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Abstract. It is well known that prior knowledge or bias can speed up learning, at least in theory. It has proved
difficult to makeconstructiveuse of prior knowledge, so that approximately correct hypotheses can be learned
efficiently. In this paper, we consider a particular form of bias which consists of a set of “determinations.” A
set of attributes is said tdeterminea given attribute if the latter is purely a function of the former. The bias

is tree-structured if there is a tree of attributes such that the attribute at any node is determined by its childrel
where the leaves correspond to input attributes and the root corresponds to the target attribute for the learnil
problem. The set of allowed functions at each node is céltledbasis The tree-structured bias restricts the target
functions to those representable by a read-once formula (a Boolean formula in which each variable occurs
most once) of a given structure over the basis functions. We show that efficient learning is possible using a give
tree-structured bias from random examples and membership queries, provided that the basis class itself is learna
and obeys some mild closure conditions. The algorithm uses a focontfolled experimentatiom order to

learn each part of the overall function, fixing the inputs to the other parts of the function at appropriate values. W
present empirical results showing that when a tree-structured bias is available, our method significantly improve
upon knowledge-free induction. We also show that there are hard cryptographic limitations to generalizing thes
positive results to structured determinations in the form of a directed acyclic graph.

Keywords: determinations, tree-structured bias, declarative bias, prior knowledge, read-once formulas, querie:
controlled experimentation, pac-learning

1. Introduction

Biasis the term used in machine learning to refer to any information, implicit or explicit, that
a learning algorithm uses to select hypotheses, beyond mere consistency with the availat
observations. Without bias, inductive learning is impossible (Mitchell, 1980). Bias can take
many forms, including restrictions on the space of hypotheses that the learning algorithr
can consider. Although it is possible for the designer of a learning system to enginee
a bias directly into the algorithm’s structure, or to specify exogenously various syntactic
restrictions on hypotheses, it is desirable that learning programs should, over time, be ab
to develop their own biases in order to operate autonomously.

The idea ofdeclarative biagRussell & Grosof, 1987, 1990) is to replace the exogenous
bias, which is often only implicit, with background domain knowledge possessed by the
learning system. Restriction bias, which specifies a restricted hypothesis space, is realiz
by first-order background knowledge that is logically equivalent to the disjunction of all
the hypotheses in the restricted space, whereas preference bias, which specifies the rela
likelihoods of different hypotheses in the hypothesis space, is realized by a prioritizec
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default theory. In many cases, biases can be represented by compact logical theorie
Converselyanylogical background knowledge is equivalent to a restriction bias that rules
out any hypothesis that is inconsistent with the background knowledge. The advantage ¢
such an approach is that such declarative background knowledge can be learned in a varie
of ways, including inductive generalization from examples, automatic deduction from the
system’s other background knowledge, and by being directly told by other agents. As .
result, it may be possible to design a learning agent whose cumulative learning performan
far exceeds what can be achieved by taking each new learning prableritio.

Realizing the potential benefits of declarative bias is another matter. One obvious nor
solution is to search in an unrestricted hypothesis space, filtering out hypotheses that a
found to be inconsistent with the background knowledge. Such an approach is likely tc
be intractable. Another approach is to use the background knowledgeetpresshe
observations using a set of higher-level attributes, in addition to the original observationa
attributes, in the hope that it will be simple to find a correct hypothesis in the new space
This approach has proved effective in some cases. Implemented systems of this type i
clude mEBG (Hirsh, 1990) and GOLEM (Muggleton & Feng, 1990). A third approach is
to use the background knowledge to generate a “template” for the hypothesis, which ca
be filled in using the observations to constrain the functions that make up the template. |
this way, the system need never consider hypotheses that are not consistent with the ba
ground knowledge. Implemented systems of this type include Odysseus (Wilkins, Clance)
& Buchanan, 1987), KBANN (Shavlik & Towell, 1989), and Grendel (Cohen, 1992), as
well as the work of Getoor (1989) which we discuss below.

One of the earliest forms of declarative bias was based on the observation that the
cabulary biasfor a propositional hypothesis space—that is, the set of features from which
hypotheses are to be constructed—can be expressed concisely as a determination wh
left-hand side contains the relevant features and whose right-hand side contains the targ
concept (Russell & Grosof, 1987). For example, we say{#atB, C} > D, read the set
{4, B, C'} determinedD, if the values of4, B andC' are sufficient to determine the value
of D. Since determinations are a form of first-order knowledge (Davies, 1985), they car
be derived using logical inference from suitable background knowledge, including othel
determinations. Thus, armed with an appropriate inference algorithm and a knowledg
base, a learning system can derive a restricted hypothesis vocabulary for its current learni
task. Since this restricted vocabulary may be much smaller than the total set of feature
available, the learning system may be able to learn from many fewer examples in much le:
time (Russell, 1989; Mahadevan & Tadepalli, 1994). For example, if the learner knows (ol
can deduce) that the model, make, optional extras, and year of a car determine its list pric
then it need not worry about the color of the car, the day of the week, or the name of the
current Pope.

In (Russell, 1988), it was shown that the knowledge used in the derivation of a suitable
determination bias can impose additional constraints on the hypothesis space, beyond thc
implied by the determination itself. We assume that the bias is derived by a backward
chaining proof through a set of determinations, beginning with the target attribute as the
root and terminating in a set of leaf attributes all of which are observable in the training
data. (Section 2 gives an example of such a derivation. See (Russell, 1989) and (Geto«
1989) for more examples.) By construction, the attributes at internal nodes of the derivatio
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tree will be unobservable. If in addition we assume that each attribute occurs only once i
the derivation, then the derivation tree forces any hypothesized target function to conforr
to atree-structured bia$T SB) in which the hypothesis is composed from a set of unknown
functions that must combine in a tree structure that mirrors the derivation tree. We call thi:
tree structure along with a labeling of the leaves of the tree with distinct input attributes
a determination tregsee Figure 1). It was shown in (Russell, 1988) that the number of
examples required to learn a function consistent with a given determination tree is linear il
the number of leaves, provided the tree has bounded degree. We denote this assumption
k-TSB.! Unfortunately, results due to Pitt and Warmuth (1990) show that learning arbitrary
Boolean formulas is reducible to learning with a fixed determination tree of bounded degre
from classified random examples. Since learning arbitrary Boolean functions is as hard ¢
inverting one-way functions (Kearns & Valiant, 1994), learning with tree-structured bias
with random examples alone is believed to be intractable. Getoor’s (1989) implementatio
of tree-structured learning, using a neural network pre-structured according to the bia
derivation tree took a prohibitively large training time due to the depth of the neural network,
suggesting that this intractability cannot be circumvented easily in practice.

Bshouty, Hancock, and Hellerstein (1992) and Tadepalli (1993) showed that the us
of membership querie@ngluin, 1988) as well as random examples renders the learning
problem with &-TSB bias tractable. Tadepalliassumes that the determination tree is given
whereas Bshouty et al. infer the tree structure as well as the target function. The key t
both of these algorithms is the useaaintrolled experimentationThe idea is to learn each
internal functionf; at nodei of the tree by finding a suitable setting @ntexj for the leaf
attributes (other than those that affect the inputg p$o that the value of the target concept
changes whenever the value of the unobservable internakin®dbanged. If such settings
are found for any nodéand its children, the program can learn the internal funcfign
by varying its inputs and observing its output. When such a setting is not found for a nod
with a sufficiently large sample and a thorough search, it can, without the risk of a large
error, conclude that that node has no effect on the output, and can ignore the subtree unc
that node.

In this paper, we replace the restriction of bounded degree with the restriction that the
functions at the nodes of the tree be drawn from some learnable class called the “basi:
which obeys some mild closure properties. We describe a method to convert almost ar
induction algorithm that learns the basis class to one that learns any function thatis consiste
with the tree-structured bias where the internal functions are chosen from the basis clas
The environment provides random examples, and answers the membership queries, i.
gives the output for any input queried by the learner. Using the probably approximately
correct learning framework (Valiant, 1984), extended with membership queries (Angluin,
1988), we prove that if the determination tree is given, and the internal functions belong to
known learnable basis class with some mild closure conditions on them, then any functio
consistent with the determination tree can be learned by our algorithm. We present empiric:
results that show that our algorithm leads to fast and reliable convergence when two differel
induction programs are used to learn the internal functions: Quinlan’s ID3 (Quinlan, 1986)
and a program called-DL that learnsk-decision lists introduced by Rivest (1987).

Tree-structured determinations are closely related to read-once formylafoonulas
studied in the computational learning theory literature (Angluin, Hellerstein, & Karpinski,
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Figure 1. A determination tree that restricts the hypothesis space to functions of the form
Jo(f1(f3(A, B), fa(C, D)), f2(f5(E, F), f6(G, H))). The task is to find the functionf, f1, ... from ex-
amples and membership queries of the composite function.

1993; Hancock & Hellerstein, 1991; Bshouty, Hancock, & Hellerstein, 1992, 1995). In a
read-once formula, each variable appears exactly once; hence the formula can be represer
by acircuitinthe form of atree, where each leafis distinctly labeled. Thisis also the defining
property of a tree-structured bias. For example, compare the two forlBudas C and

BA+ BC. While the first formula is read-once, the second is not, and this is reflected in the
fact thatB is repeated under two leaves in the tree corresponding to the second férfula.
we represent the function consistent with a determination tree using the funftions, f,,

that correspond to the internal nodes of the tree as primitive symbols, each input featul
appears exactly once in such a formula. The determination tree that corresponds to suct
formula is called its “skeleton”. Learning a read-once formula over a set of basis functions
involves learning its skeleton as well as the internal functions at the nodes of the skeleton. .
fair amount of work in this area has been done by investigating what restrictions on the bas
functions allows for tractable learning of the skeleton and the internal functions (Angluin
et al., 1993; Hancock & Hellerstein, 1991; Bshouty et al., 1992, 1995). This paper take:
a different approach. Rather than restricting the basis functions, it considers a particule
form of background knowledge, namely the determination tree, that is sufficiently strong
to allow learning of read-once formulas fanylearnable basis. In Section 9, we discuss
the relationship of our work to the work on learning read-once formulas, especially to tha
of (Bshouty et al., 1995).

Our algorithm can be interpreted to mean that the unobservability of the internal attribute
values does not pose unsurmountable difficulties in learning functions consistent with -
given determination tree. However, using some negative results in computational learnin
theory, we also show that this positive result does not hold if the tree-structure of determi
nations is replaced by a directed acyclic graph (dag) structure. In particular, under som
widely believed cryptographic assumptions such as the safety of the RSA cryptosystem, w
show that it is, in general, not possible to learn functions that obey a given dag-structure
bias, when the maximum fan-out (out-degree) of the dag that represents the determinatio
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is 2 and the maximum fan-in (in-degree)3sor vice versa. The negative results hold even
when the internal functions are restricted to a very small set of basis functions.

The rest of the paper is organized as follows. Section 2 motivates our work using al
example derivation of tree-structured bias. In Section 3, we will describe the pac-learnin
framework for learning from examples and membership queries. In Section 4, we defin
tree-structured bias and the associated learning problem. Section 5 introduces the conc
of “distinguishing assignments” which is central to our algorithm. The learning algorithm
and the proof of correctness are presented in Section 6. Section 7 presents experimen
results on our system. Section 8 gives an analysis of dag-structured bias. Section 9 discus:
related work, and Section 10 concludes with a summary and future work.

2. Declarative Bias: A Motivating Example

In this section, we motivate the problem of learning a function when a significant amount
of prior knowledge is readily available in declarative form.

The example of this section is adapted from Getoor (1989). A credit card company may
be interested in predicting the expected profits from offering a credit to an individual. The
relevant knowledge base for this domain might contain several facts such as the followinc
expressed in the form of determinations.

{ Loan, Repayments, InitialSchedule} > ExpectedProfit
{ Responsibility, LiquidAssets, Ability, Commitments } > Repayments
{ InitialBalance, IncomeHistory, MonthlyExpenditure } > LiquidAssets

Using the above knowledge base and an inference engine that can compose determinatio
it is possible to construct a derivation tree that shows the functional dependency betwee
the root attributeexpectedProfit and the primitive input attributes such @scupation,
Education, and Age. Figure 2 shows a determination tree which is based on such a
derivation.

The determination tree merely shows the functional dependencies in the domain and t
itself is not sufficient to predict the ExpectedProfit from the primitive attributes. But it is
an immensely useful bias. In the presence of such a strong bias, and when an oracle ¢
answer queries about a few hypothetical persons, it is possible to learn a function that ce
make this prediction with only a small number of examples.

In the rest of the paper we show how this might be done when all the attributes are binar
and the derivation is tree-structured. The functions at each node of the determination tre
should all belong to a learnable class and satisfy some mild closure conditions. On th
other hand, it appears that it is necessary for the derivation to be tree-structured in that eve
mild deviations from the tree-structure could make the learning problem computationally
intractable.

3. Learning from Examples and Membership Queries

In this paper, we will be using a version of probably approximately correct (PAC) learn-
ing (Valiant, 1984), extended to include membership queries (Angluin, 1988). We restric
ourselves here to learning Boolean functions.
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ExpectedProfit

Loan InitialSchedule
Repayments
Responsibility LiquidAssets Ability Commitments
Age  Upbringing Health Insured?

Dependents

e IncomeHistor
CreditHistory Y InitialCommitments

InitialBalance MonthlyExpenditure

Occupation Initialincome

Gender Education

Figure 2. A determination tree derived from a knowledge-base of determinations in the credit card domain. The
determination tree provides a strong bias to the learning algorithm.

An assignmenis a mapping from attributeB;, . . . , B, to their valuesirt = {0,1}. X"
denotes the set of binary strings of lengthEach string in™ represents an assignment,
where the” bit of the string is the value aB;. Let F,, be the set of functions fro™ to
¥ that we are interested in learning. The parameterized sequercér,..., Fn,...}
is called afunction spacefi, ..., F,, ... are called thsubspacesf F.

We call representations of functions “formulas.” Formulas are assumed to be compose
of the input attributed3,, . . ., B,, as well as some other fixed symbols suciAa®, OR,
etc. The length of a formulais the number of symbols in the formula and is denoted by
|r|. We fix a representation langua@efor functions inF. LetR,, be a set of formulas that
represent the functions if,,. We define thesize| f|z of a functionf € F,, in R to be the
length of a minimum-length formula iR,, that representg. We will omit the subscript
where no confusion can arise.

We assume an oracle called EXAMPLE that takes no arguments and generates a p
(z, f(z)) wherez is an assignment ix™ chosen according to some fixed, but unknown,
probability distributionP, andf € F,, is the target function.

Definition 1. Given a target functiory, the error of a hypothesig according to a
probability distributionP is the probability thaff andg disagree on an instance randomly
chosen using the distributialt, and is given by, s () 242y £(2)-

Following Angluin (1988), we also assume another oracle called MEMBER that takes
any assignment € X" as input and outputg(x), wheref € F,, is the target function.
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We now formally define the predictability model with membership queries that we will
be using.

Definition 2. For a function spacé and its representation langua@e if there is an
algorithm M that, given an error parametera confidence parametérand the problem
sizen, for all target functionsf € F,, and all probability distribution#,

(i) makes a number of calls to EXAMPLE and MEMBER that is polynomiahjnf|=,
1 andi
€’ 5?

(ii) runs for time polynomial im, | f|=, 1, §, and

(iif) with probability at leastl — § outpus a a representation of functigrthat has error at
moste according toP and is computable in polynomial time,

then M is said topwm-predict(pac-predict with membership querieg)under the repre-
sentatiorfiR. F, represented ifR, is said to bggwm-predictableinder these conditions.

Definition 3. If a function classF represented ik is pwm-predictable by an algorithm
without making any calls to the MEMBER oracle, théris said to bgac-predictable

If F is the set of all functions represented by the sentenc@s thhen we say thak is
pwm- (or pac-) predictable to mean thtrepresented iR is pwm- (or pac-) predictable.
Note that the output of the learning algorithrmeed not be in the languagde,, but g(z)
must be computable in polynomial-time for amy This is what distinguishegrediction
fromlearning and is sometimes called representation-independent learning. In this pape
we are interested in prediction algorithms, and by “learning algorithm,” we actually mean
algorithms for pwm- or pac-prediction. The words “learnable” and “predictable” are used
synonymously from now on.

