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Abstract Supervised learning has seen numerous theoretical and practical advances over
the last few decades. However, its basic assumption of identical train and test distributions
often fails to hold in practice. One important example of this is when the training instances
are subject to label noise: that is, where the observed labels do not accurately reflect the
underlying ground truth. While the impact of simple noise models has been extensively
studied, relatively less attention has been paid to the practically relevant setting of instance-
dependent label noise. It is thus unclear whether one can learn, both in theory and in practice,
good models from data subject to such noise, with no access to clean labels. We provide a
theoretical analysis of this issue, with three contributions. First, we prove that for instance-
dependent (but label-independent) noise, any algorithm that is consistent for classification
on the noisy distribution is also consistent on the noise-free distribution. Second, we prove
that consistency also holds for the area under the ROC curve, assuming the noise scales
(in a precise sense) with the inherent difficulty of an instance. Third, we show that the
Isotron algorithm can efficiently and provably learn from noisy samples when the noise-free
distribution is a generalised linear model. We empirically confirm our theoretical findings,
which we hope may stimulate further analysis of this important learning setting.
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1 Learning with instance-dependent label noise

Recent advances in classification models such as deep neural networks have seen resounding
successes (Krizhevsky et al. 2012; He et al. 2016; Xiao et al 2015), in no small part due to the
availability of large labelled training datasets. However, real-world labels are often corrupted
by instance-dependent label noise, wherein the observed labels are not representative of the
underlying ground truth, and noise levels vary across different instances. For example, in
object recognition problems, poor quality images are more likely to be mislabelled (Reed
et al. 2014; Xiao et al 2015); furthermore, certain classes of images tend to be confused with
others. A natural question thus arises: what can we say about the impact of such label noise
on the accuracy of our trained models?

More precisely, the following questions are of fundamental interest:

Q1 does good classification performance on the noisy distribution translate to good clas-
sification performance on the noise-free (“clean”) distribution?

Q2 does the answer to Q1 also hold for more complex measures, e.g. for ranking?
Q3 are there simple algorithms which are provably noise robust?

In the case of instance-independent label noise, questions Q1–Q3 have been studied
by several recent theoretical works (Stempfel et al. 2007; Stempfel and Ralaivola 2009;
Natarajan et al. 2013; Scott et al. 2013; Liu and Tao 2015; Menon et al. 2015; van Rooyen
et al. 2015; Patrini et al. 2016, 2017), whose analysis has resulted in a surprising conclusion:
for powerful (high-capacity) models, one can achieve optimal classification and ranking error
given enough noisy examples,without the need for any clean labels. Further, for modest (low-
capacity) models, while even a tiny amount of noise may be harmful (Long and Servedio
2008), there are simple provably robust algorithms (Natarajan et al. 2013; van Rooyen et al.
2015).

In the case of instance-dependent label noise, while there is some theoretical prece-
dent (Manwani and Sastry 2013; Ghosh et al. 2015; Awasthi et al. 2015), questions
Q1–Q3 have to our knowledge remained unanswered. In this paper, we study these ques-
tions systematically. We answer Q1 and Q2 by showing that under (suitably constrained)
instance-dependent noise, powerful models can optimally classify and rank given enough
noisy samples; this is a non-trivial generalisation of existing results. We answerQ3 by show-
ing how an existing algorithmic extension of generalised linear models can efficiently and
provably learn from noisy samples; this is in contrast to existing algorithms even for instance-
independent noise, which either require the noise rate to be known, or lack guarantees.

More precisely, our contributions are:

C1 we show that for a range of losses, any algorithm that minimises the expected loss
(i.e., risk) on the noisy distribution also minimises the expected loss on the clean
distribution (Theorem 1) i.e., noisy risk minimisation is consistent for classification;

C2 we show that area under the ROC curve (AUROC) maximisation on the noisy dis-
tribution is also consistent for the clean distribution (Theorem 2), under a new
boundary-consistent noise model where “harder” instances are subject to noise (Def-
inition 4);

C3 weshow that if the cleandistribution is a generalised linearmodel, the Isotron algorithm
(Kalai and Sastry 2009) is provably robust to boundary-consistent noise (Theorem 3).

While our contributions are primarily of a theoretical nature, we also provide experiments
(Sect. 7) illustrating potential practical implications of our results.
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Table 1 Glossary of important symbols and acronyms

Symbol Meaning

D, D̄ Clean and corrupted distribution

η, η̄ Clean and corrupted class-probability

ρ±1 Label flip functions

s Scorer

� Loss function

LIN Label- and instance-dependent noise

PIN Purely instance-dependent noise

BCN Boundary-consistent noise

SIM Single index model

SIN Single index noise

2 Background and notation

We begin with some notation and background material. Table 1 provides a glossary.

2.1 Learning from binary labels

In standard problems of learning from binary labels, one observes a set of instances paired
with binary labels, assumed to be an i.i.d. draw from an unobserved distribution. The goal
is to find a model that can determine if future instances are more likely to be positive or
negative. To state this more formally, we need some notation.

2.1.1 Distributions, scorers, and risks

Fix a measurable instance space X. We denote by D some distribution over X × {±1},
with random variables (X,Y) ∼ D. Any D may be expressed via the marginal M = P(X)

and class-probability function η : x �→ P(Y = 1 | X = x). A scorer is any measurable
s : X → R; e.g., a linear scorer is of the form s(x) = 〈w, x〉. A loss is any measurable
� : {±1} × R → R+, measuring the disagreement between a label and score. A risk is
any measurable R(·; D) : RX → R+ which summarises a scorer’s performance on samples

drawn from D. Canonically, one works with the �-risk R(s; D, �)
·= E(X,Y)∼D

[
�(Y, s(X))

]
,

or the �-ranking risk, Rrank(s; D, �)
·= EX|Y=1,X′|Y=−1

[
�(+1, s(X) − s(X′))

]
.

Given this, the standard problem of learning from binary labels may be stated as:

Given a sample S = {(xi , yi )}mi=1 ∼ Dm , scorer class S ⊆ R
X, and choice of risk R,

learn a scorer s ∈ S with low risk with respect to D.

Example We will be interested in two canonical problems of learning from binary labels. In
binary classification (Devroye 1996), the goal is to approximately minimise the misclassifi-
cation error R(s; D, �01), where �01 is the zero-one loss �01(y, v) = �yv < 0� + 1

2 �v = 0�
for indicator function �·�.

In bipartite ranking (Agarwal and Niyogi 2005), the goal is to approximately minimise
the pairwise disagreement Rrank(s; D, �01), which is also known as one minus the area
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under the ROC curve (AUROC) of s (Clémençon et al. 2008). The latter is preferred over the
misclassification error under class imbalance (Ling and Li 1998).

2.1.2 Bayes-optimal scorers and regret

In studying the asymptotic behaviour of learning algorithms, two additional risk-related
concepts are useful. A Bayes-optimal scorer is any theoretical risk-minimising scorer s∗ ∈
argmin s∈RX R(s; D). The regret of a scorer s : X → R is its excess risk over that of any

Bayes-optimal scorer, reg(s; D)
·= R(s; D) − R(s∗; D).

For example, the set of Bayes-optimal scorers for the misclassification error R(·; D, �01)

comprises all s∗ satisfying

sign(s∗(x)) = sign(2η(x) − 1), (1)

so that the sign of an instance’s scorematches whether its label is on average positive. Further,
the regret for the 0–1 loss is reg(s; D, �01) = EX∼M

[|2η(x) − 1| · �(2η(X) − 1) · s(x) < 0�
]

(Devroye et al. 1996, Theorem 2.2), i.e., the concentration of η near 1
2 in the region of

disagreement with any optimal scorer.

2.2 Learning from corrupted binary labels

Fix some distribution D. In the problem of learning from corrupted or noisy binary labels,
we have a training sample S̄ ∼ D̄m , for some D̄ �= D whose P(X) is unchanged, but
P(Ȳ | X = x) �= P(Y | X = x). That is, we observe samples with the same marginal
distribution over instances, but different conditional distribution over labels. Our goal remains
to learn a scorer with small risk with respect to D, despite D being unobserved. More
precisely, the problem of learning from noisy binary labels may be stated as:

Given a sample S̄ = {(xi , ȳi )}mi=1 ∼ D̄m , scorer class S ⊆ R
X, and choice of risk R,

learn a scorer s ∈ S with low risk with respect to D.

We refer to D as the “clean” and D̄ as the “corrupted” distribution. Note that we allow
D to be non-separable, i.e., η(x) ∈ (0, 1) for some x ∈ X; thus, even under D, there is not
necessarily certainty as to every instance’s label. Our use of “noise” and “corruption” thus
refers to an additional, exogenous uncertainty in the labelling process.

2.2.1 Instance-dependent noise models

We will focus on D̄ that arise from randomly flipping the labels in D. Further, our interest
is in instance-dependent noise, i.e., noise which depends compulsorily on the instance, and
optionally on the label. To capture this, we first introduce the general label- and instance-
dependent noise (LIN) model.

Definition 1 (LINmodel)Given a clean distribution D and label flip functions ρ1, ρ−1 : X →
[0, 1], under the LIN model we observe samples (X, Ȳ) ∼ D̄ = LIN(D, ρ−1, ρ1), where
first we draw (X,Y) ∼ D as usual, and then flip Y with probability ρY(X) to produce Ȳ.

The label flip functions ρ±1 allow one to model label noise with dependences on the
instance and true label. We do not impose any parametric assumptions on these functions;
the only restriction we place is that on average, the noisy and true labels must agree, i.e.,
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sup
x∈X

(ρ1(x) + ρ−1(x)) < 1. (2)

When ρ±1 are constant, this is a standard assumption (Blum and Mitchell 1998; Scott et al.
2013). We will refer to ρ±1 satisfying Eq. 2 as being admissible.

The LIN model may be specialised to the case where the noise depends on the instance,
but not the label. We term this the purely instance-dependent noise (PIN) model.

Definition 2 (PIN model) Given a label flip function ρ : X → [0, 1/2), under the PIN model

we observe samples from D̄ = PIN(D, ρ)
·= LIN(D, ρ, ρ).

Both the LIN and PIN models consider noise which is instance-dependent; however, the
LIN model is strictly more general. In particular, for non-separable D, each x ∈ X has non-
zero probability of being paired with either {±1} as a label; thus, under the LIN model, the
example (x,+1) occurring in a sample S ∼ DN could have its label flipped with different
probability to (x,−1) occurring in another S′ ∼ DN .

Note that the image of ρ in Definition 2 is [0, 1/2) so as to enforce the condition in Eq. 2.
When D is separable, this condition is equivalent to enforcing that the noisy class-probabilities
are bounded away from 1

2 , which is known as a Massart condition (Massart and Nédélec
2006) on the class-probability. Consequently, when D is separable, instance-dependent noise
satisfying Eq. 2 is also known as a Massart or bounded noise model.

2.2.2 Relation to existing models

As a special case, the LIN model captures instance-independent but label-dependent noise.
Here, all instances within the same class have the same label flip probability. This is known
as the class-conditional noise (CCN) setting, and has received considerable attention (Blum
and Mitchell 1998; Natarajan et al. 2013).

Definition 3 (CCNmodel) Given label flip probabilities ρ±1 ∈ [0, 1], under the CCNmodel

we observe samples from D̄ = CCN(D, ρ+1, ρ−1)
·= LIN(D, x �→ ρ+1, x �→ ρ−1).

