
Learning from delayed feedback: neural responses
in temporal credit assignment

Matthew M. Walsh & John R. Anderson

Published online: 17 March 2011
# Psychonomic Society, Inc. 2011

Abstract When feedback follows a sequence of decisions,
relationships between actions and outcomes can be difficult to
learn. We used event-related potentials (ERPs) to understand
how people overcome this temporal credit assignment
problem. Participants performed a sequential decision task
that required two decisions on each trial. The first decision led
to an intermediate state that was predictive of the trial
outcome, and the second decision was followed by positive
or negative trial feedback. The feedback-related negativity
(fERN), a component thought to reflect reward prediction
error, followed negative feedback and negative intermediate
states. This suggests that participants evaluated intermediate
states in terms of expected future reward, and that these
evaluations supported learning of earlier actions within
sequences. We examine the predictions of several temporal-
difference models to determine whether the behavioral and
ERP results reflected a reinforcement-learning process.
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Temporal difference learning

To behave adaptively, humans and animals must monitor
the outcomes of their actions, and they must integrate
information from past decisions into future choices.
Reinforcement learning (RL) provides normative techni-
ques for accomplishing such integration (Sutton & Barto,
1998). According to many RL models, the difference
between expected and actual outcomes, or reward predic-
tion error, provides a signal for behavioral adjustment. By

adjusting expectations based on reward prediction error, RL
models come to accurately anticipate outcomes. In this way,
they increasingly select advantageous behaviors.

Early studies using scalp-recorded event-related poten-
tials (ERP) provided insight into the neural correlates of
performance monitoring and behavioral control. These
studies identified a frontocentral error-related negativity
(ERN) that appeared 50–100 ms after error commission
(Falkenstein, Hohnsbein, Hoormann, & Blanke 1991;
Gehring, Goss, Coles, Meyer, & Donchin 1993). The
findings that ERN is responsive to instruction manipula-
tions and task performance establish a relationship between
this component and behavior. For example, ERN is larger
when instructions stress accuracy over speed, and ERN is
predictive of such behavioral adjustments as posterror
slowing and error correction (Gehring et al., 1993).

Subsequent studies have revealed a related frontocentral
negativity that appears 200–300 ms after the display of
aversive feedback (Gehring & Willoughby, 2002; Miltner,
Braun, & Coles, 1997). Features of this feedback-related
negativity (fERN) indicate that it reflects neural reward
prediction error. First, fERN is larger for unexpected than
for expected outcomes (Hajcak, Moser, Holroyd, & Simons
2007; Holroyd, Krigolson, Baker, Lee, & Gibson 2009;
Nieuwenhuis et al., 2002). Second, when outcomes are
equally likely, fERN amplitude and valence depend on the
relative value of the outcome (Holroyd, Larsen, & Cohen
2004). Third, fERN amplitude correlates with posterror
adjustment (Cohen & Ranganath, 2007; Holroyd &
Krigolson, 2007). Fourth, and finally, neuroimaging experi-
ments (Holroyd et al., 2004; Ridderinkhof, Ullsperger,
Crone, & Nieuwenhuis 2004), source localization studies
(Gehring & Willoughby, 2002; Martin, Potts, Burton, &
Montague 2009; Miltner et al., 1997), and single-cell
recordings (Ito, Stuphorn, Brown, & Schall 2003; Niki &
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Watanabe, 1979) suggest that the fERN originates from the
anterior cingulate cortex (ACC), a region implicated in
cognitive control and goal-directed behavioral selection
(Braver, Barch, Gray, Molfese, & Snyder 2001; Kennerley,
Walton, Behrens, Buckley, & Rushworth 2006; Rushworth,
Walton, Kennerley, & Bannerman 2004; Shima & Tanji,
1998).

These ideas have been synthesized in the reinforcement-
learning theory of the error-related negativity (RL-ERN;
Holroyd & Coles, 2002). The RL-ERN was motivated by
the finding that phasic activity of midbrain dopamine
neurons tracks whether outcomes are better or worse than
expected (Schultz, 1998). According to RL-ERN, midbrain
dopamine neurons transmit a prediction error signal to the
ACC, and this signal reinforces or punishes actions that
preceded the outcomes (Holroyd & Coles, 2002). By this
account, ERN and fERN reflect a unitary signal that differs
only in terms of the eliciting event (but see Gehring &
Willoughby, 2004; Potts, Martin, Kamp, & Donchin 2011).
In support of this view, neuroimaging experiments and
source localization studies have indicated that ERN and
fERN both originate from the ACC (Dehaene, Posner, &
Tucker 1994; Holroyd et al., 2004; Miltner et al., 1997).
Additionally, ERN and fERN are often negatively associ-
ated (Holroyd & Coles, 2002; Krigolson, Pierce, Holroyd,
& Tanaka 2009). As people learn response–outcome
contingencies, ERN propagates back from the time of error
feedback to the time of incorrect responses. A recent
experiment tested whether conditioned stimuli, like
responses, could also produce an ERN (Baker & Holroyd,
2009). Participants chose between arms of a T-maze and
then viewed a cue that was or was not predictive of the trial
outcome. When cues were predictive of outcomes, fERN
followed cues but not feedback. When cues were not
predictive of outcomes, fERN only followed feedback.
Collectively, these results indicate that fERN follows the
earliest outcome predictor.

Although the RL-ERN theory has stimulated a great deal
of research (for a review, see Nieuwenhuis, Holroyd, Mol,
& Coles 2004), feedback immediately follows actions in
most studies of fERN. Humans and animals regularly face
more complex control problems, however. One such
problem is temporal credit assignment (Minsky, 1963).
When feedback follows a sequence of decisions, how
should credit be assigned to intermediate actions within the
sequence?

Temporal-difference (TD) learning provides one solution
to the problem of temporal credit assignment. According to
this solution, the agent learns values of intermediate states
and uses these values to evaluate actions in the absence of
external feedback (Sutton & Barto, 1990; Tesauro, 1992).
Researchers have used TD learning to model reward
valuation and choice behavior (Fu & Anderson, 2006;

Montague, Dayan, & Sejnowski 1996; Schultz, Dayan, &
Montague 1997). TD learning is not the only solution to the
problem of temporal credit assignment, however. For
example, the agent might hold the history of actions in
memory and assign credit to all actions upon receiving
external feedback (Michie, 1963; Sutton & Barto, 1998;
Widrow, Gupta, & Maitra 1973). This is called a Monte
Carlo method because the agent treats trials as samples and
calculates action values after viewing the complete se-
quence of rewards. Importantly, TD learning and Monte
Carlo methods make quantitatively similar (and sometimes
identical) behavioral predictions (Sutton & Barto, 1998).

These models make qualitatively distinct ERP predic-
tions, however. Specifically, the TD model predicts that
fERN will follow negative feedback and negative interme-
diate states, whereas the Monte Carlo model predicts that
fERN will only follow negative feedback. To test these
predictions, we recorded ERPs as participants performed a
sequential decision task. In each trial, they made two
decisions. The first led to an intermediate state that was
associated with a high or low probability of future reward,
and the second decision was followed by positive or
negative feedback.

