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Abstract 

Dyadzc data refers to a domain with two finite sets of objects in 

which observations are made for dyads , i.e., pairs with one element 

from either set. This type of data arises naturally in many ap

plication ranging from computational linguistics and information 
retrieval to preference analysis and computer vision . In this paper, 

we present a systematic, domain-independent framework of learn
ing from dyadic data by statistical mixture models. Our approach 
covers different models with fiat and hierarchical latent class struc

tures. We propose an annealed version of the standard EM algo

rithm for model fitting which is empirically evaluated on a variety 
of data sets from different domains. 

1 Introduction 

Over the past decade learning from data has become a highly active field of re
search distributed over many disciplines like pattern recognition, neural compu

tation , statistics, machine learning, and data mining. Most domain-independent 
learning architectures as well as the underlying theories of learning have been fo
cusing on a feature-based data representation by vectors in an Euclidean space. For 

this restricted case substantial progress has been achieved. However, a variety of 

important problems does not fit into this setting and far less advances have been 
made for data types based on different representations. 

In this paper, we will present a general framework for unsupervised learning from 

dyadic data . The notion dyadic refers to a domain with two (abstract) sets of ob

jects, ;r = {Xl , ... , XN} and Y = {YI, ... , YM} in which observations S are made for 
dyads (Xi, Yk). In the simplest case - on which we focus - an elementary observation 

consists just of (Xi, Yk) itself, i.e., a co-occurrence of Xi and Yk, while other cases 
may also provide a scalar value Wik (strength of preference or association). Some ex

emplary application areas are: (i) Computational linguistics with the corpus-based 

statistical analysis of word co-occurrences with applications in language modeling , 
word clustering, word sense disambiguation , and thesaurus construction. (ii) Text

based znJormatzon retrieval, where ,:{, may correspond to a document collection , Y 
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to keywords , and (Xi, Yk) would represent the occurrence of a term Yk in a document 
Xi. (iii) Modeling of preference and consumption behavior by identifying X with in

dividuals and Y with objects or stimuli as in collaborative jilterzng. (iv) Computer 
VIS tOn , in particular in the context of image segmentation, where X corresponds to 

imagE' locations , y to discretized or categorical feature values , and a dyad (Xi , Yk) 
represents a feature Yk observed at a particular location Xi. 

2 Mixture Models for Dyadic Data 

Across different domains there are at least two tasks which playa fundamental role 

in unsupervised learning from dyadic data: (i) probabilistic modeling, i.e., learning 
a joint or conditional probability model over X xY , and (ii) structure discovery, e.g. , 

identifying clusters and data hierarchies. The key problem in probabilistic modeling 

is the data sparseness: How can probabilities for rarely observed or even unobserved 

co-occurrences be reliably estimated? As an answer we propose a model-based ap

proach and formulate latent class or mixture models . The latter have the further 

advantage to offer a unifying method for probabilistic modeling and structure dis

covery. There are at least three (four, if both variants in (ii) are counted) different 

ways of defining latent class models: 

I. The most direct way is to introduce an (unobserved) mapping c : X X Y --+ 

{Cl , . . . , CK} that partitions X x Y into K classes. This type of model is 

called aspect-based and the pre-image c- l (cO') is referred to as an aspect. 

n. Alternatively, a class can be defined as a subset of one of the spaces X (or Y 
by symmetry, yielding a different model) , i.e., C : X --+ {Cl, . .. , CK} which 

induces a unique partitioning on X x Y by C(Xi , yk) == C(Xi) . This model is 
referred to as on e-szded clustering and c-l(ca ) ~ X is called a cluster. 

Ill. If latent classes are defined for both sets, c : X --+ {ci , .. . , cK} and C : 

Y --+ {cI , . .. , cD, respectively, this induces a mapping C which is a K . L 
partitioning of X x y. This model is called two-sided clustering. 

