
Learning from BDDs in SAT-based Bounded Model
Checking

Aarti Gupta, Malay Ganai
NEC Labs America

Princeton, NJ
U.S.A.

{agupta,malay}@nec-labs.com

Chao Wang
Dept. of Electrical Engineering

University of Colorado
Boulder, CO, U.S.A.

wangc@colorado.edu

Zijiang Yang, Pranav Ashar
NEC Labs America

Princeton, NJ
U.S.A.

{jyang,ashar}@nec-labs.com

ABSTRACT
Bounded Model Checking (BMC) based on Boolean Satisfiability
(SAT) procedures has recently gained popularity as an alternative
to BDD-based model checking techniques for finding bugs in
large designs. In this paper, we explore the use of learning from
BDDs, where learned clauses generated by BDD-based analysis
are added to the SAT solver, to supplement its other learning
mechanisms. We propose several heuristics for guiding this
process, aimed at increasing the usefulness of the learned clauses,
while reducing the overheads. We demonstrate the effectiveness
of our approach on several industrial designs, where BMC
performance is improved and the design can be searched up to a
greater depth by use of BDD-based learning.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Verification.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Boolean Satisfiability, SAT, SAT solvers, BDDs, learning, BDD
learning, bounded model checking, property checking.

1. INTRODUCTION
As hardware design complexity continues to rise, there is a
greater need for effective verification in order to avoid costly
errors. Formal verification techniques like symbolic model
checking [1, 2], based on the use of Binary Decision Diagrams
(BDDs) [3], offer the potential of exhaustive coverage and the
ability to detect subtle bugs. However, these techniques do not
scale well in practice due to the state explosion problem.

In contrast, Bounded Model Checking (BMC) [4] focuses on
finding bugs of bounded length, and successively increases the
bound to search for longer traces. Given a design and a
correctness property, it generates a Boolean formula, which is
satisfiable if and only if there exists a witness/counterexample of
length k. The satisfiability check is typically performed by a
backend SAT solver. Due to the many recent advances in SAT
solvers [5-8], SAT-based BMC can handle much larger designs in
practice. As demonstrated by these SAT solvers, learned clauses

play a crucial role in determining their performance, both by
pruning the search space, and by dynamically affecting the choice
of decision variables. At the same time, there is an overhead
associated with the addition of each learned clause. Therefore,
learning techniques must ensure a good tradeoff between the
usefulness and the overheads of adding learned clauses.

1.1 BDD Learning
Our approach focuses on the use of learned clauses generated by a
BDD-based analysis of the SAT problem – we call this BDD
Learning. Essentially, a BDD is used to capture the relationship
between Boolean variables of (a part of) the SAT problem, in the
form of a characteristic function. In such a BDD, each path to a
“0” (false) node denotes a conflict. A learned clause
corresponding to this conflict is easily obtained by negating the
literals that define the path. Since a BDD captures all paths to 0,
i.e. all possible conflicts among its variables, the potential
advantage is that multiple learned clauses can be generated and
added to the SAT solver at the same time. In contrast, conflict-
driven learning [5] typically analyzes a single conflict at a time.
An example with multiple learned clauses generated from a BDD
is shown in Figure 1. (The figure shows multiple terminal nodes,
and no inverted edges for exposition only; standard ROBDDs can
be used otherwise.)

Figure 1: Example for BDD Learning
In BMC, or any circuit-based SAT application involving time
frame expansion, the bulk of the Boolean constraints arise from
the k-times unrolled transition relation of the design. Therefore,
the circuit structure graph of the transition relation is a natural
candidate for creating useful BDDs. The main goal for our BDD
Learning technique is to be effective but lightweight, i.e. it should
improve the performance of the SAT solver, but without
overwhelming the SAT solver heuristics. This rules out the
possibility of learning on a global scale, i.e. creating a BDD and
learned clauses for every node in the circuit graph. In our
experiments also, we found this to be too expensive. Therefore we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 2-6, 2003, Anaheim, CA, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

a

b b

c

d

e1

1 0

1

1

0 1

0 1

0 1

0 10 1

0 1

0 1

Learned Clauses:

