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Abstract. It is well known that prior knowledge or bias can speed up learning, at least in theory. It has proved
difficult to makeconstructiveuse of prior knowledge, so that approximately correct hypotheses can be learned
efficiently. In this paper, we consider a particular form of bias which consists of a set of “determinations.” A
set of attributes is said todeterminea given attribute if the latter is purely a function of the former. The bias
is tree-structured if there is a tree of attributes such that the attribute at any node is determined by its children,
where the leaves correspond to input attributes and the root corresponds to the target attribute for the learning
problem. The set of allowed functions at each node is calledthe basis. The tree-structured bias restricts the target
functions to those representable by a read-once formula (a Boolean formula in which each variable occurs at
most once) of a given structure over the basis functions. We show that efficient learning is possible using a given
tree-structured bias from random examples and membership queries, provided that the basis class itself is learnable
and obeys some mild closure conditions. The algorithm uses a form ofcontrolled experimentationin order to
learn each part of the overall function, fixing the inputs to the other parts of the function at appropriate values. We
present empirical results showing that when a tree-structured bias is available, our method significantly improves
upon knowledge-free induction. We also show that there are hard cryptographic limitations to generalizing these
positive results to structured determinations in the form of a directed acyclic graph.

Keywords: determinations, tree-structured bias, declarative bias, prior knowledge, read-once formulas, queries,
controlled experimentation, pac-learning

1. Introduction

Biasis the term used in machine learning to refer to any information, implicit or explicit, that
a learning algorithm uses to select hypotheses, beyond mere consistency with the available
observations. Without bias, inductive learning is impossible (Mitchell, 1980). Bias can take
many forms, including restrictions on the space of hypotheses that the learning algorithm
can consider. Although it is possible for the designer of a learning system to engineer
a bias directly into the algorithm’s structure, or to specify exogenously various syntactic
restrictions on hypotheses, it is desirable that learning programs should, over time, be able
to develop their own biases in order to operate autonomously.

The idea ofdeclarative bias(Russell & Grosof, 1987, 1990) is to replace the exogenous
bias, which is often only implicit, with background domain knowledge possessed by the
learning system. Restriction bias, which specifies a restricted hypothesis space, is realized
by first-order background knowledge that is logically equivalent to the disjunction of all
the hypotheses in the restricted space, whereas preference bias, which specifies the relative
likelihoods of different hypotheses in the hypothesis space, is realized by a prioritized
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default theory. In many cases, biases can be represented by compact logical theories.
Conversely,any logical background knowledge is equivalent to a restriction bias that rules
out any hypothesis that is inconsistent with the background knowledge. The advantage of
such an approach is that such declarative background knowledge can be learned in a variety
of ways, including inductive generalization from examples, automatic deduction from the
system’s other background knowledge, and by being directly told by other agents. As a
result, it may be possible to design a learning agent whose cumulative learning performance
far exceeds what can be achieved by taking each new learning problemab initio.

Realizing the potential benefits of declarative bias is another matter. One obvious non-
solution is to search in an unrestricted hypothesis space, filtering out hypotheses that are
found to be inconsistent with the background knowledge. Such an approach is likely to
be intractable. Another approach is to use the background knowledge tore-expressthe
observations using a set of higher-level attributes, in addition to the original observational
attributes, in the hope that it will be simple to find a correct hypothesis in the new space.
This approach has proved effective in some cases. Implemented systems of this type in-
clude mEBG (Hirsh, 1990) and GOLEM (Muggleton & Feng, 1990). A third approach is
to use the background knowledge to generate a “template” for the hypothesis, which can
be filled in using the observations to constrain the functions that make up the template. In
this way, the system need never consider hypotheses that are not consistent with the back-
ground knowledge. Implemented systems of this type include Odysseus (Wilkins, Clancey,
& Buchanan, 1987), KBANN (Shavlik & Towell, 1989), and Grendel (Cohen, 1992), as
well as the work of Getoor (1989) which we discuss below.

One of the earliest forms of declarative bias was based on the observation that thevo-
cabulary biasfor a propositional hypothesis space—that is, the set of features from which
hypotheses are to be constructed—can be expressed concisely as a determination whose
left-hand side contains the relevant features and whose right-hand side contains the target
concept (Russell & Grosof, 1987). For example, we say that{A,B,C} Â D, read the set
{A,B,C} determinesD, if the values ofA,B andC are sufficient to determine the value
of D. Since determinations are a form of first-order knowledge (Davies, 1985), they can
be derived using logical inference from suitable background knowledge, including other
determinations. Thus, armed with an appropriate inference algorithm and a knowledge
base, a learning system can derive a restricted hypothesis vocabulary for its current learning
task. Since this restricted vocabulary may be much smaller than the total set of features
available, the learning system may be able to learn from many fewer examples in much less
time (Russell, 1989; Mahadevan & Tadepalli, 1994). For example, if the learner knows (or
can deduce) that the model, make, optional extras, and year of a car determine its list price,
then it need not worry about the color of the car, the day of the week, or the name of the
current Pope.

In (Russell, 1988), it was shown that the knowledge used in the derivation of a suitable
determination bias can impose additional constraints on the hypothesis space, beyond those
implied by the determination itself. We assume that the bias is derived by a backward-
chaining proof through a set of determinations, beginning with the target attribute as the
root and terminating in a set of leaf attributes all of which are observable in the training
data. (Section 2 gives an example of such a derivation. See (Russell, 1989) and (Getoor,
1989) for more examples.) By construction, the attributes at internal nodes of the derivation
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tree will be unobservable. If in addition we assume that each attribute occurs only once in
the derivation, then the derivation tree forces any hypothesized target function to conform
to atree-structured bias(TSB) in which the hypothesis is composed from a set of unknown
functions that must combine in a tree structure that mirrors the derivation tree. We call this
tree structure along with a labeling of the leaves of the tree with distinct input attributes
a determination tree(see Figure 1). It was shown in (Russell, 1988) that the number of
examples required to learn a function consistent with a given determination tree is linear in
the number of leaves, provided the tree has bounded degree. We denote this assumption by
k-TSB.1 Unfortunately, results due to Pitt and Warmuth (1990) show that learning arbitrary
Boolean formulas is reducible to learning with a fixed determination tree of bounded degree
from classified random examples. Since learning arbitrary Boolean functions is as hard as
inverting one-way functions (Kearns & Valiant, 1994), learning with tree-structured bias
with random examples alone is believed to be intractable. Getoor’s (1989) implementation
of tree-structured learning, using a neural network pre-structured according to the bias
derivation tree took a prohibitively large training time due to the depth of the neural network,
suggesting that this intractability cannot be circumvented easily in practice.

Bshouty, Hancock, and Hellerstein (1992) and Tadepalli (1993) showed that the use
of membership queries(Angluin, 1988) as well as random examples renders the learning
problem with ak-TSB bias tractable. Tadepalli assumes that the determination tree is given,
whereas Bshouty et al. infer the tree structure as well as the target function. The key to
both of these algorithms is the use ofcontrolled experimentation. The idea is to learn each
internal functionfi at nodei of the tree by finding a suitable setting (orcontext) for the leaf
attributes (other than those that affect the inputs offi) so that the value of the target concept
changes whenever the value of the unobservable internal nodei is changed. If such settings
are found for any nodei and its children, the program can learn the internal functionfi,
by varying its inputs and observing its output. When such a setting is not found for a node
with a sufficiently large sample and a thorough search, it can, without the risk of a large
error, conclude that that node has no effect on the output, and can ignore the subtree under
that node.

In this paper, we replace the restriction of bounded degree with the restriction that the
functions at the nodes of the tree be drawn from some learnable class called the “basis”
which obeys some mild closure properties. We describe a method to convert almost any
induction algorithm that learns the basis class to one that learns any function that is consistent
with the tree-structured bias where the internal functions are chosen from the basis class.
The environment provides random examples, and answers the membership queries, i.e.,
gives the output for any input queried by the learner. Using the probably approximately
correct learning framework (Valiant, 1984), extended with membership queries (Angluin,
1988), we prove that if the determination tree is given, and the internal functions belong to a
known learnable basis class with some mild closure conditions on them, then any function
consistent with the determination tree can be learned by our algorithm. We present empirical
results that show that our algorithm leads to fast and reliable convergence when two different
induction programs are used to learn the internal functions: Quinlan’s ID3 (Quinlan, 1986),
and a program calledk-DL that learnsk-decision lists introduced by Rivest (1987).

Tree-structured determinations are closely related to read-once formulas orµ-formulas
studied in the computational learning theory literature (Angluin, Hellerstein, & Karpinski,
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Figure 1. A determination tree that restricts the hypothesis space to functions of the form
f0(f1(f3(A,B), f4(C,D)), f2(f5(E,F ), f6(G,H))). The task is to find the functionsf0, f1, . . . from ex-
amples and membership queries of the composite function.

1993; Hancock & Hellerstein, 1991; Bshouty, Hancock, & Hellerstein, 1992, 1995). In a
read-once formula, each variable appears exactly once; hence the formula can be represented
by a circuit in the form of a tree, where each leaf is distinctly labeled. This is also the defining
property of a tree-structured bias. For example, compare the two formulasBA + C and
BA+BC. While the first formula is read-once, the second is not, and this is reflected in the
fact thatB is repeated under two leaves in the tree corresponding to the second formula.2 If
we represent the function consistent with a determination tree using the functionsf1, . . . , fn
that correspond to the internal nodes of the tree as primitive symbols, each input feature
appears exactly once in such a formula. The determination tree that corresponds to such a
formula is called its “skeleton”. Learning a read-once formula over a set of basis functions
involves learning its skeleton as well as the internal functions at the nodes of the skeleton. A
fair amount of work in this area has been done by investigating what restrictions on the basis
functions allows for tractable learning of the skeleton and the internal functions (Angluin
et al., 1993; Hancock & Hellerstein, 1991; Bshouty et al., 1992, 1995). This paper takes
a different approach. Rather than restricting the basis functions, it considers a particular
form of background knowledge, namely the determination tree, that is sufficiently strong
to allow learning of read-once formulas forany learnable basis. In Section 9, we discuss
the relationship of our work to the work on learning read-once formulas, especially to that
of (Bshouty et al., 1995).

Our algorithm can be interpreted to mean that the unobservability of the internal attribute
values does not pose unsurmountable difficulties in learning functions consistent with a
given determination tree. However, using some negative results in computational learning
theory, we also show that this positive result does not hold if the tree-structure of determi-
nations is replaced by a directed acyclic graph (dag) structure. In particular, under some
widely believed cryptographic assumptions such as the safety of the RSA cryptosystem, we
show that it is, in general, not possible to learn functions that obey a given dag-structured
bias, when the maximum fan-out (out-degree) of the dag that represents the determinations
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is 2 and the maximum fan-in (in-degree) is3, or vice versa. The negative results hold even
when the internal functions are restricted to a very small set of basis functions.

The rest of the paper is organized as follows. Section 2 motivates our work using an
example derivation of tree-structured bias. In Section 3, we will describe the pac-learning
framework for learning from examples and membership queries. In Section 4, we define
tree-structured bias and the associated learning problem. Section 5 introduces the concept
of “distinguishing assignments” which is central to our algorithm. The learning algorithm
and the proof of correctness are presented in Section 6. Section 7 presents experimental
results on our system. Section 8 gives an analysis of dag-structured bias. Section 9 discusses
related work, and Section 10 concludes with a summary and future work.

2. Declarative Bias: A Motivating Example

In this section, we motivate the problem of learning a function when a significant amount
of prior knowledge is readily available in declarative form.

The example of this section is adapted from Getoor (1989). A credit card company may
be interested in predicting the expected profits from offering a credit to an individual. The
relevant knowledge base for this domain might contain several facts such as the following,
expressed in the form of determinations.

{ Loan, Repayments, InitialSchedule} Â ExpectedProfit
{ Responsibility, LiquidAssets, Ability, Commitments } Â Repayments
{ InitialBalance, IncomeHistory, MonthlyExpenditure } Â LiquidAssets

Using the above knowledge base and an inference engine that can compose determinations,
it is possible to construct a derivation tree that shows the functional dependency between
the root attributeExpectedProfit and the primitive input attributes such asOccupation,
Education, and Age. Figure 2 shows a determination tree which is based on such a
derivation.

The determination tree merely shows the functional dependencies in the domain and by
itself is not sufficient to predict the ExpectedProfit from the primitive attributes. But it is
an immensely useful bias. In the presence of such a strong bias, and when an oracle can
answer queries about a few hypothetical persons, it is possible to learn a function that can
make this prediction with only a small number of examples.

In the rest of the paper we show how this might be done when all the attributes are binary
and the derivation is tree-structured. The functions at each node of the determination tree
should all belong to a learnable class and satisfy some mild closure conditions. On the
other hand, it appears that it is necessary for the derivation to be tree-structured in that even
mild deviations from the tree-structure could make the learning problem computationally
intractable.

3. Learning from Examples and Membership Queries

In this paper, we will be using a version of probably approximately correct (PAC) learn-
ing (Valiant, 1984), extended to include membership queries (Angluin, 1988). We restrict
ourselves here to learning Boolean functions.
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Figure 2. A determination tree derived from a knowledge-base of determinations in the credit card domain. The
determination tree provides a strong bias to the learning algorithm.

An assignmentis a mapping from attributesB1, . . . , Bn to their values inΣ = {0, 1}. Σn

denotes the set of binary strings of lengthn. Each string inΣn represents an assignment,
where theith bit of the string is the value ofBi. LetFn be the set of functions fromΣn to
Σ that we are interested in learning. The parameterized sequenceF = {F1, . . . ,Fn, . . .}
is called afunction space.F1, . . . ,Fn, . . . are called thesubspacesof F .

We call representations of functions “formulas.” Formulas are assumed to be composed
of the input attributesB1, . . . , Bn as well as some other fixed symbols such asAND, OR,
etc. The length of a formular is the number of symbols in the formula and is denoted by
|r|. We fix a representation languageR for functions inF . LetRn be a set of formulas that
represent the functions inFn. We define thesize|f |R of a functionf ∈ Fn inR to be the
length of a minimum-length formula inRn that representsf . We will omit the subscript
where no confusion can arise.

We assume an oracle called EXAMPLE that takes no arguments and generates a pair
〈x, f(x)〉 wherex is an assignment inΣn chosen according to some fixed, but unknown,
probability distributionP , andf ∈ Fn is the target function.

Definition 1. Given a target functionf , the error of a hypothesisg according to a
probability distributionP is the probability thatf andg disagree on an instance randomly
chosen using the distributionP , and is given by

∑
{x∈Σn|f(x)6=g(x)} P (x).

Following Angluin (1988), we also assume another oracle called MEMBER that takes
any assignmentx ∈ Σn as input and outputsf(x), wheref ∈ Fn is the target function.
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We now formally define the predictability model with membership queries that we will
be using.

Definition 2. For a function spaceF and its representation languageR, if there is an
algorithmM that, given an error parameterε, a confidence parameterδ, and the problem
sizen, for all target functionsf ∈ Fn and all probability distributionsP ,

(i) makes a number of calls to EXAMPLE and MEMBER that is polynomial inn, |f |R,
1
ε , and1

δ ,

(ii) runs for time polynomial inn, |f |R, 1
ε , 1

δ , and

(iii) with probability at least1− δ outputs a a representation of functiong that has error at
mostε according toP and is computable in polynomial time,

thenM is said topwm-predict(pac-predict with membership queries)F under the repre-
sentationR. F , represented inR, is said to bepwm-predictableunder these conditions.

Definition 3. If a function classF represented inR is pwm-predictable by an algorithm
without making any calls to the MEMBER oracle, thenF is said to bepac-predictable.