Definition4.  Afunctiong isconsistentvith a set of exampleSif V(z, 0) € S, g(z) = o.

Definition 5. A prediction algorithm ionsistenif it always outputs a representation
of function g that is consistent with the set of input training examples.

Typically, prediction algorithms work by finding a small formula that is consistent with
a sufficiently large set of random examples.

Definition 6. A compressioralgorithm for a function spac& represented ifk is any
algorithm that takes as input the size f|z of any target functiorf € F,,, the confidence
paramete® such thatd < ¢ < 1, and a set ofn distinct examples of, runs in time
polynomial inn, | f|x, % andm, and with probability at least — § outputs a hypothesis
g represented in some langua8é where,g is consistent with the input examplég|z-
is bounded by a polynomial “expansion” functiptn, | f|z ) and is independent of, and
g(z) can be evaluated on any instanci time polynomial inn and|g| .
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A compression algorithm can optionally call the MEMBER oracle and is charged 1 unit
of time for each such call. In that case, it is calledvem-algorithm(compression with
membership queries).

If F is the set of all functions represented Ry then we call a compression (or cwm-)
algorithm forF represented iR, a compression (or cwm-) algorithm f&.

Note that the size of the hypothesis output by the compression algorithm should grov
slowly with the size of the target function and should be independent of the number of
examplesn. More general definitions allow it to grow slowly with the number of examples,
e.g., according t®(m®), whered < « < 1 (Blumer, Ehrenfeucht, Haussler, & Warmuth,
1989). Thus, compression algorithms compress the training sample into a reasonab
small hypothesis and are sometimes called “Ockham algorithms,” hamed after William o
Ockham, the original proponent of “Ockham’s Razor.”

The next theorem follows from the results of (Blumer et al., 1989) and establishes that
compression algorithm can be easily converted into a prediction algorithm by making sur:
that it is called with a sufficiently large random sample.

THEOREM 1 (BLUMER ET AL.) Let f be any target function itF,, representable iR
with ¢ distinct primitive symbols, ang be the polynomial expansion-function defined in
Definition 6. Then, any algorithm that takes as inputs, J, and the sizef|, calls a
compression (or cwm) algorithm with a random exampleésisizel (p(| f|, n) In c+1In 2)
and a confidence parametér and outputs the resuidtthat is polynomial-time computable
is a consistent pac- (or pwm-) prediction algorithm fer

The above theorem suggests that we need a sample whose size grows Iineaiflwwith
the size of the output hypothesis. Tlbg factor isln 2 instead of the usuah § because the
compression algorithm might itself fail to find a consistent hypothesis with a probability
less thang. With the sample size given in the theorem, the probability that the returned
hypothesis is not approximately correct, given that the compression algorithm successfull
finds a consistent hypothesis, is less t@arAdding the two bounds, the probability that
the algorithm finds a hypothesis which is not approximately correct is les$than

The following “Ockham-converse” result of Schapire (1990) suggests that prediction
algorithms can also be converted into compression algorithms, albeit through a more con
plex algorithmic reduction that involves running the prediction algorithm several times
using different example distributions.

THEOREM 2 (SCHAPIRE) If Fis apac- (or pwm-) predictable discrete class of Boolean
functions in some representati@) then there exists an efficient, deterministic compression
(or cwm-) algorithm forF in R.

“Efficient” in the above theorem means that it runs in time polynomiab'g% (rather
than in%), in addition to the sample size, the number of inputs of the target functien
and the size of the target functidfy in its representation language. The output hypothesis
can be evaluated in time polynomialsnand the size of the original target function.

Having established the relationship between prediction and compression, we now defir
some specific properties of the functions and function spaces in order to characterize tt
conditions under which our algorithm works correctly. We begin with the following.
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If z andy are two complete assignmenis< y if and only if the value assigned B;
by x; is < the value assigned tB; by y;, for eachi. A Boolean functionf is monotonef
f(z) < f(y), whenever: < y.

A Boolean formula over a set of input variables is a possibly nested expression forme
from a set of primitive terms that represent “basis functions,” each of which can take any
number of arguments, which can be input variables or other Boolean formulas.

A Boolean formula is monotone if the basis functions are composed only from AND and
OR.

It is easy to see that monotone Boolean formulas represent monotone Boolean fun
tions. In addition, every monotone Boolean function is represented by a monotone Boolea
formula.

Definition 7. Given a formular, the complement of is the formular, obtained by
negating it. The length of the formutais denoted by7| and is equal td + |r|.

The complement of a function is the function obtained by complementing the output of
the original function for every input, and is represented by the complement of any formulz
that represents the original function (as well as possibly other formulas).

Note that the above definition implies that the complement of the complement of a functior
f is f itself. This means that bothandr represent the same function.

Whereas theomplemennegates the formula, @ariable negationnegates the input
variables of the formula.

Definition 8. Given a formular over a set of variableX and a subselV of X, the
variable negatiorof » with respect tdV is the formula obtained by negating all occurrences
in 7 of the variables if¥. Its length is equal toiV| + |r|.

The variable negation of a functigfi with respect toll/ is the function obtained by
applying f after complementing the variableslivi. The variable negation of any formula
for f with respect td¥ represents the variable negationfofvith respect taV'.

A projectionof a function treats some input variables as always fixed. Here we restrict
ourselves to projection t@rather than t@ or 1.

Definition 9. Given a formular over a set of variableX and a subsel’ of X, the
projectionof r with respect tdV is the formular'” obtained by replacing all occurrences
of the variabledV in r with 0's. Its length is the same as thatiof

The projection of a functiorf with respect tdV is the function obtained by applying
after fixing the input variables i/ to 0's. The projection of a formula fof represents the
projection off.

Definition 10. A representation language is closed undecomplement (or variable
negation or projection), if, for every formutan R ,,, the complement (or variable negation
or projection with respect to any subset of its variables) isfalso inR,,.
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Definition 11. A function spaceF is closed undecomplement (or variable negation
or projection), if, for every functiory in F,, the complement (or variable negation or
projection with respect to any subset of its variablesj of also inF,,.

Definition 12. The closure of a representation language under complement (or
variable negation or projection) is the minimal langu&geé which includesR and is
closed under complement (or variable negation or projection), in that every language whic
includesk and is closed under complement (or variable negation or projection) is a superse
of R*.

Definition 13.  Analogously, theclosure of a function spac& under complement (or
variable negation or projection) is the minimal function sp&c¢ewhich includesF and is
closed under complement (or variable negation or projection).

Consider the space @&DNF functions, which is known to be learnable-DNF is the
space of Boolean functions that can be expressed as disjunctions of conjunctions of at mc
k literals (Valiant, 1984). For examplel B + BC + DE is a 2-DNF formula. It is easy
to see that-DNF is closed under projection. Setting an inputcauses all the terms
that contain the positive literal of that input to disappear, and all the terms that contain it:
negated literal to drop that literal from the term, leaving a formula that still represents &
function ink-DNF. It is also easy to see that it is closed under variable negation, becaus
complementing any subset of the literals ik-®NF function expression does not change
its k-DNF property. Howeverk-DNF is not closed under complement. For example, the

complement of the previous functionisB + BC + DE =(A+ B)(B+ C)(D+ E) =
AC D+ AC E+ BD + BE, which is not expressible in 2-DNF.

Let 7 be a function space representedRnand F* be its closure under complement
(or variable negation or projection). It is easy to see that the size of any function derivec
by complementation (or variable negation or projection) from a funcfien 7, in the

corresponding closurR* is at most linear in the size gfin R.

LEMmMA 1 If afunction spaceF represented in the languagde is pac (pwm) predictable,
thenR'’s closure under complemerR*, has a compression (cwm) algorithm.

Proof: By Schapire’s Ockham-converse result (Theorem 2), sfidde pac (pwm) pre-
dictable, it has a compression (cwm) algorithm, shyWe show that we can construct a
compression (cwm) algorithm fé2* using.A as a subroutine.

Every target formula irR* has a functionally equivalent formula, which is not bigger
than the original formula, and is of the forfror f, wheref is a formulainR. To learn the
function spaceF* represented bR *, we run two copies afd for timep(n, | f|z, log 5, m)
wheren is the number of features of each exampteis the number of exampleé,is the
confidence parameter, apds the polynomial upper-bound on the running timebofThe
first copy assumes that the target functjois represented i® and tries to learn it directly.
The second copy assumes that the target is representediasre f is in R. Hence, the
second copy turns the examples of the target into the exampfdsyodomplementing their
output bits, runs4 on them, and returns the complement of the learned formula4 {f
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a cwm-algorithm, all the answers to the membership queries are similarly complemente
before being passed on to the second copyl §f

Since the target function is equivalentftor f at least one of the two copies must terminate
in the above time bound, and output a hypothesis consistent with the input example set wi
probability at least — 4. Consistency can be checked easily by evaluating the hypothese:s
output by the two copies on the input examples for time determined by the upper boun
on the evaluation time (which is a polynomial in the hypothesis and example sizes). Thit
serves as a compression (cwm) algorithnRdrsince at least one copy returns a consistent
hypothesis with probabilityi — §, and it can be easily determined which one it is by
checking it against each example. In case both of them are consistent, one can be return
arbitrarily. O

Unfortunately the corresponding results are not known to be true for closures unde
variable negation and projectidn.

4. Tree-Structured Bias

In this section, we present formal definitions of determinations and tree-structured bias, i
the propositional setting. A complete summary of notation is given in Table 1.

Let an objectz be described by a set of input attributBs, . . . , B,,, whose values are
denoted byB; (z), ..., B,(x). The task is to predict the value of the output attribdte
for x.

Out of the many types of determinations Russell defined, in this paper, we are concerne
with what may be called a “functional” determination (Russell, 1989). This is defined as
follows.

Definition 14. A set of attributes{ P, ..., P} determines?, if there is ani-input
function f such thatvx Q(x) = f(P1(x),..., Pi(x)).

Intuitively, the above determination says that some subset of attritbjtes. , P, are
sufficient to predict the value @ for any objectz. Thus, if there are two objectsandy
that have exactly the same values f . . . , P, then they will have the same value 19r
Note that this leads to a first-order characterization of the determination:

Vo,y (Pi(z) = Pi(y)) A A (Bi(x) = Pi(y) = Qz) = Qy)

There are many examples of such determinations: the nationality of an individual migh
determine her language; the model, year, and make of a car determine its list price; th
inputs of a combinatorial Boolean circuit determine its output; and so on.

The most important property of determinations for our purposes is that they reduce th
set of functions that the learner has to consider by identifying the relevant features. If th
nationality of a person determines her language, then the learner need not consider functio
that map different people of the same nationality to different languages, since they are n
consistent with this determination. Since learning occurs by filtering out functions that are
not consistent with the training examples, the more constraining the determination, the fewe
the examples needed to filter the remaining functions. As we stated in the introduction, i
the determination for the target concept is derived by a tree-structured derivation such th;
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the number of children of each node is bounded bthen the number of examples needed
for pac-learning is linear in the number of leaves (which may, in turn, be much less thar
the total number of observable features).

If i is a node in the tree structurg let A; represent the attribute atand leti,, . .. , ;)
represent the children of Let Ay denote the target attributd’; represents the subtree of
T rooted at nodé. HenceTj, is the same a%. Then input attributes are all distinct and
are denoted bysy, .. ., B,,. During learning, the input attributd?y, . . ., B,, and the target
attribute A, are observable, and the other internal attributeare not. The set of all input
attributes other than the leavesfis called thecontextof T;.

A partial assignments a mapping from the input attributé®3;, ..., B, } to {0, 1, *}.
The attributes that are mappedt®r 1 by the partial assignment are callddfined and
the restundefined

Therestrictionof an assignment to a subtred’;, denoted byt;, is a partial assignment
where the leaves @f; are assigned to their values undeand the rest of the input attributes
are assigned te's.*

If z andy are two (partial) assignments; extended by’ denotedz/y, is a (partial)
assignment that maps an attribi®eto B;(z) when it is defined (not equal te”) and to
B;(y) otherwise.

Note thatz/y is defined exactly for those attributes that are defined for eithery.
When an attribute is defined for bothandy, the value undes: overrides that undey.
Hence the operatiory* is associative, but not commutative in general.

Definition 15. A determination treés a tree structur&’ of attributes such that the root
of the tree is the target attributk,, the leaves of the tree correspond to the input attributes
By, ..., B,, and for every non-leaf noddn the tree the set of attributes at the children of
i, {Ai,. .. ,A%)}, determinesd;.

The functionf; from the attributeg 4;, , . . ., Ail(i) }to 4, is called an “internal function.”
Given a treel’ and a set of internal function, f1, ..., atnode®), 1, ..., there is a unique
“external” function from the input attributes of the tree to any internal attriblyte We
denote this external function kwif, and drop the superscrigtwhen it is clear from the
context. Hence,

T/ (@) = Ti(x) = fi(T](2),..., T] (@)
for all inputsz. Note thalT({ is the same a%7, and for all leaf nodes T;(z) is the value
of the only defined attribute af;.

The number of children of a node is calledfas-inand the number of parents of a node is
called itsfan-out Thefan-in of the tree is the maximum fan-in over all nodes. Tée-out
of the tree is the maximum fan-out over all nodes, which is 1. To nontrivially constrain
the set of allowed functions, the fan-in of the tree was originally restricted to a coistant
(Russell, 1989; Bshouty et al., 1992; Tadepalli, 1993) —#¥SB bias. In this paper, we
consider a generalized tree-structured bias in which the nodes have arbitrarily large fan-in
We restrict the set of allowed functions by assuming that the internal functions belong to
function space that is itself learnable from random examples and membership queries.
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Table 1.A Summary of the notation used in the paper

Notation Meaning
F A space of functions
Fn A subspace ofF, where each function hasinputs
Rn Formulas of functions ovet inputs, represented iR
A; The internal attribute at node
Ao The root (target) attribute
B; The input attribute at the leaf node
T; A restriction of assignment to T;
z/y An assignment where input attribute values undéf not = *’)
override that undey.
z An assignment which i8 everywhere
1 A special distinguished symbol to denote “unknown”
i 4" child of node;
1(7) Number of children of nodé
nr Number of internal nodes of the determination tree
n Number of leaves of the determination tree
fi Target internal function from the children dfo ¢
gi Learned internal function from the childrenofo ¢
d(z) Distinguishing assignment of node
sign(i) The output of the target function a3 /d(4); sign(0) =0
D; Children ofi with unknown distinguishing assignments.
fiD'i Projection off; with respect to the inputs iB;
T; = Tif The external function from the leaves of subtree rootedatA; induced by the
internal functionsfy, fa, . ..
T = Tg The external function from the leaves of the treeti@induced by the internal
functionsfi, fa, ...
(zi,04) An example (input-output pair) of functidﬁif
Si Training examples (input-output pairs) for the funct[Bﬁ
Tl,f(m) The value ofA; onx, where internal functions arf, fa, . . .
T The set of target functions induced by the internal functioris in
TSB-2X The TSB-2 algorithm that uses X to learn the internal functions

Let the internal functiong; be chosen from a function spagerepresented in some
languageR. Following the literature on read-once formulas, we call the function space
the “basis” (Hancock & Hellerstein, 1991; Bshouty et al., 1992, 1995).

The hypothesis space represented by the tree-structured liad the internal function
spaceZ is just the set of all external functions at the root node definable by choosing
functions fromZ for each node in 7.

Definition 16.  The set of functiongduced bythe function spacé over the tree structure
T, denotedl'”, is given by{T| f; € Z,(; for all nodes of T'}, whereZ, ;) is the subspace
of functions inZ with {(7) inputs.

We assume that the functioﬂsf are represented in the natural fashion; by the repre-

sentation off; followed by the representations of functidﬁé, o ,Ti{ o in parentheses.

We denote byT'™® the set of representations @ﬂ , Where the internal functiong; are
represented in the language
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Figure 3. Transforming the target formula so that each of the intermediate nodes in the determination tree output
0 on the null assignment. The transformation increases the length of the formula at most by twice the number ¢
intermediate nodes in the determination tree.