(a + b + c + d)

(a + b + e)

a

b b

c

d

e1

1 0

1

1

0 1

0 1

0 1

0 10 1

0 1

0 1

a

b b

c

d

e1

1 0

1

1

0 1

0 1

0 1

0 10 1

0 1

0 1

Learned Clauses:

(a + b + c + d)

(a + b + e)

Learned Clauses:

(a + b + c + d)

(a + b + e)

824

48.2

perform learning selectively, i.e. by selecting “seed” nodes in the
circuit graph around which to perform learning. We distinguish
between the following kinds of learning:
• Static learning: seed nodes are selected using static

information, and learned clauses are added statically, before
the SAT solver starts the search.

• Dynamic learning: seed nodes are selected using dynamic
information, and learned clauses are added on-the-fly, during
the SAT search.

Note that in static learning, the seed selections reflect only the
static circuit structure, while for dynamic learning they also
reflect the dynamic state of the SAT solver.
The distinguishing criteria between static and dynamic learning
are – how the seeds are selected, and when the clauses are added.
Note that we do not distinguish based on when the learned clauses
are generated. For example, it is possible to generate BDDs and
learned clauses either in advance for all seed nodes, or on-the-fly
for selected seed nodes. Furthermore, BDDs can be created for
seed nodes in the unrolled transition relation (starting from the
initial state), or a single copy of the transition relation (without
the initial state) called the template. In the former case, learned
clauses are generated directly in terms of the different SAT
variables in the expanded time frames. In the latter case, learned
clauses are generated in terms of template variables. With each
successive unrolling of the transition relation, a learned clause can
be generated for the new time frame by substituting
corresponding SAT variables for the template variables. (This is
similar to clause replication [9], also discussed later.) In this
paper, we describe details for selecting seed nodes on the unrolled
transition relation, with on-the-fly generation of BDDs and
learned clauses. These ideas can be extended easily to other
variations described above.
We use a BDD Learning engine to encapsulate the essential tasks
of seed selection, creation of BDDs, and generation of learned
clauses. This engine is integrated with a standard SAT solver. In
particular, BDD Learning is performed in conjunction with other
learning mechanisms in the SAT solver, e.g. conflict-driven
learning [5]. Furthermore, a learned clause generated by the BDD
Learning engine is treated similar to other learned clauses by the
SAT solver. For example, scores of variables related to these
learned clause are incremented [7, 8], which can significantly
impact the future decisions made by the SAT solver.

1.2 Our Contributions
Though the idea of generating learned clauses from a BDD is
relatively straight forward, and has also been mentioned by other
researchers [10], we believe our work to be the first to explore the
associated tradeoff issues in integrating such learning within a
SAT solver. We describe heuristics and parameters in our BDD
Learning engine which are targeted at increasing the usefulness of
the learned clauses, while reducing the overheads. In particular,
our heuristics for dynamic seed selection can be potentially
combined with other kinds of external learning, in order to
achieve a balance in this tradeoff.
To the best of our knowledge, our work is also the first to
demonstrate the practical effectiveness of BDD Learning in the
context of an application such as BMC. We report experimental
results on industrial designs for our prototype implementation of
BMC, enhanced with a BDD Learning Engine. Our results show
runtime reduction of up to 73% for searching the same number of

time frames as basic BMC, and deeper searches (with additional
time frames) within the allotted time.
Finally, though this paper focuses on the BMC application, our
BDD Learning technique can be used to potentially improve
performance in other circuit-based SAT applications as well, such
as equivalence checking [10], automatic test pattern generation
(ATPG) [11] etc.