If F is the set of all functions represented by the sentences inR, then we say thatR is
pwm- (or pac-) predictable to mean thatF represented inR is pwm- (or pac-) predictable.
Note that the output of the learning algorithmg need not be in the languageRn, butg(x)
must be computable in polynomial-time for anyx. This is what distinguishesprediction
from learning, and is sometimes called representation-independent learning. In this paper,
we are interested in prediction algorithms, and by “learning algorithm,” we actually mean
algorithms for pwm- or pac-prediction. The words “learnable” and “predictable” are used
synonymously from now on.

Definition 4. A functiong isconsistentwith a set of examplesS if ∀〈x, o〉 ∈ S, g(x) = o.

Definition 5. A prediction algorithm isconsistentif it always outputs a representation
of functiong that is consistent with the set of input training examples.

Typically, prediction algorithms work by finding a small formula that is consistent with
a sufficiently large set of random examples.

Definition 6. A compressionalgorithm for a function spaceF represented inR is any
algorithm that takes as inputn, the size|f |R of any target functionf ∈ Fn, the confidence
parameterδ such that0 < δ ≤ 1, and a set ofm distinct examples off , runs in time
polynomial inn, |f |R, 1

δ andm, and with probability at least1 − δ outputs a hypothesis
g represented in some languageR′, where,g is consistent with the input examples,|g|R′
is bounded by a polynomial “expansion” functionp(n, |f |R) and is independent ofm, and
g(x) can be evaluated on any instancex in time polynomial inn and|g|R′ .
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A compression algorithm can optionally call the MEMBER oracle and is charged 1 unit
of time for each such call. In that case, it is called acwm-algorithm(compression with
membership queries).

If F is the set of all functions represented byR, then we call a compression (or cwm-)
algorithm forF represented inR, a compression (or cwm-) algorithm forR.

Note that the size of the hypothesis output by the compression algorithm should grow
slowly with the size of the target function and should be independent of the number of
examplesm. More general definitions allow it to grow slowly with the number of examples,
e.g., according toO(mα), where0 ≤ α < 1 (Blumer, Ehrenfeucht, Haussler, & Warmuth,
1989). Thus, compression algorithms compress the training sample into a reasonably
small hypothesis and are sometimes called “Ockham algorithms,” named after William of
Ockham, the original proponent of “Ockham’s Razor.”

The next theorem follows from the results of (Blumer et al., 1989) and establishes that a
compression algorithm can be easily converted into a prediction algorithm by making sure
that it is called with a sufficiently large random sample.

Theorem 1 (Blumer et al.) Letf be any target function inFn representable inR
with c distinct primitive symbols, andp be the polynomial expansion-function defined in
Definition 6. Then, any algorithm that takes as inputsn, ε, δ, and the size|f |R, calls a
compression (or cwm) algorithm with a random example setS of size1

ε (p(|f | , n) ln c+ln 2
δ )

and a confidence parameterδ2 , and outputs the resultg that is polynomial-time computable
is a consistent pac- (or pwm-) prediction algorithm forR.

The above theorem suggests that we need a sample whose size grows linearly with1
ε and

the size of the output hypothesis. Thelog factor isln 2
δ instead of the usualln 1

δ because the
compression algorithm might itself fail to find a consistent hypothesis with a probability
less thanδ2 . With the sample size given in the theorem, the probability that the returned
hypothesis is not approximately correct, given that the compression algorithm successfully
finds a consistent hypothesis, is less thanδ

2 . Adding the two bounds, the probability that
the algorithm finds a hypothesis which is not approximately correct is less thanδ.

The following “Ockham-converse” result of Schapire (1990) suggests that prediction
algorithms can also be converted into compression algorithms, albeit through a more com-
plex algorithmic reduction that involves running the prediction algorithm several times
using different example distributions.

Theorem 2 (Schapire) If F is a pac- (or pwm-) predictable discrete class of Boolean
functions in some representationR, then there exists an efficient, deterministic compression
(or cwm-) algorithm forF inR.

“Efficient” in the above theorem means that it runs in time polynomial inlog 1
δ (rather

than in 1
δ ), in addition to the sample sizem, the number of inputs of the target functionn,

and the size of the target function|f | in its representation language. The output hypothesis
can be evaluated in time polynomial inn and the size of the original target function.

Having established the relationship between prediction and compression, we now define
some specific properties of the functions and function spaces in order to characterize the
conditions under which our algorithm works correctly. We begin with the following.
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If x andy are two complete assignments,x ≤ y if and only if the value assigned toBi
by xi is≤ the value assigned toBi by yi, for eachi. A Boolean functionf is monotoneif
f(x) ≤ f(y), wheneverx ≤ y.

A Boolean formula over a set of input variables is a possibly nested expression formed
from a set of primitive terms that represent “basis functions,” each of which can take any
number of arguments, which can be input variables or other Boolean formulas.

A Boolean formula is monotone if the basis functions are composed only from AND and
OR.

It is easy to see that monotone Boolean formulas represent monotone Boolean func-
tions. In addition, every monotone Boolean function is represented by a monotone Boolean
formula.

Definition 7. Given a formular, the complement ofr is the formular, obtained by
negating it. The length of the formular is denoted by|r| and is equal to1 + |r|.

The complement of a function is the function obtained by complementing the output of
the original function for every input, and is represented by the complement of any formula
that represents the original function (as well as possibly other formulas).

Note that the above definition implies that the complement of the complement of a function
f is f itself. This means that bothr andr represent the same function.

Whereas thecomplementnegates the formula, avariable negationnegates the input
variables of the formula.

Definition 8. Given a formular over a set of variablesX and a subsetW of X, the
variable negationof rwith respect toW is the formula obtained by negating all occurrences
in r of the variables inW . Its length is equal to|W |+ |r|.

The variable negation of a functionf with respect toW is the function obtained by
applyingf after complementing the variables inW . The variable negation of any formula
for f with respect toW represents the variable negation off with respect toW .

A projectionof a function treats some input variables as always fixed. Here we restrict
ourselves to projection to0 rather than to0 or 1.

Definition 9. Given a formular over a set of variablesX and a subsetW of X, the
projectionof r with respect toW is the formularW obtained by replacing all occurrences
of the variablesW in r with 0’s. Its length is the same as that ofr.

The projection of a functionf with respect toW is the function obtained by applyingf
after fixing the input variables inW to 0’s. The projection of a formula forf represents the
projection off .

Definition 10. A representation languageR is closed undercomplement (or variable
negation or projection), if, for every formular inRn, the complement (or variable negation
or projection with respect to any subset of its variables) ofr is also inRn.
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Definition 11. A function spaceF is closed undercomplement (or variable negation
or projection), if, for every functionf in Fn, the complement (or variable negation or
projection with respect to any subset of its variables) off is also inFn.

Definition 12. The closure of a representation languageR under complement (or
variable negation or projection) is the minimal languageR∗ which includesR and is
closed under complement (or variable negation or projection), in that every language which
includesR and is closed under complement (or variable negation or projection) is a superset
ofR∗.

Definition 13. Analogously, theclosure of a function spaceF under complement (or
variable negation or projection) is the minimal function spaceF∗ which includesF and is
closed under complement (or variable negation or projection).

Consider the space ofk-DNF functions, which is known to be learnable.k-DNF is the
space of Boolean functions that can be expressed as disjunctions of conjunctions of at most
k literals (Valiant, 1984). For example,AB + BC + DE is a 2-DNF formula. It is easy
to see thatk-DNF is closed under projection. Setting an input to0 causes all the terms
that contain the positive literal of that input to disappear, and all the terms that contain its
negated literal to drop that literal from the term, leaving a formula that still represents a
function ink-DNF. It is also easy to see that it is closed under variable negation, because
complementing any subset of the literals in ak-DNF function expression does not change
its k-DNF property. However,k-DNF is not closed under complement. For example, the

complement of the previous function isAB +BC +DE = (A+ B)(B + C)(D + E) =
A C D + A C E + BD + BE, which is not expressible in 2-DNF.

Let F be a function space represented inR andF∗ be its closure under complement
(or variable negation or projection). It is easy to see that the size of any function derived
by complementation (or variable negation or projection) from a functionf ∈ Fn in the
corresponding closureR∗ is at most linear in the size off inR.

Lemma 1 If a function spaceF represented in the languageR is pac (pwm) predictable,
thenR’s closure under complement,R∗, has a compression (cwm) algorithm.

Proof: By Schapire’s Ockham-converse result (Theorem 2), sinceR is pac (pwm) pre-
dictable, it has a compression (cwm) algorithm, sayA. We show that we can construct a
compression (cwm) algorithm forR∗ usingA as a subroutine.

Every target formula inR∗ has a functionally equivalent formula, which is not bigger
than the original formula, and is of the formf or f , wheref is a formula inR. To learn the
function spaceF∗ represented byR∗, we run two copies ofA for timep(n, |f |R, log 1

δ ,m)
wheren is the number of features of each example,m is the number of examples,δ is the
confidence parameter, andp is the polynomial upper-bound on the running time ofA. The
first copy assumes that the target functionf is represented inR and tries to learn it directly.
The second copy assumes that the target is represented asf wheref is inR. Hence, the
second copy turns the examples of the target into the examples off by complementing their
output bits, runsA on them, and returns the complement of the learned formula. (IfA is
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a cwm-algorithm, all the answers to the membership queries are similarly complemented
before being passed on to the second copy ofA.)

Since the target function is equivalent tof orf at least one of the two copies must terminate
in the above time bound, and output a hypothesis consistent with the input example set with
probability at least1− δ. Consistency can be checked easily by evaluating the hypotheses
output by the two copies on the input examples for time determined by the upper bound
on the evaluation time (which is a polynomial in the hypothesis and example sizes). This
serves as a compression (cwm) algorithm forR∗ since at least one copy returns a consistent
hypothesis with probability1 − δ, and it can be easily determined which one it is by
checking it against each example. In case both of them are consistent, one can be returned
arbitrarily.2

Unfortunately the corresponding results are not known to be true for closures under
variable negation and projection.3

4. Tree-Structured Bias

In this section, we present formal definitions of determinations and tree-structured bias, in
the propositional setting. A complete summary of notation is given in Table 1.

Let an objectx be described by a set of input attributesB1, . . . , Bn, whose values are
denoted byB1(x), . . . , Bn(x). The task is to predict the value of the output attributeA0

for x.
Out of the many types of determinations Russell defined, in this paper, we are concerned

with what may be called a “functional” determination (Russell, 1989). This is defined as
follows.

Definition 14. A set of attributes{P1, . . . , Pl} determinesQ, if there is anl-input
functionf such that∀x Q(x) = f(P1(x), . . . , Pl(x)).

Intuitively, the above determination says that some subset of attributesP1, . . . , Pl are
sufficient to predict the value ofQ for any objectx. Thus, if there are two objectsx andy
that have exactly the same values forP1, . . . , Pl, then they will have the same value forQ.
Note that this leads to a first-order characterization of the determination:

∀x, y (P1(x) = P1(y)) ∧ . . . ∧ (Pl(x) = Pl(y))⇒ Q(x) = Q(y)

There are many examples of such determinations: the nationality of an individual might
determine her language; the model, year, and make of a car determine its list price; the
inputs of a combinatorial Boolean circuit determine its output; and so on.

The most important property of determinations for our purposes is that they reduce the
set of functions that the learner has to consider by identifying the relevant features. If the
nationality of a person determines her language, then the learner need not consider functions
that map different people of the same nationality to different languages, since they are not
consistent with this determination. Since learning occurs by filtering out functions that are
not consistent with the training examples, the more constraining the determination, the fewer
the examples needed to filter the remaining functions. As we stated in the introduction, if
the determination for the target concept is derived by a tree-structured derivation such that
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the number of children of each node is bounded byk, then the number of examples needed
for pac-learning is linear in the number of leaves (which may, in turn, be much less than
the total number of observable features).

If i is a node in the tree structureT , letAi represent the attribute ati, and leti1, . . . , il(i)
represent the children ofi. LetA0 denote the target attribute.Ti represents the subtree of
T rooted at nodei. HenceT0 is the same asT . Then input attributes are all distinct and
are denoted byB1, . . . , Bn. During learning, the input attributesB1, . . . , Bn and the target
attributeA0 are observable, and the other internal attributesAi are not. The set of all input
attributes other than the leaves ofTi is called thecontextof Ti.

A partial assignmentis a mapping from the input attributes{B1, . . . , Bn} to {0, 1, ∗}.
The attributes that are mapped to0 or 1 by the partial assignment are calleddefined, and
the restundefined.

Therestrictionof an assignmentx to a subtreeTi, denoted byxi, is a partial assignment
where the leaves ofTi are assigned to their values underx and the rest of the input attributes
are assigned to∗’s.4

If x andy are two (partial) assignments, ‘x extended byy’ denotedx/y, is a (partial)
assignment that maps an attributeBi toBi(x) when it is defined (not equal to ‘∗’) and to
Bi(y) otherwise.

Note thatx/y is defined exactly for those attributes that are defined for eitherx or y.
When an attribute is defined for bothx andy, the value underx overrides that undery.
Hence the operation ‘/’ is associative, but not commutative in general.

Definition 15. A determination treeis a tree structureT of attributes such that the root
of the tree is the target attributeA0, the leaves of the tree correspond to the input attributes
B1, . . . , Bn, and for every non-leaf nodei in the tree the set of attributes at the children of
i, {Ai1 , . . . , Ail(i)}, determinesAi.

The functionfi from the attributes{Ai1 , . . . , Ail(i)} toAi is called an “internal function.”
Given a treeT and a set of internal functionsf0, f1, . . ., at nodes0, 1, . . ., there is a unique
“external” function from the input attributes of the tree to any internal attributeAi. We
denote this external function byT fi , and drop the superscriptf when it is clear from the
context. Hence,

T fi (x) = Ti(x) = fi(T
f
i1

(x), . . . , T fil(i)(x))

for all inputsx. Note thatT f0 is the same asT f , and for all leaf nodesi, Ti(x) is the value
of the only defined attribute ofxi.

The number of children of a node is called itsfan-inand the number of parents of a node is
called itsfan-out. Thefan-inof the tree is the maximum fan-in over all nodes. Thefan-out
of the tree is the maximum fan-out over all nodes, which is 1. To nontrivially constrain
the set of allowed functions, the fan-in of the tree was originally restricted to a constantk
(Russell, 1989; Bshouty et al., 1992; Tadepalli, 1993) — thek-TSB bias. In this paper, we
consider a generalized tree-structured bias in which the nodes have arbitrarily large fan-ins.
We restrict the set of allowed functions by assuming that the internal functions belong to a
function space that is itself learnable from random examples and membership queries.
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Table 1.A Summary of the notation used in the paper

Notation Meaning
F A space of functions
Fn A subspace ofF , where each function hasn inputs
Rn Formulas of functions overn inputs, represented inR
Ai The internal attribute at nodei
A0 The root (target) attribute
Bi The input attribute at the leaf nodei
xi A restriction of assignmentx to Ti
x/y An assignment where input attribute values underx (if not = ‘*’)

override that undery.
z An assignment which is0 everywhere
⊥ A special distinguished symbol to denote “unknown”
ij jth child of nodei
l(i) Number of children of nodei
nI Number of internal nodes of the determination tree
n Number of leaves of the determination tree
fi Target internal function from the children ofi to i
gi Learned internal function from the children ofi to i
d(i) Distinguishing assignment of nodei

sign(i) The output of the target function onzi/d(i); sign(0) = 0
Di Children ofi with unknown distinguishing assignments.
f
Di
i Projection offi with respect to the inputs inDi

Ti = T fi The external function from the leaves of subtree rooted ati toAi induced by the
internal functionsf1, f2, . . .