The size of a functiofi’’, represented in this fashion is the sum of the sizes of all internal
functions in the subtre®;. This measure of the function size is justified since we already
know the tree structure and;’ | would be known if we know each of the internal functions.
Note that we count all internal nodes, even if they compute a constant function. Since
every internal function needs at ledshit to represent itlTif| is greater than the number
of internal nodes irT;.

We are interested in learning the set of functi@is represented b§™ from random
examples and membership queries for any arbitrary tree-structure@ biascontrast, to
learn read-once formulas the algorithm has to learn the determinatidfi,tvéleich is also
called the “skeleton” of the read-once formula, and the functiohsin other words, it has
to learn the functions it 77, whereT varies over all possible determination trees. In
this paper, we examine the effect on learning of having the skeléwmsprior knowledge.

Definition 17. A null assignmenis a special assignment where every input attribute is
set to0. We denote this by the symbel

Note thatz; denotes the partial assignment where the leaves of the sib@eeassigned
to 0's and the rest of the inputs are undefined. We call the non-root internal nodes of the
determination tree the “intermediate nodes.”
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Definition 18. A representation of a target functidﬁ’ is well-behavedf for all
intermediate nodes 77 (z;) = 0.

We now prove a lemma that lets us assume, under some conditions, that the representat
of the target is well-behaved, i.e., all intermediate nodes evaludite ¥chen the leaves of
the subtrees under them are set’'®

LEMMA 2 LetR be the language of the basis functions of the target hypothesis gace
and letR* includeR and be closed under complement and variable negation. For any
target formuIaT({ € TR, there exists a functionally equivalent formdi§ € 7", such

that (a) 7§ is well-behaved, and (b) for any internal nodldg;| < |f;| + (i) + 1, where

1(¢) is the number of children af

Proof: The proof is by construction. Starting with the bottom of the determination tree,
we replace each internal function in the tree until the conditions of the lemma are satisfiec
Assume that; is one of the bottom-most intermediates nodes in the determination tree

such thaﬂ“f; (zi;) = 1, which violates condition (a). We can introduce two successive NOT

gates at the output of nodg without changing the target functid]’bf computed by the
original formula (see Figure 3). If we defimg, asf thean (zi;) = 0. We repeat this

for each child ofi which outputsl on null input. LetW be the children of whose internal
functions are thus replaced. We then replgogith its variable negation with respectii.

This ensures that the external functions computed at hadd at the root of the tree do not
change. We repeat the above process until all the intermediate nodes satisfy this conditio
This process terminates because nodes are replaced in a strictly bottom-up fashion. Sin
at each internal node we added at most one NOT gate to its output and one NOT gate to
each of its inputs, the size of the formula increases at mo&tipy- 1.

Since we replaced the internal function formulas only by their complements and variable
negations, the new internal functions are all represent@jrand the new target formula
isinT® .o

Figure 3 shows this transformation on an example tree. The dashed boxes in the rigl
half of Figure 3 represent the new internal functigpsg, , andg., which are derived from
fo, f1, and f5, by complementation and variable negation. It is easy to check that the
transformed circuit is functionally equivalent to the original one and is well-behaved.

5. Distinguishing Assignments

In this section, we motivate and introduce the idea of “distinguishing assignments,” which i
closely related to controlled experimentation in science and forms the basis of our learnin
algorithm.

5.1. Definition and Properties

The main problem in learning with a tree-structured bias is that the non-root internal at:
tributes in the determination tree are not observable. The basic idea behind our algorithm
that an internal node (e.g4,, in Figure 4) can be made effectively observable by finding
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Figure 4. Distinguishing assignment for nodg: changing the values of the leaves of the middle sulifigeto
0’s changes the values of all the attributes in the path figto the root.

a context, i.e., an assignment to all input attributes other than the leaves under that nod
for which the value of the root attributé, changes whenever the node’s value changes. In
Figure 4, assume that changing the values of the leavés o6 0's while keeping the rest

of the leaves at the specified values changes the value of the root attipérem 0 to 1.
Since all the paths from the leaf nodesiof to the root pass through, in order for the
value of4, to change, the value of;, must have changed. Under these conditions, we call
the original assignment distinguishing assignmeifior nodei, and denote it withi(is).
Since the value off;, is assumed to beéwhen the leaves df;, are set td)’s, it must have
beenl originally. Since the value ofi;, determines the value of, under a fixed context,
the values ofd, and 4,, are alway®ppositef the context ofT;, is set according td(is).

We denote this situation withign(i5) = 1. If, on the other hand, setting the leavesiaf

to 0’s changes the value of the radt from 1 to 0, then the values of, and4,, are always
identicalin the context ofi(is), andsign(iz) = 0.

Thus, if a distinguishing assignment and a sign for an internal nodee known, then
the value of4, can be used to “read off” the value df;, for any input at the leaves of
T;, by setting its context according tf{i>), making A;, effectively observable. For the
distinguishing assignment(i,) in Figure 4, sincesign(iz) = 1, if Agis1, thenA;, must
be 0 and vice versa. A distinguishing assignment for a ngdalso makes it possible to
“control” its value. To set the value of;, to 0, we can simply set all leaves @, to 0's.

To set it tol, we set them according t{iz).

We are now ready to formally define distinguishing assignments and make the abov
intuitions more precise. Recall that/« in the following definition refers to an assignment
that maps the input attributes under the subffeéo 0’s and all other input attributes to
their values undet.

Definition 19.  For a determination tre€, and an intermediate nodean assignment
x such thatl'(z) # T(z;/x) is called adistinguishing assignmefr ¢, and is denoted by
d(i). If d(i) is a distinguishing assignment for7'(z;/d(:)) is called the corresponding
signof nodei and is denoted byign ().
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Note that thesign of a node is always associated with a particular distinguishing as-
signment in that the same node might have different signs for different distinguishing
assignments.

ProrosITION 1 Leti be any intermediate node in a determination tiegvith a distin-
guishing assignment(i) and signsign(). Then, for any assignmentsandy,

1.1. Ti(z) = Ti(x;) = Ti(x /y).

1.2. Ti(d(i)) = 1.

13, Tag/d(i)) = T(y:/d(0) <= Ti(x) = Ti(y).
14. Ty(z) = T(z;/d(i)) ® sign(i).

1.5. T(x;/d(i)) = Ti(z) @ sign(i).

Proof:

1.1. Thisistrue because only the leaves of the subittéefluence the value of nodeand
the assignments, z;, andz; /y all have the same values for these leaves.

1.2. Because of the tree structure of the determinations, for any intermediate,raitie
paths in the tree from the leavesBf to the root go through the node Sinced(i)
andz;/d(i) differ only in the values of the leaves f, the change in the value of the
root node off" can only be caused by a change in the value of nodEhis implies
that T;(d(i)) # Ti(2:/d(i)). SinceT(z;/d(i)) = Ti(z;) = 0, T;(d(z)) = 1 by
Definition 19.

1.3. (<) By Proposition 1.1T;(z) = T;(y) iff T;(x;/d(i)) = Ti(y;/d(i)). Since
x;/d(i) andy; /d(7) differ only in the leaves of;, and since all paths from the leaves
of T; must go through the nodedo reach the root, if the nodehas the same values for
x;/d(i) andy; /d(i), then the root has the same values as well.

(=) Suppose thatl'(x;/d(i) = T(y;/d(i)) and T;(x;) # T;(y;). Without loss of
generality, letT;(x;) = 0 = T;(2;) so thatT;(y;) = 1 = T;(d(¢)) = T;(d(¢);) by
Propositions 1.1 and 1.2. By the proof of tke= case, T (z;/d(i)) = T(z;/d(i))
andT'(y;/d(i)) = T(d(i);/d(i)) = T(d(3)). Since we assumed th@t(x;/d(i)) =
T(y;/d(7)), it follows thatT'(z;/d(:)) = T(d(z)), which contradicts the definition of
d(i).

1.4. If T(z;/d(i)) is the same asign(i) = T(z;/d(i)), then by the second par=t)
of Proposition 1.3,T;(x) = T;(z;) = 0. Otherwise, by the first part=) of
Proposition 1.3T;(z) # T;(z;), which meansT;(z) = 1. Hence, in either case,
Ti(x) = T(xi/d(i)) & sign(i).

1.5. This is a straightforward consequence of Propositior.4.

Proposition 1 suggests that a distinguishing assignment for an intermediaté givele
us the abilities tewontroland toobservehe value of4;. Control, i.e., settingl; toO or1, is
possible by setting the leavesTfto 0's or as specified id(i) respectively. Observing the
output of 4; for any arbitrary input, i.e., simulating the MEMBER oracle fby, is possible
since switching the value of; switches the target attribute value when the conte4t; a$
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Figure 5. A determination tree and a target function: OR-OF-ANDS.

set according td(7). To observeTl;(x), for any inputz, we set the leaves df; according

to x, and all other inputs according #§:). In other words, we ask a membership query on
the assignment; /d(). This corresponds to asking the value of the root node fousing
the restriction ofi(:) onto the context of; as a “mask”. We then exclusive-OR the result
with sign(i) as suggested by Proposition 1.4.

In Figure 5, the target function is OR-OF-ANDSB; Bs + B3 By. Hence,f; = fo =
AND, andf; = OR. The numbers in the parentheses represent the values of the attribute
for a particular assignmet; = 0, B, = 1, B3 = 1, B4 = 1, which we will write as0111
for convenience. The assignmexitl 1 is a distinguishing assignment for no2lebecause
T(0111) # T(0100) = 0. Hence,A; can be set td by setting the leaves of its subtree,
B3B4, to 11. Its value on any input can be observed because it is always the same as tt
value of Ay when its context3; Bs, is set to01.

Not all intermediate nodes need have distinguishing assignments. For example, in
Figure 5, A; would not have had a distinguishing assignmentsifwere the constant
function1. ThenA, would always bd, independent of the value of,. A node is called
live for a given target function if it has a distinguishing assignmentdaadiotherwise. If a
nodei is dead, thed'(x) = T'(z;/«) for all assignments, which means that permanently
replacingA;’s value withO would not affect the value ofly for any input.

Inthe computational learning theory literature, a similar notion of “justifying assignment”
is used (Angluin et al., 1993; Hancock & Hellerstein, 1991; Bshouty et al., 1992, 1995). A
justifying assignment is similar to the distinguishing assignment except it is defined only
for input attributes, i.e., the leaf nodes of the determination tree. The justifying assignmen
2 for an attributeB; is a partial assignment defined on all other input attributes such that
assigningB; to 0 or 1 changes the value of the target function. If we §& — Y'}/x to
represent the assignment whégis mapped to the valug (which can bed, 1, or ) and
all other attributes are mapped according fthen{B; < x}/x is a justifying assignment
if and only if T'({B; < 0}/z) # T({B; < 1}/x). Note that a change in the value of the
leaf of a determination tree can change the value of the target function only by changing th
values of all the internal nodes in the path from that leaf to the root. HeH{d& if— «}/x
is a justifying assignment faB;, then for all internal nodes in the path from the roof3g
either{B; <« 0}/x or { B; < 1}/ is a distinguishing assignment.
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5.2. Relationship to Controlled Experimentation

It is worth examining in more detail the analogy between distinguishing assignments an
controlled experimentation in science. The goal of controlled experimentation is to discove
the properties of an unobservable “theoretical entity.” Examples of such theoretical entitie
range from fundamental particles in physics to disease states in medicine. Usually th
experimenter has a number of parameters under direct control, such as throwing an elect
switch in a physics experiment or administering a drug to a patient. These independet
variables correspond to the input attributes of our determination tree. Similarly, the experi
menter can also observe some final outcomes. For example, in the physics experiment o
might be able to examine the exposure on a photographic plate. In the medical experimer
the patient’s temperature and blood pressure may be observable as well as other physi
symptoms. These are akin to the observable root nodes of the determination tree.

In controlled experimentation, the scientist relies on the differences of observations be
tween the main “experimental setting” and the “control setting” of parameters to make &
prediction of the theoretical entity. A distinguishing assignment of a node can be understoo
as a controlled experiment with two components of parameter values. One component
the set of values for the so-called “context” variables which should be the same for bott
the experimental and control settings. The other component is the values for the “control
variables that can causally influence the theoretical entity, i.e., the leaves of the determin.
tion subtree under the hidden node in question. The values for these variables are differe
for the experimental and the control settings. To the extent that there is a difference in th
final observations between the two settings, the experimenter concludes that the theoretic
entity has different values in these two settings, is controllable by the control variables, an
has effects that are observable under the current context.

Viewing controlled experimentation in the framework of distinguishing assignments helps
us identify the assumptions behind its use. One important assumption is that every caus
path from the control variables to the observed variable is mediated through the theoretic
entity (no “causal leak”). Otherwise, we are indeed not sure if the difference in observation:
is due to the difference in the states of the theoretical entity or is due to something else
Another important assumption is that there is no causal path from the context variables t
the theoretical entity, or else we will not be able to isolate the effects of the control variable:
on the theoretical entity from those of the context variables (no “causal seep”).

To make things concrete, let us suppose that throwing a switch in a physics experimer
exposes a photographic film. The conditions of the experimental and control settings ar
exactly the same except that in the control setting, the switch is off and in the experimentz
setting, the switch is on. We are confident that the exposure of the film indicates the presen
of a particle to the extent that there is no other causal mechanism that can expose the fil
when the switch is thrown. We can also isolate the settings of the context variables that ce
be used for observation from those of the control variables if none of the context variable
can affect thgoresenceof the particle, only its observation. This suggests that ideally the
electric circuitry that helps bring about the particle’s presence must be causally isolatel
from the photographic equipment that detects its presence, the only mediation between tl
two being through the patrticle.
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Finally, the viewpoint of distinguishing assignments helps us understand the role of som
important phenomena such as the “placebo effect” in experimental science and how the
are usually avoided. The placebo effect can occur when a patient thinks that he is give
a medicine. This mere belief can sometimes influence his own psychological and eve
physiological condition to the extent that he may be observed to be cured even when tt
placebo does not in fact contain any medicine and has no direct effect on the real diseas
One way to understand this situation is to posit two causal pathways from taking the
medicine to the observable symptoms. One pathway is through the physical disease tt
we would like to cure. Another is through some ill-understood psycho-physiological route
that presumably affects the symptoms without affecting the disease. Thus, if we conduc
a study where the experimental gréup given a medicine and the control group is given
nothing, we have the problem of causal leak, i.e., a causal pathway from a control variabl
(of giving medicine) to the observable symptoms that bypasses the disease node. Tht
we cannot separate the effects of the medicine from the placebo effect. The usual way"
avoid this problem is to give pills to both groups of patients, where the pills given to the
experimental group contain the medicine and those given to the control group contain th
placebo. The reason that this avoids the causal leak is that now we have split the contr
variable into two, one of giving the pill and the other of actually putting the medicine in
the pill. Moreover, since giving the pill is common to both groups, it is now a context
variable. Any observed differences between the two groups can now be attributed solely t
the medicine, because it is the only control variable, and the leaky causal path from takin
the pill to the observed symptoms is common to both groups and moved into the context.

6. The Learning Algorithm

In this section, we present an algorithm to pwm-predict the function spdctor any
given tree-structurd’, assuming that is (a) pac-predictable and closed under variable
negation or (b) pwm-predictable and closed under projection and variable negation. |
other words, we always require the basis class to be closed under variable negation and
have a prediction algorithm. If the basis class also needs the MEMBER oracle in additior
to random examples to learn it, then we also require it to be closed under projection.