Based on the idea that fERN reflects neural prediction
error (Holroyd & Coles, 2002), we tested two hypotheses.
First, fERN should be greater for unexpected than for
expected feedback; because RL models are sensitive to
statistical regularities, prediction error in RL models is
greater following improbable than following probable
outcomes. Although some studies have reported a positive
relationship between fERN and prediction error (Hajcak,
Moser, Holroyd, & Simons 2007; Holroyd et al., 2009;
Nieuwenhuis et al., 2002), others have not (Donkers,
Nieuwenhuis, & van Boxtel 2005; Hajcak, Holroyd, Moser,
& Simons 2005; Hajcak, Moser, Holroyd, & Simons 2006).
Consequently, it was important to establish a relationship
between fERN and prediction error in our task. Second, if
credit assignment occurs “on the fly,” as predicted by the
TD model, negative feedback and negative intermediate
states will evoke fERN. Alternatively, if credit assignment
only occurs at the end of the decision episode, only
negative feedback will evoke fERN. In addition to testing
these two hypotheses, we examined the specific predictions
of several computational models to determine whether the
behavioral and ERP results reflected an RL process.

Experiment

Method

Participants A total of 13 graduate and undergraduate
students participated on a paid volunteer basis (7 male, 6
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female; ages ranging from 18 to 29, with a mean age of 23).
All were right-handed, and none reported a history of
neurological impairment. All provided written informed
consent, and the study and materials were approved by the
Carnegie Mellon University Institutional Review Board
(IRB).

Procedure A pair of letters appeared at the start of each
trial (Fig. 1). Participants pressed a key bearing a left arrow
to select the letter on the left, and they pressed a key
bearing a right arrow to select the letter on the right.
Responses were made using a standard keyboard and with
the index and middle fingers of the right hand. Participants
had 1,000 ms to respond, after which the letters disappeared
and a cue appeared. A second pair of letters followed the
cue. Participants had 1,000 ms to respond, after which the
letters disappeared and feedback appeared. Participants
completed one practice block of 30 trials and two
experimental blocks of 400 trials.

Within each block, one pair of letters appeared at the
start of all trials (Fig. 2). When participants chose the
correct letter in the first pair (J in this example), a positive
and a negative cue appeared equally often. When they
chose the incorrect letter (R), a negative cue always
appeared. A second pair of letters followed the cue. The
correct letter in the second pair depended on the cue
identity. The correct letter for the positive cue (V in this
example) was rewarded with 80% probability, and the
correct letter for the negative cue (T) was rewarded with
20% probability. Incorrect letters were never rewarded. As
such, optimal selections yielded rewards for 80% of trials
with the positive cue (.8 cue) and for 20% of trials with the
negative cue (.2 cue).

For each participant and block, cues were randomly
selected from 10 two-dimensional gray shapes, and letters
were randomly selected from the alphabet. Letters were
randomly assigned to the left and right positions in each
trial to prevent participants from preparing motor responses
before letter pairs appeared. The symbols # and * denoted

positive and negative feedback and were counterbalanced
across participants. For all participants, the ! symbol
appeared if the final response did not occur before the
deadline, and the .2 cue appeared automatically if the initial
response did not occur before the deadline. Participants
rarely missed either deadline, and late responses were
excluded from behavioral and ERP analyses (~3%
responses).

In addition to receiving US$5.00, participants received
performance-based payment. Positive feedback was worth 1
point, and 50 points were worth $1.00. After every 100
trials, participants saw how many points they had earned
over the preceding trials. Participants were told that the
initial choice affected which cue appeared, and that the final
choice depended only on the cue that appeared. They were
also told that the identity, but not the location, of letters
mattered.

Recording and analysis Participants sat in an electromag-
netically shielded booth. Stimuli were presented on a CRT
monitor placed behind radio-frequency-shielded glass and
set 60 cm from participants. An electroencephalogram
(EEG) was recorded from 32 Ag–AgCl sintered electrodes
(10–20 system). Electrodes were also placed on the right
and left mastoids. The right mastoid served as the reference
electrode, and scalp recordings were algebraically re-
referenced offline to the average of the right and left
mastoids. A vertical electrooculogram (EOG) was recorded
as the potential between electrodes placed above and below
the left eye, and a horizontal EOG was recorded as the
potential between electrodes placed at the external canthi.
The EEG and EOG signals were amplified by a Neuroscan
bioamplification system with a bandpass of 0.1–70 Hz and
were digitized at 250 Hz. Electrode impedances were kept
below 5 kΩ.

The EEG recording was decomposed into independent
components using the EEGLAB infomax algorithm
(Delorme & Makeig, 2004). Components associated with
eye blinks were visually identified and projected out of the
EEG recording. Epochs of 800 ms (including a 200-ms
baseline) were then extracted from the continuous recording
and corrected over the prestimulus interval. EpochsFig. 1 Experimental procedure

Fig. 2 Experimental states,
transition probabilities,
and outcome likelihoods
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containing voltages above +75 μV or below −75 μV were
excluded from further analysis (<6% of epochs).

Because we were interested in neural responses to
intermediate states (which were distinguished by cues)
and feedback, we created cue- and feedback-locked ERPs.
Cue-locked ERPs were analyzed for trials on which
participants selected the correct starting letter (after which
the probabilities of receiving the .2 and the .8 cues were
equal). The cue fERN was measured as the mean voltage of
the cue difference wave (.2 cue – .8 cue) from 200 to
300 ms after cue onset, relative to the 200-ms prestimulus
baseline. Data from three midline sites (FCz, Cz, and CPz)
were entered into an ANOVA using the within-subjects
factor of Cue. Feedback-locked ERPs were analyzed for
trials on which participants selected the correct letter for the
cue, and the fERN was calculated as the difference between
ERP waveforms after losses and wins. Because changes in
P300 amplitude confound changes in fERN amplitude, we
compared losses and wins that were equally likely (Holroyd
et al., 2009; Luck, 2005).1 We created an “expected
feedback” difference wave (losses after .2 cues – wins after
.8 cues) and an “unexpected feedback” difference wave
(losses after .8 cues – wins after .2 cues). The fERN was
measured as the mean voltage of the difference waves from
200 to 300 ms after feedback onset, relative to the 200-ms
prestimulus baseline. Data from three midline sites (FCz,
Cz, and CPz) were entered into an ANOVA using the
within-subjects factor of Outcome Likelihood. All p values
were adjusted with the Greenhouse–Geisser correction for
nonsphericity (Jennings & Wood, 1976).