2.1 Aspect Model for Dyadic Data 

In order to specify an aspect model we make the assumption that all co-occurrences 

in the sample set S are i.i .d. and that Xi and Yk are conditionally independent given 

the class. With parameters P(x i lca ), P(Yklca) for the class-conditional distributions 
and prior probabilities P( cO' ) the complete data probability can be written as 

P(S , c) = IT [P(Cik)P(Xilcik)P(Yklcik)t (x"Yk) , 

i,k 

(1) 

where n(xi, Yk) are the empirical counts for dyads in Sand Cik == C(Xi, Yk) . By 
summing over the latent variables C the usual mixture formulation is obtained 

P(S) = IT P(Xi, Ykt(X"Yk), where P(Xi , Yk) = L P(ca)P(xilca)P(Yk Ica ) . (2) 

i ,k a 

Following the standard Expectation Maximi zation approach for maximum likelihood 

t's timation [DE'mpster et al .. 1977], the E-step equations for the class posterior prob
abilities arE' given byl 

(3) 

1 In the case of multiple observations of dyads it has been assumed that each observation 

may have a different latent class. If only one latent class variable is introduced for each 

dyad, slightly different equations are obtained. 
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Figure 1: Some aspects of the Bible (bigrams) . 

It is straightforward to derive the M-step re-estimation formulae 
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P(ca) ex L n(xi' Yk)P{Cik = Ca}, P(xilca) ex L n(xi, Yk)P{Cik = Ca}, (4) 
i,k k 

and an analogous equation for P(Yk Ica). By re-parameterization the aspect model 

can also be characterized by a cross-entropy criterion. Moreover, formal equiva

lence to the aggregate Markov model, independently proposed for language model

ing in [Saul, Pereira, 1997], has been established (cf. [Hofmann, Puzicha, 1998] for 
details). 

2.2 One-Sided Clustering Model 

The complete data model proposed for the one-sided clustering model is 

P(S, c) = P( c)P(SIc) = (If P( c(x;)) ) (IT [P( x;)P(Y' Ic( X;))]n(x",,)) , (5) 

where we have made the assumption that observations (Xi, Yk) for a particular Xi 
are conditionally independent given c( xd . This effectively defines the mixture 

P(S) = IT P(S;) , P(S;) = L P(ca) IT [P(XdP(Yklea)r(X"Yk) , (6) 

a k 

where Si are all observations involving Xi. Notice that co-occurrences in Si are not 

independent (as they are in the aspect model) , but get coupled by the (shared) 

latent variable C(Xi). As before, it is straightforward to derive an EM algorithm 
with update equations 

P{ c( Xi) = Ca } ex P( Ca) IT P(Yk Icat(x. ,Yk), P(Yk lea) ex L n(Xi, Yk )P{ c( Xi) = ca } (7) 
k 

and P(ca) ex Li P{C(Xi) = cal, P(Xi) ex Lj n(xi,Yj)· The one-sided clustering 

model is similar to the distributional clustering model [Pereira et al. , 1993], how
ever, there are two important differences: (i) the number of likelihood contributions 
in (7) scales with the number of observations - a fact which follows from Bayes' rule 

- and (ii) mixing proportions are rpissing in the original distributional clustering 
model. The one-sided clustering model corresponds to an unsupervised version of 

the naive Bayes' classifier, if we interpret Y as a feature space for objects Xi EX . 

There are also ways to weaken the conditional independence assumption, e.g., by 
utilizing a mixture of tree dependency models [Meila, Jordan, 1998] . 

2.3 Two-Sided Clustering Model 

The latent variable structure of the two-sided clustering model significantly reduces 

the degrees of freedom in the specification of the class conditional distribution. We 
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Figure 2: Exemplary segmentation results on Aerial by one-sided clustering. 

propose the following complete data model 

P(S, c) = II P(C(Xi))P(C(Yk)) [P(xi)P(Yk)1Tc(xi),c(YIc)f(x"yIc) (8) 

i,k 

where 1Tc:r: cll are cluster association parameters. In this model the latent variables 
0" "Y 

in the X and Y space are coupled by the 1T-parameters. Therefore, there exists 
no simple mixture model representation for P(S). Skipping some of the technical 

details (cf. [Hofmann, Puzicha, 1998]) we obtain P(Xi) ex Lk n(xi,Yk), P(Yk) ex 

Li n(xi' Yk) and the M-step equations 

L i k n(xi, Yk)P{C(Xi) = c~ /\ C(Yk) = c~} 

1Tc~.c~ = [Li P{C(Xi) = ~;} Lk n(xi, Yk)] [Lk P{C(Yk) = cn Li n(xi, Yk)] (9) 

as well as P(c~) = L i P{C(Xi) = c~} and P(c~) = Lk P{C(Xk) = cn . To preserve 
tractability for the remaining problem of computing the posterior probabilities in 

the E-step , we apply a factorial approximation (mean field approximation), i.e., 

P{C(Xi ) = c~ /\ C(Yk) = cO ~ P{C(Xi) = c~}P{C(Yk) = cn. This results in the 
following coupled approximation equations for the marginal posterior probabilities 

P{ c(x;) = c~} ex P(c~) exp [~n(x;, y,) ~ PI cry,) = c'(} log "'~"~ 1 (10) 

and a similar equation for P {C(Yk) = c~}. The resulting approximate EM algorithm 

performs updates according to the sequence (CX- post., 1T, cLpost., 1T). Intuitively 

the (probabilistic) clustering in one set is optimized in alternation for a given clus

tering in the other space and vice versa. The two-sided clustering model can also 

be shown to maximize a mutual information criterion [Hofmann, Puzicha, 1998] . 

