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Abstract
The ABC (ATP-binding cassette) transporter family in

higher plants is highly expanded compared with those

of mammalians. Moreover, some members of the plant

ABCB subfamily display very high substrate specificity

compared with their mammalian counterparts that are often

associated with multidrug resistance (MDR) phenomena. In

this review we highlight prominent functions of plant and

mammalian ABC transporters and summarize our knowledge

on their post-transcriptional regulation with a focus on

protein phosphorylation. A deeper comparison of regulatory

events of human cystic fibrosis transmembrane conductance

regulator (CFTR) and ABCB1 from the model plant

Arabidopsis reveals a surprisingly high degree of similarity.

Both physically interact with orthologues of the FK506-

binding proteins (FKBPs) that chaperon both transporters

to the plasma membrane in an action that seems to involve

Hsp90. Further both transporters are phosphorylated at

regulatory domains that connect both nucleotide-binding

folds. Taken together it appears that ABC transporters exhibit

an evolutionary conserved but complex regulation by protein

phosphorylation, which apparently is, at least in some cases,

tightly connected with protein–protein interactions (PPI).
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Importance of mammalian ABC
transporters
ATP-binding cassette (ABC) transporters are integral

membrane proteins ubiquitously present in all phyla [1].

They use the energy of nucleoside triphosphate (mainly ATP)

hydrolysis to pump their substrates across the membrane

[1]. The list of described substrates is long and diverse and

includes metabolic products, sugars, metal ions, hormones,

sterols, lipids and therapeutical drugs [1]. The ABC transport

nano-machinery encompasses two transmembrane domains

(TMDs) and two cytosolic nucleotide-binding domains

(NBDs). ATP hydrolysis results in a conformational change

of the NBDs, this in-turn brings the substrate across the

membrane in a unidirectional fashion [2]. A total of 48

putative ABC transporters are encoded by the human genome

and were shown to cluster into seven subfamilies (i.e. A–G)

based on their domain assembly and phylogeny [3].

Most ABC transporters of the A subfamily, namely

ABCA, are involved in lipid transport processes in different

mammalian body locations. ABCA1 has a notable role

in cholesterol efflux and Tangier disease which is due to

harbouring a mutation in the ABCA1 transporter [4–6].

Further, member 4 of the A subfamily (ABCA4) acts as

a transporter of N-retinylidene-phosphatidylethanolamine

(NrPE). Malfunctioning of this transporter leads to the

formation of lipid deposits in the macular region of the retina

resulting in the Stargardt disease [7,8]. Mammalian ABCB1,

also known as P-glycoprotein 1 (PGP1), is probably the

best-characterized isoform of all ABCs: ABCB1 contributes

to multidrug resistance (MDR) toward multiple cytotoxic

chemotherapeutic agents when overexpressed in tumour cells

[9,10]. ABCB2/TAP1 and ABCB3/TAP2 transporters are

prominent members of the B subfamily, which are associated

with the processing of antigens (TAPs) and function in the

shuffling of peptides from the cytosol to the endoplasmic

reticulum (ER) lumen [11,12].

The common and severe disease, cystic fibrosis (also

called mucoviscidosis), is caused by highly prevalent point

mutations in the cystic fibrosis transmembrane conductance

regulator, CFTR/ABCC7, an ATP-gated chloride ion

channel [13–15]. ABCC2 is responsible for the transport

of conjugated bilirubin across the plasma membrane. A

mutation in ABCC2 leads to the accumulation of bilirubin
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and its conjugates in the liver and hence results in the Dubin–

Johnson syndrome (DJS) [3,9,16,17]. Further, ABCC8

(SUR1) and ABCC9 (SUR2) are sulfonylurea receptors,

which are the molecular targets of the sulfonylurea class

of anti-diabetic drugs. The mechanism of SUR1 and SUR2

is to promote insulin release from pancreatic beta cells and

a mutation in SUR1 is associated with permanent neonatal

diabetes [18,19].

Members of the ABCD subfamily are thought to localize

in the peroxisomal membrane. A recent study showed that

a dysfunction of the ABCD1 transporter is responsible for

adrenoleukodystrophy (ADL). ADL is a X chromosome-

linked disease, which is characterized by an impaired

oxidation of very long chain fatty acids (VLCFA) in

peroxisomes and hence the accumulation of VLCFA in tissues

and body fluids [3,9,20].