Results

Behavioral results Response accuracy varied by choice,
F(2, 24) = 11.088, p < .001 (start choice, 80.7 ± 4.2; .8 cue,
91.1 ± 1.3; .2 cue, 73.0 ± 2.2), but reaction times for correct
responses did not, F(2, 24) = 2.510, p > .1 (start choice,
444 ± 14 ms; .8 cue, 443 ± 11 ms; .2 cue, 462 ± 17 ms). We
also analyzed performance over the first and second halves
of blocks. Response accuracy varied by choice, F(2, 24) =
10.527, p < .001, and increased by block half, F(1, 12) =
97.592, p < .0001 (Fig. 3). The interaction was not
significant, F(2, 24) = 2.396, p > .1. Reaction times did
not vary by choice, F(2, 24) = 2.471, p > .1, or block half,
F(1, 12) = 2.549, p > .1. The interaction was not
significant, F(2, 24) = 2.464, p > .1.

ERP results We first examined feedback-locked ERPs.
Participants displayed a fERN (loss – win) for unexpected
and expected outcomes (Fig. 4). A 3 (site: FCz, Cz, CPz) by
2 (outcome likelihood: unexpected, expected) ANOVA on
fERN amplitude revealed effects of site, F(2, 24) = 14.335,
p < .001, and outcome likelihood, F(1, 12) = 11.755,
p < .01. The interaction was not significant, F(2, 24) =
0.586, p > .1. At FCz, fERN was greater for unexpected
(−4.49 ± 0.88 μV) than for expected (−2.21 ± 0.69 μV)
outcomes, t(12) = 3.615, p < .01.2 We also analyzed fERN
over the first and second halves of blocks. A 2 (outcome
likelihood) by 2 (block half) ANOVA at FCz revealed an
effect of outcome likelihood, F(1, 12) = 12.496, p < .01, but
not of block half, F(1, 12) = 0.000, p > .1. Although the
difference in fERNs for unexpected and expected outcomes
was greater in the second half of blocks (Fig. 5), the
interaction between outcome likelihood and block half was
not significant, F(1, 12) = 1.290, p > .1. In the first half of
blocks, the fERN was not significantly affected by outcome
likelihood, t(12) = 1.562, p > .1, but in the second half, the
fERN was significantly larger for unexpected than for
expected outcomes, t(12) = 2.958, p < .05.

We then examined cue-locked ERPs. A 3 (site) by 2
(cue: .8, .2) ANOVA revealed a nonsignificant effect of
site, F(2, 24) = 0.672, p > .1, and a marginal effect of cue,
F(1, 12) = 4.434, p < .06. The interaction was not
significant, F(2, 24) = 1.869, p > .1. ERPs were more
negative for .2 cues (2.46 ± 0.85 μV) than for .8 cues (3.40 ±
1.06 μV) at site FCz, t(12) = 2.313, p < .05. We also
analyzed cue-locked ERPs over the first and second halves
of blocks (Fig. 6). A 2 (cue) by 2 (block half) ANOVA at
FCz revealed a significant effect of cue, F(1, 12) = 4.904,
p < .05, and a marginal effect of block half, F(1, 12) =
4.372, p < .06. Although the difference in voltage for the .2
and .8 cues was greater in the second half of blocks (Fig. 5),
the interaction between cue and block half was not
significant, F(1, 12) = 2.333, p > .1. In the first half of
blocks, ERPs were not significantly affected by the cue,
t(12) = 1.305, p > .1, but in the second half, ERPs were
more negative for .2 than for .8 cues, t(12) = 3.361, p < .01.

The scalp distribution of the cue-locked effect resembled
that of the fERN. To compare the scalp distributions of the
feedback- and cue-locked effects, we entered the two

1 P300 depends on outcome likelihood, whereas fERN depends on the
interaction between outcome likelihood and valence. By comparing
wins and losses that were equally likely, effects related to the P300
subtracted out, while effects related to the fERN remained.

2 One could also measure the mean area under each of the four
waveforms and test for effects of outcome valence and likelihood. We
calculated mean area under the waveforms at site FCz from 200 to
300 ms. A 2 (valence: win, loss) by 2 (outcome likelihood:
unexpected, expected) ANOVA revealed a significant effect of
outcome valence, F(1, 12) = 21.561, p < .001, but not of outcome
likelihood, F(1, 12) = 0.166, p > .1. Outcome likelihood interacted
with valence, F(1, 12) = 13.068, p < .01. Unexpected wins were more
positive than expected wins, t(12) = 2.916, p < .05, and unexpected
losses were more negative than expected losses, t(12) = 2.451, p < .05,
as predicted by RL-ERN.
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outcome difference waves and the cue difference wave from
the second half of blocks into a 3 (difference wave) by 3 (site)
ANOVA. The effect of site was significant, F(2, 24) = 8.573,
p < .01, but the interaction was not, F(4, 48) = 2.888, p > .1,
because all difference waves shared a frontal negativity. To
quantify similarity in the topography of effects over the entire
scalp, we computed the mean amplitudes of the difference
waves at all 32 sites. Over all sites, the differences between
unexpected outcomes correlated strongly with the differences
between expected outcomes (r2 = .78, p < .0001) and cues
(r2 = .92, p < .0001), and the differences between expected
outcomes correlated strongly with the differences between
cues (r2 = .79, p < .0001). Thus, the time courses and scalp

distributions of the feedback- and cue-locked effects were
extremely similar, indicating that the fERN followed both
negative feedback and negative intermediate states.

Temporal-difference learning

The finding of a cue fERN indicated that participants
evaluated intermediate states in terms of future reward. This
result is consistent with a class of TD models in which
credit is assigned based on immediate and future rewards.

Fig. 6 (Left panels) ERPs for .2 and .8 cues for the first and second
halves of the experimental blocks. Zero on the abscissa refers to cue
onset, negative is plotted up, and the data are from FCz. (Right panels)
Scalp distributions associated with .2 cues – .8 cues for the first and
second halves of the experimental blocks. The time is from 200 to
300 ms with respect to cue onset

Fig. 5 Mean fERNs (±1 SE) at FCz for unexpected outcomes,
expected outcomes, and cues

Fig. 4 (Left panels) ERPs for unexpected and expected losses and
wins. Zero on the abscissa refers to feedback onset, negative is plotted
up, and the data are from FCz. (Right panels) Scalp distributions
associated with losses – wins for unexpected and expected outcomes.
The time is from 200 to 300 ms with respect to feedback onset

Fig. 3 Response accuracy (±1 SE) for start choice, .8 cue, and .2 cue
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To evaluate whether the behavioral and ERP results
reflected such an RL process, we examined the predictions
of three RL algorithms: actor/critic (Barto, Sutton, &
Anderson 1983), Q-learning (Watkins & Dayan, 1992),
and SARSA (Rummery & Niranjan, 1994). Additionally,
we considered variants of each algorithm with and without
eligibility traces (Sutton & Barto, 1998).

Models

Actor/critic The actor/critic model (AC) learns a preference
function, p(s,a), and a state-value function, V(s). The
preference function, which corresponds to the actor, enables
action selection. The state-value function, which corre-
sponds to the critic, enables outcome evaluation. After each
outcome, the critic computes the prediction error,

dt ¼ rtþ1 þ g � V stþ1ð Þ½ � � V stð Þ: ð1Þ
The temporal discount parameter, g, controls how steeply
future reward is discounted, and the critic treats future
reward as the value of the next state. The critic uses
prediction error to update the state-value function,

V stð Þ  V stð Þ þ a � dt: ð2Þ
The learning rate parameter, α, controls how heavily recent
outcomes are weighted. By using prediction error to adjust
state values, the critic learns to predict the sum of the
immediate reward, rt+1, and the discounted value of future
reward, g · V(st+1).