T f = T f0 The external function from the leaves of the tree toA0 induced by the internal
functionsf1, f2, . . .

〈xi, oi〉 An example (input-output pair) of functionT fi
Si Training examples (input-output pairs) for the functionT fi

T fi (x) The value ofAi onx, where internal functions aref1, f2, . . .
TI The set of target functions induced by the internal functions inI

TSB-2X The TSB-2 algorithm that uses X to learn the internal functions

Let the internal functionsfi be chosen from a function spaceI represented in some
languageR. Following the literature on read-once formulas, we call the function spaceI
the “basis” (Hancock & Hellerstein, 1991; Bshouty et al., 1992, 1995).

The hypothesis space represented by the tree-structured biasT and the internal function
spaceI is just the set of all external functions at the root node definable by choosing
functions fromI for each nodei in T .

Definition 16. The set of functionsinduced bythe function spaceI over the tree structure
T , denotedT I , is given by{T f |fi ∈ Il(i) for all nodesi of T}, whereIl(i) is the subspace
of functions inI with l(i) inputs.

We assume that the functionsT fi are represented in the natural fashion; by the repre-
sentation offi followed by the representations of functionsT fi1 , . . . , T

f
il(i)

in parentheses.

We denote byTR the set of representations ofT f0 , where the internal functionsfi are
represented in the languageR.
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Figure 3. Transforming the target formula so that each of the intermediate nodes in the determination tree outputs
0 on the null assignment. The transformation increases the length of the formula at most by twice the number of
intermediate nodes in the determination tree.

The size of a functionT fi , represented in this fashion is the sum of the sizes of all internal
functions in the subtreeTi. This measure of the function size is justified since we already
know the tree structure and|T fi |would be known if we know each of the internal functions.
Note that we count all internal nodes, even if they compute a constant function. Since
every internal function needs at least1 bit to represent it,|T fi | is greater than the number
of internal nodes inTi.

We are interested in learning the set of functionsT I represented byTR from random
examples and membership queries for any arbitrary tree-structured biasT . In contrast, to
learn read-once formulas the algorithm has to learn the determination treeT , which is also
called the “skeleton” of the read-once formula, and the functionsT I . In other words, it has
to learn the functions in

⋃
T T
I , whereT varies over all possible determination trees. In

this paper, we examine the effect on learning of having the skeletonT as prior knowledge.

Definition 17. A null assignmentis a special assignment where every input attribute is
set to0. We denote this by the symbolz.

Note thatzi denotes the partial assignment where the leaves of the subtreeTi are assigned
to 0’s and the rest of the inputs are undefined. We call the non-root internal nodes of the
determination tree the “intermediate nodes.”
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Definition 18. A representation of a target functionT f0 is well-behavedif for all
intermediate nodesi, T fi (zi) = 0.

We now prove a lemma that lets us assume, under some conditions, that the representation
of the target is well-behaved, i.e., all intermediate nodes evaluate to0’s when the leaves of
the subtrees under them are set to0’s.

Lemma 2 LetR be the language of the basis functions of the target hypothesis spaceTR,
and letR∗ includeR and be closed under complement and variable negation. For any
target formulaT f0 ∈ TR, there exists a functionally equivalent formulaT g0 ∈ TR

∗
, such

that (a)T g0 is well-behaved, and (b) for any internal nodei, |gi| ≤ |fi| + l(i) + 1, where
l(i) is the number of children ofi.

Proof: The proof is by construction. Starting with the bottom of the determination tree,
we replace each internal function in the tree until the conditions of the lemma are satisfied.

Assume thatij is one of the bottom-most intermediates nodes in the determination tree
such thatT fij (zij ) = 1, which violates condition (a). We can introduce two successive NOT

gates at the output of nodeij without changing the target functionT f0 computed by the
original formula (see Figure 3). If we definegij asf ij , thenT gij (zij ) = 0. We repeat this
for each child ofi which outputs1 on null input. LetW be the children ofi whose internal
functions are thus replaced. We then replacefi with its variable negation with respect toW .
This ensures that the external functions computed at nodei and at the root of the tree do not
change. We repeat the above process until all the intermediate nodes satisfy this condition.
This process terminates because nodes are replaced in a strictly bottom-up fashion. Since
at each internal nodei, we added at most one NOT gate to its output and one NOT gate to
each of its inputs, the size of the formula increases at most byl(i) + 1.

Since we replaced the internal function formulas only by their complements and variable
negations, the new internal functions are all represented inR∗, and the new target formula
is in TR

∗
. 2

Figure 3 shows this transformation on an example tree. The dashed boxes in the right
half of Figure 3 represent the new internal functionsg0, g1, andg2, which are derived from
f0, f1, andf2, by complementation and variable negation. It is easy to check that the
transformed circuit is functionally equivalent to the original one and is well-behaved.

5. Distinguishing Assignments

In this section, we motivate and introduce the idea of “distinguishing assignments,” which is
closely related to controlled experimentation in science and forms the basis of our learning
algorithm.

5.1. Definition and Properties

The main problem in learning with a tree-structured bias is that the non-root internal at-
tributes in the determination tree are not observable. The basic idea behind our algorithm is
that an internal node (e.g.,Ai2 in Figure 4) can be made effectively observable by finding
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Figure 4. Distinguishing assignment for nodei2: changing the values of the leaves of the middle subtreeTi2 to
0’s changes the values of all the attributes in the path fromi2 to the root.

a context, i.e., an assignment to all input attributes other than the leaves under that node,
for which the value of the root attributeA0 changes whenever the node’s value changes. In
Figure 4, assume that changing the values of the leaves ofTi2 to 0’s while keeping the rest
of the leaves at the specified values changes the value of the root attributeA0 from 0 to 1.
Since all the paths from the leaf nodes ofTi2 to the root pass throughi2, in order for the
value ofA0 to change, the value ofAi2 must have changed. Under these conditions, we call
the original assignment adistinguishing assignmentfor nodei2 and denote it withd(i2).
Since the value ofAi2 is assumed to be0 when the leaves ofTi2 are set to0’s, it must have
been1 originally. Since the value ofAi2 determines the value ofA0 under a fixed context,
the values ofA0 andAi2 are alwaysoppositeif the context ofTi2 is set according tod(i2).
We denote this situation withsign(i2) = 1. If, on the other hand, setting the leaves ofTi2
to 0’s changes the value of the rootA0 from 1 to 0, then the values ofA0 andAi2 are always
identical in the context ofd(i2), andsign(i2) = 0.

Thus, if a distinguishing assignment and a sign for an internal nodei2 are known, then
the value ofA0 can be used to “read off” the value ofAi2 for any input at the leaves of
Ti2 by setting its context according tod(i2), makingAi2 effectively observable. For the
distinguishing assignmentd(i2) in Figure 4, sincesign(i2) = 1, if A0 is 1, thenAi2 must
be0 and vice versa. A distinguishing assignment for a nodei2 also makes it possible to
“control” its value. To set the value ofAi2 to 0, we can simply set all leaves ofTi2 to 0’s.
To set it to1, we set them according tod(i2).

We are now ready to formally define distinguishing assignments and make the above
intuitions more precise. Recall thatzi/x in the following definition refers to an assignment
that maps the input attributes under the subtreeTi to 0’s and all other input attributes to
their values underx.

Definition 19. For a determination treeT , and an intermediate nodei, an assignment
x such thatT (x) 6= T (zi/x) is called adistinguishing assignmentfor i, and is denoted by
d(i). If d(i) is a distinguishing assignment fori, T (zi/d(i)) is called the corresponding
signof nodei and is denoted bysign(i).
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Note that thesign of a node is always associated with a particular distinguishing as-
signment in that the same node might have different signs for different distinguishing
assignments.

Proposition 1 Let i be any intermediate node in a determination treeT with a distin-
guishing assignmentd(i) and signsign(i). Then, for any assignmentsx andy,

1.1. Ti(x) = Ti(xi) = Ti(xi/y).
1.2. Ti(d(i)) = 1.
1.3. T (xi/d(i)) = T (yi/d(i))⇐⇒ Ti(x) = Ti(y).
1.4. Ti(x) = T (xi/d(i))⊕ sign(i).
1.5. T (xi/d(i)) = Ti(x)⊕ sign(i).

Proof:

1.1. This is true because only the leaves of the subtreeTi influence the value of nodei, and
the assignmentsx, xi, andxi/y all have the same values for these leaves.

1.2. Because of the tree structure of the determinations, for any intermediate nodei, all
paths in the tree from the leaves ofTi to the root go through the nodei. Sinced(i)
andzi/d(i) differ only in the values of the leaves ofTi, the change in the value of the
root node ofT can only be caused by a change in the value of nodei. This implies
that Ti(d(i)) 6= Ti(zi/d(i)). SinceTi(zi/d(i)) = Ti(zi) = 0, Ti(d(i)) = 1 by
Definition 19.

1.3. (⇐=) By Proposition 1.1,Ti(x) = Ti(y) iff Ti(xi/d(i)) = Ti(yi/d(i)). Since
xi/d(i) andyi/d(i) differ only in the leaves ofTi, and since all paths from the leaves
of Ti must go through the nodei to reach the root, if the nodei has the same values for
xi/d(i) andyi/d(i), then the root has the same values as well.

(=⇒) Suppose thatT (xi/d(i) = T (yi/d(i)) andTi(xi) 6= Ti(yi). Without loss of
generality, letTi(xi) = 0 = Ti(zi) so thatTi(yi) = 1 = Ti(d(i)) = Ti(d(i)i) by
Propositions 1.1 and 1.2. By the proof of the⇐= case,T (xi/d(i)) = T (zi/d(i))
andT (yi/d(i)) = T (d(i)i/d(i)) = T (d(i)). Since we assumed thatT (xi/d(i)) =
T (yi/d(i)), it follows thatT (zi/d(i)) = T (d(i)), which contradicts the definition of
d(i).

1.4. If T (xi/d(i)) is the same assign(i) = T (zi/d(i)), then by the second part (=⇒)
of Proposition 1.3,Ti(x) = Ti(zi) = 0. Otherwise, by the first part (⇐=) of
Proposition 1.3,Ti(x) 6= Ti(zi), which meansTi(x) = 1. Hence, in either case,
Ti(x) = T (xi/d(i))⊕ sign(i).

1.5. This is a straightforward consequence of Proposition 1.4.2

Proposition 1 suggests that a distinguishing assignment for an intermediate nodei gives
us the abilities tocontroland toobservethe value ofAi. Control, i.e., settingAi to 0 or 1, is
possible by setting the leaves ofTi to 0’s or as specified ind(i) respectively. Observing the
output ofAi for any arbitrary input, i.e., simulating the MEMBER oracle forAi, is possible
since switching the value ofAi switches the target attribute value when the context ofTi is
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Figure 5. A determination tree and a target function: OR-OF-ANDS.

set according tod(i). To observeTi(x), for any inputx, we set the leaves ofTi according
to x, and all other inputs according tod(i). In other words, we ask a membership query on
the assignmentxi/d(i). This corresponds to asking the value of the root node forxi, using
the restriction ofd(i) onto the context ofTi as a “mask”. We then exclusive-OR the result
with sign(i) as suggested by Proposition 1.4.

In Figure 5, the target function is OR-OF-ANDS =B1B2 + B3B4. Hence,f1 = f2 =
AND, andf0 = OR. The numbers in the parentheses represent the values of the attributes
for a particular assignmentB1 = 0, B2 = 1, B3 = 1, B4 = 1, which we will write as0111
for convenience. The assignment0111 is a distinguishing assignment for node2, because
T (0111) 6= T (0100) = 0. Hence,A2 can be set to1 by setting the leaves of its subtree,
B3B4, to 11. Its value on any input can be observed because it is always the same as the
value ofA0 when its context,B1B2, is set to01.

Not all intermediate nodesi need have distinguishing assignments. For example, in
Figure 5,A1 would not have had a distinguishing assignment iff2 were the constant
function1. ThenA0 would always be1, independent of the value ofA1. A node is called
live for a given target function if it has a distinguishing assignment, anddeadotherwise. If a
nodei is dead, thenT (x) = T (zi/x) for all assignmentsx, which means that permanently
replacingAi’s value with0 would not affect the value ofA0 for any input.

In the computational learning theory literature, a similar notion of “justifying assignment”
is used (Angluin et al., 1993; Hancock & Hellerstein, 1991; Bshouty et al., 1992, 1995). A
justifying assignment is similar to the distinguishing assignment except it is defined only
for input attributes, i.e., the leaf nodes of the determination tree. The justifying assignment
x for an attributeBi is a partial assignment defined on all other input attributes such that
assigningBi to 0 or 1 changes the value of the target function. If we use{Bi ← Y }/x to
represent the assignment whereBi is mapped to the valueY (which can be0, 1, or ∗) and
all other attributes are mapped according tox, then{Bi ← ∗}/x is a justifying assignment
if and only if T ({Bi ← 0}/x) 6= T ({Bi ← 1}/x). Note that a change in the value of the
leaf of a determination tree can change the value of the target function only by changing the
values of all the internal nodes in the path from that leaf to the root. Hence if{Bi ← ∗}/x
is a justifying assignment forBi, then for all internal nodes in the path from the root toBi,
either{Bi ← 0}/x or {Bi ← 1}/x is a distinguishing assignment.
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5.2. Relationship to Controlled Experimentation

It is worth examining in more detail the analogy between distinguishing assignments and
controlled experimentation in science. The goal of controlled experimentation is to discover
the properties of an unobservable “theoretical entity.” Examples of such theoretical entities
range from fundamental particles in physics to disease states in medicine. Usually the
experimenter has a number of parameters under direct control, such as throwing an electric
switch in a physics experiment or administering a drug to a patient. These independent
variables correspond to the input attributes of our determination tree. Similarly, the experi-
menter can also observe some final outcomes. For example, in the physics experiment one
might be able to examine the exposure on a photographic plate. In the medical experiment,
the patient’s temperature and blood pressure may be observable as well as other physical
symptoms. These are akin to the observable root nodes of the determination tree.

In controlled experimentation, the scientist relies on the differences of observations be-
tween the main “experimental setting” and the “control setting” of parameters to make a
prediction of the theoretical entity. A distinguishing assignment of a node can be understood
as a controlled experiment with two components of parameter values. One component is
the set of values for the so-called “context” variables which should be the same for both
the experimental and control settings. The other component is the values for the “control”
variables that can causally influence the theoretical entity, i.e., the leaves of the determina-
tion subtree under the hidden node in question. The values for these variables are different
for the experimental and the control settings. To the extent that there is a difference in the
final observations between the two settings, the experimenter concludes that the theoretical
entity has different values in these two settings, is controllable by the control variables, and
has effects that are observable under the current context.

Viewing controlled experimentation in the framework of distinguishing assignments helps
us identify the assumptions behind its use. One important assumption is that every causal
path from the control variables to the observed variable is mediated through the theoretical
entity (no “causal leak”). Otherwise, we are indeed not sure if the difference in observations
is due to the difference in the states of the theoretical entity or is due to something else.
Another important assumption is that there is no causal path from the context variables to
the theoretical entity, or else we will not be able to isolate the effects of the control variables
on the theoretical entity from those of the context variables (no “causal seep”).