2.3 Consistency of noisy risk minimisation?

Our primary theoretical interest in learning from LIN or PIN noise is the issue of statistical
consistency of noisy risk minimisation. This aims to answer the question: if we can perform
near-optimally with respect to some risk on the noisy distribution, will we also perform
near-optimally on the clean distribution? More formally, we wish to know if, e.g.,

reg
(
sn; D̄, �01

) → 0
?�⇒ reg

(
sn; D, �01

) → 0 (3)

for any distribution D, corrupted distribution D̄, and scorer sequence (sn)∞n=1. Establishing
this would imply that one can perform near-optimally given sufficiently many noisy samples,
and a sufficiently powerful class of scorers. The latter assumption is in keeping with standard
consistency analysis for binary classification (Zhang 2004; Bartlett et al. 2006); however,
its practical applicability is somewhat limited. To address this, we further study (Sect. 5) an
algorithm to efficiently (and provably) learn under instance-dependent noise.

As noted in the Introduction, a number of recent works have established classification
consistency of noisy risk minimisation (Scott et al. 2013; Natarajan et al. 2013; Menon et al.
2015) for the special case of class-conditional (and hence instance-independent) noise. A
large strand of work has provided PAC-style guarantees under various instance-dependent
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noise models (Bylander 1997, 1998; Servedio 1999; Awasthi et al. 2015, 2016, 2017).
However, these works impose assumptions on both D and the class of scorers. For a more
detailed comparison and discussion, see Sect. 6.

3 Classification consistency under purely instance-dependent noise

We begin with our first contribution (C1), which shows that one can classify optimally given
access only to samples corrupted with purely instance-dependent noise, assuming a suitably
rich function class and sufficiently many samples; i.e., noisy risk minimisation is consistent.

3.1 Relating clean and corrupt Bayes-optimal scorers

Recall from Eq. 3 that establishing consistency of noisy risk minimisation requires showing
that a scorer s that classifies well on the corrupted D̄ also classifies well on the clean D, i.e.,
if the regret reg(s; D̄, �) is small for a suitable loss �, then so is reg(s; D, �).

Before proceeding, it is prudent to convince ourselves that such a result is possible in
the first place. A necessary condition is that the clean and corrupted Bayes-optimal scorers
coincide; without this, noisy risk minimisation will converge to the wrong object. For many
losses, the Bayes-optimal scorers depend on the underlying class-probability function (c.f.
Eq. 1). Thus, to study these scorers on D̄ resulting from generic label- and instance-dependent
noise, we examine its class-probability function η̄.

Lemma 1 Pick any distribution D. Suppose D̄ = LIN(D, ρ−1, ρ1) for admissible label flip
functions ρ±1 : X → [0, 1]. Then, D̄ has corrupted class-probability function

(∀x ∈ X) η̄(x) = (1 − ρ1(x)) · η(x) + ρ−1(x) · (1 − η(x)) . (4)

The form of Eq. 4 is intuitive: the corrupted positives can be seen as a mixture of a
positive and negative instances, with mixing weights determined by the flip probabilities.
This also illustrates that the effect of noise is to compress the range of η, thus increasing
one’s uncertainty as to an instance’s label.

Lemma 1 implies that we cannot hope to establish consistency without further assump-
tions. For example, with the 0–1 loss, Eq. 1 established that any Bayes-optimal scorer s∗ on
D has sign(s∗(x)) = sign(η(x)− 1/2). However, if ρ1 and ρ−1 vary arbitrarily, then it is easy
to check from Eq. 4 that the sign(η(x) − 1/2) �= sign(η̄(x) − 1/2). Consequently, the clean
and corrupted optimal scorers will differ, and we will not have consistency in general.

Fortunately, we can make progress under two further assumptions: that the noise is purely
instance-dependent (per Definition 2), and following (Ghosh et al. 2015), that

(∀v ∈ R) �(+1, v) + �(−1, v) = C (5)

for some C ∈ R. Equation 5 holds for the zero-one, ramp, and “unhinged” loss (van Rooyen
et al. 2015). Under these restrictions, the clean and corrupted optimal scorers agree.

Corollary 1 Pick any distribution D, and loss � satisfying Eq. 5. Suppose that D̄ =
PIN(D, ρ) for admissible label flip function ρ : X → [0, 1/2). Then,

argmin
s∈RX

R(s; D, �) = argmin
s∈RX

R(s; D̄, �).

For the case of 0–1 loss, Corollary 1 is intuitive: with purely instance-dependent noise
satisfying the condition in Eq. 2, the corrupted label will agree on average with the true label;
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thus, the Bayes-optimal classifier, which simply looks at whether an instance is more likely
on average to be positive or negative, will remain the same.

We emphasise that Corollary 1 does not require D to have a deterministic labelling func-
tion, i.e., it does not require separability of the distribution. Corollary 1 generalises Natarajan
et al. (2013, Corollary 10), which was for instance-independent noise. Awasthi et al. (2015),
Ghosh et al. (2015, Theorem 1) made a similar observation, but only for 0–1 loss and under
the additional assumption of D being separable, i.e., η(x) ∈ {0, 1}.
3.2 Relating clean and corrupt regrets

Having established the equivalence of the clean and corrupted optimal scorers, the next step
in showing consistency is relating the clean and the corrupted regrets. We have the following,
which relies on the same assumptions on the noise and loss as Corollary 1.

Theorem 1 Pick any distribution D, and loss � satisfying Eq. 5. Suppose D̄ = PIN(D, ρ)

for admissible label flip function ρ : X → [0, 1/2). Then, for any s : X → R,

reg (s; D, �) ≤ (1 − 2 · ρmax)
−1 · reg (

s; D̄, �
)

(6)

where ρmax
·= supx∈X ρ(x). Further, if supy,v |�(y, v)| = B < +∞, then for any α ∈ [0, 1],

reg (s; D, �) ≤ (
(1 − 2 · ρmax)

−1 · reg (
s; D̄, �

))1−α · (
B · EX∼M

[
(1 − 2 · ρ(X))−1])α

.
(7)

The proof of Theorem 1 relies on the observation that the clean risk can be written as a
weighted corrupted risk. We thus simply bound these weights, and appeal to the fact that the
clean and corrupted regrets both involve the same Bayes-optimal scorer (Corollary 1).

3.2.1 Implications

For the zero-one loss �01, Theorem 1 implies that for a sequence of scorers (sn)∞n=1, if
reg(sn; D̄, �01) → 0, then reg(sn; D, �01) → 0 as well; i.e., consistent classification on
the corrupted distribution implies consistency on the clean distribution as well. Thus, with
powerfulmodels and sufficient data,we can optimally classify evenwhen learning solely from
noisy labels. One can achieve reg(s; D̄, �01) → 0 by minimising any appropriate convex
surrogate to �01 on D̄ (e.g. hinge, logistic, exponential), owing to standard classification
calibration results (Zhang 2004; Bartlett et al. 2006). Importantly, this surrogate does not
have to satisfy Eq. 5.

In Eq. 7, α may be chosen (in a distribution-dependent manner) to yield the tightest
possible bound. When α = 0, the bound is identical to Eq. 6. However, when α > 0, the
former explicates how the regret depends on the average noise rate of instances, while the
latter pessimistically focusses on the maximal noise rate. In particular, Eq. 7 illustrates that
whenmost instances have low noise (ρ(x) ∼ 0), one is not overly harmed by a small fraction
of instances with high noise: even if ρmax ∼ 1/2, the second term term will dominate and the
regret on the clean distribution will be small. At the other extreme, when ρ(x) ∼ 1/2 for most
x , while we still have asymptotic consistency, there will be a large relative difference in the
clean and absolute regrets. This is also as expected, since the presence of noise intuitively
must make the learning task more challenging.
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3.2.2 Extensions

The regret bound in Theorem 1 may be combined with standard surrogate regret and gener-
alisation bounds applied to the noisy risk minimisation problem. Specifically, per the bounds
of Bartlett et al. (2006), Eq. 6 can be further bounded as

reg
(
s; D, �01

) ≤ (1 − 2 · ρmax)
−1 · �

(
reg

(
s; D̄, �

))
(8)

where � is a classification-calibrated loss, and � the corresponding calibration function as
per (Bartlett et al. 2006, Definition 2). For example, �(z) = z for the hinge loss �hng.

We may further specify how the regret on D decays given a scorer derived from a finite
noisy sample with a suitable function class, by combining Eq. 8 with results on the behaviour
of reg(s; D̄, �). Formally, given a noisy sample S̄ ∼ D̄n , let s̄n denote the regularised empir-
ical minimiser of the hinge loss �hng over a kernelised scorer class S = {x �→ 〈w,�(x)〉H},
for feature mapping � : X → H and reproducing kernel Hilbert space H. Then, with prob-
ability at least 1 − δ, (Steinwart and Scovel 2005, Theorem 1)

reg
(
s̄n; D̄, �hng

) = O

((
log

1

δ

)2

· 1

nα·β

)

(9)

where α is such that the strength of regularisation is λn = n−α , and β controls the approxi-
mation error from using kernelised (rather than all measurable) scorers.

3.2.3 Related work

Theorem 1 generalises Natarajan et al. (2013, Theorem 11), which was for instance-
independent noise. Ghosh et al. (2015, Theorem 1) provided a distinct bound between clean
and corrupted risks, which does not establish consistency. Awasthi et al. (2015, 2016) estab-
lished small corrupted 0–1 regret for specific algorithms under separable D, while our bound
relates clean and corrupted regrets for the output of any algorithm. See also Sect. 6.

3.3 Beyond misclassification error?

Theorem 1 implies consistency for the misclassification error. In practice, other measures
such as the balanced error and F-score are also practically pervasive, especially under class
imbalance. Can we show consistency for such measures as well?

Disappointingly, the answer is no. The reason is simple: for a range of such classification
measures, any optimal scorer on D has sign(s∗(x)) = sign(η(x) − t (D)), where t (D) is
some possibly distributional dependent threshold (Narasimhan et al. 2014; Koyejo et al.
2014). However, Eq. 4 reveals that retaining such an optimal scorer on D̄ is not possible, as

(∀x ∈ X) η(x) > t ⇐⇒ η̄(x) > t + ρ(x) · (1 − 2 · t);
i.e., the thresholds of the clean and corrupted class-probability function do not coincide in
general, so that no analogue of Corollary 1 can possibly hold. Specifically, for any t �= 1/2 (i.e.
any threshold beyond that for 0–1 loss), optimal classification based on η̄ requires knowing
the unknown flipping function ρ(x).

The above implies that under purely instance-dependent noise, we cannot (at least naïvely)
optimally classify with measures beyond the misclassification error. This is a point of depar-
ture from existing analysis for instance-independent noise; for example, Menon et al. (2015)
established that the balanced error minimiser is unaffected under class-conditional noise.
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4 AUROC consistency under boundary-consistent noise

Having established classification consistency for purely instance-dependent noise, we turn
to our second contribution (C2), concerning the distinct problem of bipartite ranking con-
sistency. Recall from Sect. 2.1 that bipartite ranking (Agarwal and Niyogi 2005) considers

Rrank(s; D)
·= EX|Y=1,X′|Y=−1

[
�01(1, s(X) − s(X′))

]

viz. one minus the area under the ROC curve (AUROC) of s (Clémençon et al. 2008).
Given the popularity of theAUROCas a performancemeasure under class imbalance (Ling

and Li 1998), studying its consistency under label noise is of interest. However, compared
to the misclassification error, even in the instance-independent case, this issue has received
comparatively little attention, with a few exceptions (Menon et al. 2015). We now provide
such an analysis for a structured form of label- and instance-dependent noise.