The actor also uses prediction error to update the
preference function,

p st; atð Þ  p st; atð Þ þ a � dt: ð3Þ
By using prediction error to adjust action preferences, the
actor learns to select advantageous behaviors. The proba-
bility of selecting an action, π(s,a), is determined by the
softmax decision rule,

p s; að Þ ¼ exp p s; að Þ=tð ÞP
b2AðsÞ

exp p s; bð Þ=tð Þ : ð4Þ

The selection noise parameter, t, controls the degree of
randomness in choices. Decisions become stochastic as t
increases, and decisions become deterministic as t decreases.

Q-learning AC and Q-learning differ in two ways. First,
Q-learning uses an action-value function, Q(s,a), to select
actions and to evaluate outcomes. Second, Q-learning
treats future reward as the value of the optimal action in
state t+1,

dt ¼ rtþ1 þ g �maxaQ stþ1; að Þ½ � � Q st; atð Þ: ð5Þ

The agent uses prediction error to update action values
(Eq. 6), and the agent selects actions according to a softmax
decision rule.

Q st; atð Þ  Q st; atð Þ þ a � dt: ð6Þ

SARSA Like Q-learning, SARSA uses an action-value
function, Q(s,a), to select actions and to evaluate outcomes.
Unlike Q-learning, however, SARSA treats future reward
as the value of the actual action selected in state t+1,

dt ¼ rtþ1 þ g � Q stþ1; atþ1ð Þ½ � � Q st; atð Þ: ð7Þ
The agent uses prediction error to update action values
(Eq. 6), and the agent selects actions according to a softmax
decision rule.

Eligibility traces Although RL algorithms provide a solu-
tion to the temporal credit assignment problem, eligibility
traces can greatly improve the efficiency of these algo-
rithms (Sutton & Barto, 1998). Eligibility traces provide a
temporary record of events such as visiting states or
selecting actions, and they mark events as eligible for
update. Researchers have applied eligibility traces to
behavioral and neural models (Bogacz, McClure, Li,
Cohen, & Montague 2007; Gureckis & Love, 2009; Pan,
Schmidt, Wickens, & Hyland 2005). In these simulations,
we took advantage of the fact that eligibility traces facilitate
learning when delays separate actions and rewards (Sutton
& Barto, 1998).

In AC, a state’s trace is incremented when the state is
visited, and traces fade according to the decay parameter l,

etðsÞ ¼ l � et�1ðsÞ
l � et�1ðsÞ þ 1

�
if s 6¼ st
if s ¼ st

: ð8Þ

Prediction error is calculated in the conventional manner
(Eq. 1), but the error signal is used to update all states
according to their eligibility,

V ðsÞ  V ðsÞ þ a � dt � etðsÞ: ð9Þ
Separate traces are stored for state–action pairs in order to
update the preference function, p(s,a). Similarly, in Q-
learning and SARSA, traces are stored for state–action pairs
in order to update the action-value function, Q(s, a).

Method

Simulations

We examined the behavioral and ERP predictions of six RL
models. At the start of each trial, the model chose a letter
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from the first pair. Although the first selection was not
followed by immediate reward (e.g., rt+1 = 0), the selection
was followed by future reward associated with the
subsequent state or state–action pair. Prediction error was
calculated as the difference between the discounted future
reward and the value of the previous state or state–action
pair. The model then chose a letter from the second pair.
The second selection was followed by immediate rewards
of +1 and 0 for positive and negative feedback, respective-
ly. Prediction error was calculated as the difference between
the immediate reward and the value of the previous state or
state–action pair.

Parameter estimates and model fits

We estimated separate parameter values for each partici-
pant. To do so, we presented the model with the exact
history of choices and rewards that the participant experi-
enced. For each trial, t, we calculated the probability that
the model would make the same choice as the participant,
pt(k). We fit the model by maximizing the log likelihood of
the observed choices,

LLE ¼
X

tln ptðkÞ½ �: ð10Þ
Models without eligibility traces contained three free
parameters: learning rate (α), selection noise (t), and
temporal discount (g). Models with eligibility traces
contained an additional trace decay parameter (l).3 To
account for complexity when comparing models, we used
the Bayesian information criterion (BIC; Schwarz, 1978).
The BIC score is defined as −2 · LLE + p · ln(n), where p is
the number of free parameters and n is the number of
observations (~1,600 per participant4). Larger BIC scores
indicate a poorer fit. We calculated separate BIC scores for
each participant and model.

Aside from comparing fits, one could ask whether the
model predicts the characteristic behavioral and ERP results
over time. To that end, we generated predictions for 13
simulated participants using the individual parameter
estimates and trial histories. For each trial, we calculated
the probability that the model, given the same experience as
the participant, would make correct choices. This allowed us
to compute model selection accuracy over the first and
second halves of blocks. For each trial, we also calculated

model prediction error arising from the true choices
participants made and the rewards they received. We
calculated the difference in δ for expected feedback (losses
after .2 cues – wins after .8 cues), unexpected feedback
(losses after .8 cues – wins after .2 cues), and cues (.2 cues –
.8 cues) to derive a model’s fERN. We then fit model fERN
to the observed fERN using a scaling factor and a zero
intercept for each participant. This allowed us to compute
model fERN over the first and second halves of blocks.

Results

Figure 7 (left panel) shows the parameter estimates for
models without eligibility traces. Learning rate was lower
for AC than for Q-learning, t(12) = 2.097, p < .06, or for
SARSA, t(12) = 2.620, p < .05, but did not differ between
Q-learning and SARSA. Selection noise and temporal
discount did not differ between models. We identified the
models with the highest and lowest BIC scores for each
participant (Table 1). AC produced the highest BIC scores
for all but 1 participant, and Q-learning and SARSA
produced the lowest BIC scores for similar numbers of
participants.

Figure 7 (right panel) shows parameter estimates for
models with eligibility traces. Learning rate was lower for
AC than for Q-learning, t(12) = 2.265, p < .05, or for
SARSA, t(12) = 2.465, p < .05, but did not differ between
Q-learning and SARSA. Additionally, temporal discount
was lower for AC than for either Q-learning, t(12) = 2.174,
p = .05, or SARSA, t(12) = 2.483, p < .05, but did not
differ between Q-learning and SARSA. Selection noise and
trace decay did not differ between models. As before, AC
produced the highest BIC scores for all but 1 participant
(Table 1), and Q-learning and SARSA produced the lowest
BIC scores for similar numbers of participants.5 Finally, we
compared models with and without eligibility traces. For
AC, Q-learning, and SARSA, the models with eligibility
traces produced lower BIC scores for all but 2 participants.