Some members of the ABCG subfamily, namely ABCG5

and ABCG8, are known to transport sterols. Defects

in these transporters are responsible for sitosterolemis,

which is characterized by the accumulation of plant sterols

including cholesterol [15,21,22]. In analogy to ABCB1/PGP1

and ABCC1/MRP1, the breast cancer resistance protein

(BCRP/ABCG2), has been identified as MDR transporter

and shown to transport diverse therapeutical drugs. Never-

theless, the physiological in vivo substrate remains unknown

until now [9,23].

In analogy to human ABCB1, also yeast and bacterial ABC

transporters have been shown to play an important role in the

degree of pathogenicity of the organism and to create MDR

phenomena [4,24–28]. For instance, the pleiotropic Candida

albicans ABC transporter, Cdr1 (Candida drug resistance 1),

has been reported to be involved in the export of various

drugs and antifungals and is known as homologue to the

Saccharomyces cerevisiae PDR5 [26,29,30].

In summary, the study of mammalian ABC transporters

has decoded the causes of several human diseases and

provided us with essential insights in ABC functionality, al-

lowing us to develop a range of successful disease treatments.

Regulation of mammalian ABC
transporters by protein phosphorylation
Being one of the most important post-translational modific-

ations, protein phosphorylation plays also a significant role

in the regulation of ABC transporters. This mode of action

is fine-tuned by the antagonism between protein kinases and

protein phosphatases adding or removing phosphate groups

from the transporters respectively [31]. As such it is not

surprising that point mutations of key phosphorylation sites

are among the most prominent causes of some diseases, e.g.

during cystic fibrosis [32]. However, not only mutations in

the peptide sequence of the transporter itself are the cause

of several conditions or diseases but also mutations in their

regulators (e.g. protein kinases) can be the cause of grave

physiological disorders [4,32].

The most common kinases known to be involved in

human ABC transporter phosphorylation are protein kinase

A (PKA), protein kinase C (PKC) and the CK2 [4]. PKA

for instance is involved in the regulation of KATP channels by

phosphorylating ABCC8 [33], whereas ABCB1 is a target of

PKC [34,35]. Furthermore, ABCA1 has been shown to be

regulated by CK2 [36]. These three kinases can act in concert,

as was shown in the case of ABCC7/CFTR. Interestingly,

although kinase mutations are suspected to be involved in

several diseases [32], these events have not been associated

with any ABC transporter related disease yet. This could be

due to the fact that the majority of kinases regulating ABC

proteins are also involved in apoptosis decisions [37–39].

Consequently, organisms lacking these regulators, or present-

ing mutated versions of these proteins, might not be viable.

Nevertheless, protein kinase inhibitors, such as plant-

derived flavonoids, have been investigated thoroughly in

order to create new drugs against ABC transporter related

diseases. Some flavonoids, like the flavonol quercetin

[40,41], were shown to block protein kinase activities

[40,41]. Therefore for long the research focus was laid on

finding flavonoids that would inhibit the export activity

of transporters involved in MDR in order to render anti-

cancer drugs more efficiently [41]; this approach is nicely

reviewed in [41]. In contrast, some flavonoids, like genistein,

were previously thought to act on tyrosine kinases but were

later shown to activate CFTR by directly interacting with

the latter [42]. However, genistein was shown to be not

suitable for the treatment of cystic fibrosis because it interacts

with various other targets besides CFTR [43–45], whereas

higher concentrations have an inhibitory action [42,43,46].

Linking inhibitory effects to protein structures might be

helpful in designing flavonoid-based drugs with fewer side

effects [43].

A plethora of studies in yeast and bacteria support the

idea that protein phosphorylation might be an universal

regulatory event of ABC transporters [47]. In the bakers

yeast, S. cerevisiae, ABC transporters STE6, YCF1, PDR5

and CDR1 have been suggested to be regulated by

phosphorylation [48–53]. A comprehensive list of identified

and tested phosphorylation sites found in ABC transporters

from the model species Homo sapiens, S. cerevisiae and

Arabidopsis thaliana is provided in Table 1. From this list

it gets clear that most investigated sites have an impact on

the transport capacity of individual transporters, although

it is not always obvious if phosphorylation leads to an

activation or inhibition. A second group of phosphorylation

events affects protein stability and/or protein dimerization.