To make things concrete, let us suppose that throwing a switch in a physics experiment
exposes a photographic film. The conditions of the experimental and control settings are
exactly the same except that in the control setting, the switch is off and in the experimental
setting, the switch is on. We are confident that the exposure of the film indicates the presence
of a particle to the extent that there is no other causal mechanism that can expose the film
when the switch is thrown. We can also isolate the settings of the context variables that can
be used for observation from those of the control variables if none of the context variables
can affect thepresenceof the particle, only its observation. This suggests that ideally the
electric circuitry that helps bring about the particle’s presence must be causally isolated
from the photographic equipment that detects its presence, the only mediation between the
two being through the particle.
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Finally, the viewpoint of distinguishing assignments helps us understand the role of some
important phenomena such as the “placebo effect” in experimental science and how they
are usually avoided. The placebo effect can occur when a patient thinks that he is given
a medicine. This mere belief can sometimes influence his own psychological and even
physiological condition to the extent that he may be observed to be cured even when the
placebo does not in fact contain any medicine and has no direct effect on the real disease.
One way to understand this situation is to posit two causal pathways from taking the
medicine to the observable symptoms. One pathway is through the physical disease that
we would like to cure. Another is through some ill-understood psycho-physiological route
that presumably affects the symptoms without affecting the disease. Thus, if we conduct
a study where the experimental group5 is given a medicine and the control group is given
nothing, we have the problem of causal leak, i.e., a causal pathway from a control variable
(of giving medicine) to the observable symptoms that bypasses the disease node. Thus,
we cannot separate the effects of the medicine from the placebo effect. The usual way to
avoid this problem is to give pills to both groups of patients, where the pills given to the
experimental group contain the medicine and those given to the control group contain the
placebo. The reason that this avoids the causal leak is that now we have split the control
variable into two, one of giving the pill and the other of actually putting the medicine in
the pill. Moreover, since giving the pill is common to both groups, it is now a context
variable. Any observed differences between the two groups can now be attributed solely to
the medicine, because it is the only control variable, and the leaky causal path from taking
the pill to the observed symptoms is common to both groups and moved into the context.

6. The Learning Algorithm

In this section, we present an algorithm to pwm-predict the function spaceT I for any
given tree-structureT , assuming thatI is (a) pac-predictable and closed under variable
negation or (b) pwm-predictable and closed under projection and variable negation. In
other words, we always require the basis class to be closed under variable negation and to
have a prediction algorithm. If the basis class also needs the MEMBER oracle in addition
to random examples to learn it, then we also require it to be closed under projection.

The learning algorithm works top-down on the determination tree, finding the distin-
guishing assignments for each intermediate node, and learning the internal function at each
node. Note that if the distinguishing assignments and signs of any nodei and its children
i1, . . . , il are known, then we have the ability to set each of the values ofAi1 , . . . , Ail to
0 or 1, and infer the value ofAi. We can also infer the values ofAi1 , . . . , Ail , and that of
Ai for any random example. SinceAi1 , . . . , Ail are the inputs offi, andAi is its output,
we can generate random examples offi using random examples of the target function. In
other words, we can effectively simulate MEMBER and EXAMPLE oracles for the internal
functionfi.6 If fi belongs to the basisI that is learnable from examples and membership
queries, then we can learn it using the simulated oracles. We will see that if the algorithm is
not successful in generating the distinguishing assignment for a nodeij using a sufficiently
large sample, then, with high probability,Aij can be ignored without losing approximate
correctness in predicting the target attributeA0. Under these conditions,fij is set to the
constant function0. On the other hand, if the algorithm can find a distinguishing assignment
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01procedureLearn-w-TSB
02 input
03 Ti /* subtree rooted at nodei */
04 Si /* set of restrictions of instances inS ontoTi and their outputs atAi */
05 d(i) /* distinguishing assignment of nodei ( arbitrary for the root) */
06 sign(i) /* = the sign ofd(i) (0 for the root)*/;
07 /* Find distinguishing assignments fori’s children */
08 〈Si, d(i1), sign(i1), . . . , d(il(i)), sign(il(i))〉 :=
09 Distinguish-Children(Ti, Si, d(i), sign(i))
10 /* Decompose examples ofT fi into examples offi andT fi1 , . . . , T

f
il(i)

*/
11 〈Internal-Examples,Si1 , . . . , Sil(i)〉 :=
12 Decompose-Examples (Ti, Si, d(i1), sign(i1), . . . , d(il(i)), sign(il(i)))
13 for each childij of i
14 if ij is a leaf,then T gij = the identity functionId
15 else ifd(ij) = ⊥ then T gij := the constant function0
16 /* Recursively call nodes with known distinguishing assignments,
17 on restrictions of examples onto the corresponding subtrees */
18 elseT gij := Learn-w-TSB(Tij , Sij , d(ij), sign(ij));
19 end for;
20 /* Learn an approximationgi for the internal functionfi */
21 gi := Learn-Internal-Function (Internal-Examples)
22 output T gi := 〈gi, 〈T gi1 , . . . , T

g
il(i)
〉〉;

23endLearn-w-TSB;

Figure 6. The top level algorithm for learning with a tree-structured bias.

for a nodeij , then it can, in effect, observe the value ofAij for any input. Hence, it can
call itself recursively on suchij . Figure 6 shows the top level algorithm.

The recursive algorithmLearn-w-TSB takes a subtreeTi of the determination tree, the
restrictionsSi of the random example setS ontoTi, a distinguishing assignment and sign
for node i as inputs (lines 02–06 of Figure 6). The top-level call is made on the full
treeT0 with the example setS. d(0) is any arbitrary assignment andsign(0) = 0. The
subroutineDistinguish-Children is called to find the distinguishing assignments and signs
of all children ofi (lines 07–09).Decompose-Examples then decomposes the examples
of Ti into the examples of the external functionsTi1 , . . . , Til(i) and the internal functionfi,
by inferring the attribute values of all children ofi using their distinguishing assignments
and signs (lines 10–12). If a childij is a leaf, thenLearn-w-TSB treats the corresponding
function as the identity functionId (line 14). All non-leaf children without distinguishing
assignments are treated as computing the constant function0 (line 15). The algorithm
recursively calls itself on all other children ofi (lines 16–18).Learn-Internal-Function is
used to generalize the examples of the internal functionfi to a consistent hypothesis (lines
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20–21). Finally, the algorithm returns an approximationT gi to the target functionT fi by
putting together the results ofLearn-Internal-Function and the recursive calls (line 22).

The next three sections describe the algorithm in more detail and prove its correctness.

6.1. Finding Distinguishing Assignments

In this section we describe the method for finding the distinguishing assignments for the
internal nodes of the determination tree.

Assume that the internal functions in the target are representable in a languageR. Let
R∗ be a language that includesR, is closed under complement and variable negation, and
is pwm-predictable. Then, by Lemma 2, there is a formula with internal functions chosen
fromR∗ that is functionally equivalent to the target, such that each intermediate node in
the determination tree evaluates to0 on the null input. Hence, from now on we assume
Ti(zi) = 0 for all intermediate nodesi, and that the internal functions are represented in
R∗.

Since the root node is observable during training, a distinguishing assignment is not
needed for it and can be arbitrarily initialized. However, we find it convenient to initialize
thesign of the root node to0. Note that for the root node, unlike for the intermediate nodes,
T (z0) may not necessarily be0 andT (d(0)) may equalT (z0/d(0)) = T (z0).

Given a distinguishing assignmentd(i) for the nodei, and some random example set
S, Distinguish-Children attempts to find the distinguishing assignments and signs fori’s
children,i1, . . . , il, in that order (see Figure 7). It does this by “marching” all examples
〈ei, oi〉 fromei/d(i) towardzi/d(i), successively turning the values of leaf nodes of subtrees
whose distinguishing assignments are not found to0’s. For each childij of i, it compares
the values ofA0 on the instancesei/d(i) andzij/ei/d(i) for each examplee (lines 14–15
of Figure 7). (Note thato(i) ⊕ sign(i) = T (ei/d(i) in line 15 by Proposition 1.5, since
o(i) = Ti(e).) If the value ofA0 is different for these two instances foranyexample, then
a distinguishing assignmentd(ij) is found (line 16). When a distinguishing assignment for
ij is found, the value of the target attributeA0 on zij/ei/d(i) is stored assign(ij) (line
17). For any assignmentx, the value ofTij (x) can be obtained asT (xij/d(ij))⊕ sign(ij)
by Proposition 1.4.

If a distinguishing assignment is not found by this method, then it must be the case that the
value ofA0 is unaffectedby the replacement ofeij by zij in anytraining example〈ei, o(i)〉.
Therefore, we can assume without any risk of error on the training examples thatT fij is
the constant function0, i.e., that the nodeij is dead. (We will show this more formally in
Section 6.3.) In that case,d(ij) is left to be⊥, each example〈ei, oi〉 in the setSi is changed
to 〈zij/ei, oi〉 (line 19), and the search is repeated for the distinguishing assignment for the
next child ofi.

For example, assume that the routineLearn-w-TSB is called with the random training
example set{〈0111, 1〉, 〈1011, 1〉, 〈0101, 0〉} for the target function OR-OF-ANDS of
Figure 5. The routineDistinguish-Children gets called with the same training set, with
d(0) initialized to some arbitrary instance andsign(0) initialized to 0. It then compares
the outputs of the target function for the three examples with those obtained by setting the
leaves of the subtrees underA1 andA2 to 0’s. Doing this for the subtree underA1 for the
first example, it asks a membership query on0011 which is answered with a1. Since this
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01procedureDistinguish-Children
02 input
03 Ti /* subtree rooted at nodei */
04 Si /* restrictions of instances inS ontoTi with their outputs atAi) */
05 d(i) /* distinguishing assignment of nodei (arbitrary for the root) */
06 sign(i) /* the sign ofd(i) (0 for the root)*/;
07 /* Initialization */
08 for each child nodeij of i
09 d(ij) := ⊥; sign(ij) := 0;
10 end for;
11 for each non-leaf child nodeij of i
12 for each〈ei, o(i)〉 ∈ Si until d(ij) is found
13 /* Use the MEMBER oracle to read the output after settingeij to 0’s */
14 let Temp = MEMBER(zij/ei/d(i))
15 if o(i)⊕ sign(i) 6= Temp then { /* Note: o(i)⊕ sign(i) = T (ei/d(i)
16 by Proposition 1.5, sinceo(i) = Ti(e) */d(ij) := ei/d(i);
17 sign(ij) := Temp; }
18 end for;
19 if d(ij) = ⊥ then replace each〈ei, oi〉 ∈ Si with 〈zij/ei, oi〉
20 end for;
21 output 〈Si, d(i1), sign(i1), . . . , d(il(i)), sign(il(i))〉
22endDistinguish-Children;

Figure 7. Algorithm to find distinguishing assignments and signs fori’s children.

is the same as the output of the original assignment (which is1 ⊕ sign(0) = 1), it is not
a distinguishing assignment. The query is repeated for the second example with exactly
the same result. For the third example〈0101, 0〉, the query0001 also produces the same
result as the output of the original assignment0 ⊕ sign(0) = 0. Hence, the node1 is
assumed dead, and the example set is permanently changed to{〈0011, 1〉, 〈0001, 0〉}. The
search continues for the distinguishing assignments for node 2 with a membership query on
0000. This query is answered with a0, and since it is not the same as the output of the first
assignment,0011 is made a distinguishing assignment for node 2. Itssign isT (0000) = 0.
Hence,Distinguish-Children returns the example set{〈0011, 1〉, 〈0001, 0〉}, d(1) = ⊥,
sign(1) = 1 (which is not used),d(2) = 0011, andsign(2) = 0.

6.2. Learning Internal and External Functions

In this section we describe how the distinguishing assignments for the children of node
i are used to learn the internal functionfi and the external functions of the children ofi.
The subroutineDecompose-Examples, shown in Figure 8, decomposes each example
of the external function at nodei into an example offi and an example of the external
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01procedureDecompose-Examples
02 input
03 Ti /* subtree rooted at nodei */
04 Si /* restrictions of instances inS ontoTi with their outputs atAi */
05 d(i1) /* = distinguishing assignment of nodei1 */
06 sign(i1) /* = the sign ofd(i1) */
07 . . .
08 . . .
09 d(il(i)) /* = distinguishing assignment of nodeil(i) */
10 sign(il(i)) /* = the sign ofd(il(i)) */;
11 /* Initialize the example sets with null instances */
12 for each childij = i1, . . . , il(i) of i
13 Sij := {〈zij , 0〉};
14 end for;
15 for each example〈ei, o(i)〉 ∈ Si
16 for each childij = i1, . . . , il(i) of i
17 /* Find the outputo(ij) of the example at nodeij */
18 if ij is a leaf,then o(ij) := eij
19 elseif d(ij) = ⊥ then o(ij) := 0
20 elseo(ij) := MEMBER(eij/d(ij))⊕ sign(ij);
21 Sij := Sij

⋃{〈eij , o(ij)〉};
22 end for;
23 InternalExamples := InternalExamples

⋃{〈o(i1) . . . o(il(i)), o(i)〉}
24 end for;
25 output 〈InternalExamples, Si1 , . . . , Sil(i)〉;
26endDecompose-Examples

27 /* MEMBERi is a simulated MEMBER oracle forfDi . */
28 MEMBERi(b1, . . . , bl(i)) = MEMBER(c(i1)/ . . . /c(il(i))/d(i))⊕ sign(i), where,
29 if bj = 0 or d(ij) = ⊥ then c(ij) = zij
30 elsec(ij) = d(ij)

Figure 8. Algorithm for finding the example sets for the internal function at nodei and for the external functions
for the children ofi.

function at each child ofi. All the examples offi are collected and passed to the prediction
algorithm forR∗, calledLearn-Internal-Function. The external functions that correspond
to the children ofi are learned by a recursive call toLearn-w-TSB with the corresponding
examples. In what follows, we elaborate on how this is done.

6.2.1. Generating examples for the internal and external functionsAs we said before,
the examples for the internal function at the current node and the external functions at its
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children are generated by decomposing the examples of the external functions of the current
node.

The procedureDecompose-Examples of Figure 8 takes the subtreeTi, the restrictions
of instances ontoTi and their outputs atAi, and the distinguishing assignments and their
signs of children ofi as inputs (lines 02–10). It starts by initializing the external example set
of each child ofi with null instances with0 output (lines 11–14). The key to decomposing
an example is the ability to infer the outputs of the examples at the children of the current
node (lines 15–24 of Figure 8). Assume that the current node isi, and that〈ei, o(i)〉 is the
current example for the external function ati. We want to infer the values at the child nodes
i1, i2, etc. There are three cases to consider:

1. If ij is a leaf node, then we can directly observe its value (line 18 of Figure 8).

2. If a distinguishing assignment forij cannot be found, thenij is treated as dead. This
means that the value atij for ei can be assumed to be the same as the value forzi, i.e.,
0 (line 19).

3. If a distinguishing assignmentd(ij) for ij is known, then we can compute the value
o(ij) = Tij (e) as follows: first, we set the leaves ofTij according toei and its context
according tod(ij). Then we call the MEMBER oracle for the output and exclusive-OR
the result withsign(ij) (line 20). This is justified by Proposition 1.4.

Once the valueo(ij) for each of the children ofi is inferred for an example〈ei, o(i)〉, the
corresponding example of the internal functionfi is generated as〈o(i1) . . . o(il(i)), o(i)〉
(line 23). Similarly, at each childij of i, an example〈eij , o(ij)〉 is generated for the external
functionTij and these examples are collected in the setSij (line 21).