Having examined the fits, we then tested whether the
models predicted the characteristic behavioral and ERP
results. We generated behavioral predictions for 13 partic-
ipants using the individual parameter estimates and trial
histories. Table 2 shows average response accuracy over
the first and second halves of blocks for all models. The
values in Table 2 reveal two trends. First, all models
without eligibility traces underpredicted accuracy for the
start choice in the first half of blocks [AC, t(12) = 6.486,

5 We also tested versions of AC with separate learning rates for the
actor and critic elements. In the model without eligibility traces, BIC
scores were lower for all but 1 participant when a single learning rate
was used, and in the model with eligibility traces, BIC scores were
lower for all participants when a single learning rate was used.

4 Participants made two choices in 800 trials, yielding a total of 1,600
observations. The exact number of observations varied, however,
because participants sometimes failed to respond in time.

3 We used the simplex optimization algorithm (Nelder & Mead, 1965)
with multiple start points to identify parameter values that maximized
the log likelihood of the observed choices. Preference functions, state-
value functions, and action-value functions were initialized to zero,
and eligibility traces were reset to zero at the start of each trial.
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p < .0001; Q-learning, t(12) = 7.447, p < .0001; SARSA,
t(12) = 7.509, p < .0001]. Of the models with eligibility
traces, only AC underpredicted accuracy for the start
choice in the first half of blocks, t(12) = 2.805, p < .05.
Second, AC models systematically underpredicted accu-
racy in the first half of blocks and overpredicted accuracy
in the second half of blocks. To confirm this observation,
we applied separate 2 (data set: simulation, observed) by 3
(choice) repeated measures ANOVAs to response accuracy
in the first and second halves of blocks. In the first half of
blocks, AC models with, F(1, 12) = 95.461, p < .0001,
and without, F(1, 12) = 94.246, p < .0001, eligibility
traces underpredicted accuracy relative to the participants.
Q-learning and SARSA did not. In the second half of
blocks, AC models with, F(1, 12) = 7.622, p < .05, and
without, F(1, 12) = 17.668, p < .01, eligibility traces
overpredicted accuracy relative to the participants. Q-
learning and SARSA did not.

We then generated ERP predictions for 13 participants
using the individual parameter estimates and trial histories.
We computed model fERN as the difference in δ for
expected feedback, unexpected feedback, and cues. Aver-
age fERN scaling factors ranged from 3.01 to 3.19 and did
not differ significantly between models. Table 3 shows

average fERNs over the first and second halves of blocks
for all models. All predicted that the cue fERN would
increase with experience. Additionally, all predicted that the
fERN for unexpected outcomes would increase with
experience while the fERN for expected outcomes would
decrease with experience. These trends were observed.

The behavioral and ERP predictions of Q-learning and
SARSA are very similar. In fact, these algorithms are
functionally equivalent when the individual makes optimal
selections. This similarity notwithstanding, SARSA treats
future reward as the value of the actual action selected in
the next state. To assess whether fERN depended on the
value of the actual action selected in the future, we
reanalyzed the cue-locked waveforms based on cue identity
(.2 cue, .8 cue) and the accuracy of the forthcoming
response. If prediction error depended on the value of
future actions, we expected that waveforms would be
relatively more negative before participants chose incorrect
responses than before they chose correct responses. From
200 to 300 ms after cue presentation, the mean amplitude
was smaller for .2 than for .8 cues at site FCz, F(1, 12) =
5.927, p < .05. Mean amplitude did not depend on the
accuracy of the forthcoming response, however, F(1, 12) =
1.449, p > .1, and the interaction was not significant, F(1,
12) = 0.134, p > .1. The finding that the cue fERN did not
depend on the value of the future response is inconsistent
with SARSA.

General discussion

The goal of this study was to understand how people
overcome the problem of temporal credit assignment. To
address this question, we recorded ERPs as participants
performed a sequential decision task. The experiment
yielded two clear results. First, the fERN was larger for
unexpected than for expected outcomes, consistent with the
view that fERN reflects neural prediction error (Holroyd &
Coles, 2002). In experiments that have failed to establish a

Table 1 Distribution of participants’ highest and lowest BIC scores
among models with and without eligibility traces, and means and
standard errors of the BIC scores by model

Traces Algorithm Number of Participants BIC Scores

Highest Lowest M SE

Without AC 12 1 1,416 83

Q 1 5 1,342 88

SARSA 0 7 1,343 87

With AC 12 1 1,380 97

Q 1 5 1,337 97

SARSA 0 7 1,338 97

Fig. 7 Mean parameter
estimates (±1 SE) for models
without (left panel) and with
(right panel) eligibility traces
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relationship between fERN and prediction error, feedback
did not depend on participant behavior (e.g., gambling or
guessing tasks; Donkers et al., 2005; Hajcak et al., 2005;
Hajcak et al., 2006). In our experiment, and in other
experiments that have established a relationship between
fERN and prediction error, feedback did depend on
participant behavior (Holroyd & Coles, 2002; Holroyd &
Krigolson, 2007; Holroyd et al., 2009; Nieuwenhuis et al.,
2002). Second, and more importantly, ERPs were more
negative after .2 cues than after .8 cues, even though cues
did not directly signal reward. The time course and scalp
distribution of the cue-locked effect were compatible with
those of the fERN. The finding that fERN followed cues
suggests that people evaluated intermediate states in terms
of future reward, as predicted by TD learning models.

The RL-ERN theory proposes that fERN reflects the
arrival of a TD learning signal at the ACC (Holroyd &
Coles, 2002). The RL-ERN was motivated by electrophys-
iological recordings from midbrain dopamine neurons in
behaving animals. In an extensive series of studies, Schultz
and colleagues demonstrated that the phasic response of
these neurons mirrored TD prediction error (Schultz, 1998).
When a reward was unexpectedly received, neurons
showed enhanced activity at the time of reward delivery.
When a conditioned stimulus (CS) preceded reward,
however, neurons no longer showed enhanced activity at
the time of reward delivery. Rather, the dopamine response
transferred to the earlier CS. The results of the present
experiment are consistent with these studies in showing that
intermediate states inherit the value of the rewards that

follow. These results are also consistent with a recent fMRI
study of higher-order aversive conditioning in humans
(Seymour et al., 2004). When cues predicted the delivery of
painful stimuli, activation in the ventral striatum and
anterior insula mirrored TD prediction error. The present
experiment provides further evidence of a neural TD signal
in a sequential-learning task using appetitive rather than
aversive outcomes, and in the context of instrumental rather
than classical conditioning.

The RL-ERN theory proposes that fERN follows the
earliest outcome predictor. For example, when stimulus–
response mappings could be learned in a two-alternative
forced choice task, the ERN only followed incorrect choices
(Holroyd & Coles, 2002). Conversely, when stimulus–
response mappings could not be learned, the ERN only
followed negative feedback. The RL-ERN motivated a
recent experiment in which participants chose between arms
of a T-maze and then viewed a cue that was or was not
predictive of the trial outcome (Baker & Holroyd, 2009).
When cues were predictive of outcomes, the fERN only
followed cues. Conversely, when cues were not predictive of
outcomes, the fERN only followed feedback.