1.3 Related Work
The idea of combining BDDs and SAT for verification is not new.
Given that both techniques perform an implicit search on the
underlying Boolean space, it is no surprise that many different
ways of combining them have been explored over the years,
frequently suited to the target application. Their relative benefits
have been combined in many verification applications such as
equivalence checking [10, 12-16], BMC [10], image computation
[17], and model checking [18, 19].
The distinguishing feature of our BDD Learning method is that it
directly adds learned clauses to the SAT solver. Its use is
orthogonal to other BDD-based simplifications for SAT problems,
such as for simplifying the goals [10], or for simplifying the
problem using BDD sweeping [20]. It is also possible to combine
BDD Learning techniques with clause replication techniques [9].
Clause replication enables reuse of learning in SAT applications
involving time frame expansion, such as BMC. Essentially, a
learned clause, consisting of literals from specific time frames, is
replicated by substituting corresponding literals from other
allowable time frames. This was originally applied to clauses
learned by conflict analysis [9], but it applies also to clauses
learned by other techniques, including BDD Learning.
Furthermore, our ideas of dynamic seed selection can be used for
selective replication, to increase its effectiveness in practice.

2. BDD Learning Engine

 Bdd_Learning_engine() {
 update_engine_info();
 if (ready_for_learning) {
 node = select_a_seed();
 bdd = create_a_bdd(node);
 cl_list= generate_learned_clauses(bdd);}
 return(cl_list);
 }
 SAT_Solve() {
 while(1) {
 cl_list = bdd_learning_engine(); // new
 if (add_clauses(cl_list)== UNSAT) // new
 return UNSAT; // new
 if (decide_next_branch()) {
 while(deduce() == conflict) {
 blevel = analyze_conflict();
 if (blevel == 0) return UNSAT;
 else backtrack(blevel); }
 } else return SAT;
 }
 }

Figure 2: Overall Flow of BDD Learning Technique
The overall flow of our technique is shown in Figure 2. The BDD
Learning engine performs the essential tasks of seed selection,
creation of a BDD, and generation of learned clauses from the
BDD. Its integration with a typical DPLL-style SAT solver [21] is
shown also, where the additional steps are marked “new” in the
figure. The remainder of this section describes details of the BDD

825

Learning engine, and the next section focuses on its integration
with the SAT solver.

2.1 Seed Selection
We explored many different heuristics for selecting seeds around
which BDD Learning is performed. Since the goal is to improve
the SAT solver performance, the seed selection heuristics are
based on the decision ordering heuristics of the SAT solver itself.
We assign a rank to each candidate seed node (not a primary
input) based on criteria described below. We also keep track of
which variables have already been chosen as seeds, to avoid
adding duplicate learned clauses. The seed selection heuristics,
listed SSH1-SSH5, are:

• SSH1: Next decision rank: The idea is to preempt the
learning that would be performed by the SAT solver for a
future decision. Rather than learn a single conflict clause, we
learn all related conflict clauses simultaneously.

• SSH2: Past decisions ranked back from the current one: In
this case, the idea is to learn some more clauses about
variables that have been important in the past.

• SSH3: Most frequent decisions: The idea is that a variable
chosen frequently as a decision variable, along different
paths in the SAT search, is a good candidate for preempting
future learning.

 SSH4: Decisions at back-leap levels: The back-leap
technique identifies a good decision level to backtrack to, in
the presence of many conflicts localized within a range of
decision levels [22]. Like restarts, it allows jumping out of
locally bad regions, but without having to backtrack all the
way up to the starting decision level. The intuition here is
that additional learning about decision variables at the back-
leap levels is likely to be useful. The seeds are ranked from
the backleap level down to the current decision level.

• SSH5: Decisions at levels most often backtracked to: Since
difficult SAT problems are characterized by more number of
backtracks, we keep track of decision variables at those
levels to which maximum number of backtracks have taken
place. The intuition is that these variables are likely to be
causing more conflicts, and additional learning might help.

We experimented with choosing a single seed at a time, versus
choosing multiple seeds. In most cases, the latter incurred
additional overhead, without helping improve the performance.
Therefore, for all experiments described in this paper, we chose a
single seed whenever BDD learning was invoked.