4.1 Relating clean and corrupt Bayes-optimal scorers

As in Sect. 3, before studying AUROC consistency, it is prudent to confirm that the clean
and corrupted Bayes-optimal scorers of the AUROC coincide. The AUROC is maximised by
any scorer s∗ that is order preserving for η (Clémençon et al. 2008), i.e.

(∀x, x ′ ∈ X) η(x) < η(x ′) �⇒ s∗(x) < s∗(x ′).

Equally, on the corrupted D̄, the corrupted AUROC will be maximised by any scorer that
is order preserving for η̄. Thus, for the Bayes-optimal scorers to coincide, we will have to
ensure that η̄ is order preserving for η, i.e., that

(∀x, x ′ ∈ X) η(x) < η(x ′) �⇒ η̄(x) < η̄(x ′). (10)

But by Lemma 1, this cannot be true for general label- and instance-dependent noise, since
there is no necessary relationship between the flip functions ρ±1 and η; see “Appendix C”
for some concrete counter-examples.

Tomakeprogress,we thus need to restrict our noisemodel by injecting suitable dependence
between ρ±1 and η. We next present one such noise model which suits our needs.

4.2 The boundary consistent noise (BCN) model

We propose a noise model where, roughly, the higher the inherent uncertainty (i.e., η ≈ 1/2),
the higher the noise. We will shortly show such a model possesses order preservation.

Definition 4 (BCN model) Given a clean distribution D, consider an label- and instance-
dependent noise model LIN(D, ρ−1, ρ1) where ρy = fy ◦ s for some functions f±1 : R →
[0, 1] and s : X → R such that:

(a) s is order preserving for η i.e., (∀x, x ′ ∈ X) η(x) < η(x ′) �⇒ s(x) < s(x ′).
(b) f±1 are non-decreasing on (−∞, s0] and non-increasing on [s0,∞), where

s0
·= sup

x∈X
{s(x) : η(x) ≤ 1/2} .

(c) �(z) ·= f1(z) − f−1(z) is non-increasing.

We term this the boundary consistent noise model (BCN model). We write the resulting
corrupted distribution as BCN(D, f−1, f1, s).
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The BCN noise model is, to our knowledge, novel. However, special cases of the model
have been studied by Bylander (1997), Du and Cai (2015) and Bootkrajang (2016), wherein
it is assumed that D is linearly separable, and the noise is purely instance-dependent. As
one such special case, the BCN model captures a plausible model of human annotator noise,
wherein “hard” instances (i.e. those close to some optimal separator) have the most noise.

Example 1 (Annotator noise) Suppose s(x) = 〈w∗, x〉 for some w∗ ∈ R
d . Consider a

linearly separable D with η(x) = �s(x) > 0�, and noise LIN(D, ρ−1, ρ1) where ρ−1 =
ρ1 = f ◦ s, and f±1(z) = g(|z|) for some monotone decreasing g.

We now unpack the three conditions underpinning the general model:

(a) encodes that the scores underlying the noise order instances consistently with η.
(b) encodes that “harder” instances (with η ≈ 1/2) have the highest chance of a label flip.
(c) is more opaque; however, it is trivially satisfied when the flip functions are constant (i.e.,

the noise is class-conditional), or identical (i.e. the noise is purely instance-dependent).
The latter covers the practically relevant Example 1; thus, all results for BCN automat-
ically hold for this important case. In more general settings, the condition is needed for
technical reasons (see Sect. 4.3 and “Appendix C”).

4.3 Relating clean and corrupt regrets

We now show that under the BCN model, order preservation of η is guaranteed as per Eq. 18.
Thus, the clean and corrupt Bayes-optimal AUROC scorers coincide.

Proposition 1 Pick any distribution D. Suppose D̄ = BCN(D, f−1, f1, s). Then,
(∀x, x ′ ∈ X

)
η(x) < η(x ′) �⇒ η̄(x) < η̄(x ′).

While simple to state, the result requires a careful analysis of the relationship between η̄(x)−
η̄(x ′) and η(x) − η(x ′). Further, it crucially requires Condition (c) of the BCN model; see
“Appendix C” for counterexamples, including one where f1(z) − f−1(z) is non-decreasing
rather than non-increasing.

Proposition 1 reassures us that under the BCNmodel, corrupted ranking risk minimisation
converges to the right object. A careful analysis of the behaviour of (η̄(x) − η̄(x ′))/(η(x) −
η(x ′)) lets us go further and provide a ranking regret bound, analogous to Theorem 1.

Theorem 2 Pick any distribution D. Let D̄ be a corrupted distribution such that (η, η̄)

satisfy Eq. 10, and there exists a constant C such that
(∀x, x ′ ∈ X

) |η(x) − η(x ′)| ≤ C · |η̄(x) − η̄(x ′)|. (11)

Then, for any scorer s : X → R,

regrank(s; D) ≤ C · (π · (1 − π))−1 · π̄ · (1 − π̄) · regrank(s; D̄) (12)

where regrank denotes the excess ranking risk of a scorer s, and π = P(Y = 1), π̄ = P(Ȳ =
1).

In particular, if D̄ = BCN(D, f−1, f1, s)where ( f−1, f1, s, η) areBCN-admissible, and

ρmax
·= 1/2 · maxx∈X(ρ1(x) + ρ−1(x)) < 1/2, then Eq. 12 holds with C = (1 − 2 · ρmax)

−1.

Intuitively, the condition in Eq. 11 ensures that if a pair of instances are easy to distinguish
on the clean distribution (e.g., η(x) = 1 while η(x ′) = 0), they remain relatively so on the
corrupted distribution. This rules out scenarioswhere the noisemakesall instances, regardless
of their original η value, have an η̄ value arbitrarily close to 1/2.
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4.3.1 Implications

Theorem 2 implies that, under BCN noise, we can optimally rank (in the sense of AUROC)
even when learning solely from noisy labels. Note that we can make regrank(s; D̄) → 0 by
appropriate surrogate loss minimisation on D̄ (Agarwal 2014).

Note also that neither of the noise models in Theorems 1 and 2 are special cases of each
other. In particular, Theorem 2 allows for the noise to depend on the label, while Theorem 1
does not. However, even under purely instance-dependent noise, Theorem 2 requires the flip
function ρ to satisfy additional conditions so as to guarantee order-preservation.

As afinal remark,wenote that theBCNmodel is only sufficient for establishingTheorem2:
as stated, the necessary conditions are that η̄ is order-preserving for η, and there is a bound
on the ratio (η̄(x) − η̄(x ′))/(η(x) − η(x ′)). We focus on BCN as it is a plausible model of
real-world noise, and leave for future work the exploration of other admissible noise models.

4.3.2 Related work

Theorem2generalisesMenon et al. (2015,Corollary 3),which assumed instance-independent
noise. This generalisation is non-trivial, with the proof of Proposition 1 requiring a careful
case-based analysis. We are not aware of any prior analysis of the consistency of AUROC
maximisation under noise with any form of instance-dependence.

5 The Isotron: efficiently learning under boundary-consistent noise

Theorems 1 and 2 imply that by ensuring vanishing regret on the corrupted distribution, we
also ensure vanishing regret on the clean distribution. We now turn to our third contribution
(C3), concerning the algorithmic implications of our results, by specifying how precisely
one can minimise the corrupted regret in practice.

A standard approach is to choose s from a rich function class, e.g., that of a universal
kernel with appropriately tuned parameters. However, this is potentially unsatisfying in two
ways. First, training a kernel machine without further approximation requires quadratic com-
plexity (Schölkopf 2001, p. 288), whichmay be computationally infeasible. Second, suppose
one has further knowledge about the clean D, e.g., that it is well-modelled by a linear scorer
in the native feature space. Employing a generic kernel machine here is intuitively overkill,
and does not exploit our prior knowledge. As a practical consequence, we expect such an
approach to generalise worse than one that directly uses a linear model.

We now show that, whenwe know the clean D can bemodelled by a linear scorer (allowing
but not requiring D to be linearly separable), the Isotron algorithm (Kalai and Sastry 2009)
can provably and efficiently learn under certain boundary-consistent noise. To make this
more precise, we need to introduce two additional concepts.

5.1 The SIM family of class-probability functions

Our assumption on D will be that it belongs to some member of the generalised linear model
(GLM) family. More formally, for link function u : R → [0, 1] and separator w∗ ∈ R

d , the

GLM class-probability function is GLM(u, w∗) ·= x �→ u(〈w∗, x〉). We assume D belongs
to the single-indexmodel (SIM) family of class-probability functions (Kalai and Sastry 2009),
wherein the link is unknown, but is known to be Lipschitz. That is, the SIM family comprises
all possible GLM models with Lipschitz link.
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Definition 5 (SIM family) For any L ,W ∈ R+, the single-index model (SIM) family is

SIM(L ,W )
·= {

GLM(u, w∗) : u ∈ U(L), ||w∗||2 ≤ W
}
,

where U(L) is all non-decreasing L-Lipschitz functions.

Intuitively, the SIM assumption on D encodes that a linear model equipped with a suitable
non-linearity can accurately predict the labels. Two simple examples are presented below.

Example 2 Suppose that D is linearly separable with margin γ > 0, i.e., η(x) = �〈w∗, x〉 >

0� where P({(X,Y) | Y · 〈w∗,X〉 < γ }) = 0. Then, η ∈ SIM((2γ )−1, ||w∗||) (Kalai and
Sastry 2009). This is since we can equally write η(x) = umar(γ )(〈w∗, x〉), where

umar(γ )(z) =

⎧
⎪⎨

⎪⎩

1 if z > γ
z+γ
2γ if z ∈ [−γ,+γ ]
0 if z < −γ.

(13)

The function u(·) is clearly (2γ )−1-Lipschitz.

Example 3 Suppose that D has class-probability of the logistic regression form, i.e., η(x) =
(1 + e−〈w∗,x〉)−1. Then, η ∈ SIM(1, ||w∗||).
5.2 The SIN family of noise models

Our assumption on the noise will be that the distance from the optimal separator determines
the level of noise. More formally, suppose our clean D has η = GLM(u, w∗) for some
(unknown) u, w∗. We then consider a boundary consistent model of the noise with s∗(x) =
〈w∗, x〉 determining the flip probability1; we shall call this the single index noise (SIN)model.

Definition 6 (SIN noise) Let f1, f−1 : R → [0, 1]. Given any distribution D with η =
GLM(u, w∗), define SIN(D, f−1, f1)

·= BCN(D, f−1, f1, s∗) where s∗ : x �→ 〈w∗, x〉.
We shall see concrete examples of this noise model shortly. Put simply, like the underlying

boundary-consistent noise model, it posits that inherently “hard” instances experience the
most noise. To see this, suppose D is linearly separable. Then, instances close to w∗ are
“hard” in the sense that they are optimally classified with low confidence; intuitively, such
instances are easily confusable with instances from the other class.

5.3 Corruption runs in the SIN family

Under the SIM assumption on D and SIN assumption on the noise, learning from the resulting
corrupted distribution D̄ is non-trivial: even if we know the correct link function u(·) for D,
we will not know the precise link under D̄, as this will be affected by the (unknown) noise.
Thus, we cannot directly leverage a standard GLM to provably learn from D̄.

Fortunately, an appealing consequence of pairing the SIM and SIN assumptions is that the
SIM family is closed under SIN corruption, i.e., the resulting corrupted distribution is also a
member of the SIM family.

