be 

deployed in ways that help people to solve complex 

problems in real time. 

Despite these continuities with the interests, 
ethos, and some of the central issues of the tradition 
of expert systems, the “probabilistic revolution,” as 
Horvitz calls it, had real consequences for the subse-
quent development of expert, and other, arti�cial 
intelligence systems. Horvitz recalled: 

The first system we worked on with probabilistic rea-

soning, the Pathfinder system for histopathology 

diagnosis … had explanation of probabilistic and deci-

sion-theoretic reasoning as a distinct focus. This effort 

was inspired by the work on explanation pursued in 

studies of expert systems. We really tried to make 

explanation work….  

We realized that we had a challenge with the funda-

mental opacity of complex reasoning when the sys-

tem was computing recommendations for the next 

best observation. Experts would not get what the sys-

tem did, because it was doing something unnatural — 

but more optimal — than familiar human diagnostic 

strategies. 

We worked to come up with a simplifying, human-

centric abstraction, overlaying a hierarchical ontology 

of diseases, commonly used by pathologists, onto the 

reasoning. The modified system was constrained to 

navigate a tree of categories of disease, moving to 

more precise disease categories as classes were elimi-

nated. We found that inference was slowed down, 

with more steps being introduced, but was now more 

understandable by experts. The pathologists really 

liked that….  

But the real change I think in the field happened 

when it became feasible to store and capture large 

amounts of data. Back in those first days with the 

probabilistic systems, we didn’t have much data. We 

had to develop and employ methods that could be 

used to define and capture conditional probabilities 

from experts. This was effortful knowledge engineer-

ing, similar to the efforts required to capture rules and 

certain factors from experts. We had to work to assess 

the structure of Bayesian networks, to lay out the 

structure of networks and then to ask experts to assess 

hundreds of numbers, and had to come up with tools 

for doing that.  

With more and more data coming available and the 

rising relevance of machine learning procedures, 

methods were developed to first mix machine learn-

ing and human assessments, and then started to focus 

more on the data itself in the 1990s. Things have 

moved away from reasoning deeply about tasks and 

tracking problem-solving as it unfolds and more so to 

one-shot classification — myopic pattern recognition 

in a quick cycle, with applications in recommender 

engines that do one-shot inferences, search engines 

that use machine learning to do one-shot ranking of 

list of results, and so on.  

There’s a huge opportunity ahead, I want to just high-

light this, to consider the kinds of problems and the 

kinds of experiences and decision support that folks 

were working to provide people with in the expert sys-

tems days, but now with modern tools. And I think 

that that’s going to be a very promising area for us to 

innovate in. 

In re�ecting on the importance of the history of 
expert systems for the communities of arti�cial intel-
ligence today, Ed Feigenbaum stressed the impor-
tance of instrumentality as a motivation: 

We were really after a DENDRAL that could exceed the 

capabilities of mass spectrometrists. And in fact, Carl 

Djerassi did a little experiment with mass spec-

trometrists around the country to show this. The 

MYCIN group did an experiment with experts in 

blood infections around the country, which showed 

the capability of MYCIN was very good compared to 

those specialists.  

I worked on a defense application for DARPA, spent a 

few years on it, then DARPA gave a contract to MITRE 

to assess the capability of that system versus the 
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humans who were doing the work in the Defense 

Department. Our system did significantly better than 

those humans.  

As early as 1957, Herb Simon (… young people may 

not even know who Herb Simon was, one of the great 

scientific minds of the 20th century) made the pre-

diction that a machine would be world chess champi-

on in 10 years. Well, he was wrong about the time, but 

he was right about an AI program becoming world 

chess champion. So I think we were significantly moti-

vated, at least I was significantly motivated, by doing 

programs that did that. 

[T]he “Knowledge is Power Principle” is observed in 

almost all AI applications. For example, in the large 

number of advisory apps, hundreds that range widely. 

For example, these are just a few from the last two 

weeks of the New York Times, the San Francisco Chroni-

cle, and Wired Magazine: divorce law, consumer health 

advice, planning of travel vacations, income tax advi-

sor and assistant. There was a time that the income tax 

advisor expert system was the biggest selling expert 

system of all time. Also, in every one of the justifiably 

popular AI assistant systems, such as Siri and Alexa 

specifically, people now use the word “skills” to count 

the specific expert knowledge bases, large or small, 

that each assistant has. Alexa is said to have many 

because it is an open system. Siri has far fewer skills.  

In machine learning R&D, correctly dimensionalizing 

… the feature space is important, and machine learn-

ing engineers use knowledge from experts in making 

their design choices. That is what we call now “feature 

engineering.” In some critical applications, for exam-

ple like car driving, machine learning recognition 

processes can handle most of the cognitive load but 

not all. Sometimes, for the so-called edge cases, high-

er-level knowledge of the world will need to be 

deployed. 