The learning algorithm works top-down on the determination tree, finding the distin-
guishing assignments for each intermediate node, and learning the internal function at ea
node. Note that if the distinguishing assignments and signs of anyiremtgits children
i1,...,% are known, then we have the ability to set each of the value§ of .., A;, to
0 or 1, and infer the value off;. We can also infer the values df, , ..., A;,, and that of
A; for any random example. Sincg,, ..., A;, are the inputs of;, and 4, is its output,
we can generate random exampleg ofising random examples of the target function. In
other words, we can effectively simulate MEMBER and EXAMPLE oracles for the internal
function f;.5 If f; belongs to the basis that is learnable from examples and membership
gueries, then we can learn it using the simulated oracles. We will see that if the algorithm i
not successful in generating the distinguishing assignment for ainodeng a sufficiently
large sample, then, with high probability,, can be ignored without losing approximate
correctness in predicting the target attribute Under these conditiong;, is set to the
constant functio®. On the other hand, if the algorithm can find a distinguishing assignment
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01 procedure Learn-w-TSB

02 input

03  T; /* subtree rooted at node*/

04 S; I* set of restrictions of instances i1 onto7; and their outputs afi; */
05  d(2) /* distinguishing assignment of nodd arbitrary for the root) */

06  sign(i) /* = the sign ofd(7) (0 for the root)*/;

07 /* Find distinguishing assignments fos children */

08 (S;,d(i1), sign(ir), . .., d(u)), sign(iy))) =

09 Distinguish-Children(T;, S;, d(i), sign(i))

10 /* Decompose examples @f into examples of;; andT} ... ,Tff( N

11 (Internal-Examples$;,, ..., S;,, ) =

12 Decompose-Examples (75, S;, d(i1), sign(i1), . .., d(i)), sign(iymy))

13 for each child:; of
14 ifijisa Ieaf then T = the identity functiorid
15 elseifd(i;) = L then Tg := the constant functiof

16 [* Recursively call nodes with known distinguishing assignments,
17 on restrictions of examples onto the corresponding subtrees */
18 eIseTZ.’;_ = Learn-w-TSB(T5,, S;;, d(ij), sign(ij));

19 end for;

20 /* Learn an approximatiop; for the internal functiory; */
21 g; := Learn-Internal-Function (Internal-Examples)
22 output 77 := (g;, (T2 ,...,T? ));

RO
23endLearn-w-TSB;

Figure 6. The top level algorithm for learning with a tree-structured bias.

for a nodeij, then it can, in effect, observe the value4f for any input. Hence, it can
call itself recursively on sucky. Figure 6 shows the top level algorithm.

The recursive algorithrhearn-w-TSB takes a subtre@&; of the determination tree, the
restrictionsS; of the random example sgtontoT;, a distinguishing assignment and sign
for nodei as inputs (lines 02—-06 of Figure 6). The top-level call is made on the full
treeT, with the example sef. d(0) is any arbitrary assignment ardgn(0) = 0. The
subroutineDistinguish-Children is called to find the distinguishing assignments and signs
of all children ofi (lines 07—09).Decompose-Examples then decomposes the examples
of T} into the examples of the external functidfis, . .., T}, , and the internal functiorf;,
by inferring the attribute values of all children ©tising their distinguishing assignments
and signs (lines 10-12). If a chifd is a leaf, therLearn-w-TSB treats the corresponding
function as the identity functiold (line 14). All non-leaf children without distinguishing
assignments are treated as computing the constant furgtfine 15). The algorithm
recursively calls itself on all other children dflines 16—18).Learn-Internal-Function is
used to generalize the examples of the internal funcfjdo a consistent hypothesis (lines
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20-21). Finally, the algorithm returns an approximatighto the target functiotTif by
putting together the results bearn-Internal-Function and the recursive calls (line 22).
The next three sections describe the algorithm in more detail and prove its correctness

6.1. Finding Distinguishing Assignments

In this section we describe the method for finding the distinguishing assignments for the
internal nodes of the determination tree.

Assume that the internal functions in the target are representable in a larigudgs
R* be a language that includéy is closed under complement and variable negation, and
is pwm-predictable. Then, by Lemma 2, there is a formula with internal functions choser
from R* that is functionally equivalent to the target, such that each intermediate node ir
the determination tree evaluatesGt@n the null input. Hence, from now on we assume
Ti(z;) = 0 for all intermediate nodes and that the internal functions are represented in
R*.

Since the root node is observable during training, a distinguishing assignment is nc
needed for it and can be arbitrarily initialized. However, we find it convenient to initialize
thesign of the root node t0. Note that for the root node, unlike for the intermediate nodes,
T'(z9) may not necessarily beand7’(d(0)) may equall'(zy/d(0)) = T'(zo).

Given a distinguishing assignmediti) for the nodei, and some random example set
S, Distinguish-Children attempts to find the distinguishing assignments and signssfor
children,iq, ..., 14;, in that order (see Figure 7). It does this by “marching” all examples
(e, 0;) frome; /d(i) towardz; /d(i), successively turning the values of leaf nodes of subtrees
whose distinguishing assignments are not foun@ldo For each child; of 7, it compares
the values of4, on the instances; /d(i) andz;, /e;/d(i) for each example (lines 14-15
of Figure 7). (Note thab(i) @ sign(i) = T'(e;/d(¢) in line 15 by Proposition 1.5, since
o(i) = T;(e).) If the value ofAy is different for these two instances fanyexample, then
a distinguishing assignmeititi, ) is found (line 16). When a distinguishing assignment for
i; is found, the value of the target attributly on z;, /e;/d(i) is stored asign(i;) (line
17). For any assignment the value off}, () can be obtained &&(x;, /d(i;)) ® sign(i;)
by Proposition 1.4.

If a distinguishing assignment is not found by this method, then it must be the case that th
value ofA, is unaffectedy the replacement ef; by z;; in anytraining examplée;, o(i)).
Therefore, we can assume without any risk of error on the training examplefsﬁlr‘:that
the constant functiof, i.e., that the nodé; is dead. (We will show this more formally in
Section 6.3.) Inthat caséy(i; ) is left to be_L, each examplée;, 0;) in the setS; is changed
to (2, /ei, 0;) (line 19), and the search is repeated for the distinguishing assignment for the
next child ofi.

For example, assume that the routlrearn-w-TSB is called with the random training
example sef{ (0111, 1), (1011, 1), (0101,0)} for the target function OR-OF-ANDS of
Figure 5. The routind®istinguish-Children gets called with the same training set, with
d(0) initialized to some arbitrary instance arthn(0) initialized to0. It then compares
the outputs of the target function for the three examples with those obtained by setting th
leaves of the subtrees undér and A, to 0's. Doing this for the subtree undel; for the
first example, it asks a membership querydom1 which is answered with & Since this
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01 procedure Distinguish-Children

02 input

03  T; /* subtree rooted at node*/

04  S; I* restrictions of instances if ontoT; with their outputs at4;) */
05  d(7) /* distinguishing assignment of noddarbitrary for the root) */
06  sign(i) /* the sign ofd(4) (0 for the root)*/;

07 /* Initialization */

08 for each child node; of i

09  d(i;) == L; sign(ij) :==0;

10 end for;

11 for each non-leaf child nodg of

12 for each(e;,o(7)) € S; until d(i;) is found

13 * Use the MEMBER oracle to read the output after settingo 0's */

14 let Temp = MEMBER(z;, /e; /d(i))

15 if o(i) @ sign(i) # Temp then { I* Note: o(i) ® sign(i) = T(e;/d(i)
16 d(i;) == e;/d(i); by Proposition 1.5, sinegi) = T;(e) */
17 sign(i;) := Temp; }

18 end for;

19 if d(i;) = L thenreplace eacke;, 0;) € S; with (z;, /e;, 0;)

20 end for;

21 output (S;, d(i1), sign(i1), . .., d(i)), sign(iya))
22 end Distinguish-Children;

Figure 7. Algorithm to find distinguishing assignments and signsi®children.

is the same as the output of the original assignment (whi¢hfissign(0) = 1), it is not

a distinguishing assignment. The query is repeated for the second example with exact
the same result. For the third examg{d01, 0), the query0001 also produces the same
result as the output of the original assignmént sign(0) = 0. Hence, the nodé is
assumed dead, and the example set is permanently chanf@dta, 1), (0001, 0)}. The
search continues for the distinguishing assignments for node 2 with a membership query ¢
0000. This query is answered with(g and since it is not the same as the output of the first
assignmenit)011 is made a distinguishing assignment for node 2sdis: is 7°(0000) = 0.
Hence,Distinguish-Children returns the example s¢t0011, 1), (0001,0)}, d(1) = L,
sign(1) = 1 (which is not used)J(2) = 0011, andsign(2) = 0.

6.2. Learning Internal and External Functions

In this section we describe how the distinguishing assignments for the children of node
¢ are used to learn the internal functignand the external functions of the childreniof
The subroutinddecompose-Examples, shown in Figure 8, decomposes each example
of the external function at nodeinto an example off; and an example of the external
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01 procedure Decompose-Examples

02 input

03 T; /* subtree rooted at node*/

04 S; [* restrictions of instances i ontoT; with their outputs at4; */
05 d(i1) /* = distinguishing assignment of node*/

06 sign(iy) /* =the sign ofd(iy) */

o7 ...

08 ...

09  d(iy4)) I* = distinguishing assignment of nodg;) */
10 sign(iy) I* = the sign ofd(i;(;)) */;

11 /* Initialize the example sets with null instances */
12 for each childi; =iy, ..., 4 of i

13 S, = {(zlj,0>}

14 end for

15 for each examplée;, o(i)) € S;

16 for each childi; =iy, ..., ofi

17 * Find the outpub(i;) of the example at nodg */

18 if i; is aleafthen o(i;) := e,

19 elseif d(i;) = L theno(i;) :=0

20 elseo(i;) := MEMBER(e;, /d(i;)) @ sign(ij);
21 8, = 85, Ulles, oin)

22  end for;

23 Internal Examples = Internal Examples | J{(o(i1) ... 0(iy)), 0(i))}
24 end for;

25 output (Internal Examples, Si,, ..., Si ., );

26 end Decompose-Examples

27 [* MEMBER,; is a simulated MEMBER oracle fof”. */

28 MEMBER; (b1, ..., by;)) = MEMBER(c(i1)/ . .. /c(ii))/d(i)) @ sign(i), where,
29 if bj =0or d(”) = | then C(ij) = Zi;

30 elsec(i;) = d(i;)

Figure 8. Algorithm for finding the example sets for the internal function at noded for the external functions
for the children ofi.

function at each child of. All the examples off; are collected and passed to the prediction
algorithm forR*, calledLearn-Internal-Function. The external functions that correspond
to the children of are learned by a recursive callltearn-w-TSB with the corresponding
examples. In what follows, we elaborate on how this is done.

6.2.1. Generating examples for the internal and external functioAs we said before,
the examples for the internal function at the current node and the external functions at it
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children are generated by decomposing the examples of the external functions of the curre
node.

The procedur®ecompose-Examples of Figure 8 takes the subtrég, the restrictions
of instances ontd@; and their outputs afl;, and the distinguishing assignments and their
signs of children of as inputs (lines 02—10). It starts by initializing the external example set
of each child ofi with null instances witt) output (lines 11-14). The key to decomposing
an example is the ability to infer the outputs of the examples at the children of the curren
node (lines 1524 of Figure 8). Assume that the current notleaisd that(e;, o(¢)) is the
current example for the external functioniatVe want to infer the values at the child nodes
11,12, €tc. There are three cases to consider:

1. Ifi; is aleaf node, then we can directly observe its value (line 18 of Figure 8).

2. If a distinguishing assignment féy cannot be found, theiy is treated as dead. This
means that the value gtfor e; can be assumed to be the same as the valug foe.,
0 (line 19).

3. If a distinguishing assignmedti;) for i, is known, then we can compute the value
o(i;) = Tj, (e) as follows: first, we set the leavesBf according tee; and its context
according tal(i;). Then we call the MEMBER oracle for the output and exclusive-OR
the result withsign(i;) (line 20). This is justified by Proposition 1.4.

Once the value(i;) for each of the children ofis inferred for an examplée;, o(i)), the
corresponding example of the internal functifinis generated a&(i1) . . . o(ii(;)), o(i))
(line 23). Similarly, ateach child} of i, an examplée;, o(i;)) is generated for the external
functionT;; and these examples are collected in theSsetline 21).

In our running example of Figure )ecompose-Examples gets the example set
{(0011,1), (0001,0)}, andd(1) = L, sign(1) = 1, d(2) = 0011, andsign(2) = 0
as inputs. It first initializes the external example setslpfand A, with {(00,0)}. When
processing the examp{@011, 1), sinced(1) = L, the valueo(1) of nodel is assumed to
be0. To compute the value oA, for this example, the system asks a membership query on
an instance where the leaveslof i.e., B3 and By, are set td each according to the current
example, and the context @k, i.e., B B, is set to00 according to the distinguishing
assignment/(2). In this case, the query is answered with.aSincesign(2) = 0, the
value of A, is determined to b& @ 0 = 1, and the examplél 1, 1) is added to the external
example set of nod2. Sinced; =0, A, = 1, and A, = 1, the exampl€01, 1) is added
to Internal Examples of node0.

Repeating the same for the second exanié1, 0), the system determines th&t = 0
and A, = 0. Hence, the exampl&1,0) is added to the sefz, and(00,0) is added to
Internal Examples of node 0. Thus, Decompose-Examples returns with
Internal Examples={(01,1), (00,0)},.5; = {(00,0)}, andS, ={(00,0), (11, 1), (01,0) }.

6.2.2. Learning the internal function To learn the internal function, the main routine
calls the learning algorithm for the basis class with random examples.

In general, the learning algorithm for the basis class might also have to make membersh
queries. Hence, we need to simulate a MEMBERacle for f; using the MEMBER
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oracle for the target functiofi/, and the distinguishing assignments for the noded its
children. Unfortunately, this cannot always be done because some childreh: may

not have known distinguishing assignments, and hence we cannot set these children to
Fortunately, to learn a function that is consistent with the training examples it suffices tc
learn the projection of; with respect taD;, and that is what the algorithm does.

A membership query would ask the outputffor some settings ofs children. The
value of a childi; can be set t® by setting the leaves df;, to 0's. The value ofi; can
be set tol by setting the leaves df;, according to the distinguishing assignmeii; ),
if it is known, which is justified by Proposition 1.2. That leaves the case wiigre is
not known, and the membership query requires the rigde be set to 1. In general,
this is not possible to do without exhaustively searching for a distinguishing assignmen
for i;. As hinted before, we resolve this problem by setting ourselves a less ambitiou:
goal. Instead of learning the functigi, we try to learn its projection with respect 19,
the children ofi with unknown distinguishing assignments. To Ieﬁﬁr’, we never need
to generate a at the nodes irD;, because, by definitiory‘,’lpi ignores the inputs irD;.

For example, iff; is a 4-input function and the first 2 input nodes are indistinguishable,
fPi(xy, 0, w3, 24) = fP7(0,0, 23, 24) = £;(0,0,x3,24). Sowe are justified in fixing the
first two inputs ta0’s, even though the membership query might want them tbsbelhis

is shown in Figure 8, lines 27-30. Note that this approach assumes that the basis class
closed under projection, because otherwise it may not be possible toﬂﬁamsing the
learning algorithm for the basis class.

Thus, to simulate the oracle MEMBERor the projection off;, the program sets the
context ofT; according tai(i). To set4;; to 0, it sets the leaves df;, to 0's; to set it to
1, it sets them according ;) if d(i;) # L, otherwise it sets them s (lines 29-30
of Figure 8). After setting the leaves of edt}) as above and the context'6f according
to d(4), it finds the value of4,, by asking a membership query on the target function, and
finding the exclusive-OR witkign(i) (line 28).

In our running example, sine&1) = L, the external function at; is set to the constant
function0. Then,Learn-w-TSB is recursively called o, with the example sefS; =
(00,0), (11,1), (01,0)}. Since both the children of nodeare leaves, no distinguishing
assignments are needed for them. Eventulkgrn-Internal-Function is called on the
example sef, at node 2, which learns some function which is consistent with it, say, AND.

Learn-Internal-Function is then called with the example sgt01, 1), (00, 0)} for the
internal function at node. In generallearn-Internal-Function gets many examples and
generalizes them using some learning algorithm that possibly asks membership querie
Any membership queries asked by this algorithm would be reduced to membership querie
on the target using the null assignment for the leaveE, aind either the null assignment
or the distinguishing assignment for no2le Suppose that the learning algorithm asks a
membership query for the internal functigmon the inputl 1. Since the learning algorithm
only needs to learn the projection fafwith respect tod, , the output of the projection would
be the same for1 as it is for01. Hence it set$3; B, to 00 and set$33 B, to 11 (as dictated
by d(2)). The membership query on the target is now answered Witthich is passed
on to the learning algorithm after taking an exclusive-OR witiin(0) = 0. From the
internal example set and the membership queries, assumkeeiiat-Internal-Function
learns the functiorf, to be simplyA, (which is consistent with the input exampl@d, 1)
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and(00, 0)). Learn-w-TSB puts this together with the constant functi@fearned at node
1 and the AND function learned at no@eand returns the functioBs;B,. Note that this

is consistent with all the input examplé®l11, 1), (1011, 1), and(0101, 0), although it is

not the target function.