1 It is crucial to usew∗ here, rather than any arbitraryw.With the latter, therewould be no necessary connection
between the level of noise and the underlying class-probability. As a result, the corrupted class-probabilities
would not by themselves provide information about their clean counterparts.
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Proposition 2 Pick any distribution D with η ∈ SIM(L ,W ). Suppose that D̄ =
SIN(D, f−1, f1) where ( f−1, f1, η) are BCN-admissible, and ( f−1, f1) are (L−1, L1)-
Lipschitz respectively. Then, η̄ ∈ SIM(L + L−1 + L1,W ). In particular, η̄(x) = ū(〈w∗, x〉)
where

ū(z) = (1 − f1(z)) · u(z) + f−1(z) · (1 − u(z)). (14)

This result is intuitive in light of Proposition 1, as η̄ is order preserving for η under
BCN. To illustrate this further, we provide two examples of corrupting the SIM member
η(x) = u(〈w∗, x〉) by SIN noise.

Example 4 Consider the class-conditional noise regime, so that f1 ≡ ρ+, f−1 ≡ ρ− for
constantsρ± ∈ [0, 1]. Then, byEq. 4, η̄(x) = ū(〈w∗, x〉) for ū(z) = (1−ρ+−ρ−)·u(z)+ρ−.

Example 5 Suppose f1 ≡ f−1 ≡ f and f (z) = g(|z|) for some arbitrarymonotone decreas-
ing function g. Then, by Eq. 4, η̄(x) = ū(〈w∗, x〉) for ū(z) = (1 − 2 · f (z)) · u(z) + f (z).
If we further assume u(z) = �z > 0�, so that D is separable, we have

ū(z) =
{
1 − g(z) if z > 0

g(−z) if z < 0.

Observe that if g satisfies g(−z) = 1− g(z), then this is ū(z) = g(−z). That is, a structured
form of monotonic noise on a linearly separable distribution yields a distribution scorable
by some generalised linear model. When g(z) = 1/(1 + ez) for example, we end up with a
logistic regression model. This observation has been made previously (Du and Cai 2015).

We are not aware of prior results akin to Proposition 2 on the behaviour of SIMs under
structured noise. However, when D is separable, Du and Cai (2015) observed that a certain
special case of our BCN noise results in an η̄ that belongs to the GLM family.

Proposition 2 implies that any algorithm for learning a generic SIM D may be used to
learn η̄ under SIN noise. Fortunately, we now see efficient algorithms to learn SIMs exist.

5.4 Efficiently learning noisy SIMs via the Isotron

SIMs for instances in the unit ball Bd can be provably learned with the Isotron (Kalai and
Sastry 2009), and its Lipschitz variant, the SLIsotron (Kakade et al. 2011). The elegant Isotron
algorithm (Algorithm1) alternately updates the separatorw, and the link function u. The latter
is estimated non-parametrically using the pav algorithm (Ayer et al. 1955), which solves the
isotonic regression problem: (û1, . . . , ûm) = argmin u1≤u2≤···≤um

∑m
i=1(yi − ui )2, where

we pre-sort the scores so that s1 ≤ s2 ≤ · · · ≤ sm , i.e., we wish for the u’s to respect the
ordering of the s’s. The SLIsotron algorithm is identical, except that one calls lpav, a variant
of pav that obeys a Lipschitz constraint.

In light of Proposition 2, we thus propose to simply run the SLIsotron on corrupted
samples. One can guarantee ranking consistency of this procedure; further, if the noise does
not depend on the label, then we also have classification consistency.

Theorem 3 Let X ⊆ B
d . Pick any distribution D with η ∈ SIM(L ,W ), and D̄ =

SIN(D, f−1, f1) for Lipschitz ( f−1, f1). Given a corrupted sample S̄ ∼ D̄n, we can
construct a corrupted class-probability estimator ˆ̄ηS̄ : X → [0, 1] using the SLIsotron,

with regrank( ˆ̄ηS̄; D)
P→ 0. Further, if f−1 = f1, we can construct a classifier cS̄ : x �→

sign(2 ˆ̄ηS̄(x) − 1) with reg(cS̄; D, �01)
P→ 0.
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Algorithm 1 The Isotron algorithm (Kalai and Sastry 2009).
Input: Samples {(xi , yi )}mi=1, iterations T
Output: wT , uT

w0 ← 0
u0 ← z �→ min(max(0, 2 · z + 1), 1)

for t = 1, 2, . . . , T do
wt ← wt−1 + 1

m
∑m

i=1(yi − ut−1(〈wt−1, xi 〉)) · xi
ut ← pav({〈wt , xi 〉, yi })

end for

Intuitively, Theorem 3 relies on the existing SLIsotron consistency guarantee for its class-
probability estimate (see “Appendix B.5” for a review). Since the SLIsotron is applied on
corrupted samples, this implies a suitable corrupted regret asymptotically vanishes. Com-
bined with our classification and ranking regret bounds (Theorems 1 and 2), this implies the
clean regret for this estimator also asymptotically vanishes.

5.4.1 Implications

We make some additional remarks on the use of the SLIsotron under label noise. First, the
SLIsotron does not require one to know the precise form of either η or the label flipping
functions. Even if one just knows that there exists some u such that η = GLM(u, w∗), and
that the labels are subject to (Lipschitz) monotonic noise, one can estimate η̄.

Second, by estimating η̄, one can potentially estimate the flipping functions themselves.
For example, in the class-conditional setting, we can estimate the label flip probabilities via
the range of η̄, under a mild assumption on D (Scott et al. 2013; Liu and Tao 2015; Menon
et al. 2015). For SIN noise, estimation is possible if one knows the precise form of u(·), and
if the noise does not depend on the labels. For example, one may know that D is separable
with a certain margin. Then, we can infer the label flipping function as

f (z) = ū(z) − u(z)

1 − 2 · u(z)
.

The estimation error in this term depends wholly on the error in estimating ū.
Third, while Theorem 3 is a statement about asymptotic consistency, one can establish

rates of convergence as well. For example, the SLIsotron guarantee is that the regret of the
corrupted class-probability estimates decays like O

(
(d/n)1/3

)
(see “Appendix B.5” for a

review). This can be contrasted to the regret decay for kernelised scorers (Eq. 9), which
can be significantly larger in the regime of low regularisation (which is to expected for
low-dimensional problems). This makes concrete our motivating intuition for the potential
limitation of using a black-box kernel machine to tackle problems with additional structure.

5.4.2 Related work

Existing analysis of the Isotron has focussed on the setting of standard learning from binary
labels (Kalai and Sastry 2009; Kakade et al. 2011); to our knowledge, there is no existing
analysis of its behaviour under label noise.

Recently, Awasthi et al. (2015, 2016) proposed efficient algorithms to learn under purely
instance-dependent noise (PIN), assuming that D is linearly separable with log-concave
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isotropic marginal over instances. Our use of the Isotron operates with a more structured
form of noise (SIN), which is a subset of PIN; however, we do not require an assumption on
the marginals, and merely require D to be linearly scorable by belonging in the GLM family.
Further, we show ranking as well as classification consistency.

To learn under class-conditional noise with linearmodels, Natarajan et al. (2013) proposed
a loss-correction requiring knowledge of the noise rates, and Menon et al. (2015) proposed
a neural network. The Isotron is distinct from the former by not requiring the noise to be
known; from the latter by having a correctness guarantee; and from both by working for noise
that can depend on the instances.

6 Related work

Recall that our three contributions C1–C3 are in showing the classification and ranking
consistency of risk minimisation under suitably constrained instance-dependent noise, and a
practical algorithm that can learn from such data. We now detail how these contributions are
distinct from a number of existing works in label noise. Table 2 provides a summary.

6.1 Three strands of label noise research

While there is too large a body of work on label noise to summarise here (see e.g. Frénay
and Kabán 2014; Frénay and Verleysen 2014 for recent surveys), broadly, there have been
three strands of theoretical analysis S1–S3 that are relevant to our work.

(S1) PAC guarantees The first strand has focussed on PAC-style guarantees for learning
under symmetric and class-conditional noise (e.g. Bylander 1994; Blum et al. 1996;
Blum andMitchell 1998), noise consistentwith the distance to themargin (e.g. Angluin
and Laird 1988; Bylander 1997, 1998; Servedio 1999), noise constant on partitions
of the input space (e.g. Decatur 1997; Ralaivola et al. 2006), noise with bounded
error rate (e.g. Kalai et al. 2005; Awasthi et al. 2014), and arbitrary bounded instance
dependent or Massart noise (e.g. Awasthi et al. 2015). These works often assume the
true distribution D is linearly separable with some margin, the marginal over instances
has some structure (e.g. uniform over the unit sphere, or log-concave isotropic), and
that one employs linear scorers for learning.

(S2) Surrogate losses The second strand has focussed on the design of surrogate losses
robust to label noise. Stempfel and Ralaivola (2009) proposed a non-convex variant of
the hinge loss robust to asymmetric noise; however, it requires knowledge of the noise
rate. For class-conditional noise, Natarajan et al. (2013) provided a simple “noise-
corrected” version of any loss, which again requires knowledge of the noise rate.
Ghosh et al. (2015) showed that losses whose components sum to a constant are robust
to symmetric label noise. van Rooyen et al. (2015) showed that the linear or unhinged
loss is robust to symmetric label noise. Patrini et al. (2016) showed that a range of
“linear-odd” losses are approximately robust to asymmetric noise.

(S3) Consistency The third strand, which is closest to our work, has focussed on showing
consistency of appropriate risk minimisation in the regime where one has a suitably
powerful function class (Scott et al. 2013;Natarajan et al. 2013;Menon et al. 2015). For
example, Natarajan et al. (2013) showed that minimisation of appropriately weighted
convex surrogates on the corrupted distribution D̄ is consistent for the purposes of
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classification on D. This work has been restricted to the case of symmetric- and class-
conditional noise.

The difference of the present paper to these works may be summarised as:

(a) weworkwith instance-dependent noisemodels (unlikeS2 andS3); this ismore practically
relevant than the standard instance-independent noise assumption.

(b) we do not make assumptions on D for our theoretical analysis in Sects. 3 and 4 (unlike
S1); this is in keeping with standard consistency results for binary classification (Zhang
2004; Bartlett et al. 2006).

(c) we do not assume the scorer class is linear, but rather that it is sufficiently powerful
to contain the Bayes-optimal scorer (unlike S1 and S2); this is again in keeping with
consistency results for binary classification (Zhang 2004; Bartlett et al. 2006).

(d) we study consistency with respect to the AUROC, unlike all works (to our knowledge)
with the exception of Menon et al. (2015); this is of interest since the AUROC is a
canonical performance measure under class imbalance (Ling and Li 1998).

(e) we explicitly provide a practical algorithm for learning in the common scenario where the
clean distribution belongs to the GLM family; this is in contrast to algorithmic proposals
such as that of Natarajan et al. (2013), which require knowledge of the noise rates. While
Patrini et al. (2017) proposed an algorithm to combine this with an estimate of the noise
rate, guarantees as to the quality of the resulting solution are lacking.

We remark that a related strand of research is on learning from positive and unlabelled
data (Elkan and Noto 2008; Plessis et al. 2015; Jain et al. 2016), which may be seen as a
special case of learning with class-conditional (and hence instance independent) noise (Scott
et al. 2013;Menon et al. 2015). Finally, we note that several works have focussed on designing
algorithms for coping with noise (Bootkrajang and Kabán 2014; Reed et al. 2014; Du and
Cai 2015) (see Frénay and Verleysen 2014 for additional references); usually, however, these
approaches lack theoretical guarantees. Formalising practical insights from these works in
conjunction with our framework would be of interest for future work.