In the following, we will focus on human ABCB1

and CFTR/ABCC7 phosphorylation; for a more detailed

description of the impact of protein phosphorylation on

other ABC transporters, we refer to the excellent review by

Stolarczyk et al. [4].

Several lines of clinical evidence suggest ABCBs as general

targets for phosphorylation-dependent regulation in the so-

called linker region. This linker region connects the N-

terminal NBD1 of ABCBs with the TMD of the second half

of the molecule (TMD2) and has been shown to regulate

ABCBs by multiple phosphorylation events [54,55]. Linker
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Table 1 List of experimentally confirmed ABC transporter phosphorylation sites in S. cerevisiae, H. sapiens and A. thaliana (n.i., not

identified)

ABC Selected

transporter Organism Phosphorylation site Kinase Effect reference

Ste6p S. cerevisiae n.i. Yck1p Protein stabilization [48]

n.i. Yck2p Protein stabilization

Ycf1p S. cerevisiae S251 Cka1p Negative regulation of transport activity [49]

S908 n.i. Positive regulation of transport activity [50]

T911 n.i. Positive regulation of transport activity

MRP1 H. sapiens T249 CK2α Negative regulation of transport activity [38]

ABCA1 H. sapiens S1042 PKA Positive regulation of transport activity [117]

S2054 PKA Positive regulation of transport activity

T1242 CK2 Negative regulation of transport activity [36]

T1243 CK2 Negative regulation of transport activity

S1255 CK2 Negative regulation of transport activity

T1286 n.i. Calpain-mediated degradation [71]

T1305 n.i. Calpain-mediated degradation

n.i. Cα(PKCα) Structural stabilization [70]

ABCB1 H. sapiens S661 PKC Regulation of transport activity [34]

S667 PKA; PKC Regulation of transport activity [34,35]

S671 PKA; PKC Regulation of transport activity

S683 PKA Regulation of transport activity [4,57]

S683 (by consensus) Pim-1 Prevents proteolysis and proteasomal degradation [58]

ABCB2 H. sapiens n.i. Unnamed 40KD kinase Negative regulation of transport activity [118]

ABCB3 n.i. Unnamed 40KD kinase Negative regulation of transport activity

ABCC7 H. sapiens S660 PKA Positive regulation of transport activity [119–121]

S670 PKA Positive regulation of transport activity [122]

S700 PKA Positive regulation of transport activity [119–121]

S712 PKA Positive regulation of transport activity [120,121]

S737 PKA Negative regulation of transport activity [119–121]

S753 PKA Positive regulation of transport activity [121]

S768 PKA Negative regulation of transport activity [119–121]

S795 PKA Positive regulation of transport activity [119–122]

S813 PKA Positive regulation of transport activity

S686 PKC Unknown effect [119,123]

S790 PKC Unknown effect

ABCC8 H. sapiens S1571 PKA Regulation of the KATP channel [33]

ABCC8 H. sapiens n.i. PKC Regulation of the KATP channel [124]

ABCC9 H. sapiens S1387 PKA Activation of the KATP channel [125]

T633 PKA Activation of the KATP channel [126]

S1465 PKA Activation of the KATP channel

ABCD1 H. sapiens n.i. n.i. (tyrosine kinase) Regulation of transport activity [127]

ABCD3 H. sapiens n.i. n.i. (tyrosine kinase) Regulation of transport activity

ABCG2 H. sapiens T362 Pim-1 Modulation of dimerization [128]

ABCB1 A. thaliana S634 PID Negative regulation of transport activity [103]

ABCB19 A. thaliana n.i. Phot1 Negative regulation of transport activity [105]

phosphorylation alters ABCB transport and associated

ATPase activity [56]. An accumulation of serine residues

was identified to be phosphorylated by PKC [54,55,57] that

regulate the drug transport properties [56]. In addition to

PKC, various publications suggest ABCB1 phosphorylation

by PKA and CK2 but a significant conclusion has yet to

be made [4,34,35]. Moreover, human ABCB1 was shown to

be phosphorylated by Pim-1 kinase protecting ABCB1 from

degradation and enabling its glycosylation and cell surface

expression [58].

The regulatory R domain of ABCC transporters linking

also NBD1 with TMD2 is a discrete domain unique for

CFTR and its orthologues [59]. The R domain is another

prominent target of their respective protein kinases [4,35,60].