In our running example of Figure 5,Decompose-Examples gets the example set
{〈0011, 1〉, 〈0001, 0〉}, andd(1) = ⊥, sign(1) = 1, d(2) = 0011, andsign(2) = 0
as inputs. It first initializes the external example sets ofA1 andA2 with {〈00, 0〉}. When
processing the example〈0011, 1〉, sinced(1) = ⊥, the valueo(1) of node1 is assumed to
be0. To compute the value ofA2 for this example, the system asks a membership query on
an instance where the leaves ofT2, i.e.,B3 andB4, are set to1 each according to the current
example, and the context ofT2, i.e.,B1B2, is set to00 according to the distinguishing
assignmentd(2). In this case, the query is answered with a1. Sincesign(2) = 0, the
value ofA2 is determined to be1⊕ 0 = 1, and the example〈11, 1〉 is added to the external
example set of node2. SinceA1 = 0, A2 = 1, andA0 = 1, the example〈01, 1〉 is added
to InternalExamples of node0.

Repeating the same for the second example〈0001, 0〉, the system determines thatA1 = 0
andA2 = 0. Hence, the example〈01, 0〉 is added to the setS2, and〈00, 0〉 is added to
InternalExamples of node 0. Thus, Decompose-Examples returns with
InternalExamples={〈01, 1〉, 〈00, 0〉},S1 = {〈00, 0〉}, andS2 ={〈00, 0〉, 〈11, 1〉, 〈01, 0〉}.

6.2.2. Learning the internal function To learn the internal function, the main routine
calls the learning algorithm for the basis class with random examples.

In general, the learning algorithm for the basis class might also have to make membership
queries. Hence, we need to simulate a MEMBERi oracle forfi using the MEMBER
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oracle for the target functionT f , and the distinguishing assignments for the nodei and its
children. Unfortunately, this cannot always be done because some childrenDi of i may
not have known distinguishing assignments, and hence we cannot set these children to 1.
Fortunately, to learn a function that is consistent with the training examples it suffices to
learn the projection offi with respect toDi, and that is what the algorithm does.

A membership query would ask the output offi for some settings ofi’s children. The
value of a childij can be set to0 by setting the leaves ofTij to 0’s. The value ofij can
be set to1 by setting the leaves ofTij according to the distinguishing assignmentd(ij),
if it is known, which is justified by Proposition 1.2. That leaves the case whered(ij) is
not known, and the membership query requires the nodeij to be set to 1. In general,
this is not possible to do without exhaustively searching for a distinguishing assignment
for ij . As hinted before, we resolve this problem by setting ourselves a less ambitious
goal. Instead of learning the functionfi, we try to learn its projection with respect toDi,
the children ofi with unknown distinguishing assignments. To learnfDii , we never need
to generate a1 at the nodes inDi, because, by definition,fDii ignores the inputs inDi.
For example, iffi is a 4-input function and the first 2 input nodes are indistinguishable,
fDii (x1, x2, x3, x4) = fDii (0, 0, x3, x4) = fi(0, 0, x3, x4). So we are justified in fixing the
first two inputs to0’s, even though the membership query might want them to be1s. This
is shown in Figure 8, lines 27-30. Note that this approach assumes that the basis class is
closed under projection, because otherwise it may not be possible to learnfDii using the
learning algorithm for the basis class.

Thus, to simulate the oracle MEMBERi for the projection offi, the program sets the
context ofTi according tod(i). To setAij to 0, it sets the leaves ofTij to 0’s; to set it to
1, it sets them according tod(ij) if d(ij) 6= ⊥, otherwise it sets them to0’s (lines 29-30
of Figure 8). After setting the leaves of eachTij as above and the context ofTi according
to d(i), it finds the value ofAi, by asking a membership query on the target function, and
finding the exclusive-OR withsign(i) (line 28).

In our running example, sinced(1) = ⊥, the external function atA1 is set to the constant
function 0. Then,Learn-w-TSB is recursively called onT2 with the example set{S2 =
〈00, 0〉, 〈11, 1〉, 〈01, 0〉}. Since both the children of node2 are leaves, no distinguishing
assignments are needed for them. Eventually,Learn-Internal-Function is called on the
example setS2 at node 2, which learns some function which is consistent with it, say, AND.

Learn-Internal-Function is then called with the example set{〈01, 1〉, 〈00, 0〉} for the
internal function at node0. In general,Learn-Internal-Function gets many examples and
generalizes them using some learning algorithm that possibly asks membership queries.
Any membership queries asked by this algorithm would be reduced to membership queries
on the target using the null assignment for the leaves ofT1 and either the null assignment
or the distinguishing assignment for node2. Suppose that the learning algorithm asks a
membership query for the internal functionf0 on the input11. Since the learning algorithm
only needs to learn the projection off0 with respect toA1, the output of the projection would
be the same for11 as it is for01. Hence it setsB1B2 to 00 and setsB3B4 to 11 (as dictated
by d(2)). The membership query on the target is now answered with1, which is passed
on to the learning algorithm after taking an exclusive-OR withsign(0) = 0. From the
internal example set and the membership queries, assume thatLearn-Internal-Function
learns the functionf0 to be simplyA2 (which is consistent with the input examples〈01, 1〉
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and〈00, 0〉). Learn-w-TSB puts this together with the constant function0 learned at node
1 and the AND function learned at node2, and returns the functionB3B4. Note that this
is consistent with all the input examples〈0111, 1〉, 〈1011, 1〉, and〈0101, 0〉, although it is
not the target function.

6.3. Proof of Correctness

In this section we prove that our algorithm learns the space of functionsT I induced by the
basis classI over the determination treeT if a few technical conditions hold. The plan of
the proof is as follows. We first prove an important lemma that shows that given a consistent
compression algorithm forR∗, Learn-w-TSB outputs a hypothesis that is consistent with
its training set and the determination tree, and is at most polynomially longer than any
well-behaved target formula. Using this lemma and Lemmas 1 and 2, we then show that
if a closureR∗ of the languageR of the basis class under some operations is predictable,
thenTR has a cwm-algorithm. We then appeal to the general result of Blumer et al. (1989)
to show that given a reasonably small sample, this algorithm pwm-predicts the space of
Boolean functions induced by the basis class over any given determination tree in time
polynomial in various parameters including the size of the target function.

Lemma 3 Let T be a determination tree andT f0 be a well-behaved target formula rep-
resented inTR. LetLearn-Internal-Function be a deterministic, consistent, compression
algorithm forR. If Learn-Internal-Function needs to ask membership queries, we require
R to be closed under projection. IfLearn-w-TSB is called on a subtreeTi with a set of
training examplesSi of T fi , then the formula it returns,T gi , is consistent withSi with
probability at least1 − Size(Ti)δ′, whereSize(Ti) is the number of internal nodes inTi
and1 − δ′ is the lower bound on the confidence thatLearn-Internal-Function outputs a
formula which is consistent with its input training set.

Proof: We prove the result by structural induction oni. Note that the examples inSi consist
of the restrictions of the input instances toTi, and their outputs at nodei.

The lemma is trivially true ifi is a leaf node, sinceLearn-w-TSB always returns the
identity function, which is the correct function for the leaf nodes. Assume that the lemma
is true for all subtrees ofTi. That is, for all subtreesTik of Ti assume that the hypothesis
generated (T gik ) is consistent withSik (with the given probability). We prove that the
hypothesis generated byLearn-Internal-Function for Ti (namely,T gi ) is consistent with
Si, again with the given probability. In other words, we will show that for eachei in Si,
the target and the hypothesis external functions,T fi andT gi , agree on the classification of
ei, i.e.,T fi (ei) = T gi (ei), with a high probability.

We do this by appealing to the fact thatTi can be decomposed into an internal function of
the external functions of its children, since for any exampleei: Ti(ei) = fi(Ti1(ei1), ..Til(i)
(eil(i))).

Let Di = {ij1, . . . , ijk}, be the children ofi in left to right order for which the distin-
guishing assignments have not been found. Then, the learned external function for these
nodes is the constant function0. We begin by showing that forxi= zijk/ . . . /zij1/ei, the

target classifiesei andxi in the same way, i.e.,T fi (ei) = T fi (xi) for all ei in Si.
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Notice that the algorithm finds a distinguishing assignmentd(ij) for a nodeij only
if T (d(ij)) 6= T (zij/d(ij)). This is so because in the algorithmDistinguish-Children
of Figure 7 (line 15),Temp = T (zij/ei/d(i)), ando(i) ⊕ sign(i) = Ti(e) ⊕ sign(i) =
T (ei/d(i)) by Proposition 1.5. Hence any distinguishing assignment found by the algorithm
must be correct.

Recall thatDistinguish-Children replaces the variables under any child ofi for which a
distinguishing assignment has not been found with0’s (Figure 7, line 19) for all examples
before processing the subsequent children ofi. SinceDistinguish-Children had failed to
find distinguishing assignments for nodes inDi when called on the subtreeTi, it would
have successively replaced the variables under the nodes inDi with 0’s for all examples.
Since the test in line 15 of Figure 7 had failed for all nodes inDi, for all examples〈ei, o〉
in Si,

T f (ei/d(i)) = T f (zij1/ei/d(i)) = T f (zij2/zij1/ei/d(i))

= . . . = T f (zijk/ . . . /zij1/ei/d(i)).

By substitutingzjk/ . . . /zj1/ei for xi andei for yi in Proposition 1.3, we have

T f (zijk/ . . . /zij1/ei/d(i)) = T f (ei/d(i)) =⇒ T fi (zijk/ . . . /zij1/ei) = T fi (ei)

Since we have just showed that the left hand side of the above implication is true, it follows
that

T fi (ei) = T fi (zijk/ . . . /zij1/ei).

Sincezijk/ . . . /zij1/ei = xi,

T fi (ei) = T fi (xi) = fi(T
f
i1

(xi1), . . . , T fil(i)(xil(i))).

Since for any nodeij ∈ Di, xij = zij andT gij is the constant function0 (see line 15 of
Figure 6), we have

T fij (xij ) = 0 = T gij (eij ) for all ij ∈ Di (1)

Let us define a “proper run” to be one where the learned external functions ofall children
of i on whichLearn-w-TSB was called are consistent with their training examples. By
the inductive hypothesis, the probability of this occurrence is at least1− δ′∑ij

Size(Tij ).
Hence, in a proper run,

T fij (xij ) = T fij (eij ) = T gij (eij ) for all ij 6∈ Di (2)

Combining the equations 1 and 2, we conclude that in a proper run, for all childrenij of i,
T fij (xij ) = T gij (eij ).

From the exampleei, if l(i) is the number of children ofi, Learn-w-TSB generates
the example〈T fi1(xi1) . . . T fil(i)(xil(i)), T

f
i (ei)〉 for Learn-Internal-Function. If Learn-

Internal-Function is called with a confidence parameterδ′, it finds a consistent function
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gi with probability at least1− δ′. Hence, when there was a proper run, with probability at
least1− δ′,

T fi (ei) = fi(T
f
i1

(xi1), . . . , T fil(i)(xil(i))) = gi(T
f
i1

(xi1), . . . , T fil(i)(xil(i)))

= gi(T
g
i1

(ei1), . . . , T gil(i)(eil(i))) = T gi (ei) (3)

To complete the induction step, we have to compute the total probability that the above
might fail. It is the sum of the probability of the run being improper, and the probability
of Learn-Internal-Function failing to find a consistent hypothesis. This is at mostδ′(1 +∑
ij
Size(Tij )) = δ′Size(Ti). Hence with a probability at least1 − Size(Ti)δ′, T gi is

consistent with the examples inSi.
Now, let us consider the case whereLearn-Internal-Function asks membership queries.

Answering membership queries for a functionfi requires the program to set the inputs of
fi to required values, and read the output at nodei. When a distinguishing assignment
and sign of nodei are known, itsoutputon any assignmentx is T (xi/d(i)) ⊕ sign(i)
by Proposition 1.4. SinceT (xi/d(i)) and sign(i) = T (zi/d(i)) are both known by
membership queries to the target function, the output at nodei is easy to infer (Figure 8, lines
27–28). Setting theinputsof fi appropriately is more of a problem. When a distinguishing
assignment for a nodeij is known, then it can be set to0 or 1 by setting the leaves of
Tij according toz or d(ij) respectively. However, when a distinguishing assignment for
ij is not known, it cannot be set to1. Hence, whenR∗ is only pwm-predictable, instead
of learning the functionfi, Learn-Internal-Function is called to learn its projection with
respect to nodesDi for which the distinguishing assignments have not been found. IfR is
closed under projection, the projectionfDii of fi is inR and has the same size asfi. Thus
Learn-Internal-Function can efficiently find a functiongi that is consistent withfDii on
the input examples. SincefDii andfi behave the same way when the inputs inDi are set
to 0, we can still conclude the following for anyxi = zijk/ . . . /zij1/ei, with probability
1− δ′, as in Equation 3:

T fi (ei) = fi(T
f
i1

(xi1), . . . , T fil(i)(xil(i))) = fDii (T fi1(xi1), . . . , T fil(i)(xil(i)))

= gi(T
f
i1

(xi1), . . . , T fil(i)(xil(i))) = gi(T
g
i1

(ei1), . . . , T gil(i)(eil(i))) = T gi (ei)

Note that any membership query forfDii asked byLearn-Internal-Function is answered
correctly by setting the children ofi in Di to 0’s. This is so because, by the definition of
projection,fDii treats all inputs inDi as0’s. All other childrenij of i are set to0 or 1 by
setting the leaves under the corresponding subtrees according tozij or d(ij) respectively
(Figure 8, lines 29-30).

The rest of the proof is similar to the case without membership queries.2

We are now ready to prove the existence of compression algorithms for function spaces
induced by determination trees under some conditions.

Theorem 3 LetT be any determination tree andRbe a representation language for some
internal function space. If (a) the closure ofR under variable negation is pac-predictable,
or (b) the closure ofR under projection and variable negation is pwm-predictable, then
there is a cwm-algorithm forTR that acceptsT and the labeling of its leaf nodes with
attributes as input.
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Proof: We prove thatLearn-w-TSB is a cwm-algorithm forTR.
LetR′ be the closure ofR defined as in the theorem statement. By Lemma 1, sinceR′

is pac (pwm) predictable, its closure under complement, sayR∗, has a compression (cwm)
algorithm. LetLearn-Internal-Function be such an algorithm. Note that the projection
of the complement of a formula (or a function) with respect to a set of variables is the
complement of the projection of that formula (or the function) with respect to the same
variables. Similarly, a variable negation of the complement of a formula (or a function) is
the complement of a variable negation of the formula (or the function). This means thatR∗
is also closed under projection and variable negation, sinceR′ itself is closed under these
operations.

Let fi denote the internal target function at nodei represented inR, and letT fi denote
the corresponding external target function. From Lemma 2, without loss of generality, we
may assume that the internal function formulasfi are represented inR∗, and thatT f0 is
well-behaved.

SinceR∗ has a cwm-algorithm andT f0 is well-behaved, by Lemma 3, the output ofLearn-
w-TSB is consistent with its training example set with probability at least1− δ′Size(T ),
whereδ′ is the confidence parameter ofLearn-Internal-Function. To find a function
consistent with examples at the root node with probability at least1 − δ, we can setδ′ =
δ/Size(T ).

To complete the proof thatLearn-w-TSB is a cwm-algorithm forTR we have to show
that (a) it outputs a polynomially evaluatable hypothesis whose size is polynomial in the
number of its inputsn and the size of the target function|T f |, and (b) it runs in time
polynomial inn, |T f |, 1/δ and the number of input examplesm.