2.2 Creation of BDDs
Once seed selection is done, we need to create BDDs that capture
relationships among variables in the circuit region around the
seed. We explored two different region heuristics – the fanin cone
of the seed, and the circuit region around the seed including its
fanins and fanouts. Since the latter results in BDDs that may not
include the seed variable at all, our experimental results were
uniformly better with the fanin cone heuristic.
In both cases, we created BDDs across very few logic levels,
typically 5-10, in order to avoid BDD size blowup. Keeping the
number of logic levels any lower would likely result in local
learning, which is relatively easy to infer from the circuit
constraints. The potential benefit of BDD Learning is in its ability

to perform non-local learning around the seed. Apart from
avoiding memory blowup, keeping the BDD sizes small has the
added benefit of creating shorter paths in the BDD, thereby
resulting in shorter clause lengths. In general, shorter learned
clauses are likely to be more beneficial than longer learned
clauses, since they require less number of assignments before
resulting in an implication.

2.3 Generation of Learned Clauses
After a BDD has been created, we need to generate learned
clauses. In order to directly use standard BDD packages [23], we
can complement the given BDD, and simply enumerate its cubes,
i.e. paths to the “1” (true) node. In order to favor shorter clauses,
only those cubes that are shorter than a given maximum clause
length, typically 5 - 10, are used for generating learned clauses.
To avoid exploring all paths (potentially exponential) in the BDD,
we enumerate only a fixed number of cubes.
An alternate method, which actually performed better in our
experiments, is to implement our own fixed-depth traversal for the
complemented BDD. All paths leading to “1” that are shorter than
the maximum clause length are enumerated. At the same time, all
paths that are greater than the maximum clause length are
changed to lead to “0”, thereby resulting in an under-
approximated BDD. Since the maximum clause length varies
from 5 to 10, this traversal is very fast. An additional strategy is
to perform a universal quantification on heuristically chosen
variables in the under-approximated BDD. This corresponds to
performing a resolution on the learned clauses, and results in less
number of learned clauses. However, in our experimental results,
this typically performed worse than the fixed-depth traversal
without quantification.

3. Integrating BDD Learning in SAT Solver
This section describes details of integrating a BDD Learning
engine with a typical DPLL-style SAT solver [21], and highlights
the issues for static and dynamic learning.

3.1 Invoking the BDD Learning Engine
We invoke the BDD Learning engine at every decision level,
including the starting level 0, just before the next decision
variable is chosen by the SAT solver. For static learning, we
perform learning at decision level 0 only, and disable learning at
all other levels (by using the condition ready_for_learning
shown in Figure 2). For dynamic learning, invoking the BDD
Learning engine at every decision level allows information
regarding seed selection heuristics to be updated easily (shown in
Figure 2 as update_engine_info). However, we do not
necessarily perform BDD learning at each decision level. Since
difficult SAT problems are characterized by an increased number
of backtracks, we perform BDD learning after every interval
during which a certain number of backtracks has taken place. We
also experimented with increasing the backtrack interval
parameter dynamically (as a kind of backoff), so as to not over-
burden the SAT solver. For more difficult problems, this worked
better than a fixed parameter.

3.2 Adding Learned Clauses to SAT Solver
For static learning, the learned clauses generated by the BDD
Learning engine are added to the SAT solver before any decisions
are made. This is relatively straight forward, since all implications
due to the learned clauses occur at the starting level. However, the

826

situation is somewhat more complicated for dynamic learning, i.e.
when learned clauses are added dynamically to the SAT solver.
Note that a conflict clause, i.e. a clause learned from conflict
analysis by the SAT solver, is also added dynamically. However,
a conflict clause is guaranteed to be either conflicting (or unit,
depending upon the implementation) when it is added. This
results in an immediate backtrack (or an implication at the current
decision level). When multiple clauses are added after BDD
Learning, or any other kind of learning performed externally with
respect to the SAT solver, extra work may be required to maintain
its decision level invariants.
Consider the effect of a newly added clause on the existing state
of the SAT solver. The effect depends on the status of the clause,
as computed with respect to the current variable assignment stack
in the SAT solver, as follows:

• If a learned clause is conflicting, i.e. all its literals are false,
then the clause can be added immediately. As soon as it is
added, conflict analysis will take place, resulting in
appropriate action in the SAT solver.

• If a learned clause is unsatisfied, but has at least two
unassigned literals, then it can be added immediately without
changing the decision level of the SAT solver.