The Cl− channel ABCC7 has been shown to be largely

phosphorylated all over the R domain by protein kinases,
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PKA, PKC, CK2 and 5′-AMP-activated protein kinase

(AMPK) [3,15,61,62]. Computational and NMR analyses

indicate that phosphorylation results in a conformational

change of the R domain and hence facilitates the opening

of the core allowing ions to be transported [4,63,64]. Based

on the well-studied regulation by PKA, it seems that there

is the requirement for a specific phosphorylation pattern

in the ABCC7 R domain [18]. This pattern needs to be

formed in a specific series of phosphorylation events in

order to activate the activity of ABCC7 successfully [18].

Furthermore, it has been shown that the different protein

kinases are interdependent [61].

The regulatory subunit B of serine/threonine-specific

protein phosphatase 2A γ (PPP2R3C) plays a major role in

the negative regulation for both, the expression and function

of HsABCB1 [65]. Furthermore, it seems that in order to

exert its dephosphorylating function correctly, PPP2R3C

needs to form a complex with a second serine/threonine-

specific protein phosphatase, namely PP5 [65]. This example

demonstrates that protein–protein interaction (PPI) is a

second important event during the regulation of ABC

transporters. However, PPI is also required in other

non-phosphorylation events. One of these mechanisms,

the regulation of the correct post-translational protein

folding and the subsequent trafficking is best illustrated

using ABCC7 as example: CFTR interacts with the heat

shock protein Hsp90 and the FK506-binding protein 38

(FKBP38/FKBP8). ABCC7 mutations lead to an improper

folding and trafficking as wells as loss of stability of the

protein and finally to an endoplasmic reticulum-associated

degradation (ERAD) [66]. CFTR, while localized on the

ER, is retained by the chaperone function of Hsp90 [67].

Hutt et al. [66] provided evidence that subsequent to this

interaction, FKBP38 is recruited to the complex through its

Hsp90-interacting TPR domain and induces the liberation

of CTFR from the Hsp90 complex [66,68]. Once having

removed Hsp90 from the complex, FKPB38 is thought to

interact with CFTR via its TPR domain before shifting

the interacting domain towards its catalytic domain [66].

This interaction will probably allow FKPB38 to isomerize

peptidyl prolyl bonds of CFTR, which will in return allow for

the establishment of the final and functional protein structure

of CFTR [66,69].

Phosphorylation of ABC transporters plays also an

important role in protein stability [66]. This is supported by

the finding that ABCA1 stabilization is dependent on protein

kinase PKCα [4,70,71].

Taken together, ABC transporters exhibit a tight and

complex regulation by protein phosphorylation, which

apparently is, at least in some cases, tightly connected with

PPI, although the exact interconnecting mechanisms are

currently not well understood.

Role of ABC transporters in plants
The first role accredited to plant ABC transporters has

been intracellular (vacuolar) detoxification in analogy to

PM export in mammalian cells [72,73]. However, since then

the function of different members of the vast plant ABC

transporter family was quickly extended [73]. Besides the

sequestering of xenobiotic conjugates into the vacuole, there

is plethora of ABC transporter substrates ranging from

phytohormones (IAA, IBA, ABA and cytokinins), heavy

metals, lipids, terpenoids, lignols and organic acids [74–77].

As a consequence, the roles of the members of the eight ABC

subfamilies found in plants vary from plant development,

over important physiological cues to pathogen response

[73]. Since the ABC family in plants is so highly expanded

(the model plant A. thaliana contains more than 120 ABC

transporter genes [73]) and with it their functional diversity,

we are going to focus in this review mainly on described

regulatory functions that were derived from A. thaliana. For

a more exhaustive description we refer to the excellent review

by Kang et al. [73].

The classification of plant ABC transporters is in

agreement with the nomenclature system known for their

mammalian homologues and reflect their common evolution-

ary origin [73,78]. Hence, ABC proteins containing a TMD1–

NBD1–TMD2–NBD2 domain signature are classified into

the B family [78,79]. Well-studied examples of this subfamily

in A. thaliana are ABCB1, ABCB19 and ABCB4, whereas

initial reports concern also ABCB21. All four were show

to transport the plant hormone, auxin [chemically indole-3-

acetic acid (IAA)] [80–82]. Local gradients of IAA regulate

plant growth and development and these gradients are created

and maintained by the directional, cell-to-cell transport

of IAA, in a process that is called polar auxin transport

(PAT) [83]. This fascinating process is specific for higher

plants and also not described for other plant hormones

[84]. ABCB1 and ABCB19 were shown to function as

IAA exporters functioning in the long-range transport of

auxin [85], whereas ABCB4 and ABCB21 were characterized

as facultative importers/exporters [81,82,86]. Interestingly,

transport directionalities seem to be regulated by internal

auxin concentrations [82]; a feature not yet described for any

non-plant ABCB.