2.4 Discussion: Aspects and Clusters 

To better understand the differences of the presented models it is elucidating to 

systematically compare the conditional probabilities P( CO' Ixd and P( CO' IYk): 

Aspect One-sided One-sided Two-sided 

Model X Clustering Y Clustering Clustering 

P(colxd 
P{x.ico' W{co' 2 P{c(xd = cO'} P{xdcO' W{ CO' 2 P{C(Xi) = c~} P(x,) P(x.) 

P(CoIYk ) P~lf.k Ic", W( c'" 2 P(lf.kl cO' )P(cO' 2 P{C(Yk) = cO'} P{C(Yk) = c~} P(Y k) P(Yk) 

As can be seen from the above table, probabilities P(CoIXi) and P(CaIYk) correspond 
to posterior probabilities of latent variables if clusters are defined in the X-and 
Y-space, respectively. Otherwise, they are computed from model parameters. This 

is a crucial difference as, for example, the posterior probabilities are approaching 
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Figure 3: Two-sided clustering of LOB: 7r matrix and most probable words. 

Boolean values in the infinite data limit and P(Yklxd = Lo P{C(Xi)=Co}P(Yk!co) 
are converging to one of the class-conditional distributions. Yet, in the aspect model 

P(Yklxd = Lo P(CoIXi)P(Yk!co) and P(CoIXi) ex: P(Co)P(Xi!co) are typically not 
peaking more sharply with an increasing number of observations. In the aspect 
model, conditionals P(Yk IXi) are inherently a weighted sum of the 'prototypical' 

distributions P(Yk Ico ). Cluster models in turn ultimately look for the 'best' class

conditional and weights are only indirectly induced by the posterior uncertainty. 

3 The Cluster-Abstraction Model 

The models discussed in Section 2 all define a non-hierarchical, 'flat' latent class 

structure. However, for structure discovery it is important to find hierarchical data 
organizations. There are well-known architectures like the Hierarchical Mixtures 

of Experts [Jordan, Jacobs , 1994] which fit hierarchical models. Yet, in the case 
of dyadic data there is an alternative possibility to define a hierarchical model. 
The Cluster-Abstraction Model (CAM) is a clustering model (e.g., in X) where 

the conditionals P(Yk Ico) are itself xi-specific aspect mixtures, P(Yk leo, Xi) = 
LII P(Yk la ll )P( alllco, Xi) with a latent aspect mapping a. To obtain a hierarchi
cal organization, clusters Co are identified with the terminal nodes of a hierarchy 
(e.g., a complete binary tree) and aspects all with inner and terminal nodes. As 

a compatibility constraint it is imposed that P( all/co, xd = 0 whenever the node 
corresponding to all is not on the path to the terminal node co. Intuitively, con

ditioned on a 'horizontal' clustering c all observations (Xi, Yk) E Si for a particular 
Xi have to be generated from one of the 'vertical' abstraction levels on the path to 

c( Xi)' Since different clusters share aspects according to their topological relation , 
this favors a meaningful hierarchical organization of clusters. Moreover, aspects at 

inner nodes do not simply represent averages over clusters in their subtree as they 
are forced to explicitly represent what is common to all subsequent clusters. 

Skipping the technical details, the E-step is given by 

P{a(xi,Yk) = all/c(xi) = co} ex: P(alllco,xi)P(Yk/all) (11) 

P{ C(Xi) = co} ex: P( co) II L [P( alllco, Xi)P(Yk /a ll )r(X"Yk) (12) 
k II 

and the M-step formulae are P(Yk/all) ex: LiP{a(xi,Yk) = all}n(xi,Yk), P(co) ex: 

Li P{C(Xi) = co}, and P(alllco , Xi) ex: Lk P{a(xi ' Yk) = all/c(xi) = co}n(xi, Yk)' 
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Figure 4: Parts of the top levels of a hierarchical clustering solution for the Neural 

document collection, aspects are represented by their 5 most probable word stems. 