6.3. Proof of Correctness

In this section we prove that our algorithm learns the space of funcfiérisduced by the
basis clasg over the determination treéE if a few technical conditions hold. The plan of
the proof is as follows. We first prove an important lemma that shows that given a consister
compression algorithm faR*, Learn-w-TSB outputs a hypothesis that is consistent with
its training set and the determination tree, and is at most polynomially longer than an
well-behaved target formula. Using this lemma and Lemmas 1 and 2, we then show the
if a closureR* of the languag&R of the basis class under some operations is predictable,
thenT™ has a cwm-algorithm. We then appeal to the general result of Blumer et al. (1989’
to show that given a reasonably small sample, this algorithm pwm-predicts the space c
Boolean functions induced by the basis class over any given determination tree in timi
polynomial in various parameters including the size of the target function.

LEMMA 3 LetT be a determination tree anﬂof be a well-behaved target formula rep-
resented i"*. LetLearn-Internal-Function be a deterministic, consistent, compression
algorithm forR. If Learn-Internal-Function needs to ask membership queries, we require
R to be closed under projection. lflearn-w-TSB is called on a subtre&; with a set of
training examplesS; of 7}/, then the formula it returnsT?, is consistent withS; with
probability at leastl — Size(T;)d’, whereSize(T;) is the number of internal nodes i}
and1 — ¢’ is the lower bound on the confidence thaarn-Internal-Function outputs a
formula which is consistent with its input training set.

Proof: We prove the result by structural inductionorNote that the examples B} consist
of the restrictions of the input instancesfg and their outputs at node

The lemma is trivially true ifi is a leaf node, sinckearn-w-TSB always returns the
identity function, which is the correct function for the leaf nodes. Assume that the lemma
is true for all subtrees df;. That is, for all subtree®;, of T; assume that the hypothesis
generatedi(”i) is consistent withS;, (with the given probability). We prove that the
hypothesis generated Inearn-Internal-Function for 7; (namely,77) is consistent with
S;, again with the given probability. In other words, we will show that for eacim S,
the target and the hypothesis external functid?fsande, agree on the classification of
e, i.e., T (e;) = T?(e;), with a high probability.

We do this by appealing to the fact thigtcan be decomposed into an internal function of
the external functions of its children, since for any exarepld; (e;) = f; (T3, (es,), Ty
(eiz i ))

Lée% D; = {ij1,...,i;1}, be the children of in left to right order for which the distin-
guishing assignments have not been found. Then, the learned external function for the:
nodes is the constant functién We begin by showing that far;= z;,, /... /2, /ei, the

target classifies; andz; in the same way, i.eZ/ (¢;) = T/ (x;) for all ¢; in ;.
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Notice that the algorithm finds a distinguishing assignméfit) for a nodei; only
if T'(d(i;)) # T(zi,/d(i;)). This is so because in the algorithidistinguish-Children
of Figure 7 (line 15)Temp = T'(z;, /e;/d(i)), ando(i) @ sign(i) = T;(e) ® sign(i) =
T(e;/d(i)) by Proposition 1.5. Hence any distinguishing assignment found by the algorithm
must be correct.

Recall thatDistinguish-Children replaces the variables under any child ér which a
distinguishing assignment has not been found wih(Figure 7, line 19) for all examples
before processing the subsequent children @inceDistinguish-Children had failed to
find distinguishing assignments for nodesI when called on the subtrég, it would
have successively replaced the variables under the nodeswith 0’s for all examples.
Since the test in line 15 of Figure 7 had failed for all node®ijn for all examplege;, o)
in Sy

T (eifd(i)) = T (z1,, fesd(0) = T (200 /21,0 fei (D))
— =T (s ) 2y, fei]d(i).

By substitutingz;x/ . .. /z;1/e; for z; ande; for y; in Proposition 1.3, we have

T (zip) - 2y fei)d(i)) = T (ei/d (i) = Tf (zi, ] - .- [ 23,0 Jei) = T} (e2)

Since we have just showed that the left hand side of the above implication is true, it follows
that

Tif(ei) :T Zz]k/ /ZzJ1/ez

Sincezijk/ e /zijl/ei = Z;,
Tif(ei) = Tif(xi) = fi(Ti{ (xh)’ s 7Tz{(,)( iz(z‘)))-

Since for any node; € D;, z;;, = z;, andTigj is the constant functiof (see line 15 of
Figure 6), we have

T/ (wi,) = 0="TI (e;,) for alli; € D; (1)

Let us define a “proper run” to be one where the learned external functi@atisobildren
of 4 on whichLearn-w-TSB was called are consistent with their training examples. By
the inductive hypothesis, the probability of this occurrence is at Ieasi’z Size(Ts;).
Hence, in a proper run,

T (i) = T (e;,) = T (es,) for all i; ¢ D; )

Combining the equations 1 and 2, we conclude that in a proper run, for all childoé,
Tl (i) = T (es,)-

From the example;, if I(:) is the number of children of, Learn-w-TSB generates
the example(T; (z,) ... T  (wi,), T/ (e;)) for Learn-Internal-Function. If Learn-
Internal-Function is called with a confidence paramet€r it finds a consistent function
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g; with probability at least — §’. Hence, when there was a proper run, with probability at
leastl — ¢,

Tif(ei) = fZ(ﬂ{ (xi1)7 cee 7Ti{(i) (xiz(l))) = gi(Tz{ (1‘7;1), s 7Ti{(i) (xil(i)))
= gi(T} (eir), - T (ei,))) = T} (e3) 3)

To complete the induction step, we have to compute the total probability that the abov
might fail. It is the sum of the probability of the run being improper, and the probability
of Learn-Internal-Function failing to find a consistent hypothesis. This is at mi$t +
>, Size(T;;)) = §'Size(T;). Hence with a probability at leagt— Size(T;)d’, T7 is
consistent with the examples ).

Now, let us consider the case whérsarn-Internal-Function asks membership queries.
Answering membership queries for a functirequires the program to set the inputs of
fi to required values, and read the output at nbd&Vhen a distinguishing assignment
and sign of node are known, itsoutputon any assignment is T'(z;/d(z)) & sign(i)
by Proposition 1.4. Sinc&(z;/d(i)) and sign(i) = T(z;/d(i)) are both known by
membership queries to the target function, the output at higdasy to infer (Figure 8, lines
27-28). Setting thinputsof f; appropriately is more of a problem. When a distinguishing
assignment for a nodg is known, then it can be set tbor 1 by setting the leaves of
T;, according toz or d(i;) respectively. However, when a distinguishing assignment for
i; is not known, it cannot be set io Hence, wherR* is only pwm-predictable, instead
of learning the functiory;, Learn-Internal-Function is called to learn its projection with
respect to nodeB; for which the distinguishing assignments have not been fouri.isf
closed under projection, the projecti¢ﬁi of f; isin R and has the same size s Thus
Learn-Internal-Function can efficiently find a functiomy; that is consistent WitIfiD'i on
the input examples. SincﬁDi and f; behave the same way when the inputdipare set
to 0, we can still conclude the following for any; = z;,, /... /zi;, /ei, with probability
1—¢’, as in Equation 3:

T/ (ei) = filT](xi),- - T (i) = £ (T (i), T (i)
= gz(Tz{ (xil)» R Tz‘{m (xiz(i))) = gl(Ti (6i1)7 s 7Ti€(i) (eil(i))) = ng(el)

Note that any membership query ff;’? asked by earn-Internal-Function is answered
correctly by setting the children @fin D; to 0's. This is so because, by the definition of
projection,fl.Di treats all inputs inD; as0's. All other childreni; of ¢ are set td) or 1 by
setting the leaves under the corresponding subtrees accordifgdod(i;) respectively
(Figure 8, lines 29-30).

The rest of the proof is similar to the case without membership quéties.

We are now ready to prove the existence of compression algorithms for function space
induced by determination trees under some conditions.

THEOREM 3 LetT be anydetermination tree ariRlbe a representation language for some
internal function space. If (a) the closureBfunder variable negation is pac-predictable,
or (b) the closure ofR under projection and variable negation is pwm-predictable, then
there is a cwm-algorithm fof ® that acceptsl” and the labeling of its leaf nodes with
attributes as input.
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Proof: We prove that.earn-w-TSB is a cwm-algorithm fofl .

Let R’ be the closure oR defined as in the theorem statement. By Lemma 1, sRice
is pac (pwm) predictable, its closure under complement/Zgyhas a compression (cwm)
algorithm. LetLearn-Internal-Function be such an algorithm. Note that the projection
of the complement of a formula (or a function) with respect to a set of variables is the
complement of the projection of that formula (or the function) with respect to the same
variables. Similarly, a variable negation of the complement of a formula (or a function) is
the complement of a variable negation of the formula (or the function). This mearfg‘that
is also closed under projection and variable negation, sRideself is closed under these
operations.

Let f; denote the internal target function at nadepresented ifR, and IetTf denote
the corresponding external target function. From Lemma 2, without loss of generallty WE
may assume that the internal function formufasare represented iR*, and tha’(T0 is
well-behaved. .

SinceR* has a cwm-algorithm ariﬂjf is well-behaved, by Lemma 3, the outputefarn-
w-TSB is consistent with its training example set with probability at ldasté’ Size(T'),
whered’ is the confidence parameter béarn-Internal-Function. To find a function
consistent with examples at the root node with probability at leas?, we can seb’ =
6/Size(T).

To complete the proof thdtearn-w-TSB is a cwm-algorithm fofl' ® we have to show
that (a) it outputs a polynomially evaluatable hypothesis whose size is polynomial in the
number of its inputs: and the size of the target functid@’|, and (b) it runs in time
polynomial inn, |7/, 1/§ and the number of input examples

We first show that it outputs a hypothesis of required size and complexity of evaluation.
Recall that from Lemma 2 when the original internal target functifyrere replaced with
their complements and variable-negations, their siz&'iare increased by at madst) + 1,
wherel(7) is the number of children af Replacing a function by its projection R* does
notincrease its length. Let be the internal function returned hgarn-Internal-Function
atnode;, and letT’Y denote the corresponding external function. To ensurih@s;) = 0
also holds for allearnednon-root internal functiong, Learn-w-TSB always includes a
null instance in their examples (see the proceddeeompose-Examples in Figure 8,
lines 12—14). By Schapire’s theorefy;| must be a polynomial functiomof the size of the
new target functioff;|+1(:) +1 and the number of its input&), i.e.,p(| | +1(i) +1,1(2)).

The size of the output hypothesis is the sum of the sizeg af each node. If; is the
number of the internal nodes ands the number of leaves of the determination tree,

nr—1 nr—1
79 = > gil = D p(Ifil + 1) + 1,1(3))
i=0 i=0
<

np(max(| fil +1(i) + 1), max (i)

Sincen;, the number of internal nodes of the determination tneex; (| f;| + (i) + 1),
andmax; [(7) are all smaller thati’’/| + n + 1, the above bound is polynomial in the size
of the target function and the number of inputs.
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To show that the output hypothedl¥ can be evaluated in time polynomial inand
|T7|, it suffices to notice that it forms a tree circuit where the nodesntain functions
gi, Which, by Schapire’s Ockham-converse result, can be evaluated in time polynomial ir
|fil +1(3) + 1 andi(i). Hence the output hypothesl¥ can be evaluated in the required
time in bottom-up fashion.

We now show thakearn-w-TSB makes at most a polynomial number of queries in the
size of the target function, the number of its inputgnd the number of examples, and runs
in time polynomial in these parameters.

In the worst casdistinguish-Children generates one query for each example and each
non-root internal node being considered (lines 11-14 of Figure #); i$ the number of
internal nodes of the determination tree, this totals#@; — 1) queries. Decompose-
Examples infers the value of each chilg of the current nodéfor each example, which
is done using one query an, /d(i;) (lines 15-20 of Figure 8). Since this is done on
each non-root internal node and each example, in the worst case, it makes another set
m(n; — 1) queries, giving a total dtm(n; — 1) queries.

By Schapire’s result, there exist polynomialandg such that.earn-Internal-Function,
when called at a nodewith {(7) children and givemn distinct examples of a functiof,
runs for at most:(m, | f;| + (i) + 1,1(i),log 4;) time and asks at mogtm, | f;| + (i) +
1,1(7),log %) membership queries. Each queryL@arn-Internal-Function is simulated
by Learn-w-TSB with one membership query’ can be settd/n for our purpose. Hence,
the total number of queries Ingarn-w-TSB is bounded bm(n; —1)+ 37" g(m,|fi| +
I(1)+1,1(:), log %). This can be easily seen to be a polynomial in the required parameters

Since the run time dfearn-Internal-Function includes the time for its queries, the total
computation done bizearn-w-TSB can be divided into askingm(n; — 1) queries and
runningLearn-Internal-Function at each internal node. Since each query is on an assign-
ment of sizen, we have to multiply the number of queries byo get the time complexity
for asking queries. To this, we have to add the time complexity of ruriréagn-Internal-
Function at all internal nodes.

Hence the time complexity dfearn-w-TSB is

ny—1

O(mn(nr = 1)+ 3 r(m, il +1(0) + 1,1(6),log ),

=0

which is polynomially bounded.

This completes the proof of all requirements f@arn-w-TSB to be a cwm-algorithm
for T®. O

We can consider the following parallel version of our algorithm. Observe that the distin-
guishing assignments for any node can be found after finding the distinguishing assignmen
for its parent and its previous siblings. Applying this rule recursively to the node’s parent
and siblings, we notice that we can find the distinguishing assignment of any node afte
finding the distinguishing assignments for all earlier siblings of that node, and for all its
ancestors and their earlier siblings. All these nodes must be processed strictly sequential
If d is the depth of the determination tree, the above argument implies that, we have t
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find the distinguishing assignments for at mastax"’; " I(i) nodes sequentially. After
finding the distinguishing assignments for all node=arn-Internal-Function can be run
in parallel for all nodes. Hence the parallel complexity of our algorithm is:

O(mnd iax 1(i) + Bax r(m, | £i| + (i) +1,1(i), log =)).
We are now ready to state and prove our main result on pwm-predictability of function
spaces induced by a determination tree.

THEOREM 4 LetR be a representation language for some function spacelabd any
determination tree with a fixed mapping of its leaves to the input attributes given to the
learner. If (a) the closure oR under variable negation is pac-predictable, or (b) the
closure ofR under projection and variable negation is pwm-predictable, then, there is a
pwm-algorithm forT'™.

Proof: The proof of this theorem is by the direct application of Theorem 1. We already
showed thakearn-w-TSB is a cwm-algorithm fof ®. To convertitinto a pwm-algorithm,
callitwith asample of sizé (/79| In C+1In 2), wherel 7| is the size of its output hypothesis,
andC is the number of distinct primitive symbols used in the language dsince|T|

is upper-bounded by a polynomial function of the size of the target fun¢fibhand the
number of nodes in the determination tree, we can substitute this bound in the above formul
generate a sample of that size, and thenloadirn-w-TSB on it. The resulting algorithm

is a pwm-prediction algorithm for the clagg®. O

A variety of basis functions satisfy the requirements of our theorem, including linear
threshold functionss-DNF (disjunctions of conjunctions of at madstiterals), and-CNF
(conjunctions of disjunctions of at mdstiterals), which are closed under variable negation
and are pac-learnable. In the next section, we apply our program to Rivefisision lists
or k-DL, i.e., lists ofk-length clauses, each of which is an IF-THEN statement With 1
outcome (Rivest, 1987). The classieilecision lists is closed under variable negation, pac-
learnable, and properly includésDNF andk-CNF (Kohavi & Benson, 1993). Monotone
DNF-formulas are pwm-predictable (Angluin et al., 1993), closed under projection, but not
under variable negation; however, they do satisfy our condition because unate formulas (tt
closure of monotone DNF-formulas under variable negation) are pwm-predictable (Angluir
etal., 1993). Similarly, we can use Bshouty’s (1993) algorithm for learning decision trees.
However, there are some interesting pwm-predictable classes such as conjunctions of Ho
clauses for which the closure under variable negation does not hold, and hence our theore
does not apply.