• If a learned clause is unit, i.e. all but one of its literals are
false, and the remaining one is unassigned, then adding it
would cause an implication. This might require backtracking
up to the level where the implication should be made.
Therefore, a choice exists between adding the clause
immediately, followed by potential backtracking, or delaying
its addition until the SAT solver goes back to the level where
the implication should be made. Note that this case also
applies to non-conflicting 1-literal clauses, for which
backtracking up to the starting decision level (a restart)
would be required.

• Finally, if a learned clause is satisfied, i.e. at least one of its
literals is true, we can add it immediately to the SAT solver
without changing the decision level in most cases. The
exception is the case when all literals but one are assigned
false, and the true literal is the only literal assigned at the
highest decision level, i.e. the learned clause would have
caused an implication on the true literal at a lower decision
level. We call this a pseudo-satisfied learned clause. It is
similar to the case of a unit clause, and is handled in the
same way.

To summarize, learned clauses that are conflicting, or are
unsatisfied with at least two unassigned literals, can be added
immediately to the SAT solver. Satisfied clauses, but not pseudo-
satisfied clauses, can also be added immediately. Finally, unit
clauses and pseudo-satisfied clauses require implications to be
made. For these, we have a choice between adding them
immediately followed potentially by backtracking, or waiting to
add them later at the correct implication level.

3.3 Heuristics for Adding Learned Clauses
We use some additional filters to determine whether or not to add
a clause generated by the BDD Learning engine to the SAT
solver. First, we prefer those learned clauses that capture non-
local learning, in order to avoid duplication of circuit constraints.
A heuristic that we use is to check if assignments to its literals

took place at different decision levels. Though it does not capture
non-locality precisely, it is a good indicator. We use the term non-
local to describe such clauses.
We also use a relevance number to determine the potential
usefulness of a learned clause, defined as the sum of its true and
unassigned literals. If this number is large, the learned clause is
unlikely to be useful, since it will not cause an implication.
Therefore, we prefer clauses with a relevance number less than a
certain threshold – we call these the relevant clauses. (Typically,
SAT solvers use a similar figure of merit to delete their own
learned clauses when needed.) We found a relevance threshold of
5 to give good performance.
Finally, for unit and pseudo-satisfied learned clauses, we
heuristically choose when to add them to the SAT solver. We add
them immediately if the difference between the current decision
level and the implication level is less than a threshold parameter,
but delay adding them otherwise. We typically used a level
difference of 5 as the threshold in our experiments.
Based on these additional filters and the status of a learned clause,
we have organized the following levels of learning:

• Level 1 learning: adds only the conflict clauses and 1-literal
unit clauses

• Level 2 learning: adds all level 1 clauses, and all unit and
pseudo-satisfied clauses

• Level 3 learning: adds all level 2 clauses, and all non-local,
relevant clauses (satisfied, as well as unsatisfied).

Note that these levels are organized intuitively, according to the
projected usefulness of a learned clause. Furthermore, since each
level includes clauses added by previous levels, we can easily
investigate the effect of adding more clauses.

4. Experimental Results
We have implemented a prototype BMC framework within our
in-house verification platform called DiVer. It uses an efficient
hybrid SAT solver [24] at the backend, which performs better
than Chaff [7] on many problems. We have also implemented a
prototype BDD Learning engine, based on CUDD [23] and VIS
[25], which has been integrated with our backend SAT solver.
For our experiments, we used six industrial designs, ranging in
size up to 416k gates and 12.7k flip-flops in the cone of influence
of the correctness property. We used BMC to check safety
properties, i.e. the search was for simple counterexamples without
loops. So far, we have found a counterexample for only one of
them (design D6). Experiments for all designs except D1, were
performed on a 2.2 GHz Dual Xeon processor machine, with 4
GB memory, running Linux 7.2. Experiments for D1 were
performed on a 900 MHz Dual Sun 220R machine, with 4 GB
memory, running Solaris 5.8.