Another remarkable difference between plant and mam-

malian ABCBs lies in the fact that plant ABCB orthologues

seem to own a far higher substrate specificity compared

with their mammalian counterparts, especially upon over-

expression in tumour cells [87]. Plant ABCB substrates

are limited to a few native and synthetic auxins (and

some organic acids) but do not transport any standard

mammalian ABCB substrates even when they are expressed

in mammalian cell cultures [75,85,88]. A molecular rationale

for enhanced substrate specificities for plant ABCBs was

recently given by the identification of kingdom-specific

candidate substrate-binding regions within the translocation

chamber formed by the TMDs of Arabidopsis ABCBs

[89].

An involvement of ABCB1 and ABCB19 in PAT was

originally based on the phenotype of the Arabidopsis abcb1

abcb19 double mutant, which combines strong dwarfism, a

disoriented growth and a helical rotation of epidermal root
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Figure 1 Plant and mammalian ABCB1 linkers and phosphorylation sites are only weakly conserved

Relevant plant ABCB1 linker phosphorylation sites (green organism names) identified either by phosphoproteomics (black

[116]) or experimentally (red [103]) are indicated by triangles above the alignment. Experimentally verified phosphorylation

sites of mammalian ABCB1 orthologues (red organism names) that are target of PKC (blue) or PKA (green) are indicated below

the alignment. Figure modified from [103]: Henrichs, S., Wang, B., Fukao, Y., Zhu, J., Charrier, L., Bailly, A., Oehring, S.C., Linnert,

M., Weiwad, M., Endler, A. et al. (2012) Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation.

EMBO J. 31, 2965–2980.

layers (twisting) [80]. In parallel, a similar phenotype was

found for an Arabidopsis mutant lacking the functionality of

the FKBP42, TWISTED DWARF1 (TWD1) [85,90]. In the

last decade evidence was provided that ABCB1 and ABCB19

transport activity depends on the physical interaction with

TWD1 [90,91]. As discussed above, similar interactions

have been reported also for human ABCC7 and FKBP38;

a mechanistic comparison will be addressed further down

in this review. Interestingly, ABCB1 and ABCB19 were

also shown to functionally interact with two permease-like

members of the PIN (Pin-formed) family, PIN1 and PIN2

[88]. Both regulatory events stress the importance of PPI in

the regulation of ABC transporters.

An additional vital function covered by the plant

ABC transporter toolbox is their involvement in pathogen

defense strategies. In Arabidopsis, member 36 of the ABC

subfamily G (ABCG36/PDR8) is known for its pathogenic

defense properties [92]. However, ABCG36 has also been

reported for being involved in the transport of heavy

metals, like cadmium [93]. A close ABCG36 homologue,

ABCG37/PDR9/PIS1, was found to export a range of auxinic

compounds, including the IAA precursor, indolylbutyric

acid, IBA [94]. ABCG37 was shown also to be responsible

for the export of phenolic compounds upon Fe deficiency

[95]. Interestingly, both ABCG36 and ABCG37 reside on the

outer lateral PM domain of epidermal root cells that defines

the root and soil interface [94].

Recently, ABCG16 was reported to play a role in

pathogen resistance against Pseudomonas syringae [96].

Furthermore, like for ABCG36, also for ABCG16 a second

transport function was described that provides tolerance

to the phytohormone, ABA (abscisic acid) [96]. Previously,

ABCG25 was reported to export ABA from the cell, whereas

ABCG40/PDR12 seems to mediate the import into cells

[76,97]

Therefore the question arises whether the ABCG

transporter class has a broader substrate specificity as

described for its yeast orthologues [98–100]. An alternative

explanation is that putatively identified ABCG substrates,

such as the phytohormones IBA or ABA, might act as

compounds that bridge pathogen-related and developmental

roles [73,93].