For Bruce Buchanan, the primary lesson from the 

history of expert systems is that the very reasoning 

strategies, the thought processes, used by human 

experts are themselves forms of knowledge that can 

be learned, acquired: 

From the point of view of philosophy of science, one 

of the strong lessons and it was confirmed by one of 

the great dissertations in AI, namely Randy Davis’ dis-

sertation on metalevel reasoning, namely the strate-

gies that scientists and other problem solvers use can 

be written as knowledge-based systems. The strategy 

itself is knowledge, but it’s one level above the domain 

knowledge. So I take that as one of the very strong les-

sons to come out of two decades of expert systems 

work.  

Randall Davis shared this very same perspective, 

even going so far as to suggest that “knowledge-based 

systems” would have been a preferable term to 

“expert systems.” He explained: 

I’ve always preferred the term “knowledge-based sys-

tem” as opposed to “expert system,” and I like it 

because it advertises the technical grounds on which 

the system works: large bodies of knowledge. And I 

think it’s interesting because it holds for people as well 

as programs. It gets an answer to the question, why are 

experts, experts? Do they think differently than the 

rest of us, do they think faster than the rest of us?  

The claim that people and programs can be experts 

because they know a lot — and there’s evidence of this 

in the early work of Chase and Simon who talk about, 

I think it was, 30,000 patterns to be a good chess play-

er — more recent work says, you need to spend 10,000 

hours of experience on something to learn to be good 

at it. There’s lots of evidence that knowing a lot is the 

basis for expertise.  

And I think that’s interesting — it has a not-frequent-

ly-commented-on sociological implication. I think it’s 

a profoundly optimistic and inclusive message to the 

extent that expertise is, in fact, knowledge based. It 

becomes accessible to anyone willing to accumulate 

the relevant knowledge. That’s a crucial enabling mes-

sage in my opinion, perhaps the most important one 

in education: yes, you can learn to do this. 

For Eric Horvitz, his entreaty for the contemporary 

arti�cial intelligence community is for it to look at 

the history of expert systems, their technical charac-

ter, and the conclusions they supported as a resource 

for addressing today’s concerns. He concluded: 

I would suggest that people today take time to look 

back at the history, to review the systems that were 

built, the fanfare of the mid ’80s about expert systems 

and the collapse of that excitement, and the rise of the 

probabilistic methods that have become central in 

today’s AI efforts.  

People can learn by understanding the aspirational 

goals of time and the kinds of systems that were being 

built in their pursuit. I believe AI researchers will find 

the architectures of interest, including, for example, 

the blackboard models — multilayer blackboard mod-

els that were developed that employed procedures 

similar to backpropagation, notions of explanation 

that were considered critical, approaches to metarea-

soning for controlling inference, and the idea of build-

ing systems that engage in a dialogue with users, that 

are embedded with people and situated in a task in the 

real world, and that augment human cognition. These 

are all key themes of expert systems research, and 

some were so fundamental and assumed that we did-

n’t even talk about them, and now they’re coming 

back as new, interesting, and important questions. 

To date, a pronounced pattern in the history of 

arti�cial intelligence is that of oscillation. The com-

munities of arti�cial intelligence have swung their 

attention to and from a core set of interests and 

approaches repeatedly: heuristic problem-solving, 

neural networks, logical reasoning, and perception. 

Each has fallen into and out of, then back into, favor 

for at least one cycle, some more. Yet many within 

the arti�cial intelligence community see steady 

advance. As one recent report put it: “While the rate 

of progress in AI has been patchy and unpredictable, 

there have been signi�cant advances since the �eld’s 

inception 60 years ago. Once a mostly academic area 

of study, 21st-century AI enables a constellation of 

mainstream technologies that are having a substan-

tial impact on everyday lives.” Even so, outside the 
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arti�cial intelligence community, the broader aca-

demic, commercial, governmental, and cultural 

interest in arti�cial intelligence has oscillated from 

almost-exhilaration to near-despair several times.  

It would seem that this pattern of oscillation is, to 

some degree, due to the very subject of arti�cial intel-

ligence: the broad and, in many places, nebulous 

concept of intelligence. Intelligence encompasses the 

“fast thinking” of perception to the “slow thinking” 

of complex problem-solving. It ranges from “deep 

learning” to “deep thinking,” and combinations 

thereof. Given such range, it is unsurprising that a 

�eld would shift its attention from one area to anoth-

er, as certain lines of inquiry gain traction and others 

appear stuck. But the pattern of oscillation and the 

sweep of intelligence pose the question: Whither 

integration?  

Can models of problem-solving be integrated with 

models of perception? Can models of recognition be 

integrated with models of reasoning? What is the 

role of knowledge, especially in the guise of common 

sense? Is a more integrated model of human intelli-

gence necessary for both greater intelligibility and 

greater instrumentality in arti�cial intelligence? 

 

Notes 
1. A video recording of the panel has been archived by the 

Computer History Museum (Mountain View, CA) under the 

title “AAAI-17 Invited Panel on Arti�cial Intelligence histo-

ry: Expert systems.” Catalog Number 102738231. 

www.computerhistory.org/collections/catalog/102738236 

. 
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