We first show that it outputs a hypothesis of required size and complexity of evaluation.
Recall that from Lemma 2 when the original internal target functionsfi are replaced with
their complements and variable-negations, their sizes inR∗ are increased by at mostl(i)+1,
wherel(i) is the number of children ofi. Replacing a function by its projection inR∗ does
not increase its length. Letgi be the internal function returned byLearn-Internal-Function
at nodei, and letT gi denote the corresponding external function. To ensure thatT gi (zi) = 0
also holds for alllearnednon-root internal functionsg, Learn-w-TSB always includes a
null instance in their examples (see the procedureDecompose-Examples in Figure 8,
lines 12–14). By Schapire’s theorem,|gi|must be a polynomial functionp of the size of the
new target function|fi|+l(i)+1 and the number of its inputsl(i), i.e.,p(|fi|+l(i)+1, l(i)).
The size of the output hypothesis is the sum of the sizes ofgi at each node. IfnI is the
number of the internal nodes andn is the number of leaves of the determination tree,

|T g| =
nI−1∑
i=0

|gi| =
nI−1∑
i=0

p(|fi|+ l(i) + 1, l(i))

≤ nIp(max
i

(|fi|+ l(i) + 1),max
i
l(i))

SincenI , the number of internal nodes of the determination tree,maxi(|fi|+ l(i) + 1),
andmaxi l(i) are all smaller than|T f |+ n+ 1, the above bound is polynomial in the size
of the target function and the number of inputs.
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To show that the output hypothesisT g can be evaluated in time polynomial inn and
|T f |, it suffices to notice that it forms a tree circuit where the nodesi contain functions
gi, which, by Schapire’s Ockham-converse result, can be evaluated in time polynomial in
|fi| + l(i) + 1 andl(i). Hence the output hypothesisT g can be evaluated in the required
time in bottom-up fashion.

We now show thatLearn-w-TSB makes at most a polynomial number of queries in the
size of the target function, the number of its inputsn, and the number of examples, and runs
in time polynomial in these parameters.

In the worst case,Distinguish-Children generates one query for each example and each
non-root internal node being considered (lines 11–14 of Figure 7). IfnI is the number of
internal nodes of the determination tree, this totals tom(nI − 1) queries.Decompose-
Examples infers the value of each childij of the current nodei for each examplee, which
is done using one query oneij/d(ij) (lines 15–20 of Figure 8). Since this is done on
each non-root internal node and each example, in the worst case, it makes another set of
m(nI − 1) queries, giving a total of2m(nI − 1) queries.

By Schapire’s result, there exist polynomialsr andq such thatLearn-Internal-Function,
when called at a nodei with l(i) children and givenm distinct examples of a functionfi,
runs for at mostr(m, |fi|+ l(i) + 1, l(i), log 1

δ′ ) time and asks at mostq(m, |fi|+ l(i) +
1, l(i), log 1

δ′ ) membership queries. Each query ofLearn-Internal-Function is simulated
byLearn-w-TSB with one membership query.δ′ can be set toδ/nI for our purpose. Hence,
the total number of queries byLearn-w-TSB is bounded by2m(nI−1)+

∑nI−1
i=0 q(m,|fi|+

l(i)+1, l(i), log nI
δ ). This can be easily seen to be a polynomial in the required parameters.

Since the run time ofLearn-Internal-Function includes the time for its queries, the total
computation done byLearn-w-TSB can be divided into asking2m(nI − 1) queries and
runningLearn-Internal-Function at each internal node. Since each query is on an assign-
ment of sizen, we have to multiply the number of queries byn to get the time complexity
for asking queries. To this, we have to add the time complexity of runningLearn-Internal-
Function at all internal nodes.

Hence the time complexity ofLearn-w-TSB is

O(mn(nI − 1) +
nI−1∑
i=0

r(m, |fi|+ l(i) + 1, l(i), log
nI
δ

)),

which is polynomially bounded.
This completes the proof of all requirements forLearn-w-TSB to be a cwm-algorithm

for TR. 2

We can consider the following parallel version of our algorithm. Observe that the distin-
guishing assignments for any node can be found after finding the distinguishing assignments
for its parent and its previous siblings. Applying this rule recursively to the node’s parent
and siblings, we notice that we can find the distinguishing assignment of any node after
finding the distinguishing assignments for all earlier siblings of that node, and for all its
ancestors and their earlier siblings. All these nodes must be processed strictly sequentially.
If d is the depth of the determination tree, the above argument implies that, we have to
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find the distinguishing assignments for at mostdmaxnI−1
i=0 l(i) nodes sequentially. After

finding the distinguishing assignments for all nodes,Learn-Internal-Function can be run
in parallel for all nodes. Hence the parallel complexity of our algorithm is:

O(mnd
nI−1
max
i=0

l(i) +
nI−1
max
i=0

r(m, |fi|+ l(i) + 1, l(i), log
nI
δ

)).

We are now ready to state and prove our main result on pwm-predictability of function
spaces induced by a determination tree.

Theorem 4 LetR be a representation language for some function space andT be any
determination tree with a fixed mapping of its leaves to the input attributes given to the
learner. If (a) the closure ofR under variable negation is pac-predictable, or (b) the
closure ofR under projection and variable negation is pwm-predictable, then, there is a
pwm-algorithm forTR.

Proof: The proof of this theorem is by the direct application of Theorem 1. We already
showed thatLearn-w-TSB is a cwm-algorithm forTR. To convert it into a pwm-algorithm,
call it with a sample of size1ε (|T g| lnC+ln 2

δ ), where|T g| is the size of its output hypothesis,
andC is the number of distinct primitive symbols used in the language ofg. Since|T g|
is upper-bounded by a polynomial function of the size of the target function|T f | and the
number of nodes in the determination tree, we can substitute this bound in the above formula,
generate a sample of that size, and then callLearn-w-TSB on it. The resulting algorithm
is a pwm-prediction algorithm for the classTR. 2

A variety of basis functions satisfy the requirements of our theorem, including linear
threshold functions,k-DNF (disjunctions of conjunctions of at mostk literals), andk-CNF
(conjunctions of disjunctions of at mostk literals), which are closed under variable negation
and are pac-learnable. In the next section, we apply our program to Rivest’sk-decision lists
or k-DL, i.e., lists ofk-length clauses, each of which is an IF-THEN statement with0 or 1
outcome (Rivest, 1987). The class ofk-decision lists is closed under variable negation, pac-
learnable, and properly includesk-DNF andk-CNF (Kohavi & Benson, 1993). Monotone
DNF-formulas are pwm-predictable (Angluin et al., 1993), closed under projection, but not
under variable negation; however, they do satisfy our condition because unate formulas (the
closure of monotone DNF-formulas under variable negation) are pwm-predictable (Angluin
et al., 1993). Similarly, we can use Bshouty’s (1993) algorithm for learning decision trees.
However, there are some interesting pwm-predictable classes such as conjunctions of Horn
clauses for which the closure under variable negation does not hold, and hence our theorem
does not apply.

It appears that both the oracles used by our algorithm are necessary to learn with tree-
structured determinations. As shown by Pitt and Warmuth (1990), learning arbitrary
Boolean formulas is reducible to learning with tree-structured bias from classified random
examples. Since learning arbitrary Boolean functions is as hard as inverting one-way func-
tions (Kearns & Valiant, 1994), learning with tree-structured bias with random examples
alone is believed to be intractable. To see that tree-structured bias cannot be implemented
with membership queries alone, consider the class of Boolean functions that output1 on
at most one input and output0 on all others. There are2n + 1 possible Boolean func-
tions overn variables in this class, and they can be represented with a tree-structured bias.
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However, this class cannot be learned with membership queries alone, because the program
does not get any information unless it chances upon the single input that gives rise to an
output of1. In the worst case, this involves trying each possible input, which goes beyond
the polynomial bound. Given the EXAMPLE oracle, however, the learning algorithm that
generates a small sample of examples and returns a Boolean function which outputs 1 only
on the positive example in the sample (if any) and 0 on all other inputs can be shown to
be a successful PAC-learner. In particular, if the sample size is at least1

ε ln 1
δ , it is highly

likely that either we are going to see the single positive example, or it has a probability
less thanε so that the constant function0 is a good approximation to the target. In other
words, the EXAMPLE oracle helps the learner by providing information about the example
distribution which enables it to focus on the commonly occurring instances and ignore the
infrequent instances.

7. Experimental Results

The above algorithm was implemented as a program called TSB-2. TSB-2 needs an in-
duction program to learn the internal functions of the determination tree. We created two
versions:

• TSB-2k−DL uses a version of Rivest’s (1987) algorithmk-DL to learn the internal
functions ask-decision lists. Ak-decision list is a list of clauses, where each clause
is of the form(ti, bi). ti is a conjunction of at mostk literals, andbi is the output bit.
For the last clause,ti is alwaystrue. Thek-decision list acts like a COND-statement
in LISP. The value of thek-decision list for an instance is the value ofbi for the first
clause for whichti evaluates totrue for that instance. Since the finalti is alwaystrue,
thek-decision list uniquely evaluates to0 or 1 on any instance.

k-DL is in fact a family of algorithms generated by varyingk. The set of examples for
which the termti evaluates to1 are said to be “covered” by the clause(ti, bi). Starting
with clauses of length 1,k-DL considers increasingly longer clauses untilk-length
clauses to find a clause that correctly classifies all examples covered by it. It selects
that clause, removes all covered examples from the set and iterates to select the next
clause.k-DL can be shown to be a consistent learning algorithm fork-decision lists.

• TSB-2ID3 uses ID3 to learn the internal functions as decision trees (Quinlan, 1986).
A decision tree is a rooted binary tree in which each internal node in the tree tests for
the value of a single input attribute of the input example. If its value is true, the right
subtree is processed and if the value is false, the left subtree is processed. Each leaf
of the tree is labeled with the class of the example that reach that leaf. Decision trees
are strictly more general thank-decision lists for any fixedk and are also closed under
variable negation and projection. ID3 is a top-down algorithm that uses information
gain as a heuristic evaluation function to decide which attribute to select at a given point
to split the example set into two depending on its value (Quinlan, 1986). It then calls
itself recursively on the two mutually disjoint sets of examples thus created and builds
the left and right subtrees. Unlike thek-DL algorithm, which is guaranteed to learn the
space ofk-DL functions, ID3 is not guaranteed to efficiently learn the space of decision
trees, although it works well in practice.
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7.1. Comparison with knowledge-free induction

In our first set of experiments, TSB-2k−DL and TSB-2ID3 were applied to learn functions
that are consistent with a determination tree of depth 2. The root node has 5 children, each
of which has 5 children, which form the leaves of the tree. Hence there are a total of 25
input attributes. For concreteness, we can think of the target concept as a combinatorial
Boolean circuit, with depth= 2, fan-in = 5, and fan-out= 1. The target functions were
constructed using the above tree with the internal functions drawn from3-decision lists of
12 clauses, where each clause has a termti of exactly3 randomly chosen literals and a
randomly chosen output bitbi.

Our experiments compare TSB-2 with a knowledge-free induction program on the same
set of examples. We used ID3 (Quinlan, 1986) andk-DL (Rivest, 1987) as our knowledge-
free induction systems, because of their simplicity and availability. They also worked better
than any other system we tried on this domain including a more sophisticated version of ID3
called C4.5 and a propositional version of FOIL (Quinlan, 1990). Of course, the comparison
is not intended to decide which algorithm is better “in general” but rather to show that when
the relevant background knowledge is available, TSB-2 can exploit it more effectively to
design useful experiments and to yield higher accuracy after seeing fewer examples.

Each training episode consisted of the following steps:

• Generate a target function consistent with the determination tree.

• Generate and label 200 examples, drawn from a uniform distribution on the input space.

• Divide the examples into two equally-sized sets, reserving one for testing.

• Apply the learning algorithm to training sets of sizes from 0 to 100 in increments of 10,
testing the result on the test set after each application.

Results were averaged over50 training episodes.
We ran two experiments using the above determination tree — the first one with TSB-2ID3

and the second with TSB-23−DL. In each experiment, for each target concept and training
sample, we stored the queries asked by TSB-2 and the responses. We compared TSB-2ID3

with ID3. Note that the target functions inT 3−DL are not representable by3-decision lists.
Since the determination tree is of depth2, they are, however, representable by6-decision
lists. So we compared TSB-23−DL with 6-DL.

To provide a fair comparison, we provided both the random examples and the membership
query examples to the knowledge-free programs. The versions of the programs that use the
query examples are called ID3-Q and 6DL-Q respectively. As control, we also ran ID3 and
6-DL with the same number of training examples chosen randomly. These versions of ID3
and 6-DL are called ID3-R and 6DL-R respectively. Both versions of ID3 were run without
pruning, because pruning worsened the performance. There is no pruning step fork-DL.

Figures 9 and 10 show the results of the first experiment with TSB-2ID3. Figure 9
shows the relationship between the size of the random training sample and the number of
queries generated by TSB-2. The total number of queries rose from0, with no random
examples, to about547, with 100 random examples. As the theoretical analysis predicts
(see the proof of Theorem 3), the number of queries grows linearly with the number of
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Figure 9. Growth of queries with random examples for TSB-2ID3. The top curve shows the total number of
queries asked as the number of random examples is varied. The bottom curve shows the total number of distinct
queries asked for the same number of random examples.
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Figure 10.Learning curves for TSB-2ID3 and ID3. On the X-axis is the number of training examples and queries,
and on the Y-axis is the percentage accuracy. ID3-R is the learning curve of ID3 when all its training examples
are randomly chosen. ID3-Q is the learning curve of ID3 when it is given the same training examples and answers
to queries as used by TSB-2ID3.

examples, and is approximately equal to the number of non-root internal nodes (5) times
the number of random examples. This is a little more than50% of the worst-case bound,
which is 2m(nI − 1). However, using a hash table that caches the results of previous
queries reduced the number of queries considerably. The number of distinct queries rose
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from 0 to 293 with 100 random examples. More interestingly, this curve appears to flatten
out as the number of random examples approaches100, suggesting that perhaps there is an
upper bound on the total number of distinct queries asked. (Since the instance space has
225 examples, the flattening is not due to exhausting the instances.) The error bars denote
1 standard deviation error on either side of the average for 50 random trials.

Figure 10 shows the accuracy on the test sample for TSB-2ID3 and ID3 plotted against the
sum of the number of random examples and the average number of distinct queries made
by TSB-2 for that many random examples. Each successive point on the two curves of
Figure 10 represents a random training sample of size10 more than the previous point. The
error bars are only shown for TSB-2ID3, to avoid clutter, and denote 1 standard deviation
error on either side. ID3’s error bars are much larger, even at the end of training. During the
training, ID3-Q’s average performance increased from 47.1% to 88.62% with 393 training
examples. In contrast, TSB-2’s performance increased from 47.1% to 98.9% with the same
training, showing that TSB-2 exploits its tree-structured bias well. Interestingly, ID3-Q did
not perform better than ID3-R, which chose all its examples randomly. ID3-R achieved an
accuracy of 91.1 % at the end of learning, which is slightly higher than ID3-Q’s performance.
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Figure 11. Growth of queries with random examples for TSB-23−DL. The top curve shows the total number of
queries asked as the number of random examples is varied. The bottom curve shows the total number of distinct
queries asked.

Figures 11 and 12 show the learning curves for the same target function space for TSB-
23−DL and6-DL. The results here were similar to those of the first experiment. The average
number of queries reached525 with 100 examples, and the average number of distinct
queries reached 301. TSB-23−DL’s accuracy rose from 41% to99.4% for a total of401
examples and distinct queries.6DL-Q and6DL-R also started from an initial performance
of 41%. 6DL-Q’s final performance on the same set of training examples and distinct
queries as used by TSB-2 was 86.6%, and6DL-R’s final performance on the same number
of random examples was 93.2%.