Taken together, these two excerpts underline the impres-

sion that plant ABC transporters cover a very broad array of

functions, although most of them still need to be uncovered

compared with their mammalian counterparts.

Regulation of plant ABC transporters via
protein phosphorylation
As for their mammalian counterparts, recent advancements

in phosphoproteomics have enabled large-scale analysis of

plant ABC phosphopeptides from complex protein mixtures

by LC–MS/MS [101,102]. A recent comparison of plant and

mammalian ABCB1 linker domains has revealed, however, a

very low degree of conservation both on the sequence levels

and in respect to the described phosphorylation sites [103]

(see Figure 1). This might reflect – beside the overall similar

concept of ABCB regulation by linker phosphorylation – an

evolutionary split. This is obviously also supported by the

finding that classical isoforms of PKA, PKC and PKG do not

exist in plants [104].

Beside these proteomics data, until today only two

studies have studied in detail plant ABC regulation by

protein phosphorylation. Both studies suggest that AGC

kinases, PHOTROPIN1 (phot1) and PINOID (PID), have
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a direct impact on the auxin efflux activity of ABCB19

and ABCB1 respectively [103,105]. AGC kinases are plant

orthologues of mammalian protein kinases A, C and G

[104], however, evolutionary adaptations introduced specific

structural changes within the AGC kinases that most likely

allow modulation of kinase activity by external stimuli (e.g.

light) [106].

The first report that plant ABCBs are regulated by

protein phosphorylation came from the finding that auxin

efflux transporter ABCB19 is an interactor of the ACG4

kinase, phot1, acting as a PM-located blue light receptor

[105]. Co-expression of phot1 in Hela cells reduced ABCB19

mediated auxin efflux, which is further enhanced by blue light

irradiation, whereas ABCB1 activity remained unchanged

[105].

Employing co-immunoprecipitation/LC–MS/MS and

bioluminescence resonance energy transfer (BRET) analyses,

the AGC3 kinase, PID, was characterized as a physical

interactor of the FKBP42, TWD1. PID was shown to

phosphorylate S634 located in the linker domain of ABCB1

resulting in ABCB1 activation (see Figure 1). On the other

hand, negative regulation of ABCB1 in the presence of TWD1

argues for a second, TWD1-specific ABCB1 phosphorylation

by PID that does not essentially need to be part of the

linker. As such TWD1 might function as a recruiting factor

for ABCB1 phosphorylating protein kinases. Both modes

of ABCB1 phosphorylation could take place in parallel or

in competition resulting in the fine-tuning of ABCB1 as

reported for mammalian ABCBs [18].

Interestingly, like mammalian ABCBs also plant ABCBs

are inhibited by flavonoids [75,85]. This is of interest because

flavonols were suggested to act as non-essential regulators of

auxin transport [107]. Further, flavonols, including quercetin,

were shown to efficiently disrupt Arabidopsis ABCB1–

TWD1 interaction but not to bind to TWD1 [108], suggesting

that plant ABCB regulation via flavonols might employ PPI.

Obviously, in light of the fact that flavonols are also inhibiting

protein kinases (such as PID) and the discussed ABCB1–

TWD1 and TWD1–PID interaction, these findings indicate

that ABCB regulation via PPI and protein phosphorylation

might be interconnected.

Comparison of H. sapiens ABCC7 and
A. thaliana ABCB1 regulation
As mentioned above, human ABCC7/CFTR is functionally

interacting with Hsp90 and FKBP38 ensuring its correct

folding [66] (see Figure 2). Moreover, chloride anion

export activity and protein stability of ABCC7 is regulated

via protein phosphorylation [66,109]. Finally, a third

mode of regulation has been revealed by the correlation

between defective CFTR proteins and decreased HCO3
−

concentrations in anion/bicarbonate transporting epithelia,

resulting in mucin precipitation during cystic fibrosis [61].

Members of the solute carrier (SLC) family 26, such as

SLC26A3 or SLC26A6, interact with ABCC7 and export

bicarbonate by exchanging chloride provided by ABCC7

[61]. Interaction with the R domain of ABCC7 is provided

by the STAS (sulfate transporter and anti-sigma factor

antagonist) domain in the C-terminus of SLC26 [61]. In order

to bring these two domains in proximity and hence mediate

the interaction, both proteins need to bind PDZ (post-

synaptic density 95/discs large/zona occludens 1) domain

containing adapter molecules [61].