Although the findings of Baker and Holroyd (2009)
anticipate the present results, it was unclear whether we
would observe a cue fERN. In Baker and Holroyd’s study,
participants were told which cues signaled reward and
punishment. Additionally, cues were perfectly predictive of
outcomes, and outcomes immediately followed cues. In our
task, participants learned which cues signaled reward and
punishment. Additionally, cues were not perfectly predic-

Traces Algorithm Start .8 Cue .2 Cue Fit

1 2 1 2 1 2 R2 RMSD

Without AC 63 82 82 97 67 85 .72 .064

Q 70 81 89 98 69 78 .89 .035

SARSA 70 82 89 98 69 77 .88 .038

With AC 72 89 78 95 62 79 .86 .048

Q 76 85 86 97 67 76 .98 .016

SARSA 76 86 86 97 67 76 .98 .017

Table 2 Behavioral predictions
and model fits: Predicted accu-
racy over the first (1) and second
(2) halves of experiment blocks,
model correlations, and root-
mean square deviations (RMSD)

Traces Algorithm Unexpected Outcomes Expected Outcomes Cues Fit

1 2 1 2 1 2 R2 RMSD

Without AC –4.00 –4.61 –2.28 –1.69 –0.79 –1.45 .98 .254

Q –4.13 –4.52 –1.91 –1.54 –1.02 –1.45 .94 .420

SARSA –4.15 –4.53 –1.89 –1.52 –1.02 –1.46 .93 .430

With AC –3.90 –4.54 –2.80 –2.15 –0.37 –0.91 .98 .265

Q –4.15 –4.69 –2.16 –1.61 –0.82 –1.31 .97 .268

SARSA –4.13 –4.75 –2.21 –1.59 –0.79 –1.38 .98 .254

Table 3 ERP predictions and
model fits: Predicted fERNs
over the first (1) and second (2)
halves of experiment blocks,
model correlations, and root-
mean square deviations (RMSD)
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tive of outcomes, and outcomes followed an intervening
response. The present experiment extends Baker and
Holroyd’s conclusions in two important ways. First,
because our task permitted learning, we could observe the
relationship between behavior, fERN, and the predictions of
TD learning models. Second, the probabilistic nature of our
task allowed us to observe fERNs after cues and feedback
within the same trial, and in a manner consistent with a TD
learning signal.

Our computational simulations provide insight into the
effects of experience on the fERN and behavior. These
dynamics are illustrated in Fig. 8, which shows how utility
estimates and response accuracy in one model, Q-learning
with eligibility traces, evolved over the course of the
experiment. These dynamics clarify four nuanced features
of the data.

First, fERN was greater for unexpected than for expected
outcomes. The utility of correct responses for the .2 and .8
cues approached .2 and .8 (Fig. 8, top). Consequently, the
magnitude of prediction errors following unexpected losses
(0 – .8) and wins (1.0 – .2) exceeded the magnitude of
prediction errors following expected losses (0 – .2) and
wins (1.0 – .8), yielding a greater fERN for unexpected
outcomes. The cue fERN was similar to the fERN for
expected outcomes. Future rewards associated with the .2
and .8 cues were approximately .16 (� · .2) and .64 (� · .8).
The utility of the correct initial response approached the
average of these values, .4 (Fig. 8, top). Because the
magnitudes of prediction errors following .2 cues (.16 – .4)
and .8 cues (.64 – .4) were so similar to the magnitudes of

prediction errors following expected losses and wins, fERN
amplitudes were also very similar. As this example
illustrates, the temporal discount parameter and the values
of future rewards constrained the magnitudes of prediction
errors for initial selections.

Second, response accuracy was greatest for the .8 cue,
followed by the start choice, followed by the .2 cue. The
model produced this ordering (Fig. 8, bottom) because the
difference in utility between incorrect and correct responses
was greatest for the .8 cue, followed by the start choice,
followed by the .2 cue (Fig. 8, top).

Third, the fERN decreased for expected outcomes and
increased for unexpected outcomes. Because utility esti-
mates began at identical values, the model did not
immediately distinguish between expected and unexpected
outcomes. As the utility of correct responses for the .2 and
.8 cues approached .2 and .8 (Fig. 8, top), however, the
magnitude of prediction errors decreased for expected
outcomes and increased for unexpected outcomes, produc-
ing the observed changes in fERNs. Physiological studies
have also revealed experience-dependent plasticity in neural
firing rates (Roesch, Calu, & Schoenbaum 2007), and fMRI
studies have confirmed that changes in the BOLD response
in reward valuation regions parallel learning (Delgado,
Miller, Inati, & Phelps 2005; Haruno et al., 2004;
Schonberg, Daw, Joel, & O’Doherty 2007).

Fourth, and finally, the cue fERN increased with
experience. The model only strongly distinguished between
.8 and .2 cues after the values of actions that followed those
cues (i.e., future rewards) became polarized. As this result
demonstrates, the TD model learned the utility of actions
that were near to rewards before learning the utility of
actions that were far from rewards. Humans and animals
typically exhibit such a learning gradient (Fu & Anderson,
2006; Hull, 1943).

These simulation results are consistent with a class of
TD learning models. We examined predictions of three such
models: the actor/critic model, Q-learning, and SARSA.
The actor/critic model is the most widely used framework
for studying neural RL. According to one influential
proposal, the dorsal striatum, like the actor, learns action
preferences, and the ventral striatum, like the critic, learns
state values (Montague, Dayan, & Sejnowski 1996;
O’Doherty et al., 2004). Recent recordings from midbrain
dopamine neurons in rats and monkeys have provided
evidence for Q-learning and SARSA, however (Morris,
Nevet, Arkadir, Vaadia, & Bergman 2006; Roesch et al.,
2007). Thus, the models we evaluated have received mixed
support. Additionally, we considered variants of each
model with and without eligibility traces. Although traces
were first explored in the context of machine learning, they
have since been applied to models of reward valuation and
choice.

Fig. 8 (Top panel) Dynamics of the Q-learning model with eligibility
traces: Q values for the .8 cue (long dashes), the .2 cue (short dashes),
and the start choice (solid) letter pairs. Black lines show the utility of
the correct letter in the pair; and gray lines show the utility of the
incorrect letter in the pair. (Bottom panel)Response accuracy for the .8
cue, the .2 cue, and the start choice
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We found that eligibility traces improved response
accuracy in all models. The improvement was limited to
the start choice, however, because eligibility traces primar-
ily facilitate learning when delays separate actions and
rewards (Sutton & Barto, 1998). We also found that Q-
learning and SARSA predicted the characteristic behavioral
results, while actor/critic underpredicted accuracy in the
first half of blocks and overpredicted accuracy in the
second half of blocks. Why did this occur? The actor/critic
model is a reinforcement comparison method (Sutton &
Barto, 1998); learning continues as long as suboptimal
actions are selected. As a consequence, actor/critic moved
toward deterministic selections in the second half of blocks.
To offset the resulting error, actor/critic required a lower
learning rate, α, which produced lower accuracy in the first
half of blocks. The use of separate learning rates for the
actor and critic elements did not eliminate this problem.
This problem could be mitigated, however, by gradually
decreasing the learning rate or by increasing selection
noise. Finally, we found that the cue fERN did not vary
with the accuracy of forthcoming responses. This result is
consistent with actor/critic and Q-learning, but not with
SARSA.