4 Annealed Expectation Maximization 

Annealed EM is a generalization of EM based on the idea of deterministic anneal
ing [Rose et al., 1990] that has been successfully applied as a heuristic optimization 
technique to many clustering and mixture problems. Annealing reduces the sensitiv
ity to local maxima, but, even more importantly in this context , it may also improve 

the generalization performance compared to maximum likelihood estimation.2 The 

key idea in annealed EM is to introduce an (inverse temperature) parameter (3 , 
and to replace the negative (averaged) complete data log-likelihood by a substitute 

known as the fre e energy (both are in fact equivalent at f3 = 1) . This effectively 

results in a simple modifi cation of the E-step by taking the likelihood contribution 
in Bayes ' rul e to the power of ;3. In order to determine the optimal value for f3 we 

used an additional validation set in a cross validation procedure. 

5 Results and Conclusions 

In our experiments we have utilized the following real-world data sets: (i) Cranfield: 
a standard test collection from information retrieval (N = 1400, M = 4898) , (ii) 

Penn : adjective-noun co-occurrences from the Penn Treebank corpus (N = 6931 , 

M = 4995) and the LOB corpus (N = 5448, M = 6052) , (iii) Neural: a document 
collection with abstracts of journal papers on neural networks (N = 1278, M = 6065) , 

(iv) Bzble: word bigrams from the bible edition of the Gutenberg project (N = M = 
12858) , (v) Aerial: Textured aerial images for segmentation (N = 128x128, M = 192). 

In Fig. 1 we have visualized an aspect model fitted to the Bible bigram data. Notice 

that although X = Y the role of the preceding and the subsequent words in bigrams 
is quite different . Segmentation results obtained on Aerial applying the one-sided 

clustering model are depicted in Fig. 2. A multi-scale Gabor filter bank (3 octaves, 
4 orientations) was utilized as an image representation (cf. [Hofmann et al. , 1998]) . 
In Fig. 3 a two- sided clustering solution of LOB is shown. Fig. 4 shows the top 

levels of the hierarchy found by the Cluster-Abstraction Model in Neural. The 

inner node distributions provide resolution-specific descriptors for the documents 
in the conesponding subtree which can be utilized , e.g., in interactive browsing 

for information retrieval, Fig. 5 shows typical test set perplexity curves of the 

2 Moreover, the tree topology for the CAM is heuristically grown via phase transitions. 
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Figure 5: Perplexity curves for annealed EM (aspect (a), (b) and one-sided cluster-

ing model (c)) on the Bible and Gran data. 
Aspect X-duster CAM X /Y-c1uster Aspect X-cluster CAM X /Y-cluster 

K f3 'P f3 'P f3 'P f3 'P f3 'P f3 'P f3 'P f3 'P 

Cran Penn 

1 - 685 639 

8 0.88 482 0.09 527 0.18 511 0.67 615 0.73 312 0.08 352 0.13 322 0.55 394 

16 0.72 255 0.07 302 0.10 268 0.51 335 0.72 255 0.07 302 0.10 268 0.51 335 

32 0.83 386 0.07 452 0.12 438 0.53 506 0.71 205 0.07 254 0.08 226 0.46 286 

64 0.79 360 0.06 527 0.11 422 OA8 477 0.69 182 0.07 223 0.07 204 0.44 272 

128 0.78 353 0.04 663 0.10 410 OA5 462 0.68 166 0.06 231 0.06 179 DAD 241 

Table 1: Perplexity results for different models on the Gran (predicting words condi

tioned on documents) and Penn data (predicting nouns conditioned on adjectives). 

annealed EM algorithm for the aspect and clustering model (P = e- 1 where I is 

the per-observation log-likelihood). At {J = 1 (standard EM) overfitting is clearly 

visible, an effect that vanishes with decreasing (J. Annealed learning performs also 

better than standard EM with early stopping. Tab. 1 systematically summarizes 

perplexity results for different models and data sets. 

In conclusion mixture models for dyadic data have shown a broad application po

tential. Annealing yields a substantial improvement in generalization performance 

compared to standard EM, in particular for clustering models, and also outper

forms a complexity control via J{. In terms of perplexity, the aspect model has 

the best performance. Detailed performance studies and comparisons with other 

state-of-the-art techniques will appear in forthcoming papers. 
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