LEARNING WITH STRUCTURED DETERMINATIONS 281

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

A
cc

ur
ac

y

Number of examples and queries

TSB-2
6DL-R
6DL-Q

Figure 12. Learning curves for TSB-23−DL and 6-DL. On the X-axis is the number of training examples and
queries, and on the Y-axis is the percentage accuracy. 6DL-R is the learning curve of 6-DL when all its training
examples are randomly chosen. 6DL-Q is the learning curve of 6-DL when it is given the same training examples
and answers to queries as used by TSB-23−DL.

As before, we can see that TSB-23−DL performs significantly better than6DL-R. What
is perhaps more prominent than in the case of ID3 is the significantly superior performance
of 6DL-R compared to6DL-Q. This difference is due to the fact that for6DL-Q (unlike
6DL-R), the training distribution is significantly different from the test distribution. Thus,
6DL-R’s advantage comes from the fact that it is trained on examples that are more similar
to the test examples. This also suggests that an example is “good” only with respect to
the learning algorithm, and good performance involves more than simply knowing what
queries to ask.

Our experiments clearly illustrate the usefulness of queries in learning certain types of
functions, and the effectiveness of tree-structured determination knowledge in allowing the
learner to decide which queries are most useful. The differences between the performances
of ID3-Q and ID3-R and between 6DL-Q and 6DL-R suggest that the queries themselves
did not provide an advantage to TSB-2—the advantage comes from being able to use them in
the context of background knowledge to answer specific questions about the true function.

As can be expected, the above experimental results of TSB-2 were also much better than
the worst-case theoretical bounds. For the above internal function space of 3-decision lists
over 5 variables, there are a total of

∑3
i=0

(
5
i

)
2i = 131 different conjunctive terms. Our

target functions actually consist of only 12 such terms, out of which the last one must be
true. Hence, there are131!/120! < 13111 possible left-hand sides of clauses. Since the
right hand side of each clause can be either0 or 1, there are at most13111212 different
internal target functions. Since3-DL does not necessarily find a minimal decision list,
the actual number of hypotheses we should consider is actually higher. Even if we ignore
this factor, which considerably increases the number of training examples needed, the total
number of target functions is(2× 26211)6 since there are6 internal functions. Since both
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decision lists andk-decision lists are closed under complement and variable negation, there
is not going to be any further increase in the size of the output hypothesis space. Using the
bound in the proof of Theorem 4, and usingε = δ = 0.1, we get4, 003 random examples
and, in the worst case,2× 4, 003× 5 = 40, 030 queries. Both of these values are at least
two orders of magnitude larger than the experimentally determined values for the same
accuracy.

7.2. Scaling with the depth of determination tree
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Figure 13. Number of queries asked by TSB-2 as a function of the tree size. The X-axis shows the number of
random input examples, which is equal to the number of leaves of the tree. The Y-axis shows the total number of
distinct queries asked. The error bars denote 1 standard deviation on either side.

The second set of experiments examines how the performance of TSB-2 scales with the
depth of the determination tree when compared to ID3 andk-DL. For this set of experiments,
we chose to use full, binary determination trees of depths varying from 1 through 5. The
number of random training examples for TSB-2 varied in proportion to the number of nodes
in the tree — from 2 in the case of depth–1 tree to 32 in the case of depth–5 tree. The target
internal functions were generated uniformly randomly from 10 of the 16 2-input functions.
(The other 6 functions ignore one or both inputs.) TSB-2 usedk-DL with k = 2 to learn
the internal functions. We ran 30 trials on each tree, randomly varying the target function.
Since the internal functions are representable as 2-decision lists, the target functions are
representable by2d-decision lists, whered is the depth of the determination tree. Hence,
we compared TSB-2 with ID3 and with2d-DL. Both of these programs were given the
same number of random training examples as the number of examples and queries used by
TSB-2 on the same target function. We measured the performance of the learned functions
on100 test examples which were generated independently randomly.
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Figure 14.Scaling of performance with the depth of the determination tree for TSB-22−DL, ID3 and2d-DL. On
the X-axis is the depth of the determination tree, and on the Y-axis is the percentage accuracy. The error bars are
only shown for TSB-2 and represent 1 standard deviation on either side. TSB-22−DL improves its performance
with depth and corresponding increase in the training sample size, while ID3 and2d-DL deteriorate.

Figure 13 shows the number of distinct queries asked by TSB-2 as a function of the number
of leaves of the determination tree. Recall that the number of random training examples is
increased linearly with the number of leaves. Since the number of queries is proportional
to the product of the number of random examples and the number of internal nodes, it
varies quadratically with the number of leaves. This quadratic nature of the relationship is
apparent in Figure 13. In our experiment, the number of distinct queries increased from 0
when the number of leaf nodes is 2 to 280 when the number of leaf nodes is 32.

Figure 14 shows the performances of TSB-22−DL, ID3 and2d-DL as a function of the
depth of the determination tree. On the X-axis is the depth, and on the Y-axis is the accuracy
of the various learned functions on the test examples. It must be kept in mind that these are
not “learning curves,” but curves that show how the test set accuracy changes by an increase
in the size of the target function and a corresponding increase in the training set size. Since
the number of examples is increased in proportion to the tree size, we expect the asymptotic
performance to be more or less constant for TSB-2. Hence, it is the relative performance
that is most informative here. While they all perform similarly when the tree is of depth 1
and there are no hidden nodes, differences appear as the depth increases. While TSB-22−DL

steadily improves its accuracy from 70.4% at depth 1 to 96.9% at depth 5, ID3 and2d-DL
peak at depth 2 with accuracies of 77.4% and 78.8% respectively. Their accuracies drop to
69.9% and 72.9% respectively when the depth is increased to 5.

The results clearly illustrate that deeper trees are harder to learn for both ID3 and2d-DL.
For2d-DL, since the length of the clauses required to represent the target function increases
linearly with the depth of the tree, there are exponentially many clauses to consider, and
in the worst case the number of clauses in the hypothesis increases exponentially with
depth. Since the sample complexity is proportional to the hypothesis size, it is also going to
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increase exponentially with depth. A decision tree representation may be even larger than
the corresponding decision list representation since it suffers from the so called “replication
problem,” which is due to the fact that the decision tree can only test a single attribute at
any node (Pagallo & Haussler, 1990). As a result, even ID3 performs poorly as the depth
of the determination tree is increased.

In summary, the experiments of this section suggest that when there are such deep relation-
ships between the variables in a domain as exhibited by the determination tree, knowledge-
free induction is hopelessly difficult, and it is much better to make these relationships
explicit and exploit this knowledge in the learning algorithm.

8. Determination Graphs

In the previous sections, we considered the problem of learning from prior knowledge in
the form of tree-structured determinations. In this section, we consider the case where the
determinations are structured as a directed acyclic graph (dag). We call this graph ad-dag
(for determination dag) and this bias a dag-structured bias. The d-dag is a directed acyclic
graph over a set of attributes, where each attribute may participate in directly determining
more than one attribute. In contrast with the previous section, here we show a negative
result, namely that the pwm-prediction with dag-structured bias is hard under standard
cryptographic assumptions. Our result is representation-independent in that it holds for
any language choice to represent the final function as long as it is efficient to evaluate the
function on any example.

Formally, a d-dag is a directed acyclic graphG = (A,Pred, L,R), whereA, the set
of nodes of the d-dag, represents attributes, andPred represents the directed edges of the
d-dag as a set of predecessor relationships between nodes.Pred(i) is the set of predecessor
nodes ofi, and the attributes represented by themdeterminethe attributeAi that corresponds
to nodei. The nodesL ⊆ A are the input nodes that have no predecessors, and the node
R ∈ A is the root node, which represents the target attribute.7

While the fan-out of a determination tree is1, it is at least2 for a d-dag. In other words,
there is at least one node with more than one parent in a d-dag. Given a set of basis functions
I, the set of functions induced byI over the d-dagG is defined similarly to that induced
by I over the tree structure, and is denoted byGI . The task is to learn these functions
from examples and membership queries. To keep our results representation-independent,
we assume that the learning algorithms do not output a function, but simply predict the
output on an arbitrary test example in polynomial time.

For our proofs, we will be using the framework of prediction-preserving reducibility with
membership queries introduced by Angluin and Kharitonov (1995). We proceed as follows.
We reduce the problem of learning arbitrary Boolean functions inn variables from examples
and membership queries to one of learning with a fixed dag-structured bias, where only
the leaf nodes may have multiple parents. Since learning arbitrary Boolean functions with
examples and membership queries is cryptographically hard, our results imply that learning
with d-dags can also be as hard. Our results hold when the fan-out of the d-dag is at least
2 and fan-in is at least3 or vice versa. In both cases, the internal functions are limited to
{AND,NOT,≡}, where≡ gate outputs1 if and only if all its inputs are the same.
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In the framework of prediction-preserving reducibility with membership queries, we start
with two function spacesF andF ′ and define a reduction that will allow us to convert
a polynomial-time pwm-prediction algorithmM ′ for F ′ into a polynomial-time pwm-
prediction algorithmM for F (Angluin & Kharitonov, 1995). IfF is known to be hard to
predict, so isF ′. In our case,F is the set of all Boolean functions overn variables, andF ′
is the set of functions induced by{AND,NOT,≡} over some d-dag.

LetD be the domain of functions inF andD′ be the domain of functions inF ′.
In order to carry out a prediction-preserving reduction with membership queries from the

function spaceF toF ′, we have to show the existence of the following three mappings.

• A mappingg of representations of functions inF to representations of functions inF ′.
• A mappingr of training or test examples inD to training or test examples inD′.

• A mappingh of examples inD′ queried byM ′ to examples inD queried byM .

The rationale for these mappings is as follows. To learn a functiony ∈ F ,M mimics the
steps ofM ′ learning the functiong(y) ∈ F ′. WheneverM ′ requests a random example,M
requests a random example fromD, transforms it usingr and gives it toM ′. The mappings
g andr should be such that the value ofy on any inputx ∈ D must be the same as the
value ofg(y) onr(x). hmaps the examples inD′ queried byM ′ to examples inD, queried
by M . h could be an inverse ofr; however it might so happen that some elements inD′

have no inverses. In all such cases,h outputs a fixed answer (⊥ in our case). The trick
is to make sure that this answer is consistent withg(y) for all target functionsy. While h
andr must be computable in polynomial time,g need not be, but we must ensure that it
maps to functions whose representation sizes are bounded by a polynomial in the sizes of
the original functions.

The reader is referred to (Angluin & Kharitonov, 1995) for a more formal description
of prediction-preserving reducibility. We now state our main theorem which is based on
a prediction preserving transformation of learning arbitrary boolean functions to functions
induced by fixed dags.

Theorem 5 Pwm-prediction of Boolean formulas over the basis{AND, NOT,≡} con-
sistent with a given d-dag is as hard as pwm-prediction of arbitrary Boolean formulas, even
for d-dags with fan-in= 3 and fan-out= 2 or fan-in= 2 and fan-out= 3.

Proof: Please see the Appendix.

Theorem 6 Pwm-prediction of Boolean formulas over the basis{AND, NOT,≡} con-
sistent with a given d-dag is as hard as inverting one-way functions, even for d-dags with
fan-in= 3 and fan-out= 2 or fan-in= 2 and fan-out= 3.

Proof: Follows immediately from Theorem 5 and the result of Kearns and Valiant (1994),
which shows that learning Boolean functions is as hard as inverting certain one-way func-
tions, e.g., breaking the RSA cryptosystem or factoring Blum integers.2

It was shown in (Bshouty et al., 1995) that exact learning of read-twice formulas with
equivalence and membership queries is hard when the internal functions include{≡,
OR, NOT, AND}. Our result is stronger because it shows that even pwm-prediction,
which is sometimes easier than exact learning, is also as hardevenwhen the underlying
determination-dag (or skeleton) of the target formula is given.
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9. Related Work

Our work is most closely related to the work on Boolean read-once formulas in computa-
tional learning theory (Angluin et al., 1993; Hancock, 1991; Bshouty et al., 1992, 1995).
The more theoretically inclined reader is referred to these excellent papers, particularly the
last one, which subsumes the others. All of this work is based on exact learning using
equivalence queries as well as membership queries (Angluin, 1988). We call this model the
“exact learning model” from now on. Equivalence queries are in the form of “is the target
function the same asg?” If g is the target function, the teacher answers ‘yes’; otherwise the
teacher responds with a counterexample, i.e., an example whereg and the target function
disagree. Bshouty et al. (1992, 1995) describe a learning algorithm that exactly identifies
the determination tree (skeleton) and the target function from membership and equivalence
queries for constant fan-in or symmetric internal functions. A symmetric Boolean func-
tion gives the same output for any permutation of its inputs. The determination tree is
identified by using the queries and justifying assignments to partition the set of variables
into those that are descendants of some internal node and those that are not. Once such
a nontrivial partition is found, the algorithm can be called recursively to induce trees on
the two sets of variables. After the treeT is found, the functions are identified by running
multiple copies ofLearn-Internal-Function on the internal nodes of the tree until all of
them request counterexamples. When this happens, their corresponding hypothesesgi are
plugged into the determination treeT and the composite hypothesisT g is used to ask an
equivalence query. Either the hypothesis is correct or a counterexample to this composite
function is returned. If there is a counterexample to this composite hypothesis, then it is
used to generate a counterexample to at least one of the internal functionsgi, and the cycle
repeats. Since the space of internal functions is assumed to be exactly learnable with a
polynomial number of queries, this process terminates in polynomial time under conditions
similar to our Theorem 4.

In summary, unlike our algorithm, the algorithm of Bshouty et al. also learns the skeleton
of the read-once formulas, but is restricted to the union of symmetric and constant fan-in
basis functions (Bshouty et al., 1995). For example, arbitraryk-decision lists cannot be
represented as compositions of symmetric or constant fan-in functions, and hence their
algorithm cannot be used when the basis includesk-decision lists. It is an open question
whether the skeletons of read-once formulas over such bases can be efficiently learned from
examples.

The model of exact learning with equivalence and membership queries is theoretically
attractive because it sidesteps the need for probability distributions. Positive results of this
model directly yield positive results under the pwm-predictability model using standard
transformations (Angluin, 1988). However, they are not equivalent because a negative
result in the equivalence plus membership query model does not imply that pwm-learning
is not possible. More specifically, Lemma 5 of (Bshouty et al., 1995) is the exact-model
counterpart of our Theorem 4. Although our theorems are based on similar insights, neither
of them implies the other. Their lemma assumes that the internal functions are exactly
learnable, a strictly stronger assumption than ours that they are pwm-predictable. Our
theorem also does not require closure under projection for the internal function class if it is
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pac-predictable. On the other hand, our theorem only guarantees pwm-predictability, while
theirs guarantees exact learning, which is strictly stronger.

While the exact learning model is theoretically convenient, the pwm-predictability model
yields more natural and efficient implementations, which is the main concern of our pa-
per. Our emphasis is on building a bridge between the theoretical work on learning with
membership queries and the practical concerns of effectively exploiting prior knowledge
in learning. We are able to achieve this by presenting a theoretically justified algorithm
that effectively solves the problem of learning from tree-structured prior determination
knowledge. We also provide empirical support for the work on read-once formulas by
showing that our implementation achieves smaller error rates from the same data when
compared to knowledge-free induction algorithms. Our results and those in (Bshouty et al.,
1995) suggest that the experimental learning community needs to pay attention to theo-
retical work on learning from membership queries; the performance of practical induction
systems can perhaps be improved significantly compared to an approach based purely on
random examples.