Although the results of the experiment are consistent
with TD learning, the apparent cue fERN may have been
related to factors besides credit assignment. For example, a
long-latency frontocentral negativity precedes stimuli with
negative affective valence (Bocker, Baas, Kenemans, &
Verbaten 2001). Perhaps the cue-locked effect arose from
emotional anticipation of negative feedback after the .2 cue.
Because stimulus-preceding negativities (SPNs) develop
before motivationally salient stimuli regardless of their
valence, however, there is no reason to expect that SPNs
would uniquely follow cues that predicted negative feed-
back (Kotani, Hiraku, Suda, & Aihara 2001; Ohgami,
Kotani, Hiraku, Aihara, & Ishii 2004). Response conflict is
also accompanied by a frontocentral negativity that occurs
200 ms after stimulus presentation (Kopp, Rist, & Mattler
1996; van Veen & Carter, 2002). Perhaps the cue-locked
effect was related to the fact that both response letters had
low utilities for the .2 cue, but one letter had a far greater
utility for the .8 cue. This could produce greater response
conflict for the .2 cue. The absence of a difference in
reaction times between the .2 and .8 cues is not consistent
with this account, however. Finally, multiple ERP compo-
nents, including the N2 and the P300, are sensitive to event
probabilities (Duncan-Johnson & Donchin, 1977; Squires,
Wickens, Squires, & Donchin 1976). Although the .2 and .8
cues appeared with equal probability when participants
selected the correct letter in the first pair, the .2 cue always
appeared when they selected the incorrect letter. Averaging
over initial selections, then, the .8 cue appeared less frequently
than the .2 cue. Perhaps the cue-locked effect related to these

different probabilities. Importantly, the difference between cue
probabilities decreased over the experiment because partic-
ipants increasingly selected the correct letter. If differences in
the cue-locked ERPs related to cue probabilities, one would
expect the cue-locked effects to decrease, rather than increase,
over the experiment.

Summary

Although an increasing number of studies have provided
support for TD learning, most involve situations in which
feedback immediately follows actions or predictive cues.
Our study shows the evaluation of rewards beyond
intervening actions. Although many theories have proposed
that such evaluations underlie temporal credit assignment
(Fu & Anderson, 2006; Holroyd & Coles, 2002; Schultz et
al., 1997; Sutton & Barto, 1998), to our knowledge the
present results provide one of the clearest demonstrations of
this process. These results advance theories of human
decision making by showing that people use TD learning to
overcome the problem of temporal credit assignment.
Additionally, these results advance theories of neural
reward processing by showing that the fERN is sensitive
to immediate reward and the potential for future reward.

Acknowledgement This work was supported by Training Grant
T32GM081760 and NIH Training Grant MH 19983 to the first author,
and by NIMH Grant MH068243 to the second author. We thank
Christopher Paynter and Caitlin Hudac for their insightful comments
on an earlier draft of the manuscript.

References

Baker, T. E., & Holroyd, C. B. (2009). Which way do I go? Neural
activation in response to feedback and spatial processing in a
virtual T-maze. Cerebral Cortex, 19, 1708–1722.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike
adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and Cybernetics,
13, 834–846.

Bocker, K. B. E., Baas, J. M. P., Kenemans, J. L., & Verbaten, M. N.
(2001). Stimulus-preceding negativity induced by fear: A
manifestation of affective anticipation. International Journal of
Psychophysiology, 43, 77–90.

Bogacz, R., McClure, S. M., Li, J., Cohen, J. D., & Montague, P. R.
(2007). Short-term memory traces for action bias in human
reinforcement learning. Brain Research, 1153, 111–121.

Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A.
(2001). Anterior cingulate cortex and response conflict: Effects
of frequency, inhibition and errors. Cerebral Cortex, 11, 825–
836.

Cohen, M. X., & Ranganath, C. (2007). Reinforcement learning
signals predict future decisions. The Journal of Neuroscience, 27,
371–378.

Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a
neural system for error detection and compensation. Psycholog-
ical Science, 5, 303–305.

Cogn Affect Behav Neurosci (2011) 11:131–143 141



Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An
fMRI study of reward-related probability learning. Neuroimage,
24, 862–873.

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source
toolbox for analysis of single-trial EEG dynamics including
independent component analysis. Journal of Neuroscience
Methods, 134, 9–21.

Donkers, F. C. L., Nieuwenhuis, S., & van Boxtel, G. J. M. (2005).
Mediofrontal negativities in the absence of responding. Cognitive
Brain Research, 25, 777–787.

Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying
surprise: The variation of event-related potentials with subjective
probability. Psychophysiology, 14, 456–467.

Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991).
Effects of crossmodal divided attention on late ERP components:
II. Error processing in choice reaction tasks. Electroencephalog-
raphy and Clinical Neurophysiology, 78, 447–455.

Fu, W. T., & Anderson, J. R. (2006). From recurrent choice to skill
learning: A reinforcement-learning model. Journal of Experi-
mental Psychology: General, 135, 184–206.

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin,
E. (1993). A neural system for error detection and compensation.
Psychological Science, 4, 385–390.

Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex
and the rapid processing of monetary gains and losses. Science,
295, 2279–2282.

Gehring, W. J., & Willoughby, A. R. (2004). Are all medial frontal
negativities created equal? Toward a richer empirical basis for
theories of action monitoring. In M. Ullsperger & M. Falkenstein
(Eds.), Errors, conflicts, and the brain: Current opinions on
performance monitoring (pp. 14–20). Leipzig: Max Planck
Institute of Cognitive Neuroscience.

Gureckis, T. M., & Love, B. C. (2009). Short-term gains, long-term
pains: How cues about state aid learning in dynamic environ-
ments. Cognition, 113, 293–313.

Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005).
Brain potentials associated with expected and unexpected good
and bad outcomes. Psychophysiology, 42, 161–170.

Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The
feedback-related negativity reflects the binary evaluation of good
versus bad outcomes. Biological Psychology, 71, 148–154.

Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It’s
worse than you thought: The feedback negativity and violations
of reward prediction in gambling tasks. Psychophysiology, 44,
905–912.

Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M.,
Samejima, K., et al. (2004). A neural correlate of reward-based
behavioral learning in caudate nucleus: A functional magnetic
resonance imaging study of a stochastic decision task. The
Journal of Neuroscience, 24, 1660–1665.

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of
human error processing: Reinforcement learning, dopamine,
and the error-related negativity. Psychological Review, 109,
679–709.

Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error
signals associated with a modified time estimation task. Psycho-
physiology, 44, 913–917.

Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J.
(2009). When is an error not a prediction error? An electrophys-
iological investigation. Cognitive, Affective & Behavioral Neu-
roscience, 9, 59–70.

Holroyd, C. B., Larsen, J. T., & Cohen, J. D. (2004). Context
dependence of the event-related brain potential associated with
reward and punishment. Psychophysiology, 41, 245–253.

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L., Mars, R.
B., Coles, M. G. H., et al. (2004). Dorsal anterior cingulate cortex

shows fMRI response to internal and external error signals.
Nature Neuroscience, 7, 497–498.

Hull, C. L. (1943). Principles of behavior: An introduction to
behavioral theory. New York: Appleton-Century-Crofts.

Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003).
Performance monitoring by the anterior cingulate cortex during
saccade countermanding. Science, 302, 120–122.

Jennings, J. R., & Wood, C. C. (1976). The ε-adjustment procedure
for repeated-measures analyses of variance. Psychophysiology,
13, 277–278.

Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., &
Rushworth, M. F. S. (2006). Optimal decision making and the
anterior cingulate cortex. Nature Neuroscience, 9, 940–947.

Kopp, B., Rist, F., & Mattler, U. (1996). N200 in the flanker task as a
neurobehavioral tool for investigating executive control. Psycho-
physiology, 33, 282–294.

Kotani, Y., Hiraku, S., Suda, K., & Aihara, Y. (2001). Effect of
positive and negative emotion on stimulus-preceding negativity
prior to feedback stimuli. Psychophysiology, 38, 873–878.

Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W.
(2009). Learning to become an expert: Reinforcement learning
and the acquisition of perceptual expertise. Journal of Cognitive
Neuroscience, 21, 1834–1841.

Luck, S. J. (2005). An introduction to the event-related potential
technique. Cambridge: MIT Press.

Martin, L. E., Potts, G. F., Burton, P. C., & Montague, P. R. (2009).
Electrophysiological and hemodynamic responses to reward
prediction violation. NeuroReport, 20, 1140–1143.

Michie, D. (1963). Experiments on the mechanization of game
learning: Part 1. Characterization of the model and its parameters.
Computer Journal, 6, 232–236.

Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-
related brain potentials following incorrect feedback in a time-
estimation task: Evidence for a “generic” neural system for error
detection. Journal of Cognitive Neuroscience, 9, 788–798.

Minsky, M. (1963). Steps toward artificial intelligence. In E. A.
Feigenbaum & J. Feldman (Eds.), Computers and thought (pp.
406–450). New York: McGraw-Hill.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework
for mesencephalic dopamine systems based on predictive
hebbian learning. The Journal of Neuroscience, 16, 1936–1947.

Morris, G., Nevet, A., Arkadir, D., Vaadia, E., & Bergman, H. (2006).
Midbrain dopamine neurons encode decisions for future action.
Nature Neuroscience, 9, 1057–1063.

Nelder, J. A., & Mead, R. (1965). A simplex method for function
minimization. Computer Journal, 7, 308–313.

Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. H. (2004).
Reinforcement-related brain potentials from medial frontal
cortex: Origins and functional significance. Neuroscience and
Biobehavioral Reviews, 28, 441–448.

Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G. H.,
Holroyd, C. B., Kok, A., et al. (2002). A computational account
of altered error processing in older age: Dopamine and the error-
related negativity. Cognitive, Affective & Behavioral Neurosci-
ence, 2, 19–36.

Niki, H., & Watanabe, M. (1979). Prefrontal and cingulate unit
activity during timing behavior in the monkey. Brain Research,
171, 213–224.

O’Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., &
Dolan, R. J. (2004). Dissociable roles of ventral and dorsal
striatum in instrumental conditioning. Science, 304, 452–454.

Ohgami, Y., Kotani, Y., Hiraku, S., Aihara, Y., & Ishii, M. (2004).
Effects of reward and stimulus modality on stimulus-preceding
negativity. Psychophysiology, 41, 729–738.

Pan, W. X., Schmidt, R., Wickens, J. R., & Hyland, B. I. (2005).
Dopamine cells respond to predicted events during classical

142 Cogn Affect Behav Neurosci (2011) 11:131–143



conditioning: Evidence for eligibility traces in the reward-
learning network. The Journal of Neuroscience, 25, 6235–6242.

Potts, G. F., Martin, L. E., Kamp, S. M., & Donchin, E. (2011). Neural
response to action and reward prediction errors: Comparing the
error-related negativity to behavioral errors and the feedback-
related negativity to reward prediction violations. Psychophysi-
ology, 48, 218–228.

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S.
(2004). The role of the medial frontal cortex in cognitive control.
Science, 306, 443–447.

Roesch, M. R., Calu, D. J., & Schoenbaum, G. (2007). Dopamine
neurons encode the better option in rats deciding between
differently delayed or sized rewards. Nature Neuroscience, 10,
1615–1624.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using
connectionist systems (Tech. Rep. CUED/F-INFENG/TR166).
Cambridge: Cambridge University.

Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman,
D. M. (2004). Action sets and decisions in the medial frontal
cortex. Trends in Cognitive Sciences, 8, 410–417.

Schonberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007).
Reinforcement learning signals in the human striatum distinguish
learners from nonlearners during reward-based decision making.
The Journal of Neuroscience, 27, 12860–12867.

Schultz, W. (1998). Predictive reward signal of dopamine neurons.
Journal of Neurophysiology, 80, 1–27.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate
of prediction and reward. Science, 275, 1593–1599.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals
of Statistics, 6, 461–464.

Seymour, B., O’Doherty, J. P., Dayan, P., Koltzenburg, M., Jones,
A. K., Dolan, R. J., et al. (2004). Temporal difference models
describe higher-order learning in humans. Nature, 429, 664–
667.

Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells in
voluntary movement selection based on reward. Science, 282,
1335–1338.

Squires, K. C., Wickens, C., Squires, N. K., & Donchin, E. (1976).
The effect of stimulus sequence on the waveform of the cortical
event-related potential. Science, 193, 1142–1146.

Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of
Pavlovian reinforcement. In M. Gabriel & J. Moore (Eds.),
Learning and computational neuroscience: Foundations of
adaptive networks (pp. 497–537). Cambridge: MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. Cambridge: MIT Press.

Tesauro, G. J. (1992). Practical issues in temporal difference learning.
Machine Learning, 8, 257–277.

van Veen, V., & Carter, C. S. (2002). The timing of action-monitoring
processes in the anterior cingulate cortex. Journal of Cognitive
Neuroscience, 14, 593–602.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279–292.

Widrow, B., Gupta, N. K., & Maitra, S. (1973). Punish/reward:
Learning with a critic in adaptive threshold systems. IEEE
Transactions on Systems, Man, and Cybernetics, 5, 455–465.

Cogn Affect Behav Neurosci (2011) 11:131–143 143


	Learning from delayed feedback: neural responses in temporal credit assignment
	Abstract
	Experiment
	Method
	Results

	Temporal-difference learning
	Models

	Method
	Simulations
	Parameter estimates and model fits
	Results

	General discussion
	Summary

	References