4.1 Static BDD Learning
We first experimented with static BDD Learning. For our
experiments, we used a maximum clause length of 6, and the
seeds were the top 20 variables ranked by the SAT scoring
mechanism for ordering decision variables, before any decisions
are made. The results are shown in Table 1. The last design in the
table, D6, has a counterexample at time frame 56. For D5, we are
actually able to go much deeper than 12 time frames, but it is
useful to stop earlier in the experiments because time frame 10

827

presents the most difficult SAT problem for this design. For the
remaining four designs, we used a time limit of 3 hours for all
experiments. Also, in all our result tables, the time reported is for
checking all depths up to the specified one, i.e. it is the
cumulative time up to that depth.
In Table 1, Column 2 lists the number of flip-flops (#FF) and
gates (#G) in the cone of influence of the property. The next two
columns report results for BMC implemented in VIS [25], which
uses Chaff [7] as the backend SAT solver – Column 3 reports the
maximum depth searched (k), and Column 4 the total time taken
(Time, in seconds). Columns 5 and 6 report the same for basic
BMC in our platform DiVer, i.e. without the use of any BDD
Learning. The next three sets of columns report the results for
DiVer BMC with static BDD learning. For each of the three
different levels of learning (Section 3.3), we report the maximum
depth searched (k), the total time taken (Time, in seconds), the
time spent in learming (L, in seconds), and the number of learned
clauses added (#LCl), respectively. The last column indicates
whether DiVer BMC with static BDD Learning performed better
than, worse than, or the same as basic DiVer BMC.
Note first that the basic BMC performance in DiVer is better than
the BMC performance in VIS for all designs, by orders of
magnitude for many of them. This indicates that basic DiVer
BMC is a good baseline for comparison. Next, note that for four
of six designs, static BDD Learning is better or the same as basic
BMC, i.e. it improves the runtime, and in some cases allows a
deeper search. The learning time itself is quite low in all cases.
Comparing the different levels of learning, for five of six designs,
the impact of adding more clauses is negative. This can be seen
clearly for design D2, where the maximum depth varied from 101
for Level 1, 87 for Level 2, down to 42 for Level 3. This shows
the importance of learning “useful” clauses, while keeping their
overheads low. On the other hand, for design D4, it was indeed
more useful to add more clauses.

4.2 Dynamic BDD Learning
Next, we experimented with dynamic BDD Learning. In general,
our results were worse for the combination of static and dynamic
learning. Therefore, we report results for dynamic learning alone.

For our experiments, we performed learning after every 100
backtracks, and used a maximum clause length of 6.
We first experimented with different levels of learning. Unlike
static learning, we found that results for Level 3 learning were

uniformly better for all designs. This indicates that when the seeds
have been selected well, hopefully due to dynamic seed selection,
it is better to learn more than to learn less. For seed selection, we
tried heuristics SSH1—SSH5 (Section 2.1).
Table 2 reports the results for Level 3 learning, with the best seed
selection heuristic for each design. Columns 1 – 4 are as before;
the remaining columns report the results for DiVer BMC with
dynamic BDD Learning. Columns 5 and 6 report the depth and
time taken for the same depth as basic DiVer BMC, and Column
7 reports the percentage reduction in time. Columns 8 and 9 show
the maximum depth, and the total time taken. Columns 10—13
report the learning statistics – the time spent in learning (L, in
seconds), the number of learned clauses added (#LCl), the number
of seeds used (#Seeds), and the seed selection heuristic that gave
the best result (SSH), respectively. The last column indicates
whether DiVer BMC with dynamic BDD Learning performed
better than, worse than, or the same as basic DiVer BMC.
Note that dynamic BDD Learning is quite effective in all designs.
In comparison to basic BMC, it reduced the runtime by up to
73%, and allowed deeper searches to be completed within the
allotted time. The learning time is again quite low. More
interestingly, note that even a small number of added clauses can
impact the overall performance significantly. For example, in
design D1, the addition of just 15 learned clauses for 3 seeds,
achieved a 25% reduction in run time for completing depth 96,
and allowed an additional 13 time frames to be searched. This
demonstrates the effectiveness of our heuristics for choosing
seeds and learned clauses to be added. Our extended results
indicate that the past decision heuristic (SSH2) gives good
performance in general, though it may not consistently give the
best performance.
In comparison to static BDD Learning, we obtained significantly
better results (either less time, or increased depth, or both) with
dynamic BDD Learning for four of six designs, and it was not
much worse for the remaining two. While the time for learning
itself is insignificant, the difference is due to the quality of the
clauses added, and their impact on future decisions. In particular,
for the same level of learning (Level 3), less number of clauses

are added by dynamic learning than by static learning. In a sense,
this indicates that dynamic seed selection offers a better control
than static seed selection over the tradeoff in adding learned
clauses.