6.2 Comparison to specific works

We provide more details comparing our work to a few particularly related works.

6.2.1 Comparison to Ghosh et al. (2015)

Ghosh et al. (2015) provide a bound on the risk of the optimal solution on the corrupted
distribution. By contrast, we provide explicit bounds on the regrets for the clean and corrupted
distributions, rather than the risks. More precisely, they established the following.

Theorem 4 (Ghosh et al. 2015, Theorem 2) Pick any distribution D and loss � satisfying
Eq. 5. Let D̄ = PIN(D, ρ) for some admissible ρ : X → [0, 1/2). Then, for any function class
S ⊆ R

X,

R(s̄∗; D, �) ≤ R(s∗; D, �)

1 − 2 · maxx∈X ρ(x)

s∗ ·= argmin
s∈S

R(s; D, �)

s̄∗ ·= argmin
s∈S

R(s; D̄, �).
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Theorem 4 implies that for purely instance-dependent noise, the �-risk minimiser (for
suitable �) will not differ considerably on the clean and the corrupted samples. But a limitation
of the result is that one cannot guarantee consistency with respect to, e.g., 0–1 loss, of using
the result of �-risk minimisation on the corrupted samples. This is because the above only
holds for the risk with respect to the clean distribution D, which does not let us bound the
clean regret in terms of the corrupted regret.

6.2.2 Comparison to Patrini et al. (2016)

Compared to Patrini et al. (2016), the primary difference of the present work is as per the
above: the latter work does not provide a bound relating the clean and noisy regret for an
arbitrary scorer. More precisely, they establish the following.

Theorem 5 (Patrini et al. 2016, Theorem 10) Pick any distribution D and loss � satisfying

(∃a ∈ R) (∀v ∈ R) �(+1, v) − �(−1, v) = a · v.

Let D̄ be the result of D passed through class-conditional noise for some admissibleρ+, ρ− ∈
[0, 1]. Suppose S = {x �→ 〈w, x〉 | ‖w‖2 ≤ W }. Then,

R(s∗; D̄, �) ≤ R(s̄∗; D̄, �) + 4 · a · |W | · max(ρ+, ρ−) · ‖μ(D)‖2
s∗ ·= argmin

s∈S
R(s; D, �)

s̄∗ ·= argmin
s∈S

R(s; D̄, �)

μ(D)
·= E(X,Y)∼D

[
Y · X]

.

Thus, as per Ghosh et al. (2015), their Theorem 10 bounds the corrupted risk, rather
than clean regret, and does not establish consistency. Indeed, as the bound is in terms of the
corrupted rather than clean distribution, it does not specify howwell a solution obtained from
the noisy distribution will perform on a test set comprising clean labels.

6.2.3 Comparison to Awasthi et al. (2015, 2017)

Awasthi et al. (2015, 2017) show that for separable D with marginals possessing certain
structure, one can guarantee small corrupted 0–1 regret for a specific algorithm under sepa-
rable D. By contrast, the present work relates the clean and corrupted regret for the output of
any algorithm, under no assumptions on the marginal distribution of D. Finally, these works
provide no analysis of ranking consistency.

These works also provided an algorithm to provably learn under the settings of their theo-
rems; however, to our knowledge, there has been no practical assessment of the performance
of these methods. On the other hand, Awasthi et al. (2017) also provide analysis for settings
beyond our label flipping noise model. It is an interesting topic for future work as to whether
one can extend our analysis to such models.

6.3 Comparison to regression approaches

Our LIN noise model is the natural discrete variant of heteroscedastic noise in regression
problems (Le et al. 2005). Typically, such noise is handled by inferring the reliability of
each instance, and then suitably weighting them (Shalizi 2017, Chapter 7). A distinct line
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of work has focussed on arbitrary (i.e., not necessarily probabilistically generated) regres-
sion noise (Wright and Ma 2010; Nguyen and Tran 2013; Bhatia et al. 2015). This is less
immediately related to our probabilistic label-flipping noise setting.

7 Experimental illustration of theoretical results

We present experiments that validate our theoretical results. While our primary contributions
are in providing formal theoretical statements of the behaviour of learning algorithms under
noise, we wish to illustrate that there are potential practical implications from our findings.

7.1 Illustration of classification and ranking consistency

We first validate Theorems 1 and 2: we show that given access only to samples subject to
instance dependent noise, a richmodel can asymptotically-classify optimally; and if the noise
is further boundary consistent, then it can rank optimally as well.

We fix a non-separable discrete distribution D concentrated on notional instances X =
{x1, x2, . . . , x16}. We assume a uniform marginal M , and set η(xi ) = i/16. We pick label
flip function ρ(xi ) = ρmax for i = 8 and ρavg otherwise, for parameters ρmax, ρavg to be
specified. We then draw S̄ ∼ D̄m from the induced corrupted distribution, compute the
minimiser of the empirical logistic risk (since X is discrete, we can explicitly optimise over
s ∈ R

16), and compute the clean 0–1 regret of this solution. We repeat this for 100 random
draws of of S̄.

We fix ρmax = 0.49, and vary ρavg ∈ {0.1, 0.2, 0.3, 0.4}. Figure 1 plots the average 0–1
regret as the number of samplesm is varied. As predicted by Theorem 1, all the regrets even-
tually tend to zero; thus, asymptotically,we can classify optimally despite only having access
to noisy samples. Further, as predicted by Eq. 7, small values of ρavg lead to significantly
smaller 0–1 regret. This is despite the fact that all the induced noisy distributions D̄ have the
same maximal noise rate. Note now that ρ is boundary consistent, since the noise is highest
when η(x) = 1/2. Figure 1 plots the average AUROC regret versus m, and confirms that this
also tends to zero, as predicted by Theorem 2.

7.2 Illustration of noise robustness of the Isotron

We next illustrate Theorem 3, showing that the Isotron can effectively learn GLMs under
suitable boundary consistent (SIN) noise.

To start, we fix a non-separable D such that M is a mixture of Gaussians with means
(1, 1) and (−1,−1) and identity covariance. We picked η(x) = σ(s∗(x)) for sigmoid σ and
s∗(x) = 10 · x1 + 10 · x2. For flip functions f±1(z) = (1/2)e−z2/4, we drew a sample S̄ of
5000 elements from the boundary-consistent corruption of D. We then estimated η̄ from S̄
using 1000 iterations of Isotron. Figure 1 shows this estimate closely matches the actual η̄

computed explicitly via Eq. 4.
Next, we ran experiments on theUSPS andMNIST datasets, for the tasks of distinguishing

digits 0 and 9 for the former, and 6 and 7 for the latter. For an 80–20 train-test split, we
inject boundary-consistent noise by flipping the training labels with probability f (x) =
α·σ(〈w∗, x〉2) for parameterα ∈ [0, 1/2), wherew∗ is the optimal separator found byordinary
least squares. This mimics a scenario where the labels are from a human annotator liable to
make errors for the easily confusable digits. We then trained regularised least squares and
logistic regression models (using regularisation strength λ = 10−8), and the Isotron (using
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Fig. 1 Validation of our main theoretical contributions (Theorems 1 and 3). a 0–1 loss consistency of noisy
risk minimisation, b AUROC consistency of noisy risk minimisation and c loss consistency of noisy risk
minimisation

Table 3 Mean and standard error for 0–1 accuracies over T = 25 independent injections of boundary-
consistent label noise

α Ridge Logistic Isotron

(a) USPS 0 vs 9

0.0 0.9977 ± 0.0000 1.0000 ± 0.0000 0.9977 ± 0.0000

0.1 0.9935 ± 0.0007 0.9525 ± 0.0026 0.9923 ± 0.0010

0.2 0.9752 ± 0.0020 0.9260 ± 0.0029 0.9887 ± 0.0011

0.3 0.9232 ± 0.0039 0.8756 ± 0.0043 0.9730 ± 0.0028

0.4 0.8244 ± 0.0052 0.7963 ± 0.0050 0.8918 ± 0.0092

0.5 0.7110 ± 0.0067 0.7009 ± 0.0049 0.7235 ± 0.0117

(b) MNIST 6 vs 7

0.0 0.9947 ± 0.0000 0.9971 ± 0.0000 0.9951 ± 0.0000

0.1 0.9918 ± 0.0003 0.9924 ± 0.0004 0.9949 ± 0.0001

0.2 0.9883 ± 0.0005 0.9887 ± 0.0006 0.9945 ± 0.0002

0.3 0.9809 ± 0.0007 0.9804 ± 0.0008 0.9945 ± 0.0002

0.4 0.9678 ± 0.0010 0.9657 ± 0.0013 0.9941 ± 0.0003

0.5 0.9390 ± 0.0013 0.9356 ± 0.0016 0.9925 ± 0.0005

Parameter α controls the maximum rate of noise over instances
Italic values denote the best performing method at each noise rate

100 iterations) on the corrupted training sample. We measured the models’ classification
accuracy on the test set with clean labels.

For α ∈ {0.0, 0.1, . . . , 0.5}, Table 3 reports the mean and standard error of the accuracies
over T = 25 independent corruptions for both datasets. We find that for higher α (i.e., more
noise), the Isotron offers a significant improvement over standard learners.

7.3 Further experiments with the Isotron

We now present results showing that the Isotron learns good decision boundaries on non-
separable real-world datasets, and that it can estimate noise rates in class-conditional settings.
This indicates that our results are not purely theoretical, and have potential practical viability;
it also motivates further study of algorithms to learn SIMs, as they may lead to principled
means of coping with instance-dependent noise.
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Table 4 Mean and standard error for 0–1 accuracies of ridge regression (“Ridge”), logistic regression (“Logis-
tic”) and Isotron, computed over 25 independent train-test splits on the UCI benchmark datasets

Dataset Ridge Logistic Isotron

banana 0.5488 ± 0.0066 0.5487 ± 0.0065 0.5766 ± 0.0213

breast_cancer 0.6692 ± 0.0251 0.6462 ± 0.0263 0.6846 ± 0.0003

diabetis 0.7418 ± 0.0099 0.7373 ± 0.0093 0.7608 ± 0.0071

flare_solar 0.6071 ± 0.0220 0.6071 ± 0.0293 0.6536 ± 0.0151

german 0.6635 ± 0.0115 0.6640 ± 0.0117 0.7470 ± 0.0115

heart 0.8370 ± 0.0183 0.8185 ± 0.0181 0.8185 ± 0.0185

image 0.8271 ± 0.0045 0.8259 ± 0.0046 0.8391 ± 0.0056

ringnorm 0.7674 ± 0.0019 0.7674 ± 0.0020 0.7680 ± 0.0023

splice 0.8314 ± 0.0025 0.8326 ± 0.0025 0.8344 ± 0.0034

thyroid 0.8628 ± 0.0153 0.8837 ± 0.0069 0.8721 ± 0.0093

twonorm 0.9785 ± 0.0624 0.9786 ± 0.0624 0.9779 ± 0.0553

waveform 0.7688 ± 0.0013 0.7700 ± 0.0009 0.8825 ± 0.0012

Italic values denote the best performing method at each noise rate

7.3.1 UCI experiments

Wefirst show that the boundary consistent noise (BCN)model captures the real-world labeling
process to some extent, in that the Isotron can classify such data well. To this end, we run
Isotron algorithm on several UCI benchmark datasets (preprocessed and made available by
Gunnar Rätsch2), using the given labels as is, without injecting any artificial noise. We
compare the Isotron to two linear baseline methods, viz. ridge and logistic regression.