Despite the fact that both transporters belong to different

ABC families and species, these models of human ABCC7

regulation draws some remarkable parallels to the one of

Arabidopsis ABCB1. The setup we are facing here is also

composed of an FK506-binding protein (here: the FKBP42,

TWD1), a protein kinase (here: the AGC3 kinase PID) and

a permease-like protein of the PIN-family (see Figure 2).

Like FKBP38, TWD1 is thought to chaperone ABCB1

during its secretion from the ER towards the PM [18].

Subsequently, PID is thought to be recruited by TWD1 and to

phosphorylate ABCB1 [18]. PID is regulating the activity of

ABCB1 by phosphorylating specific residues (such as S634)

localized in its linker domain, the equivalent to the R domain

of ABCC7 [18,103]. If protein phosphorylation via PID alters

also protein stability of ABCB1 is currently not known.

The ABCBs–PIN pairings have significant effects on auxin

transport capacity of the efflux complex [88]. In this respect

it is worth mentioning that ABCB19 was recently shown to

own an anion channel activity when expressed in HEK cells

that was inhibited upon co-expression with TWD1 [110].

Although it is until now unclear if this exported anion is in

fact IAA, this functional analogy is striking and fuelled by

the finding that ABCB19 was isolated in genetic screen using

an anion channel blocker [80].

Another parallel is that like FKBP38 also TWD1 was

shown to bind Hsp90 via its TPR domain [111], however,

the relevance of this interaction is currently still unknown

[112]. Further, a functional difference lies in the fact that

TWD1 interacts with ABCB1 via its N-terminal FKBD [90]

and not with its TPR domain as ABCC7. The finding that

vacuolar TWD1–ABCC1/ABCC2 interaction is mediated

by the FKBD of TWD1 [113] suggests that this interacting

domain is ABCC specific.

This regulatory Arabidopsis ABCB1 circuit is even more

complicated by the finding that PID phosphorylation of

PINs decides for their basal or apical fate [114]. Further,

it was shown that PIN phosphorylation by PID also

activates PIN activity [115]. Although all these interaction

and phosphorylation events still need functional elucidations,

they again pinpoint to the question which component is

in the end functioning as auxin exporter, PINs or ABCBs

individually, or both together. In the latter case an auxin

efflux complex consisting of PIN–ABCB (and eventually also

TWD1) would allow obviously for a fine-tuning of auxin

transport activity and directionality [18].

In summary, based on this comparison it appears that

nature is employing despite obvious physiological and

mechanistic differences similar blue prints for the regulation

of evolutionary distant ABC transporters in plants and

mammals. Finally, we believe that cross-kingdom evaluations
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Figure 2 Regulation of Arabidopsis ABCB1/PGP1 and human ABCC7/CFTR by FKBPs

Arabidopsis ABCB1 functionally interacts with PIN-like, secondary active auxin carriers on the PM. The FKBP42/TWD1 is

essential for ABCB1 activity and PM presence and acts as a chaperon for the ER-to-PM delivery of ABCB1. In analogy,

the human orthologue of FKBP42, FKBP38, was shown to chaperone ABCC7/CFTR to the PM. Here it functionally interacts

with bicarbonate (HCO3
− )–chloride (Cl − ) exchangers of the SLC26 family, leading to enhanced bicarbonate and thus fluid

secretion. Note that phosphorylation of both linker and R-domains of ABCB1 and ABCC7 by the AGC kinase, PINOID and PKA,

respectively, was shown to affect transport activity. Further, that the existence and identity of a counter-ion for PIN-mediated

IAA transport is unclear; the same holds true for the involvement of Hsp90 shown to interact with the TPR domain of FKBP42.

Figure modified from [18]: Geisler, M. (2014) It takes more than two to tango: regulation of plant ABC transporters. In Plant

ABC transporters (Geisler, M., ed.), pp. 241–270, Springer, Switzerland.

are very powerful sources to identify not only functional

similarities but also, and maybe even more importantly,

operative differences.
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12 Seyffer, F. and Tampé, R. (2015) ABC transporters in adaptive
immunity. Biochim. Biophys. Acta 1850, 449–460 CrossRef PubMed

13 Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J. and
Smith, A.E. (1991) Phosphorylation of the R domain by
cAMP-dependent protein kinase regulates the CFTR chloride channel.
Cell 66, 1027–1036 CrossRef PubMed