k Time (s) k Time (s) Reduction Max k Time (s) L (s) #LCl #Seeds Best SSH
D1 12.7k/416.1k 96 10230 96 7646 25% 109 10644 1 15 3 SSH2 better
D2 4.2k/37.8k 64 7519 64 2031 73% 103 10459 11 2361 655 SSH4 better
D3 5.2k/46.4k 32 8667 32 7195 17% 32 7195 3 1494 276 SSH2 better
D4 910/18k 89 9760 89 7379 24% 92 10791 20 1464 784 SSH2 better
D5 377/19.4k 12 109 12 39 64% 1 89 32 SSH5 better
D6 952/18.1k 56 29 56 29 0% 0 0 0 SSH4 same

DiVer BMC

Table 2: Experimental Results for Dynamic BDD Learning show Significant Improvements

DiVer BMC With Dynamic BDD Learning#FF/#GDesign Status

k Time (s) k Time (s) k Time (s) L (s) #LCl k Time (s) L (s) #LCl k Time (s) L (s) #LCl
D1 12.7k/416.1k 8 1906 96 10230 95 9965 33 4 95 9898 32 5 90 9207 21 1096 worse
D2 4.2k/37.8k 30 802 64 7519 101 10684 15 159 87 10344 11 136 42 6867 15 1720 better
D3 5.2k/46.4k 29 8092 32 8667 32 7720 5 44 32 6168 5 68 32 8704 4 988 better
D4 910/18k 57 10462 89 9760 86 10204 24 105 86 10192 23 105 93 10252 28 1716 better
D5 377/19.4k 12 5868 12 109 12 109 1 0 12 109 1 0 12 155 1 44 same
D6 952/18.1k 56 9134 56 29 56 120 4 34 56 120 3 34 56 237 3 496 worse

StatusLevel 1 Learning

Table 1: Experiments for Static BDD Learning show Mixed Results

DiVer BMC with Static BDD Learning
Level 2 Learning Level 3 Learning#FF/#GDesign DiVer BMCVIS BMC

828

We also explored the effect of varying the maximum clause
length. These results are shown in Table 3. The performance
variation is shown in the maximum depth searched, or in the total
time (where the maximum depth did not vary). A maximum
clause length of 6 or 7 gave the best empirical results on all
designs. This may be related to the BDD creation parameters we
have used, and remains to be investigated further.

5. Conclusions
SAT-based BMC is an effective technique for finding bugs in
large designs. Its performance is critically determined by the
practical efficiency of the backend SAT solver. In this paper, we
have described details of a lightweight and effective BDD
Learning technique, which adds learned clauses generated from
BDDs to supplement other learning mechanisms in a SAT solver.
We explored both static and dynamic learning using BDDs. The
various heuristics and parameters in our BDD Learning engine are
targeted at increasing the usefulness of learned clauses, while
reducing the inherent overheads. We have demonstrated the
effectiveness of our techniques on several industrial designs,
where we have obtained up to 73% reduction in runtime, allowing
us to perform deeper searches within the allotted time. We
believe that the BMC verification framework provides many
opportunities for combining the relative benefits of SAT and
BDDs, and our work is a step in that direction.
References
[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking:

MIT Press, 1999.
[2] K. L. McMillan, Symbolic Model Checking: An Approach to

the State Explosion Problem: Kluwer Academic Publishers,
1993.

[3] R. E. Bryant, "Graph-based algorithms for Boolean function
manipulation," IEEE Transactions on Computers, vol. C-
35(8), pp. 677-691, 1986.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic
Model Checking without BDDs," in Proceedings of
Workshop on Tools and Algorithms for Analysis and
Construction of Systems (TACAS), vol. 1579, LNCS, 1999.