The results are presented in Table 4. We observe that in almost all the datasets, assuming a
boundary consistent noise and using the Isotron helps learn a better linear decision boundary.
This is so even when a linear model does not capture the underlying Bayes-optimal scorer,
such as the highly non-linear banana dataset. Overall, this confirms the usefulness and
conformance of the noise model.

7.3.2 Noise rate estimation

We additionally assessed the feasibility of using the Isotron to estimate noise rates for a
class-conditional noise model, a possibility hinted at in Sect. 5.4. For the USPS and MNSIT
datasets as used above, we artificially injected class-conditional noise with rate ρ+ = 0.2 on
instances from the positive class, and ρ− = 0.4 from the negative class. We then used the
quantile-based noise rate estimator of (Menon et al. 2015, Section 6.3) on the estimates of
the corrupted probability η̄ produced by the Isotron. Violin plots in Fig. 2 shows that on both
datasets, the estimates of the noise rates are unbiased on average, with modest variance.

8 Conclusion and future work

We have theoretically analysed the problem of learning with instance-dependent label noise,
with three main conclusions:

2 http://theoval.cmp.uea.ac.uk/matlab.
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Fig. 2 Isotron results for estimating η̄ and noise rates. a, b The discrepancy of the estimated to true noise
rates for positive and negative instances. a USPS 0 versus 9 and b MNIST 6 versus 7

(a) for purely instance-dependent noise, minimising the classification risk on the noisy dis-
tribution is consistent for classification on the clean distribution;

(b) for a broad class of “boundary consistent” label- and instance-dependent noise, a similar
consistency result holds for the area under the ROC curve; and

(c) one can learn generalised linear models subject to the same “boundary consistent” noise
using the Isotron algorithm (Kalai and Sastry 2009).

For futurework, determining sufficient conditions for order preservation ofη, and studying
simplified versions of the Isotron under more specific noise models (e.g., class-conditional)
would be of interest.

Appendix

A: Proofs of results in main body

Proof of Lemma 1 By definition of how corrupted labels Ȳ are generated,

η̄(x) = P(Ȳ = 1 | X = x)

=
∑

y∈{±1}
P(Ȳ = 1 | Y = y,X = x) · P(Y = y | X = x)

= (1 − ρ1(x)) · η(x) + ρ−1(x) · (1 − η(x)).

The second identity follows by rearranging. ��

Proof of Corollary 1 This is a simple consequence of the fact that weighting a risk does not
affect Bayes-optimal scorers. Formally, for any w : X → R+, let the weighted �-risk be

Rwt(w)(s; D, �)
·= EX∼M

[
w(X) · L(η(X), s(X))

]
(15)

where L(η, v)
·= η · �(1, v) + (1 − η) · �(−1, v). When w ≡ 1, this is the standard �-risk.

By Proposition 4,

argmin
s

R(s; D, �) = argmin
s

Rwt(w)(s; D̄, �)

= argmin
s

R(s; D̄, �).
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The second line is because weighting does not affect the Bayes-optimal scorers for a risk:
for any w > 0,

(∀η ∈ [0, 1]) argmin
v

w · L(η, v) = argmin
v

L(η, v)

R(s; D, �) = EX∼M
[
L(η(X), s(X))

]
.

Note finally that by definition, the weighting factor w(x) = (1 − 2 · f (x))−1 ≥ 1, and so
no term is suppressed after weighting. (If w(x) = 0 for some x ∈ X, then any prediction
would be optimal for that instance; thus, we would get containment rather than equality of
minimisers.) ��

Proof of Theorem 1 Let s∗ ∈ argmin
s

R(s; D, �). Let w(x) ·= (1 − 2 · ρ(x))−1, and recall

Rwt(w) is the corresponding weighted �-risk (Eq. 15). By definition,

reg (s; D, �) = R(s; D, �) − R(s∗; D, �)

= Rwt(w)(s; D̄, �) − Rwt(w)(s∗; D̄, �) by Proposition 4

= EX∼M

[
1

1 − 2 · ρ(X)
· (
L (η̄(X), s(X)) − L

(
η̄(X), s∗(X)

))]
by definition

(16)

≤ 1

1 − 2 · ρmax
· EX∼M

[
L (η̄(X), s(X)) − L

(
η̄(X), s∗(X)

)]
by Eq. 2

= 1

1 − 2 · ρmax
· (
R

(
s; D̄, �

) − R
(
s∗; D̄, �

))

= 1

1 − 2 · ρmax
· reg (

s; D̄, �
)
, (17)

where the last line is since by Corollary 1, we know that s∗ ∈ argmin
s

R(s; D̄, �) also.

This fact also implies that for the inequality step above, we can guarantee L(η̄(x), s(x)) −
L(η̄(x), s∗(x)) ≥ 0 for every x ∈ X, and so we do not have to worry about the direction of
the inequality.

Toget the secondbound, suppose r(x) ·= L(η̄(x), s(x))−L(η̄(x), s∗(x)) is the conditional
regret. Trivially,

r(x) ≤ L(η̄(x), s(x))

= η̄(x) · �(1, s(x)) + (1 − η̄(x)) · �(1, s(x))

≤ B by assumption on �.

Now define the (nonnegative) random variablesW = w(X), R = r(X). The regret of Eq. 16
can be rewritten

reg (s; D, �) = EX∼M
[
w(X) · r(X)

]

= E
[
W · R]

≤
(
E

[
W

1
α

])α ·
(
E

[
R

1
1−α

])1−α

by Hölder’s inequality

= W · B ·
(

E

[(
W
W

) 1
α

])α

·
(

E

[(
R
B

) 1
1−α

])1−α

for W = max
x

w(x)
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≤ W · B ·
(
E

[
W
W

])α

·
(
E

[
R
B

])1−α

since zβ ≤ z for z ∈ [0, 1], β ≥ 1

= W 1−α · Bα · (
E

[
W

])α · (
E

[
R

])1−α

= W 1−α · Bα · (
EX∼M

[
(1 − 2 · ρ(X))−1])α · (

reg
(
s; D̄, �

))1−α
.

Note that W = (1 − 2 · ρmax)
−1 by definition. The case α = 0 gives the original bound of

Eq. 2. ��
Proof of Proposition 1 Pick some x, x ′ such that η(x) < η(x ′). Certainly s(x) < s(x ′) since
s is order preserving for η by BCN-admissibility Condition (a). Thus, by Lemma 5,

η̄(x) − η̄(x ′) ≤ max
(
1 − ρ−1(x) − ρ1(x), 1 − ρ−1(x

′) − ρ1(x
′)
) · (

η(x) − η(x ′)
)
.

By the total noise assumption (Assumption 2), 1 − ρ−1(x) − ρ1(x) > 0 for every x , and
so the max(·) term above is > 0. Since η(x) − η(x ′) < 0 by assumption, we conclude that
η̄(x) − η̄(x ′) < 0. ��
Proof of Theorem 2 From Clémençon et al. (2008) and Agarwal (2014, Theorem 11),

regrank(s; D) = 1

2 · π · (1 − π)
· EX∼M,X′∼M

[|η(X) − η(X′)| · I(η(X) − η(X′), s(X) − s(X′))
]

where

I(�η,�s) = ��η · �s < 0� + 1/2 · ��s = 0�.

By the order-preservation assumption,

η(x) �= η(x ′) �⇒ sign(η(x) − η(x ′)) = sign(η̄(x) − η̄(x ′)). (18)

Thus, in this case, sign(�η) = sign(�η̄), and so I(�η,�s) = I(�η̄,�s). When η(x) =
η(x ′), however, there is no guarantee on the relative values of η̄(x) and η̄(x ′). But if �η = 0,
then the first term in I above is necessarily zero, while that for �η̄ can only be ≥ 0. Thus,
when η(x) �= η(x ′) we have

I(�η,�s) ≤ I(�η̄,�s),

and so, further applying the assumption on the difference between η values,

regrank(s; D) ≤ 1

2 · π · (1 − π)

· EX∼M,X′∼M
[|η(X) − η(X′)| · I(η̄(X) − η̄(X′), s(X) − s(X′))

]

≤ 1

2 · π · (1 − π)
·

C · EX∼M,X′∼M
[|η̄(X) − η̄(X′)| · I(η̄(X) − η̄(X′), s(X) − s(X′))

]

= π̄ · (1 − π̄)

π · (1 − π)
· C · regrank(s; D̄).

In the special case of the BCN model, order-preservation holds by Proposition 1. What
remains then is the |η(x) − η(x ′)| term. Now, by Lemma 5,

(∀x, x ′ ∈ X) η(x) ≤ η(x ′) �⇒ η̄(x) − η̄(x ′)
≤ max

(
1 − ρ−1(x) − ρ1(x), 1 − ρ−1(x

′) − ρ1(x
′)
) · (

η(x) − η(x ′)
)
.
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Consequently, when η(x) < η(x ′), we have

η̄(x) − η̄(x ′)
η(x) − η(x ′)

≥ max
(
1 − ρ−1(x) − ρ1(x), 1 − ρ−1(x

′) − ρ1(x
′)
)

≥ 1 − 2 · ρmax by assumption .

By swapping x and x ′, an identical result holds if η(x) > η(x ′). If η(x) = η(x ′), we trivially
have 0 = |η(x) − η(x ′)| ≤ |η̄(x) − η̄(x ′)| · (1 − 2 · ρmax)

−1. Thus, the regret bound holds

with C ·= (1 − 2 · ρmax)
−1. ��

Proof of Proposition 2 ByLemma2, themandatoryCondition (a) of themodelBCN(D, f−1,

f1, s) implies that η = u ◦ s for some non-decreasing u. Thus, by Lemma 1,

η̄(x) = (1 − ρ1(z)) · η(x) + ρ−1(x) · (1 − η(x))

= ū (s(x))

where

ū(z) = (1 − f1(z)) · u(z) + f−1(z) · (1 − u(z)).

By Corollary 3,

s∗(x) < s∗(x ′) �⇒ ū(s∗(x)) ≤ ū(s∗(x ′)),

so that ū is a non-decreasing function, and thus a valid GLM link.
Next, applying the triangle inequality to Lemma 4, and using z = s(x), z′ = s(x ′),

|η̄(x) − η̄(x ′)| = |ū(z) − ū(z′)|
≤ |1 − f−1(z

′) − f1(z
′)| · |u(z) − u(z′)|

+ | f−1(z) − f−1(z
′)| · |1 − u(z)| + | f1(z) − f1(z

′)| · |u(z)|
≤ (L + L−1 + L1) · |z − z′|,

using the fact that |1 − f−1(z′) − f1(z′)| < 1 by the total noise assumption (Assumption
2), |1 − u(z)| ≤ 1 and |u(z)| ≤ 1 since Im(u) = [0, 1], and the Lipschitz assumptions on
u, f±1. It follows that ū is (L + L−1 + L1)-Lipschitz. ��

Proof of Theorem 3 By Proposition 2, η̄ ∈ SIM(L + L2 + L3,W ). Thus, as a member of
the SIM family, it is suitable for estimation using SLIsotron.

Proposition 6 implies that one can always choose an iteration of SLIsotronwith low regret.
Let ˆ̄ηS,t denote the estimate produced by SLIsotron at iteration t . If in an abuse of notation
we let ˆ̄ηS denote the estimate ˆ̄ηS,t∗ , where t∗ is an appropriately determined iteration, then

we have that reg( ˆ̄ηS; D, �sq)
P→ 0.