14 Nagel, G. (1999) Differential function of the two nucleotide binding
domains on cystic fibrosis transmembrane conductance regulator.
Biochim. Biophys. Acta – Biomembr. 1461, 263–274 CrossRef

15 Dean, M. and Annilo, T. (2005) Evolution of the ATP-binding cassette
(ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics
Hum. Genet. 6, 123–142 CrossRef PubMed

16 Keitel, V., Nies, A.T., Brom, M., Hummel-Eisenbeiss, J., Spring, H. and
Keppler, D. (2003) A common Dubin–Johnson syndrome mutation
impairs protein maturation and transport activity of MRP2 (ABCC2).
Am. J. Physiol. Gastrointest. Liver Physiol. 284, G165–G174
CrossRef PubMed

17 Keppler, D. and König, J. (2000) Hepatic secretion of conjugated drugs
and endogenous substances. Semin. Liver Dis. 20, 265–272
CrossRef PubMed

18 Geisler, M. and Geisler, M. (2014) It takes more than two to tango:
regulation of plant ABC transporters. In Plant ABC Transporters (, ed.),
pp. 241–270, Springer, Switzerland

19 Proks, P., Shimomura, K., Craig, T.J., Girard, C.A.J. and Ashcroft, F.M.
(2007) Mechanism of action of a sulphonylurea receptor SUR1
mutation (F132L) that causes DEND syndrome. Hum. Mol. Genet. 16,
2011–2019 CrossRef PubMed

20 Wiesinger, C., Kunze, M., Regelsberger, G., Forss-Petter, S. and Berger,
J. (2013) Impaired very long-chain acyl-CoA β-oxidation in human
X-linked adrenoleukodystrophy fibroblasts is a direct consequence of
ABCD1 transporter dysfunction. J. Biol. Chem. 288, 19269–19279
CrossRef PubMed

21 Berge, K.E. (2000) Accumulation of dietary cholesterol in
sitosterolemia caused by mutations in adjacent ABC transporters.
Science 290, 1771–1775 CrossRef PubMed

22 Kerr, I.D., Haider, A.J. and Gelissen, I.C. (2011) The ABCG family of
membrane-associated transporters: you don’t have to be big to be
mighty. Br. J. Pharmacol. 164, 1767–1779 CrossRef PubMed
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phosphate regulon and bacterial virulence: a regulatory network
connecting phosphate homeostasis and pathogenesis. FEMS
Microbiol. Rev. 32, 461–473 CrossRef PubMed

26 Mishra, N., Prasad, T., Sharma, N., Payasi, A., Prasad, R., Gupta, D. and
Singh, R. (2007) Pathogenicity and drug resistance in Candida albicans
and other yeast species. Acta Microbiol. Immunol. Hung. 54, 201–235
CrossRef PubMed

27 Niimi, M., Tanabe, K., Wada, S., Yamazaki, A., Uehara, Y., Niimi, K.,
Lamping, E., Holmes, A.R., Monk, B.C. and Cannon, R.D. (2005) ABC
transporters of pathogenic fungi: recent advances in functional
analyses. Nihon Ishinkin Gakkai Zasshi 46, 249–260 CrossRef PubMed

28 Davidson, A.L. and Chen, J. (2004) ATP-binding cassette transporters
in bacteria. Annu. Rev. Biochem. 73, 241–268 CrossRef PubMed

29 Prasad, R., De Wergifosse, P., Goffeau, A. and Balzi, E. (1995)
Molecular cloning and characterization of a novel gene of Candida
albicans, CDR1, conferring multiple resistance to drugs and
antifungals. Curr. Genet. 27, 320–329 CrossRef PubMed

30 Krishnamurthy, S., Gupta, V., Snehlata, P. and Prasad, R. (1998)
Characterisation of human steroid hormone transport mediated by
Cdr1p, a multidrug transporter of Candida albicans, belonging to the
ATP binding cassette super family. FEMS Microbiol. Lett. 158, 69–74
CrossRef PubMed

31 Hunter, T. (1995) Protein kinases and phosphatases: the Yin and Yang
of protein phosphorylation and signaling. Cell 80, 225–236
CrossRef PubMed

32 Cohen, P. (2001) The role of protein phosphorylation in human health
and disease. Eur. J. Biochem. 268, 5001–5010 CrossRef PubMed
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