It appears that both the oracles used by our algorithm are necessary to learn with tre
structured determinations. As shown by Pitt and Warmuth (1990), learning arbitrary
Boolean formulas is reducible to learning with tree-structured bias from classified randon
examples. Since learning arbitrary Boolean functions is as hard as inverting one-way func
tions (Kearns & Valiant, 1994), learning with tree-structured bias with random examples
alone is believed to be intractable. To see that tree-structured bias cannot be implement
with membership queries alone, consider the class of Boolean functions that butput
at most one input and outpaton all others. There ar®* + 1 possible Boolean func-
tions overn variables in this class, and they can be represented with a tree-structured bia
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However, this class cannot be learned with membership queries alone, because the progr
does not get any information unless it chances upon the single input that gives rise to &
output ofl1. In the worst case, this involves trying each possible input, which goes beyond
the polynomial bound. Given the EXAMPLE oracle, however, the learning algorithm that
generates a small sample of examples and returns a Boolean function which outputs 1 on
on the positive example in the sample (if any) and 0 on all other inputs can be shown t
be a successful PAC-learner. In particular, if the sample size is at—iléa%t, it is highly

likely that either we are going to see the single positive example, or it has a probability
less thare so that the constant functidhis a good approximation to the target. In other
words, the EXAMPLE oracle helps the learner by providing information about the example
distribution which enables it to focus on the commonly occurring instances and ignore the
infrequent instances.

7. Experimental Results

The above algorithm was implemented as a program called TSB-2. TSB-2 needs an ir
duction program to learn the internal functions of the determination tree. We created tw«
versions:

e TSB-2-PL uses a version of Rivest's (1987) algoritheeDL to learn the internal
functions ask-decision lists. Ak-decision list is a list of clauses, where each clause
is of the form(¢;, b;). t; is a conjunction of at mosk literals, andb; is the output bit.
For the last clause, is alwaystrue. The k-decision list acts like a COND-statement
in LISP. The value of thé&-decision list for an instance is the valuetpffor the first
clause for which; evaluates tdrue for that instance. Since the finglis alwaystrue,
the k-decision list uniquely evaluates @cor 1 on any instance.

k-DL is in fact a family of algorithms generated by varyihg The set of examples for
which the termt, evaluates td are said to be “covered” by the clau@e, b;). Starting

with clauses of length 1%5-DL considers increasingly longer clauses uitilength
clauses to find a clause that correctly classifies all examples covered by it. It select
that clause, removes all covered examples from the set and iterates to select the ne
clause.k-DL can be shown to be a consistent learning algorithnkfdecision lists.

e TSB-2P3 uses ID3 to learn the internal functions as decision trees (Quinlan, 1986).
A decision tree is a rooted binary tree in which each internal node in the tree tests fo
the value of a single input attribute of the input example. If its value is true, the right
subtree is processed and if the value is false, the left subtree is processed. Each le
of the tree is labeled with the class of the example that reach that leaf. Decision tree
are strictly more general thandecision lists for any fixed and are also closed under
variable negation and projection. ID3 is a top-down algorithm that uses information
gain as a heuristic evaluation function to decide which attribute to select at a given poin
to split the example set into two depending on its value (Quinlan, 1986). It then calls
itself recursively on the two mutually disjoint sets of examples thus created and builds
the left and right subtrees. Unlike tlkeDL algorithm, which is guaranteed to learn the
space of-DL functions, ID3 is not guaranteed to efficiently learn the space of decision
trees, although it works well in practice.
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7.1. Comparison with knowledge-free induction

In our first set of experiments, TSBx2P™ and TSB-2"3 were applied to learn functions
that are consistent with a determination tree of depth 2. The root node has 5 children, ea
of which has 5 children, which form the leaves of the tree. Hence there are a total of 2¢
input attributes. For concreteness, we can think of the target concept as a combinatori
Boolean circuit, with depth= 2, fan-in= 5, and fan-out= 1. The target functions were
constructed using the above tree with the internal functions drawn3rdecision lists of

12 clauses, where each clause has a tgrof exactly3 randomly chosen literals and a
randomly chosen output hit.

Our experiments compare TSB-2 with a knowledge-free induction program on the sam
set of examples. We used ID3 (Quinlan, 1986) &fdL (Rivest, 1987) as our knowledge-
free induction systems, because of their simplicity and availability. They also worked bette
than any other system we tried on this domain including a more sophisticated version of ID.
called C4.5 and a propositional version of FOIL (Quinlan, 1990). Of course, the comparisor
is notintended to decide which algorithm is better “in general” but rather to show that wher
the relevant background knowledge is available, TSB-2 can exploit it more effectively to
design useful experiments and to yield higher accuracy after seeing fewer examples.

Each training episode consisted of the following steps:

e Generate a target function consistent with the determination tree.
e Generate and label 200 examples, drawn from a uniform distribution on the input space
e Divide the examples into two equally-sized sets, reserving one for testing.

e Apply the learning algorithm to training sets of sizes from 0 to 100 in increments of 10,
testing the result on the test set after each application.

Results were averaged oVl training episodes.

We ran two experiments using the above determination tree — the first one withfP$B-2
and the second with TSB22P™, In each experiment, for each target concept and training
sample, we stored the queries asked by TSB-2 and the responses. We comparét’TSB-2
with ID3. Note that the target functions i*— P~ are not representable Bydecision lists.
Since the determination tree is of degththey are, however, representabledglecision
lists. So we compared TSB*2PT with 6-DL.

To provide a fair comparison, we provided both the random examples and the membersh
query examples to the knowledge-free programs. The versions of the programs that use t
query examples are called ID3-Q and 6DL-Q respectively. As control, we also ran ID3 anc
6-DL with the same number of training examples chosen randomly. These versions of ID:
and 6-DL are called ID3-R and 6DL-R respectively. Both versions of ID3 were run without
pruning, because pruning worsened the performance. There is no pruning steplfor

Figures 9 and 10 show the results of the first experiment with TSB-2 Figure 9
shows the relationship between the size of the random training sample and the number
queries generated by TSB-2. The total number of queries rose@ramith no random
examples, to about47, with 100 random examples. As the theoretical analysis predicts
(see the proof of Theorem 3), the number of queries grows linearly with the number o
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Figure 9. Growth of queries with random examples for TSB22. The top curve shows the total number of
gueries asked as the number of random examples is varied. The bottom curve shows the total number of distir
gueries asked for the same number of random examples.
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Figure 10. Learning curves for TSBI®3 and ID3. On the X-axis is the number of training examples and queries,
and on the Y-axis is the percentage accuracy. ID3-R is the learning curve of ID3 when all its training example:
are randomly chosen. ID3-Q is the learning curve of ID3 when it is given the same training examples and answel
to queries as used by TSBI2.

examples, and is approximately equal to the number of non-root internal npdesds

the number of random examples. This is a little more thf# of the worst-case bound,
which is2m(n; — 1). However, using a hash table that caches the results of previous
queries reduced the number of queries considerably. The number of distinct queries ro:
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from 0 to 293 with 100 random examples. More interestingly, this curve appears to flatten
out as the number of random examples approatb@ssuggesting that perhaps there is an
upper bound on the total number of distinct queries asked. (Since the instance space
225 examples, the flattening is not due to exhausting the instances.) The error bars denc
1 standard deviation error on either side of the average for 50 random trials.

Figure 10 shows the accuracy on the test sample for TSB#hd 1D3 plotted against the
sum of the number of random examples and the average number of distinct queries ma
by TSB-2 for that many random examples. Each successive point on the two curves ¢
Figure 10 represents a random training sample of gizaore than the previous point. The
error bars are only shown for TSBL2, to avoid clutter, and denote 1 standard deviation
error on either side. ID3’s error bars are much larger, even at the end of training. During th
training, ID3-Q’s average performance increased from 47.1% to 88.62% with 393 training
examples. In contrast, TSB-2's performance increased from 47.1% to 98.9% with the sam
training, showing that TSB-2 exploits its tree-structured bias well. Interestingly, ID3-Q did
not perform better than ID3-R, which chose all its examples randomly. ID3-R achieved ar
accuracy of 91.1 % at the end of learning, which is slightly higher than ID3-Q’s performance.
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Figure 11. Growth of queries with random examples for TSB-2L. The top curve shows the total number of
gueries asked as the number of random examples is varied. The bottom curve shows the total number of distir
gueries asked.

Figures 11 and 12 show the learning curves for the same target function space for TSE
23-DPL and6-DL. The results here were similar to those of the first experiment. The average
number of queries reachéd5 with 100 examples, and the average number of distinct
queries reached 301. TSB-2I's accuracy rose from 41% 1@0.4% for a total of401
examples and distinct querie8DL-Q and6DL-R also started from an initial performance
of 41%. 6DL-Q’s final performance on the same set of training examples and distinct
queries as used by TSB-2 was 86.6%, &Bdl-R’s final performance on the same number
of random examples was 93.2%.
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Figure 12. Learning curves for TSB2-PL and 6-DL. On the X-axis is the number of training examples and
gueries, and on the Y-axis is the percentage accuracy. 6DL-R is the learning curve of 6-DL when all its training
examples are randomly chosen. 6DL-Q is the learning curve of 6-DL when it is given the same training example
and answers to queries as used by TSB2L.

As before, we can see that TSB-2" performs significantly better tha&#DL-R. What
is perhaps more prominent than in the case of ID3 is the significantly superior performanc
of 6DL-R compared t&DL-Q. This difference is due to the fact that féDL-Q (unlike
6DL-R), the training distribution is significantly different from the test distribution. Thus,
6DL-R’s advantage comes from the fact that it is trained on examples that are more simila
to the test examples. This also suggests that an example is “good” only with respect t
the learning algorithm, and good performance involves more than simply knowing what
queries to ask.

Our experiments clearly illustrate the usefulness of queries in learning certain types c
functions, and the effectiveness of tree-structured determination knowledge in allowing th
learner to decide which queries are most useful. The differences between the performanc
of ID3-Q and ID3-R and between 6DL-Q and 6DL-R suggest that the queries themselve
did not provide an advantage to TSB-2—the advantage comes from being able to use them
the context of background knowledge to answer specific questions about the true functiol

As can be expected, the above experimental results of TSB-2 were also much better th:
the worst-case theoretical bounds. For the above internal function space of 3-decision lis
over 5 variables, there are a total ¥f._, (%)2¢ = 131 different conjunctive terms. Our
target functions actually consist of only 12 such terms, out of which the last one must b
true. Hence, there aré31!/120! < 131! possible left-hand sides of clauses. Since the
right hand side of each clause can be either 1, there are at most31'12'2 different
internal target functions. SinceDL does not necessarily find a minimal decision list,
the actual number of hypotheses we should consider is actually higher. Even if we ignor
this factor, which considerably increases the number of training examples needed, the tot
number of target functions (@ x 262!1) since there aré internal functions. Since both
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decision lists ané@-decision lists are closed under complement and variable negation, there
is not going to be any further increase in the size of the output hypothesis space. Using tt
bound in the proof of Theorem 4, and using 6 = 0.1, we get4, 003 random examples
and, in the worst case, x 4,003 x 5 = 40, 030 queries. Both of these values are at least
two orders of magnitude larger than the experimentally determined values for the sam
accuracy.

7.2. Scaling with the depth of determination tree

400 - hl
350 -
300 -
250 -
200 -

150 -

Number of distinct queries

100 -

50 -

0 1 )
32

16
Number of leaf nodes

Figure 13. Number of queries asked by TSB-2 as a function of the tree size. The X-axis shows the number of
random input examples, which is equal to the number of leaves of the tree. The Y-axis shows the total number
distinct queries asked. The error bars denote 1 standard deviation on either side.

The second set of experiments examines how the performance of TSB-2 scales with tt
depth of the determination tree when compared to ID3abdl.. For this set of experiments,

we chose to use full, binary determination trees of depths varying from 1 through 5. The
number of random training examples for TSB-2 varied in proportion to the number of node:
in the tree — from 2 in the case of depth—1 tree to 32 in the case of depth-5 tree. The targ
internal functions were generated uniformly randomly from 10 of the 16 2-input functions.
(The other 6 functions ignore one or both inputs.) TSB-2 us&L with k£ = 2 to learn

the internal functions. We ran 30 trials on each tree, randomly varying the target function
Since the internal functions are representable as 2-decision lists, the target functions a
representable b§d-decision lists, wherd is the depth of the determination tree. Hence,
we compared TSB-2 with ID3 and witkd-DL. Both of these programs were given the
same number of random training examples as the number of examples and queries used
TSB-2 on the same target function. We measured the performance of the learned functiol
on 100 test examples which were generated independently randomly.
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Figure 14.Scaling of performance with the depth of the determination tree for T5822, ID3 and2d-DL. On

the X-axis is the depth of the determination tree, and on the Y-axis is the percentage accuracy. The error bars ¢
only shown for TSB-2 and represent 1 standard deviation on either side. TSB“2improves its performance

with depth and corresponding increase in the training sample size, while ID3dabd deteriorate.

Figure 13 shows the number of distinct queries asked by TSB-2 as a function of the numbe
of leaves of the determination tree. Recall that the number of random training examples i
increased linearly with the number of leaves. Since the number of queries is proportione
to the product of the number of random examples and the number of internal nodes,
varies quadratically with the number of leaves. This quadratic nature of the relationship i
apparent in Figure 13. In our experiment, the number of distinct queries increased from |
when the number of leaf nodes is 2 to 280 when the number of leaf nodes is 32.

Figure 14 shows the performances of TSB2", ID3 and2d-DL as a function of the
depth of the determination tree. On the X-axis is the depth, and on the Y-axis is the accurac
of the various learned functions on the test examples. It must be kept in mind that these a
not “learning curves,” but curves that show how the test set accuracy changes by an increa
in the size of the target function and a corresponding increase in the training set size. Sin
the number of examples is increased in proportion to the tree size, we expect the asympto
performance to be more or less constant for TSB-2. Hence, it is the relative performanc
that is most informative here. While they all perform similarly when the tree is of depth 1
and there are no hidden nodes, differences appear as the depth increases. While'SB-2
steadily improves its accuracy from 70.4% at depth 1 to 96.9% at depth 5, ID&J/abd
peak at depth 2 with accuracies of 77.4% and 78.8% respectively. Their accuracies drop
69.9% and 72.9% respectively when the depth is increased to 5.

The results clearly illustrate that deeper trees are harder to learn for both 123-&nd
For2d-DL, since the length of the clauses required to represent the target function increase
linearly with the depth of the tree, there are exponentially many clauses to consider, an
in the worst case the number of clauses in the hypothesis increases exponentially wi
depth. Since the sample complexity is proportional to the hypothesis size, it is also going t
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increase exponentially with depth. A decision tree representation may be even larger the
the corresponding decision list representation since it suffers from the so called “replicatiol
problem,” which is due to the fact that the decision tree can only test a single attribute a
any node (Pagallo & Haussler, 1990). As a result, even ID3 performs poorly as the dept
of the determination tree is increased.

In summary, the experiments of this section suggest that when there are such deep relatic
ships between the variables in a domain as exhibited by the determination tree, knowledg
free induction is hopelessly difficult, and it is much better to make these relationships
explicit and exploit this knowledge in the learning algorithm.

8. Determination Graphs

In the previous sections, we considered the problem of learning from prior knowledge ir
the form of tree-structured determinations. In this section, we consider the case where tt
determinations are structured as a directed acyclic graph (dag). We call this giajgga

(for determination dag) and this bias a dag-structured bias. The d-dag is a directed acycl
graph over a set of attributes, where each attribute may participate in directly determinin
more than one attribute. In contrast with the previous section, here we show a negativ
result, namely that the pwm-prediction with dag-structured bias is hard under standar
cryptographic assumptions. Our result is representation-independent in that it holds fc
any language choice to represent the final function as long as it is efficient to evaluate th
function on any example.