[5] J. P. Marques-Silva and K. A. Sakallah, "GRASP: A Search
Algorithm for Propositional Satisfiability," IEEE
Transactions on Computers, vol. 48, pp. 506-521, 1999.

[6] H. Zhang, "SATO: An efficient propositional prover," in
Proceedings of International Conference on Automated
Deduction, vol. 1249, LNAI, 1997, pp. 272-275.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, "Chaff: Engineering an Efficient SAT Solver," in
Proceedings of Design Automation Conference, 2001.

[8] E. Goldberg and Y. Novikov, "BerkMin: A Fast and Robust
SAT-Solver," in Proceedings of Conference on Design
Automation and Test Europe (DATE), 2002, pp. 142-149.

[9] O. Strichman, "Pruning Techniques for the SAT-based
bounded model checking," in Proceedings of Workshop on

Tools and Algorithms for the Analysis and Construction of
Systems (TACAS), 2001.

[10] G. Anderson, P. Bjesse, B. Cook, and Z. Hanna, "A Proof
Engine Approach to Solving Combinational Design
Automation Problems," in Proceedings of the DAC, 2002.

[11] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design: Computer Science
Press, 1990.

[12] J. Jain, R. Mukherjee, and M. Fujita, "Advanced Verification
Techniques based on Learning," in Proceedings of the
Design Automation Conference, 1995.

[13] W. Kunz, D. Pradhan, and S. M. Reddy, "A Novel
Framework for Logic Verification in a Synthesis
Environment," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, pp. 20-
32, 1996.

[14] A. Gupta and P. Ashar, "Integrating a Boolean Satisfiability
Checker and BDDs for Combinational Verification," in
Proceedings of the VLSI Design Conference, 1998.

[15] J. R. Burch and V. Singhal, "Tight integration of
combinational verification methods," in Proceedings of
International Conference on Computer-Aided Design, 1998.

[16] A. Kuehlmann, M. Ganai, and V. Paruthi, "Circuit-based
Boolean Reasoning," in Proceedings of Design Automation
Conference, 2001.

[17] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, "SAT-based
Image Computation with Application in Reachability
Analysis," in Proceedings of Conference on Formal Methods
in Computer-Aided Design, 2000, pp. 354-371.

[18] P. Williams, A. Biere, E. M. Clarke, and A. Gupta,
"Combining Decision Diagrams and SAT Procedures for
Efficient Symbolic Model Checking," in Proceedings of
International Conference on Computer-Aided Verification,
vol. 1855, LNCS, 2000, pp. 124-138.

[19] P. A. Abdulla, P. Bjesse, and N. Een, "Symbolic
Reachability Analysis based on SAT-Solvers," in
Proceedings of Workshop on Tools and Algorithms for the
Analysis and Construction of Systems (TACAS), 2000.

[20] A. Kuehlmann and F. Krohm, "Equivalence Checking using
Cuts and Heaps," in Proceedings of DAC, 1997.

[21] M. Davis, G. Longeman, and D. Loveland, "A Machine
Program for Theorem Proving," Communications of the
ACM, vol. 5, pp. 394-397, 1962.

[22] J. Pilarski and G. Hu, "SAT with Partial Clauses and Back-
Leaps," in Proceedings of DAC, 2002, pp. 743-746.

[23] F. Somenzi, "CUDD: University of Colorado Decision
Diagram Package, http://vlsi.colorado.edu/~fabio/CUDD/,"
1998.

[24] M. Ganai, L. Zhang, P. Ashar, and A. Gupta, "Combining
Strengths of Circuit-based and CNF-based Algorithms for a
High Performance SAT Solver," in Proceedings of the
Design Automation Conference, 2002.

[25] R. Brayton, F. Somenzi, and others, "VIS: Verification
Interacting with Synthesis, http://vlsi.colorado.edu/~vis,"
2002.

5 6 7 8 9
D1-depth 94 109 98 92 95
D2-depth 49 103 41 72 41
D4-depth 88 92 91 89 89
D3-time 8970 7195 6941 7384 7328
D5-time 197 39 36 36 84

Table 3: Performance Variation across Maximum Clause Length

Maximum Clause LengthDesign-feature

829