For AUROC consistency, standard surrogate regret bounds (Agarwal 2014) imply that for
any estimator ˆ̄η,

regrank
( ˆ̄η; D̄

)
≤ 1

2 · π̄ · (1 − π̄)
·
√

reg
( ˆ̄η; D̄, �sq

)

for �sq being the squared loss �sq(y, v) = (1 − yv)2. By Theorem 2, we conclude that
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regrank
( ˆ̄ηS̄; D

)
≤ π̄ · (1 − π̄)

π · (1 − π)
· 1

1 − 2 · ρmax
· regrank

( ˆ̄ηS̄; D̄
)

≤ 1

2 · π · (1 − π)
· 1

1 − 2 · ρmax
·
√

reg
( ˆ̄ηS̄; D̄, �sq

)
.

The Isotron guarantee implies the RHS tends to 0 with sufficiently many samples. Thus,
regrank( ˆ̄ηS̄; D) → 0.

For classification consistency, standard surrogate regret bounds (Zhang 2004; Bartlett
et al. 2006; Reid and Williamson 2009) imply that we can bound the 0–1 regret in terms of
the square loss regret:

reg
(
2 ˆ̄η − 1; D̄, �01

)
≤

√

reg
( ˆ̄η; D̄, �sq

)
.

By Theorem 1, for symmetric (label-independent) noise, thresholding our estimate of η̄

around 1/2 yields:

reg
(
cS̄; D, �01

) = reg
(
2η̂S̄ − 1; D, �01

)

≤ 1

1 − 2 · ρmax
· reg (

2η̂S̄ − 1; D̄, �01
)

= 1

1 − 2 · ρmax
·
√

reg
( ˆ̄ηS; D̄, �sq

)
.

The Isotron guarantee implies the RHS tends to 0 with sufficiently many samples. Thus, in
the case of symmetric BCN noise, thresholding η̄ around 1/2 will be consistent wrt the clean
distribution. ��

B: Additional helper results

B.1: Order preservation

Wewill make use of the following simple fact about order preservation, stated without proof.

Lemma 2 Suppose f, g : R → R are such that

(∀x, y ∈ R) f (x) < f (y) �⇒ g(x) < g(y).

Then, f = u ◦ g for some non-decreasing u.

Taking the contrapositive gives us an alternate useful statement.

Corollary 2 Suppose f, g : R → R are such that

(∀x, y ∈ R) g(x) ≤ g(y) �⇒ f (x) ≤ f (y).

Then, f = u ◦ g for some non-decreasing u.

Finally, we can make a more precise statement about behaviour when g(x) = g(y) under
the above conditions.

Lemma 3 Suppose f, g : R → R are such that

(∀x, y ∈ R) f (x) < f (y) �⇒ g(x) < g(y).
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Then,

(∀x, y ∈ R) g(x) = g(y) �⇒ f (x) = f (y).

(∀x, y ∈ R) g(x) < g(y) �⇒ f (x) ≤ f (y).

Proof By the contrapositive in Corollary 2,

(∀x, y ∈ R) g(x) ≤ g(y) �⇒ f (x) ≤ f (y).

If g(x) < g(y) then trivially g(x) ≤ g(y) and the result follows. Suppose that g(x) = g(y).
Then g(x) ≤ g(y) and g(y) ≤ g(x). Thus f (x) ≤ f (y) and f (y) ≤ f (x), i.e., f (x) = f (y).
The result is also evident from the fact that f = u ◦ g by Corollary 2. ��

Note that if we only know that g(x) < g(y) �⇒ f (x) ≤ f (y), we cannot conclude that
f = u ◦ g, nor that g = u ◦ f ; we must be able to conclude something about the behaviour
of f when g(x) = g(y).

B.2: Relating clean and corrupt risks

We have the following general relationship between the risk on the clean and corrupted
distributions, which is a generalisation of Natarajan et al. (2013, Lemma 1). In the following,
we use the shorthand �y(s) = �(y, s).

Proposition 3 Pick any distribution D, and any loss �. Suppose that D̄ = LIN(D, ρ1, ρ−1)
for admissible ρ±1 : X → [0, 1]. Then, for any scorer s : X → R,

R(s; D, �) = EX∼M
[
w(X) · ((η̄(X) − ρ−1(X)) · �1(s(X)) + (1 − η̄(X) − ρ1(X)) · �−1(s(X))))

]

where w(x) = (1 − ρ1(x) − ρ−1(x))−1.

Proof of Proposition 3 Re-expressing Lemma 1, for LIN(D, ρ1, ρ−1),

(∀x ∈ X) η(x) = w(x) · (η̄(x) − ρ−1(x))

and

(∀x ∈ X) 1 − η(x) = w(x) · (1 − η̄(x) − ρ1(x)),

where w(x) = (1 − ρ1(x) − ρ−1(x))−1 > 0. Thus, the �-risk of an arbitrary scorer is

R(s; D, �) = E(X,Y)∼D
[
�(Y, s(X))

]

= EX∼M
[
η(X) · �1(s(X)) + (1 − η(X)) · �−1(s(X))

]

= EX∼M
[
w(X) · ((η̄(X) − ρ−1(X)) · �1(s(X)) + (1 − η̄(X) − ρ1(X)) · �−1(s(X))))

]
.

(19)

��
The instantiation of Proposition 3 for the case of PIN noise and losses satisfying Eq. 5

will be useful in proving Corollary 1: in this case, we can show the clean risk is an instance-
weighted version of the corrupted risk. Recall that for w : X → R+, Rwt(w) is the weighted
�-risk, per Eq. 15. Then, we have the following.3

3 This result is implicit in the proof of Ghosh et al. (2015, Theorem 1).
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Proposition 4 Pick any distribution D, and loss � satisfying Eq. 5. Suppose that D̄ =
PIN(D, ρ) for admissible ρ : X → [0, 1/2). Then, for any scorer s : X → R,

R(s; D, �) = Rwt(w)(s; D̄, �) + A(D, ρ)

where w(x) = (1 − 2 · ρ(x))−1, and A(D, ρ) is some term independent of s.

Proof (Proof of Proposition 4) By Proposition 3, for LIN(D, ρ1, ρ−1),

R(s; D, �) = EX∼M
[
w(X) · ((η̄(X) − ρ−1(X)) · �1 (s(X)) + (1 − η̄(X) − ρ1(X)) · �−1 (s(X)))

]

= EX∼M
[
w(X) · (η̄(X) · �1 (s(X)) + (1 − η̄(X)) · �−1 (s(X)))

]

− EX∼M
[
w(X) · (ρ−1(X) · �1 (s(X)) + ρ1(X) · �−1 (s(X)))

]

= EX∼M
[
w(X) · (L (η̄(X), s(X)) − ρ−1(X) · �1 (s(X)) − ρ1 (X) · �−1 (s(X)))

]
.

If ρ1 ≡ ρ−1 ≡ ρ, w(x) = (1 − 2 · ρ(x))−1 and

R(s; D, �) = EX∼M

[
1

1 − 2 · ρ(X)
· L (η̄(X), s(X))

]

− EX∼M

[
ρ(X)

1 − 2 · ρ(X)
· (�1 (s(X)) + �−1 (s(X)))

]
.

Thus, if per assumption the sum of the partial losses is a constant C ,

R(s; D, �) = Rwt(w)(s; D̄, �) − C · EX∼M

[
ρ(X)

1 − 2 · ρ(X)

]
.

Noting that the second term above does not depend on the scorer s, the result follows. ��
For the symmetric label noise model, Proposition 4 reduces to Natarajan et al. (2013,

Theorem 9).

B.3: Relating clean and corrupt thresholds

For a general LIN model, we have the following relation between the thresholds of η̄ values
and the corresponding thresholds for η.

Proposition 5 Pick any distribution D. Suppose that D̄ = LIN(D, ρ−1, ρ1) for admissible
ρ±1 : X → [0, 1]. Then, for any t ∈ [0, 1],

(∀x ∈ X) η(x) > t ⇐⇒ η̄(x) > (1 − ρ1(x) − ρ−1(x)) · t + ρ−1(x).

Proof (Proof of Proposition 5) By Lemma 1,

η(x) = η̄(x) − ρ−1(x)

1 − ρ1(x) − ρ−1(x)
.

By Assumption 2, ρ1(x) + ρ−1(x) < 1 for every x ∈ X, and so 1 − ρ1(x) − ρ−1(x) > 0.
We thus have

η(x) > t ⇐⇒ η̄(x) − ρ−1(x)

1 − ρ1(x) − ρ−1(x)
> t

⇐⇒ η̄(x) − ρ−1(x) > (1 − ρ1(x) − ρ−1(x) · t since 1 − ρ1(x) − ρ−1(x) > 0

⇐⇒ η̄(x) > (1 − ρ1(x) − ρ−1(x)) · t + ρ−1(x).

��
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B.4: Difference in η̄ values

For the general LINmodel, we have the following relation between the difference in η̄ values
and the corresponding η values, which will be useful in demonstrating order preservation of
η̄ and η.

Lemma 4 Pick any distribution D. Suppose D̄ = LIN(D, ρ−1, ρ1). Then,
(∀x, x ′ ∈ X

)
η̄(x) − η̄(x ′) = (

1 − ρ−1(x
′) − ρ1(x

′)
) · (

η(x) − η(x ′)
) + �1(x, x

′)
= (1 − ρ−1(x) − ρ1(x)) · (

η(x) − η(x ′)
) + �2(x, x

′),

where

�1(x, x
′) = (

ρ−1(x) − ρ−1(x
′)
) · (1 − η(x)) + (

ρ1(x
′) − ρ1(x)

) · η(x)

�2(x, x
′) = (

ρ−1(x) − ρ−1(x
′)
) · (

1 − η(x ′)
) + (

ρ1(x
′) − ρ1(x)

) · η(x ′).

Proof of Lemma 4 By Lemma 1,

η̄(x) = (1 − ρ1(x) − ρ−1(x)) · η(x) + ρ−1(x).

Thus,

η̄(x) − η̄(x ′) = (1 − ρ−1(x) − ρ1(x)) · η(x) − (
1 − ρ−1(x

′) − ρ1(x
′)
) · η(x ′)

+ ρ−1(x) − ρ−1(x
′)

= (
1 − ρ−1(x

′) − ρ1(x
′)
) · (

η(x) − η(x ′)
) + �1(x, x

′), (20)

where

�1(x, x
′) = (

ρ−1(x
′) + ρ1(x

′) − ρ−1(x) − ρ1(x)
) · η(x) + (

ρ−1(x) − ρ−1(x
′)
)

= (
ρ−1(x) − ρ−1(x

′)
) · (1 − η(x)) + (

ρ1(x
′) − ρ1(x)

) · η(x).

Alternately, we have

η̄(x) − η̄(x ′) = (1 − ρ−1(x) − ρ1(x)) · (
η(x) − η(x ′)

) + �2(x, x
′) (21)

where

�2(x, x
′) = (

ρ−1(x
′) − ρ−1(x) + ρ1(x

′) − ρ1(x)
) · η(x ′) + (

ρ−1(x) − ρ−1(x
′)
)

= (
ρ−1(x) − ρ−1(x

′)
) · (

1 − η(x ′)
) + (

ρ1(x
′) − ρ1(x)

) · η(x ′).

��
Some examples illustrate the above result.

Example 6 For the case of class-conditional noise where ρ1 ≡ α, ρ−1 ≡ β, �1 ≡ �2 ≡ 0
and so we have the simpler expression

η̄(x) − η̄(x ′) = (1 − α − β) · (
η(x) − η(x ′)

)
,

from which order preservation is immediate.