Formally, a d-dag is a directed acyclic gragh= (A, Pred, L, R), where A, the set
of nodes of the d-dag, represents attributes, Bnell represents the directed edges of the
d-dag as a set of predecessor relationships between nBded(:) is the set of predecessor
nodes of, and the attributes represented by trdaterminghe attributed, that corresponds
to node:. The noded. C A are the input nodes that have no predecessors, and the node
R € Ais the root node, which represents the target attribute.

While the fan-out of a determination treelisit is at leas® for a d-dag. In other words,
there is at least one node with more than one parentin a d-dag. Given a set of basis functio
Z, the set of functions induced ¥ over the d-dad- is defined similarly to that induced
by T over the tree structure, and is denoted®¥. The task is to learn these functions
from examples and membership queries. To keep our results representation-independe
we assume that the learning algorithms do not output a function, but simply predict the
output on an arbitrary test example in polynomial time.

For our proofs, we will be using the framework of prediction-preserving reducibility with
membership queries introduced by Angluin and Kharitonov (1995). We proceed as follows
We reduce the problem of learning arbitrary Boolean functiomsiariables from examples
and membership queries to one of learning with a fixed dag-structured bias, where onl
the leaf nodes may have multiple parents. Since learning arbitrary Boolean functions witl
examples and membership queries is cryptographically hard, our results imply that learnin
with d-dags can also be as hard. Our results hold when the fan-out of the d-dag is at lea
2 and fan-in is at least or vice versa. In both cases, the internal functions are limited to
{AND,NOT, =}, where= gate outputd if and only if all its inputs are the same.
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In the framework of prediction-preserving reducibility with membership queries, we start
with two function spaces and 7’ and define a reduction that will allow us to convert
a polynomial-time pwm-prediction algorithmi/’ for 7’ into a polynomial-time pwm-
prediction algorithmM/ for 7 (Angluin & Kharitonov, 1995). IfF is known to be hard to
predict, so isF’. In our caseF is the set of all Boolean functions ovewariables, andF’
is the set of functions induced AND, NOT, =} over some d-dag.

Let D be the domain of functions i# and D’ be the domain of functions if”.

In order to carry out a prediction-preserving reduction with membership queries from the
function spaceF to 7', we have to show the existence of the following three mappings.

e A mappingg of representations of functions jf to representations of functions j.
e A mappingr of training or test examples iP to training or test examples iP’.

e A mappingh of examples inD’ queried byM’ to examples inD queried byM .

The rationale for these mappings is as follows. To learn a fungtier#, M mimics the
steps of\’ learning the functio(y) € F'. Wheneve’ requests a random examplé,
requests a random example frditransforms it using and gives it ta\/’. The mappings
g andr should be such that the value g@fon any inputz € D must be the same as the
value ofg(y) onr(z). h maps the examples i’ queried by’ to examples irD, queried
by M. h could be an inverse of, however it might so happen that some element®in
have no inverses. In all such casésputputs a fixed answerl(in our case). The trick
is to make sure that this answer is consistent with) for all target functiong;. While h
andr must be computable in polynomial timgneed not be, but we must ensure that it
maps to functions whose representation sizes are bounded by a polynomial in the sizes
the original functions.

The reader is referred to (Angluin & Kharitonov, 1995) for a more formal description
of prediction-preserving reducibility. We now state our main theorem which is based or
a prediction preserving transformation of learning arbitrary boolean functions to functions
induced by fixed dags.

THEOREM 5 Pwm-prediction of Boolean formulas over the basiéND, NOT,=} con-
sistent with a given d-dag is as hard as pwm-prediction of arbitrary Boolean formulas, ever
for d-dags with fan-in= 3 and fan-out= 2 or fan-in = 2 and fan-out= 3.

Proof: Please see the Appendix.

THEOREM 6 Pwm-prediction of Boolean formulas over the bag#d\D, NOT, =} con-
sistent with a given d-dag is as hard as inverting one-way functions, even for d-dags witl
fan-in= 3 and fan-out= 2 or fan-in= 2 and fan-out= 3.

Proof: Follows immediately from Theorem 5 and the result of Kearns and Valiant (1994),
which shows that learning Boolean functions is as hard as inverting certain one-way func
tions, e.g., breaking the RSA cryptosystem or factoring Blum integéers.

It was shown in (Bshouty et al., 1995) that exact learning of read-twice formulas with
equivalence and membership queries is hard when the internal functions ifciyde
OR, NOT, AND}. Our result is stronger because it shows that even pwm-prediction,
which is sometimes easier than exact learning, is also asevamivhen the underlying
determination-dag (or skeleton) of the target formula is given.
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9. Related Work

Our work is most closely related to the work on Boolean read-once formulas in computa
tional learning theory (Angluin et al., 1993; Hancock, 1991; Bshouty et al., 1992, 1995).
The more theoretically inclined reader is referred to these excellent papers, particularly th
last one, which subsumes the others. All of this work is based on exact learning usin
equivalence queries as well as membership queries (Angluin, 1988). We call this model th
“exact learning model” from now on. Equivalence queries are in the form of “is the target
function the same ag?” If g is the target function, the teacher answers ‘yes’; otherwise the
teacher responds with a counterexample, i.e., an example wlzsre the target function
disagree. Bshouty et al. (1992, 1995) describe a learning algorithm that exactly identifie
the determination tree (skeleton) and the target function from membership and equivalenc
queries for constant fan-in or symmetric internal functions. A symmetric Boolean func-
tion gives the same output for any permutation of its inputs. The determination tree is
identified by using the queries and justifying assignments to partition the set of variable:
into those that are descendants of some internal node and those that are not. Once sl
a nontrivial partition is found, the algorithm can be called recursively to induce trees on
the two sets of variables. After the tréeis found, the functions are identified by running
multiple copies ofLearn-Internal-Function on the internal nodes of the tree until all of
them request counterexamples. When this happens, their corresponding hypgtlaeses
plugged into the determination tréeéand the composite hypothedi¥ is used to ask an
equivalence query. Either the hypothesis is correct or a counterexample to this composi
function is returned. If there is a counterexample to this composite hypothesis, then it i
used to generate a counterexample to at least one of the internal fungtians the cycle
repeats. Since the space of internal functions is assumed to be exactly learnable with
polynomial number of queries, this process terminates in polynomial time under condition:
similar to our Theorem 4.

In summary, unlike our algorithm, the algorithm of Bshouty et al. also learns the skeletor
of the read-once formulas, but is restricted to the union of symmetric and constant fan-i
basis functions (Bshouty et al., 1995). For example, arbitkadgcision lists cannot be
represented as compositions of symmetric or constant fan-in functions, and hence the
algorithm cannot be used when the basis includegcision lists. It is an open question
whether the skeletons of read-once formulas over such bases can be efficiently learned frc
examples.

The model of exact learning with equivalence and membership queries is theoreticall
attractive because it sidesteps the need for probability distributions. Positive results of thi
model directly yield positive results under the pwm-predictability model using standard
transformations (Angluin, 1988). However, they are not equivalent because a negativ
result in the equivalence plus membership query model does not imply that pwm-learnin
is not possible. More specifically, Lemma 5 of (Bshouty et al., 1995) is the exact-model
counterpart of our Theorem 4. Although our theorems are based on similar insights, neithe
of them implies the other. Their lemma assumes that the internal functions are exactl
learnable, a strictly stronger assumption than ours that they are pwm-predictable. Ot
theorem also does not require closure under projection for the internal function class if it i
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pac-predictable. On the other hand, our theorem only guarantees pwm-predictability, whil
theirs guarantees exact learning, which is strictly stronger.

While the exact learning model is theoretically convenient, the pwm-predictability model
yields more natural and efficient implementations, which is the main concern of our pa-
per. Our emphasis is on building a bridge between the theoretical work on learning witt
membership queries and the practical concerns of effectively exploiting prior knowledge
in learning. We are able to achieve this by presenting a theoretically justified algorithrr
that effectively solves the problem of learning from tree-structured prior determination
knowledge. We also provide empirical support for the work on read-once formulas by
showing that our implementation achieves smaller error rates from the same data whe
compared to knowledge-free induction algorithms. Our results and those in (Bshouty et al
1995) suggest that the experimental learning community needs to pay attention to the
retical work on learning from membership queries; the performance of practical inductior
systems can perhaps be improved significantly compared to an approach based purely
random examples.

The ideas of Bshouty et al. (1994) were adapted to the PAC learning framework by
Hancock, Golea and Merchand (1994). They proposed an algorithm that learns multi-laye
nets of perceptrons from queries and examples assuming that there is no overlap betwe
the receptive fields of the input units and that the output of each unit is connected to at mo:
one other unit. These assumptions impose a tree-structure on the network and constre
the basis functions to be linear threshold functions. Their algorithm learns the networl
structure using recursive partitioning of the input variables as in (Bshouty et al., 1995), an
learns the linearly separable internal functions using linear programming. The algorithms c
(Bshouty et al., 1995) for learning the skeletons of the read-once formulas have worst-cas
complexities of the order aD(n*+1) for k-TSB andO(n) for TSB with symmetric basis
functions. Improving the complexities of these algorithms is essential to yield practical
implementations. Such improved programs could be used in concert with ours to provid
a more complete learning system.

TSB-2 is a successor of TSB-1, which was restricted to constant fan-in determinatior
trees (Tadepalli, 1993). Other than TSB-1, there were two previous implementations o
tree-structured bias (Getoor, 1989) (see also (Russell, 1989)). However, both of them ha
only had limited success. One of them assumes that the Boolean functions at each no
are monotone, yielding a very simple polytime algorithm with membership queries. The
other uses the determination tree to prestructure a neural network, using a “mini-network
to represent each of the internal functions. Unfortunately, using backpropagation in such
network is too slow to handle trees with more than a handful of inputs. On the other hand
this problem should not arise with TSB-2 because of its ability to learn each of the interna
functions locally.

There has been a considerable amount of research on using prior knowledge in learnin
For example, FOCL (Pazzani & Kibler, 1992), and Grendel (Cohen, 1992) learn genera
relational concepts and are capable of making use of background knowledge express
as first-order Horn clauses. As suggested by Cohen, determinations can be expressed
overgeneral Horn clauses (Cohen, 1991). For example, the fact thiadl B determineC'
can be represented by a set3dflorn-clauses of the formalue(A, V) A value(B,Vg)

— value(C, V), whereVy, Vi, andV take values fron{0, 1} in all combinations. The
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learning problem can be seen as finding a correct subset of these clauses, using examg
to guide the process. However, neither FOCL nor Grendel can exploit the tree structur
because they always learn clauses for the root of the determination tree in terms of tf
observable leaf nodes. Such rules collapse the tree structure to two levels, thus destroyi
the possibility of fast convergence. Consider, for example, learning a 2-CNF function,
G = (Ap + Bo)(A1 + B1)(As + Bs2).... This function can be represented succinctly
as a determination tree with three levels. The root node computds, the middle
nodes comput®R, and the leaf nodes are observable inputs. However, both Grendel anc
FOCL learnG as a set of Horn clauses of the foulg A1 45 ... — G; ByAi1A4s... —
G;...ByB1Bs ... — G. Unfortunately, this representation is exponentially larger than
the target’s original representation and hence both FOCL and Grendel converge very slow
when learning concepts of this kind.

Work in theory refinement seeks to address the above issue by discouraging radical re\
sions of the theory and by requiring that the learning program makesronignalchanges
to the input theory. We ran a theory revision program, caNedrHER (Baffes & Mooney,
1993), on our problemNEITHER is a propositional theory refinement program that ac-
cepts theories described as Horn clauses, and refines them until all the training exampl
are correctly classified. We gavéerTHER a domain theory which is the equivalent of
the tree-structured bias used in our experiments of Section 7, while constraining the bas
functions to monoton8-DNF. The monotone DNF constraint allowed us to easily convert
the determination theory into an overgeneral, propositional Horn theory. For each determ
nation in the tree of the form{*4,, ..., A;} determinesA,” all possible Horn-clauses of
the form ‘t; — 1” were generated, whetgis a conjunction of at mostpositive literals in
Ay, ..., Ay, and these were given to the system as prior knowledge. The task of the syster
was simply to select a subset of the clauses that is consistent with the input examples. V
gave the random examples and the queries used by TSB-2 as inpattaER.

Somewhat surprisinglyNEITHER worked better without the Horn theory than with
the theory? This illustrates the difficulty of building robust knowledge-based learning
systems—simply adding prior knowledge seems not to be enough.

10. Conclusions and Future Work

This paper applies some of the theoretical tools developed in computational learning theol
to inductive learning problems addressed in experimental machine learning. Our algorithr
is inspired by the methodology of controlled experimentation in experimental science. It is
based on the notion of distinguishing assignments, which simultaneously play the roles ¢
making a hidden node (theoretical variable) observable by setting up an appropriate conte:
as well as controlling that node (variable) by changing its causal antecedents appropriatel
We also saw that membership queries can be effectively utilized in learning when the
function space is constrained by declarative knowledge in the form of a tree of determi
nations. This illustrates the power of tree-structured bias in constraining learning, and th
effectiveness of special-purpose learning programs like TSB-2 in exploiting this bias. Oul
results with ID3 and:-DL show that merely knowing which queries to ask does notimprove
performance. Using queried examples in the way that random examples are used can in fe
worsen the performance due to the differences in the two distributions. Our results witt
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NEITHER also show that having the necessary prior knowledge and using it in a uniform
way may not be sufficient to guarantee successful learning.

The determinations we considered are deterministic in that the value of the output featur
is a fixed function of the values of the input features. We can generalize this to stochasti
domains by assuming that the values of the input features only determipeotbegility
of the output feature. A stochastic determination graph can thus be interpreted as tt
graph structure of a Bayesian network (Pearl, 1988). Deterministic versions of Bayesial
networks, called “symbolic causal networks” by Darwiche and Pearl (1994), are similar to
determination graphs except that they allow some “exogenous” propositions to introduc
noise into the functional relationship defined by the determination. Although there are «
few results in learning Bayesian networks from data when all the variables are observabl
(Cooper & Herskovits, 1992), learning with hidden variables is much harder (see (Russel
Binder, Koller, & Kanazawa, 1995) and (Friedman, 1997) for recent algorithms). As yet, no
work has been done on using membership queries in such algorithms, nor on ascertainil
the computational complexity of the problem. It may be possible to extend our algorithms
to learn tree-structured Bayesian networks with hidden variables. Our negative result o
learning with determination-graphs immediately implies that learning the parameters of
graph-structured Bayesian network with hidden variables is hard even when the networ
structure is known and the teacher can answer membership queries.

It would be interesting to extend our results to include noisy and incomplete oracles, sinc
these often provide a better model for real-world learning problems; any of several recer
noise models might be used. We also foresee that real-world learning might require th
introduction of restricted classes of non-Boolean functions at the nodes of the tree. Thel
has been some work in computational learning theory on learning arithmetic read-onc
formulas that may be useful here (Bshouty, Hancock, & Hellerstein, 1995). We expect tha
the basic insights used in TSB-2, including distinguishing assignments, will carry over intc
the more general setting.

We can also consider applying TSB-2diagnosigasks, which are not normally thought
of as learning tasks since prior knowledge provides such a strong constraint. Here, th
structure of the system maps to the tree or dag structure of the target function, while th
components of the system map to the internal functions. In some cases, the problem m:
have some decomposability so that we can test some components of the device separat
This corresponds to the availability of a MEMBER oracle for those components. Knowing
the correct functionality of the device might also make the learning problem easier by
constraining the hypothesis space so that only minor deviations from the correct functiol
are considered, e.g., the so-called “single fault” assumption. Components that are know
to be working can be modeled as internal function spaces containing only a single functior
In general, there is no reason why the internal learning function cannot also use any pric
knowledge that is available.

On the theoretical side, the most interesting open problem is to learn the tree structur
under the weakest possible assumptions about the internal (basis) functions. The positi
results so far have been restricted to the union of constant fan-in and symmetric bas
functions (Bshouty et al., 1995). The question of whether this class can be extended t
include all learnable functions that obey our closure properties is still open. It is possible
thatthere are basis functions for which learning the tree-structure is hard under the conditior
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of Theorem 4. If that turns out to be the case, it implies that the prior knowledge in the
form of determination tree improves not only the sample complexity of learning, but also
the computational complexity.

Recently, it has been shown that read-twice DNF and CNF formulas are learnable fron
random examples and membership queries (Aizenstein & Pitt, 1991; Hancock, 1991; Pi
laipakkamnatt & Raghavan, 1995), while the status of general read-twice formulas over th
basis{AND, OR} is still open. These results might be useful in closing the gap between
our negative and positive results, for example, by studying the learnability of determinatior
graphs of fan-out = fan-ia- 2 for various basis functions.
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Appendix

THEOREM 5: Pwm-prediction of Boolean formulas over the bas#é\D, NOT, =} con-
sistent with a given d-dag is as hard as pwm-prediction of arbitrary Boolean formulas, ever
for d-dags with fan-in= 3 and fan-out= 2 or fan-in= 2 and fan-out= 3.

Proof: The proof is based on a two-part prediction-preserving transformation of arbitrary
Boolean functions to functions induced btND, NOT, =} over a fixed d-dag.

First, using a transformation similar to that introduced by Pitt and Warmuth (1990), we
reduce learning arbitrary Boolean functions to learning functions over a fixed determinatiot
tree with the basi§AND, NOT, =}, where each input attribute of the original function is
repeated many times in the leaves of the tree. We then transform that tree to a d-dag wi
fan-out> 1 at the leaf nodes, so that the target attribute valueiisll the copies of the
same input attribute do not have the same value. We now describe this transformation |
detail (see Figure A.1).

Lety be the target Boolean formula over the input attributes . . , x,, that useNOT,

AND, and OR. We first describe a mapping that convertsy into a target function
representation for a fixed d-dag.can be viewed as a tree. Ugt be the number of nodes

in that tree. Results in circuit complexity (Wegener, 1987) imply thedn be computed by

a Boolean circuit made-up of any sufficiently powerful 2-input gate types with a circuit of
depth at most = |blog |y||, whereb is a constant independentgpfWe use théAND gate

and the “consensus gate” which computes the functio®iven a constartt as an optional
input, these two gates are sufficiently powerful to implement any other Boolean functior
over two inputs. This is becaudT(x) can be implemented as («,0) andOR can be
implemented aNOT(AND(NOT(x),NOT(y))) by DeMorgan’s law. Hence the above
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Figure A.1. Reduction of an arbitrary Boolean formula to a fixed d-dag of fan=o2 and fan-in = 3. All nodes
except the leaves have a fan-out of 1. All gates other than those in the bottom layer have a fan-in of 2.

result holds for this set. The tree can be made into a complete tree of depth ekhgtly
iteratively replacing each of the shallow leaves labeletdth AND(x,x). In Figure A.1,

the dashed rectangle on the top shows the complete binary tree which is equivalent to tt
target formula.

The inputs of the resulting treE are from the sefzy = 0,21,...,z,}. T isnotyeta
determination tree, because the leaves db not occur in any fixed order and each input is
repeated many times. Let be the smallest power dfthat is as large &&n + 1). Replace
each leaf of the treel” with a complete binary treg, of heightlog n’ = 2h’, whose leaves
are labeledzy = 0,0,21,0,22,0,...,2,,0)(0)" ~2(+1) " If | is labeled withz; in the
treeT, then the internal functions @f; can be chosen frofiIAND, =} such that its root
evaluates ta:;. This can be done by having the consensus gates at all the internal nodes i
the path to the;;, andAND gates at all other nodes. Each consensus gate works (ke
in this case, and since there are an even number of such gates in any such path of hei
2h', the root computes;. This is shown by the triangles in the middle of Figure A.1.

The new tre€l” is a complete binary tree of depth+ 2k’ whose leaves are labeled
with fixed input attributes including. However, each attribute is repeated many times, and
many input attributes are fixed &sTo make all the attributes distinct, we first replace each
jthoccurrence o by a new variable;. We then replace eagh® occurrence of each; by
a variablez; ;. Now, all nodes are distinctly labeled; but all “legal” inputs for the original
Boolean formulay should have; = 0 for all j, andx; 1 = z;2 = ... = x; , for all i. We
want to make the new circuit output the same value as the original forpfglaall legal
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inputs ofy, but outputd for all illegal inputs. The part of the circuit below the triangles in
Figure A.1 does this by checking that the inputs to the circuit are legal.

To check that alk;s are0’s, we first negate them usingOT gates, and theAND the
results withAND gates of fan-in =2, as shown in the bottom rectangle of Figure A.1. This
can be done without increasing the depth of the circuit. To checkithat z;2 = ... =
x; p for all ¢, we borrow an idea from (Bshouty et al., 1992) and introduce an auxiliary
variablew; ; for eachz; ;. We use 3-input consensus gates to compute; ,, 1, w;,1),
= (w1, %2, w;2), etc., and therAND the results with a binary tree of 2-inpiND
gates. Since the; ;'s for successivg’s are shared between successive consensus gates
this circuit outputs 1 ifand only if; 1 = 2,2 = ... = z;, for all i. We thenAND the
outputs of the above two sub-circuits, getting a circuit which outputs all legal inputs
for the original formulay and0 on all illegal inputs (shown as the output of the bottom
rectangle of Figure A.1). Finally, waND this output with the output of” (shown at the
top of Figure A.1). This circuit outputs for all illegal inputs of the target formulg and
computeg, on all legal inputs. Call the d-dag that corresponds to this cir€lit,

It is easy to see that the fan-out of all internal nodes7aé at mostl. The fan-out of
each input; is 2 because each such node is connectedN@d' gate and to a single gate
in the treel”. Each inpute; ; is connected to one consensus gate and to another gate in the
treeT”, and hence has a fan-outdfEach inputw; ; also has a fan-out & since it is only
connected to two successive consensus gates. The fan-in of all gates except the consen
gates in the bottom of Figure A.1 is at mast The consensus gates have a fan-ir3.of
Thus,G is a d-dag of fan-o= 2 and fan4n = 3 that can be instantiated wittiND, NOT,
and consensus gates so that it computes the target fognfiaiall legal inputs and outputs
0 for all other inputs. The size a7, as measured by the number of gates, is polynomial
in the size of the original functiop, and the number of inputs, because its height is
O(log2(n + 1) + log |y|), and it has a single output node and a fan-in of 3.

To create a circuit of fan-der 3 and fan-in = 2, simply remove all the inputs 1, . . ., w; p,
and implementz; ; = ... = z;, for all i by AND(= (x1,%i2), = (Xi2,Xi,3),... =
(xi,p—1,Xip)), USiNg 2-inpUtAND and consensus gates. Eagch; is now input to two
consensus gates and one gate in theffeeesulting in a circuit with fan-du= 3 and fan-in
= 2. Call the d-dag that corresponds to this circtiit,

The rest of the proof applies to the d-d&g The above mapping described how to
transform a target boolean functigninto an instantiation of the d-dag with specific
gates. We define the remaining two mappingsfer the random instances, andor the
membership queries—necessary to complete the prediction-preserving transformation
follows:

e r maps any random instanee= (z1,...,z,) to

<<070,.’L'17.’L'1,07.’172,332, C) mnawn70><0>n/_2(”+1)>2d'

Here the0’s correspond to the inputs;, 22, and so on. The two successive’'s
correspond ta;; ; andw, ; respectively. Similarly, the two successiugs correspond
to zo ; andw, ;, and so on.

e If a membership query’ is of the form
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<<070,$17$1,07£L’2,£L’2, ceey xnvxn70><0>n/_2(n+1)>2d7

i.e.,ifthereisam suchthat(z) = «/,thenh(z’) = . = (x1,...,2,); elseh(z’) = L.

Itis easy to see that a prograW that learns the function space induced®WND, NOT
,=} overG can be used to simulate a learrddrfor the Boolean function spacg. The
target functiory € F is mapped tg(y) by instantiatings with specific gates as described
above. Whenevel!’ requests a training example, we generate a training exampld for
and if it receives(z;, y;) as an example, we provide(z;),y;) to M’. By the way we
defined the mapping, y; = y(z;) = g(y)(r(z;)). Any membership queries asked by
M’ will be answered with @ if h(2') = L, and otherwise by asking a membership query
onh(z') to M's MEMBER oracle. Note thag(y) mapsz’ to 0 wheneverh(z') = L, i.e.,
the circuitG outputs0 on all “illegal” inputs. To predict the output of the target function
on a random example, z is transformed to'(x) and the value of the learned function on
r(x) is returned. IfM can learn an approximation gfy), then our simulation can learn
an approximation tg, since the probability weights of their error regions are exactly the
same.

The proof forH with fan-ou = 3 and fan4n = 2 issimilar. O

Notes

1. This assumption is fairly natural. It corresponds to assuming that each attribute in the domain is determine
by at mostk other attributes.

2. Itshould be noted that the read-once property depends on what “basis” functions (primitives) one is allowed t
use.AB + AB is not read-once, but is trivially read-once if one is allowed to use exclusive-or as a primitive.

3. We thank Lisa Hellerstein for providing a counter-example for the projection case.

4. Note that the projection of a function fixes the irrelevant inpu€s tehile the restriction of an assignment sets
the irrelevant inputs te.

5. The experiment needs to be done on a large group of patients rather than a single one in the medical dom:
to offset the effects of large variations among the different patients and study their aggregate behavior.

6. One obvious lemma is needed to use the example oracle in establishing learnability, namely, that if the origin:
example distribution is stationary then the oracle for the subtree also has a stationary distribution.

7. Notice that here, as in determination trees, we assume that such graphs (or trees) to be nonredundant, in t
determinations that are implied by other determinations are not explicitly represented in the graphs (or trees
For example, ifP and@ determineR, which in turn determine$, P and( are not connected t6, even
though they do determing& by implication.

8. SinceNEITHER'S performance without the theory was similar to that of ID3, we only showed the results of
comparisons with ID3 in Section 7.

References

Aizenstein, H., & Pitt, L. (1991). Exact learning of read-twice DNF formulas®foceedings of the 32! Annual
IEEE Symposium on Foundations of Computer Sciefme 170-179). Washington, D.C.: IEEE Computer
Society Press.

Angluin, D. (1988). Queries and concept learnidpchine Learning2(4), 319-342.

Angluin, D., Hellerstein, L., & Karpinski, M. (1993). Learning read-once formulas with quedi@stnal of the
ACM, 40(1), 185-210.

Angluin, D., & Kharitonov, M. (1995). When won’t membership queries heljoirnal of Computer and Systems
Sciences50(2), 336—355.



294 P. TADEPALLI AND S. RUSSELL

Baffes, P., & Mooney, R. (1993). Extending theory refinement to m-of-n riidermaticg 17, 387-397.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik-Chervonenkis
dimension.Journal of the ACM36(4), 929-965.

Bshouty, N., Hancock, T., & Hellerstein, L. (1992). Learning Boolean read-once formulas with arbitrary symmetric
and constant fan-in gates.Pmoceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
(pp. 1-15). Pittsburgh, PA: ACM Press.

Bshouty, N., Hancock, T., & Hellerstein, L. (1995). Learning Boolean read-once formulas over generalized bases
Journal of Computer and Systems Scienb6g3), 521-542.

Bshouty, N., Hancock, T., & Hellerstein, L. (1995). Learning arithmetic read-once form8laé4 Journal on
Computing 24(4), 706-35.

Cohen, W. (1991). The generality of overgenerality.Pitoceedings of the Eighth International Workshop on
Machine Learning(pp. 490—494). Evanston, IL: Morgan Kaufmann.

Cohen, W. (1992). Compiling prior knowledge into an explicit biasPtoceedings of the Ninth International
Conference on Machine Learnin@pp. 102-110). Austin, TX: Morgan Kaufmann.

Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.
Machine Learning9(4), 309-348.

Davies, T. (1985). Analogy. Informal note IN-CSLI-85-4, CSLI, Stanford University.

Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden variaBles. In
ceedings of International Conference on Machine Learnfpg. 125-133). Nashville, TN: Morgan Kaufmann.

Getoor, L. (1989). The instance description: How it can be derived and the use of its derivation. Unpublished m
report, Computer Science Division, University of California, Berkeley, CA. Later published as NASA Ames
Research Center Technical Report IC-94-04.

Hancock, T. (1991). LearninguDNF formulas andcy decision trees. lfProceedings of the Fourth Annual
Workshop on Computational Learning Theofyp. 199-209). San Mateo, CA: Morgan Kaufmann.

Hancock, T., & Hellerstein, L. (1991). Learning read-once formulas over fields and extended bBseseé&tings
of the Fourth Annual Workshop on Computational Learning The@p. 326-336). Santa Cruz, CA: Morgan
Kaufmann.

Hirsh, H. (1990). Knowledge as bias. In Benjamin, D. (E€hange of Representation and Inductive Bigs.
209-221. Kluwer, Norwell, MA.

Kearns, M., & Valiant, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata.
Journal of the ACM41(1), 67-95.

Kohavi, R., & Benson, S. (1993). Research note on decision Ns&€hine Learning13(1), 131-134.

Mahadevan, S., & Tadepalli, P. (1994). Quantifying prior determination knowledge using PAC learning model.
Machine Learning17(1), 69-105.

Mitchell, T. (1980). The need for biases in learning generalizations. In Shavlik, J., & Dietterich, T. (Eds.),
Readings in Machine Learningp. 184-191. Morgan Kaufmann, San Mateo, CA. Originally published as
Rutgers University technical report.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programsPioceedings of the First Conference
on Algorithmic Learning Theorypp. 369-381). Tokyo, Japan: Ohmsha.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical leaiviexthine Learning5, 71-99.

Pazzani, M., & Kibler, D. (1992). The utility of knowledge in inductive learniMachine Learning9(1), 57-94.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infererddergan
Kaufmann, San Mateo, CA.

Pillaipakkamnatt, K., & Raghavan, V. (1995). Read-twice DNF formulas are properly learhaflenation and
Computation122(2), 236-267.

Quinlan, R. (1986). Induction of decision treddachine Learning1(1), 81-106.

Quinlan, R. (1990). Learning logical definitions from relatioMachine Learning5, 239-266.

Rivest, R. (1987). Learning decision listdachine Learning2(3), 229-246.

Russell, S. (1988). Tree-structured bias. Aroceedings of the Seventh National Conference on Artificial
Intelligence (pp. 641-645). Saint Paul, MN: Morgan Kaufmann.

Russell, S. (1989)The Use of Knowledge in Analogy and Inductidiorgan Kaufmann, San Mateo, CA.

Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995). Local learning in probabilistic networks with hidden
variables. InProceedings of th@4t" International Conference on Atrtificial Intelligencépp. 1146-1152).
Montreal, Canada: Morgan Kaufmann.

Russell, S., & Grosof, B. (1987). A declarative approach to bias in concept learningrodeedings of the
National Conference on Atrtificial Intelligencépp. 505-510). Seattle, WA: Morgan Kaufmann.



LEARNING WITH STRUCTURED DETERMINATIONS 295

Russell, S., & Grosof, B. (1990). Declarative bias: An overview. In Benjamin, D. (Etd3nge of Representation
and Inductive Biaspp. 267-308. Kluwer, Norwell, MA.

Shavlik, J., & Towell, G. (1989). An approach to combining explanation-based and neural learning algorithms
Connection Scieng&(1), 231-53.

Tadepalli, P. (1993). Learning from queries and examples with tree-structured bRcbedings of the Tenth
International Conference on Machine Learnjfgp. 322—329). Amherst, MA: Morgan Kaufmann.

Valiant, L. (1984). A theory of the learnabl€ommunications of the ACN7(11), 1134-1142.

Wegener, |. (1987)The Complexity of Boolean Functiondohn Wiley & Sons, New York, NY.

Wilkins, D., Clancey, W., & Buchanan, B. (1987). Knowledge base refinement by monitoring abstract control
knowledge.International Journal of Man-Machine Studiex/(3), 281-293.

Received September 22, 1994
Accepted August 29, 1996
Final Manuscript March 3, 1998