Example 7 For the case of purely instance-dependent noise PIN(D, ρ),

�1(x, x
′) = (

ρ(x) − ρ(x ′)
) · (1 − 2 · η(x))

�2(x, x
′) = (

ρ(x) − ρ(x ′)
) · (

1 − 2 · η(x ′)
)
.
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Thus,

η̄(x) − η̄(x ′) = (
1 − 2 · ρ(x ′)

) · (
η(x) − η(x ′)

) + (
ρ(x) − ρ(x ′)

) · (1 − 2 · η(x))

= (1 − 2 · ρ(x)) · (
η(x) − η(x ′)

) + (
ρ(x) − ρ(x ′)

) · (
1 − 2 · η(x ′)

)
.

Order preservation here will depend on the structure of ρ.

For the BCN model, Lemma 4 can be converted to show that η̄ is a monotone transform
of s, the underlying score used in the noise model; furthermore, we have a simple bound on
the differences in η̄ values in terms of the corresponding difference in η values.

Lemma 5 Pick any distribution D. Suppose D̄ = BCN(D, f−1, f1, s)where ( f−1, f1, s, η)

are BCN-admissible. Then,
(∀x, x ′ ∈ X

)
s(x) ≤ s(x ′) �⇒ η̄(x) − η̄(x ′)

≤ max
(
1 − ρ−1(x) − ρ1(x), 1 − ρ−1(x

′) − ρ1(x
′)
) · (

η(x) − η(x ′)
)

where ρ±1(x) = f±1 ◦ s. Further, if s(x) = s(x ′), then η̄(x) = η̄(x ′).

Proof (Proof of Lemma 5) Note that by Condition (a) of BCN-admissiblity and Lemma 2,
η = u ◦ s for some non-decreasing u. For the BCN model, Lemma 4 is

(∀x, x ′ ∈ X) η̄(x) − η̄(x ′) = (1 − f−1(z
′) − f1(z

′)) · (u(z) − u(z′)) + �1(z, z
′)

= (1 − f−1(z) − f1(z)) · (u(z) − u(z′)) + �2(z, z
′),

where z = s(x), z′ = s(x ′), and

�1(z, z
′) = ( f−1(z) − f−1(z

′)) · (1 − u(z)) + ( f1(z
′) − f1(z)) · u(z)

�2(z, z
′) = ( f−1(z) − f−1(z

′)) · (1 − u(z′)) + ( f1(z
′) − f1(z)) · u(z′).

Suppose that s(x) = s(x ′). Then clearly ρy(x) = ρy(x ′), implying that �1 ≡ �2 ≡ 0,
and also u(z) = u(z′) by Corollary 2, so η̄(x) = η̄(x ′).

Suppose that s(x) < s(x ′) so that4 η(x) ≤ η(x ′); or equivalently, z < z′ so that u(z) ≤
u(z′). Our goal is to show that min(�1(z, z′),�2(z, z′)) ≤ 0; this will imply the desired
bound, since we can just use the tighter of the implied bounds on Eqs. 20 and 21. By
Condition (c) of BCN-admissibility, for any z < z′,

f1(z) − f−1(z) ≥ f1(z
′) − f−1(z

′)

or equivalently
f1(z

′) − f1(z) ≤ f−1(z
′) − f−1(z). (22)

Thus, since u(z) ≥ 0, we have

�1(z, z
′) ≤ ( f−1(z) − f−1(z

′)) · (1 − 2 · u(z)), (23)

and similarly,

�2(z, z
′) ≤ ( f−1(z) − f−1(z

′)) · (1 − 2 · u(z′)). (24)

We now argue why the minimum of these terms must be ≤ 0. Consider the following
three cases:

(a) Suppose f−1(z) = f−1(z′). Then trivially both terms are ≤ 0.

4 By contrapositive of Condition (a) of BCN-admissibility, if s(x) ≤ s(x ′) then η(x) ≤ η(x ′).
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(b) Suppose f−1(z) < f−1(z′). Then either u(z) ≤ 1
2 or u(z′) ≤ 1

2 ; if both u values are larger
than 1

2 , then by BCN-admissibility Condition (b) it must be true that f−1(z) ≥ f−1(z′),
a contradiction. Thus either 1− 2 · u(z) ≥ 0 or 1− 2 · u(z′) ≥ 0, and so one of the terms
must be ≤ 0.

(c) Suppose f−1(z) > f−1(z′). Then either u(z) ≥ 1
2 or u(z′) ≥ 1

2 ; if both u values are
smaller than 1

2 , then by BCN-admissibility Condition (b) it must be true that f−1(z) ≤
f−1(z′), a contradiction. Thus either 1− 2 · u(z) ≤ 0 or 1− 2 · u(z′) ≤ 0, and so one of
the terms must be ≤ 0.

Thus, we conclude min(�1(z, z′),�2(z, z′)) ≤ 0, and so either

η̄(x) − η̄(x ′) ≤ (1 − ρ−1(x) − ρ1(x)) · (η(x) − η(x ′))

or

η̄(x) − η̄(x ′) ≤ (1 − ρ−1(x) − ρ1(x
′)) · (η(x) − η(x ′))

must be true; since η(x)−η(x ′) ≤ 0 andmax(1−ρ−1(x)−ρ1(x), 1−ρ−1(x)−ρ1(x ′)) > 0,
this implies

η̄(x) − η̄(x ′) ≤ max(1 − ρ−1(x) − ρ1(x), 1 − ρ−1(x) − ρ1(x
′)) · (η(x) − η(x ′)).

Since η(x) − η(x ′) ≤ 0 and max(1 − ρ−1(x) − ρ1(x), 1 − ρ−1(x) − ρ1(x ′)) > 0, we may
bound the entire expression by 0, thus concluding that η̄(x) ≤ η̄(x ′). ��

An immediate consequence of Lemma 5 is that η̄ is order-preserving for the underlying
scores.

Corollary 3 Suppose D̄ = BCN(D, f−1, f1, s) where ( f−1, f1, s, η) are BCN-admissible.
Then,

(∀x, x ′ ∈ X) s(x) ≤ s(x ′) �⇒ η̄(x) ≤ η̄(x ′)

and so η̄ = ū ◦ s for some non-decreasing ū.

Proof By Lemma 5, if s(x) = s(x ′) then η̄(x) = η̄(x ′). If s(x) < s(x ′) then η(x) ≤ η(x ′)
by BCN-admissiblity Condition (a). Further, 1 − ρ1(x) − ρ−1(x) > 0 by Assumption 2.
Thus, η̄(x) − η̄(x ′) ≤ 0. The fact that η̄ = ū ◦ s follows from Corollary 2. ��

Remark 1 By definition of BCN admissibility, η = u ◦ s for some monotone u; and by
Lemma 5, η̄ = ū ◦ s, for some monotone ū. If we could establish that ū were strictly
monotone, then we would immediately conclude η = u ◦ ū−1 ◦ η̄, which would establish
Proposition 1. But this is not true in general; fortunately, ū is only constant when u is (owing
to the explicit bound in Lemma 5), and so we are still able to write η = φ ◦ η̄ for some
monotone φ.

Remark 2 Order preservation by itself does not let us establish an AUROC regret bound. We
need the precise bound on the difference in η̄ values provided in Lemma 5 to quantify how
much distortion is introduced relative to the difference in η values.
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B.5: Class-probability estimation guarantees with the Isotron

We recall that the basic SLIsotron guarantee is as follows.

Proposition 6 (Kakade et al. 2011, Theorem 2) Pick any distribution D over Bd × {±1}
with5 η ∈ SIM(1,W ) for some W ∈ R+. Let {η̂S,t }∞t=1 denote the estimates of η produced
at each iteration of SLISotron, when applied to a training sample S ∼ Dm. Then, for any
δ ∈ (0, 1),

PS∼Dm

(

min
t

reg
(
η̂S,t ; D, �sq

) ≤
(
dW 2

m

)1/3

·
(
log

Wm

δ

)1/3
)

≥ 1 − δ

where

reg
(
η̂; D, �sq

) = EX∼M
[
(η̂(X) − η(X))2

]
.

C: Failure of order preservation under η̄

We illustrate that for noise models other than BCN, order preservation under η̄ is not guar-
anteed.

C.1: Failure of order preservation without Condition (c)

Order preservation is not guaranteed without Condition (c) of the BCN model.

Example 8 Suppose f1(z) ≡ 0, f−1(z) = a · �z ≤ 0� for some a < 1, and s is such that
η(x) = 1

1+e−s(x) . Certainly ( f−1, f1, s) satisfy the requisite Conditions (a), (b) of the BCN
model. However, f1(z) − f−1(z) is non-decreasing, and so Condition (c) is not satisfied. It
is easy to check that

η̄(x) = ϕ(s(x))

ϕ(z) = (
1 − a · �z ≤ 0�

) · ez

1 + ez
+ a · �z ≤ 0�

=
{

(1 − a) · ez
1+ez + a if z ≤ 0

ez
1+ez if z > 0,

which is easily checked to not be monotone in z.

The difference �(z) = f1(z) − f−1(z) above is non-decreasing. Swapping the flip func-
tions thus makes the function non-increasing, satisfying Condition (c) of the BCN model.
We can confirm that in this case, η̄ will indeed be order-preserving for η.

Example 9 Suppose f−1(z) ≡ 0, f1(z) = a · �z ≤ 0� for some a < 1, and s is such that
η(x) = 1

1+e−s(x) . Certainly ( f−1, f1, s) satisfy the requisite Conditions (a), (b) of the BCN
model. It is easy to check that

η̄(x) = ϕ(s(x))

5 Ifη ∈ SIM(L ,W ), then triviallyη ∈ SIM(1, L ·W ), becauseη(x) = u(〈w∗, x〉) = u((1/L)·〈(L ·w∗), x〉) =
ũ(〈w̃∗, x〉), where ũ is a 1-Lipschitz function, and ‖w̃∗‖2 = L · W .
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ϕ(z) = (
1 − a · �z ≤ 0�

) · ez

1 + ez

=
{
a · ez

1+ez if z ≤ 0
ez

1+ez if z > 0,

which is easily checked to be monotone in z.

Condition (c) implies an asymmetry in the treatment of the positive and negative labels.
When f1 − f−1 is non-decreasing rather than non-increasing, one may think to resolve this
by simply swapping the roles of the positive and negative labels. Why is there an asymmetry,
and why will this approach not work?

The reason is that the underlying score s∗ is such that η = u ◦ s∗ for some non-decreasing
u(·), so that higher scores correspond to equal or higher probability of an example being
positive. This already imposes some restriction on how the scores relate to the labels, and so
the flip functions must respect this.

In particular, suppose f1 − f−1 is non-decreasing, but we just relabel the positives as
negatives and vice-versa. Certainly then our new f̃1 − f̃−1 on the relabelled positive and
negative classeswill be non-increasing.However,we also havenewclass-probability η̃ = ũ·s,
where now the link is non-increasing. This means that s actually is reverse order preserving,
and so we cannot conclude that the resulting ˜̄η will be order preserving for η.

C.2: Failure of order preservation for the PIN model

For the PIN model, order preservation will not be guaranteed in general. This means that it
does not suffice to merely remove dependence of the noise on the labels.

Example 10 Consider a model PIN(D, ρ) where ρ(x) = 1
2 · η(x). This means that there is

more noise for positive instances. Then, we have

η̄(x) = (1 − η(x)) · η(x) + 1

2
· η(x)

= η(x) ·
(
3

2
− η(x)

)
.

This will not be order preserving for η, since ϕ(z) = z · ( 3
2 − z

)
is not monotone on [0, 1].

Example 10 violates Condition (b), illustrating why this is important for guaranteeing
order preservation.
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