The ideas of Bshouty et al. (1994) were adapted to the PAC learning framework by
Hancock, Golea and Merchand (1994). They proposed an algorithm that learns multi-layer
nets of perceptrons from queries and examples assuming that there is no overlap between
the receptive fields of the input units and that the output of each unit is connected to at most
one other unit. These assumptions impose a tree-structure on the network and constrain
the basis functions to be linear threshold functions. Their algorithm learns the network
structure using recursive partitioning of the input variables as in (Bshouty et al., 1995), and
learns the linearly separable internal functions using linear programming. The algorithms of
(Bshouty et al., 1995) for learning the skeletons of the read-once formulas have worst-case
complexities of the order ofO(nk+1) for k-TSB andO(n6) for TSB with symmetric basis
functions. Improving the complexities of these algorithms is essential to yield practical
implementations. Such improved programs could be used in concert with ours to provide
a more complete learning system.

TSB-2 is a successor of TSB-1, which was restricted to constant fan-in determination
trees (Tadepalli, 1993). Other than TSB-1, there were two previous implementations of
tree-structured bias (Getoor, 1989) (see also (Russell, 1989)). However, both of them have
only had limited success. One of them assumes that the Boolean functions at each node
are monotone, yielding a very simple polytime algorithm with membership queries. The
other uses the determination tree to prestructure a neural network, using a “mini-network”
to represent each of the internal functions. Unfortunately, using backpropagation in such a
network is too slow to handle trees with more than a handful of inputs. On the other hand,
this problem should not arise with TSB-2 because of its ability to learn each of the internal
functions locally.

There has been a considerable amount of research on using prior knowledge in learning.
For example, FOCL (Pazzani & Kibler, 1992), and Grendel (Cohen, 1992) learn general
relational concepts and are capable of making use of background knowledge expressed
as first-order Horn clauses. As suggested by Cohen, determinations can be expressed as
overgeneral Horn clauses (Cohen, 1991). For example, the fact thatA andB determineC
can be represented by a set of8 Horn-clauses of the formvalue(A, VA) ∧ value(B, VB)
→ value(C, VC), whereVA, VB , andVC take values from{0, 1} in all combinations. The
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learning problem can be seen as finding a correct subset of these clauses, using examples
to guide the process. However, neither FOCL nor Grendel can exploit the tree structure
because they always learn clauses for the root of the determination tree in terms of the
observable leaf nodes. Such rules collapse the tree structure to two levels, thus destroying
the possibility of fast convergence. Consider, for example, learning a 2-CNF function,
G = (A0 + B0)(A1 + B1)(A2 + B2) . . .. This function can be represented succinctly
as a determination tree with three levels. The root node computesAND, the middle
nodes computeOR, and the leaf nodes are observable inputs. However, both Grendel and
FOCL learnG as a set of Horn clauses of the formA0A1A2 . . . → G;B0A1A2 . . . →
G; . . . B0B1B2 . . . → G. Unfortunately, this representation is exponentially larger than
the target’s original representation and hence both FOCL and Grendel converge very slowly
when learning concepts of this kind.

Work in theory refinement seeks to address the above issue by discouraging radical revi-
sions of the theory and by requiring that the learning program makes onlyminimalchanges
to the input theory. We ran a theory revision program, calledNeither (Baffes & Mooney,
1993), on our problem.Neither is a propositional theory refinement program that ac-
cepts theories described as Horn clauses, and refines them until all the training examples
are correctly classified. We gaveNeither a domain theory which is the equivalent of
the tree-structured bias used in our experiments of Section 7, while constraining the basis
functions to monotone3-DNF. The monotone DNF constraint allowed us to easily convert
the determination theory into an overgeneral, propositional Horn theory. For each determi-
nation in the tree of the form “{A1, . . . , Al} determinesA,” all possible Horn-clauses of
the form “ti → 1” were generated, whereti is a conjunction of at most3 positive literals in
A1, . . . , Al, and these were given to the system as prior knowledge. The task of the system
was simply to select a subset of the clauses that is consistent with the input examples. We
gave the random examples and the queries used by TSB-2 as input toNeither.

Somewhat surprisingly,Neither worked better without the Horn theory than with
the theory!8 This illustrates the difficulty of building robust knowledge-based learning
systems—simply adding prior knowledge seems not to be enough.

10. Conclusions and Future Work

This paper applies some of the theoretical tools developed in computational learning theory
to inductive learning problems addressed in experimental machine learning. Our algorithm
is inspired by the methodology of controlled experimentation in experimental science. It is
based on the notion of distinguishing assignments, which simultaneously play the roles of
making a hidden node (theoretical variable) observable by setting up an appropriate context,
as well as controlling that node (variable) by changing its causal antecedents appropriately.

We also saw that membership queries can be effectively utilized in learning when the
function space is constrained by declarative knowledge in the form of a tree of determi-
nations. This illustrates the power of tree-structured bias in constraining learning, and the
effectiveness of special-purpose learning programs like TSB-2 in exploiting this bias. Our
results with ID3 andk-DL show that merely knowing which queries to ask does not improve
performance. Using queried examples in the way that random examples are used can in fact
worsen the performance due to the differences in the two distributions. Our results with
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Neither also show that having the necessary prior knowledge and using it in a uniform
way may not be sufficient to guarantee successful learning.

The determinations we considered are deterministic in that the value of the output feature
is a fixed function of the values of the input features. We can generalize this to stochastic
domains by assuming that the values of the input features only determine theprobability
of the output feature. A stochastic determination graph can thus be interpreted as the
graph structure of a Bayesian network (Pearl, 1988). Deterministic versions of Bayesian
networks, called “symbolic causal networks” by Darwiche and Pearl (1994), are similar to
determination graphs except that they allow some “exogenous” propositions to introduce
noise into the functional relationship defined by the determination. Although there are a
few results in learning Bayesian networks from data when all the variables are observable
(Cooper & Herskovits, 1992), learning with hidden variables is much harder (see (Russell,
Binder, Koller, & Kanazawa, 1995) and (Friedman, 1997) for recent algorithms). As yet, no
work has been done on using membership queries in such algorithms, nor on ascertaining
the computational complexity of the problem. It may be possible to extend our algorithms
to learn tree-structured Bayesian networks with hidden variables. Our negative result on
learning with determination-graphs immediately implies that learning the parameters of a
graph-structured Bayesian network with hidden variables is hard even when the network
structure is known and the teacher can answer membership queries.

It would be interesting to extend our results to include noisy and incomplete oracles, since
these often provide a better model for real-world learning problems; any of several recent
noise models might be used. We also foresee that real-world learning might require the
introduction of restricted classes of non-Boolean functions at the nodes of the tree. There
has been some work in computational learning theory on learning arithmetic read-once
formulas that may be useful here (Bshouty, Hancock, & Hellerstein, 1995). We expect that
the basic insights used in TSB-2, including distinguishing assignments, will carry over into
the more general setting.

We can also consider applying TSB-2 todiagnosistasks, which are not normally thought
of as learning tasks since prior knowledge provides such a strong constraint. Here, the
structure of the system maps to the tree or dag structure of the target function, while the
components of the system map to the internal functions. In some cases, the problem may
have some decomposability so that we can test some components of the device separately.
This corresponds to the availability of a MEMBER oracle for those components. Knowing
the correct functionality of the device might also make the learning problem easier by
constraining the hypothesis space so that only minor deviations from the correct function
are considered, e.g., the so-called “single fault” assumption. Components that are known
to be working can be modeled as internal function spaces containing only a single function.
In general, there is no reason why the internal learning function cannot also use any prior
knowledge that is available.

On the theoretical side, the most interesting open problem is to learn the tree structure
under the weakest possible assumptions about the internal (basis) functions. The positive
results so far have been restricted to the union of constant fan-in and symmetric basis
functions (Bshouty et al., 1995). The question of whether this class can be extended to
include all learnable functions that obey our closure properties is still open. It is possible
that there are basis functions for which learning the tree-structure is hard under the conditions
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of Theorem 4. If that turns out to be the case, it implies that the prior knowledge in the
form of determination tree improves not only the sample complexity of learning, but also
the computational complexity.

Recently, it has been shown that read-twice DNF and CNF formulas are learnable from
random examples and membership queries (Aizenstein & Pitt, 1991; Hancock, 1991; Pil-
laipakkamnatt & Raghavan, 1995), while the status of general read-twice formulas over the
basis{AND, OR} is still open. These results might be useful in closing the gap between
our negative and positive results, for example, by studying the learnability of determination
graphs of fan-out = fan-in= 2 for various basis functions.
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Appendix

Theorem 5: Pwm-prediction of Boolean formulas over the basis{AND, NOT, ≡} con-
sistent with a given d-dag is as hard as pwm-prediction of arbitrary Boolean formulas, even
for d-dags with fan-in= 3 and fan-out= 2 or fan-in= 2 and fan-out= 3.
Proof: The proof is based on a two-part prediction-preserving transformation of arbitrary
Boolean functions to functions induced by{AND,NOT,≡} over a fixed d-dag.

First, using a transformation similar to that introduced by Pitt and Warmuth (1990), we
reduce learning arbitrary Boolean functions to learning functions over a fixed determination
tree with the basis{AND,NOT,≡}, where each input attribute of the original function is
repeated many times in the leaves of the tree. We then transform that tree to a d-dag with
fan-out> 1 at the leaf nodes, so that the target attribute value is0 if all the copies of the
same input attribute do not have the same value. We now describe this transformation in
detail (see Figure A.1).

Let y be the target Boolean formula over the input attributesx1, . . . , xn that usesNOT,
AND, and OR. We first describe a mappingg that convertsy into a target function
representation for a fixed d-dag.y can be viewed as a tree. Let|y| be the number of nodes
in that tree. Results in circuit complexity (Wegener, 1987) imply thaty can be computed by
a Boolean circuit made-up of any sufficiently powerful 2-input gate types with a circuit of
depth at mostd = bb log |y|c, whereb is a constant independent ofy. We use theAND gate
and the “consensus gate” which computes the function≡. Given a constant0 as an optional
input, these two gates are sufficiently powerful to implement any other Boolean function
over two inputs. This is becauseNOT(x) can be implemented as≡ (x, 0) andOR can be
implemented asNOT(AND(NOT(x),NOT(y))) by DeMorgan’s law. Hence the above
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Figure A.1.Reduction of an arbitrary Boolean formula to a fixed d-dag of fan-out = 2 and fan-in = 3. All nodes
except the leaves have a fan-out of 1. All gates other than those in the bottom layer have a fan-in of 2.

result holds for this set. The tree can be made into a complete tree of depth exactlyd by
iteratively replacing each of the shallow leaves labeledx with AND(x, x). In Figure A.1,
the dashed rectangle on the top shows the complete binary tree which is equivalent to the
target formula.

The inputs of the resulting treeT are from the set{x0 = 0, x1, . . . , xn}. T is not yet a
determination tree, because the leaves ofT do not occur in any fixed order and each input is
repeated many times. Letn′ be the smallest power of4 that is as large as2(n+1). Replace
each leafl of the treeT with a complete binary treeTl of heightlogn′ = 2h′, whose leaves
are labeled〈x0 = 0, 0, x1, 0, x2, 0, . . . , xn, 0〉〈0〉n

′−2(n+1). If l is labeled withxi in the
treeT , then the internal functions ofTl can be chosen from{AND,≡} such that its root
evaluates toxi. This can be done by having the consensus gates at all the internal nodes in
the path to thexi, andAND gates at all other nodes. Each consensus gate works likeNOT
in this case, and since there are an even number of such gates in any such path of height
2h′, the root computesxi. This is shown by the triangles in the middle of Figure A.1.

The new treeT ′ is a complete binary tree of depthd + 2h′ whose leaves are labeled
with fixed input attributes including0. However, each attribute is repeated many times, and
many input attributes are fixed as0. To make all the attributes distinct, we first replace each
jth occurrence of0 by a new variablezj . We then replace eachjth occurrence of eachxi by
a variablexi,j . Now, all nodes are distinctly labeled; but all “legal” inputs for the original
Boolean formulay should havezj = 0 for all j, andxi,1 = xi,2 = . . . = xi,p for all i. We
want to make the new circuit output the same value as the original formulay for all legal
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inputs ofy, but output0 for all illegal inputs. The part of the circuit below the triangles in
Figure A.1 does this by checking that the inputs to the circuit are legal.

To check that allzjs are0’s, we first negate them usingNOT gates, and thenAND the
results withAND gates of fan-in =2, as shown in the bottom rectangle of Figure A.1. This
can be done without increasing the depth of the circuit. To check thatxi,1 = xi,2 = . . . =
xi,p for all i, we borrow an idea from (Bshouty et al., 1992) and introduce an auxiliary
variablewi,j for eachxi,j . We use 3-input consensus gates to compute≡ (wi,p, xi,1, wi,1),
≡ (wi,1, xi,2, wi,2), etc., and thenAND the results with a binary tree of 2-inputAND
gates. Since thewi,j ’s for successivej’s are shared between successive consensus gates,
this circuit outputs 1 if and only ifxi,1 = xi,2 = . . . = xi,p for all i. We thenAND the
outputs of the above two sub-circuits, getting a circuit which outputs1 on all legal inputs
for the original formulay and0 on all illegal inputs (shown as the output of the bottom
rectangle of Figure A.1). Finally, weAND this output with the output ofT ′ (shown at the
top of Figure A.1). This circuit outputs0 for all illegal inputs of the target formulay and
computesy on all legal inputs. Call the d-dag that corresponds to this circuit,G.

It is easy to see that the fan-out of all internal nodes ofG is at most1. The fan-out of
each inputzj is 2 because each such node is connected to aNOT gate and to a single gate
in the treeT ′. Each inputxi,j is connected to one consensus gate and to another gate in the
treeT ′, and hence has a fan-out of2. Each inputwi,j also has a fan-out of2 since it is only
connected to two successive consensus gates. The fan-in of all gates except the consensus
gates in the bottom of Figure A.1 is at most2. The consensus gates have a fan-in of3.
Thus,G is a d-dag of fan-out = 2 and fan-in = 3 that can be instantiated withAND, NOT,
and consensus gates so that it computes the target formulay for all legal inputs and outputs
0 for all other inputs. The size ofG, as measured by the number of gates, is polynomial
in the size of the original functiony, and the number of inputsn, because its height is
O(log 2(n+ 1) + log |y|), and it has a single output node and a fan-in of 3.

To create a circuit of fan-out = 3 and fan-in = 2, simply remove all the inputswi,1, . . . , wi,p
and implementxi,1 = . . . = xi,p for all i by AND(≡ (xi,1, xi,2),≡ (xi,2, xi,3), . . . ≡
(xi,p−1, xi,p)), using 2-inputAND and consensus gates. Eachxi,j is now input to two
consensus gates and one gate in the treeT ′, resulting in a circuit with fan-out = 3 and fan-in
= 2. Call the d-dag that corresponds to this circuit,H.

The rest of the proof applies to the d-dagG. The above mappingg described how to
transform a target boolean functiony into an instantiation of the d-dagG with specific
gates. We define the remaining two mappings—r for the random instances, andh for the
membership queries—necessary to complete the prediction-preserving transformation as
follows:

• r maps any random instancex = 〈x1, . . . , xn〉 to

〈〈0, 0, x1, x1, 0, x2, x2, . . . , xn, xn, 0〉〈0〉n
′−2(n+1)〉2d .

Here the0’s correspond to the inputsz1, z2, and so on. The two successivex1’s
correspond tox1,j andw1,j respectively. Similarly, the two successivex2’s correspond
to x2,j andw2,j , and so on.

• If a membership queryx′ is of the form
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〈〈0, 0, x1, x1, 0, x2, x2, . . . , xn, xn, 0〉〈0〉n
′−2(n+1)〉2d ,

i.e., if there is anxsuch thatr(x) = x′, thenh(x′) = x = 〈x1, . . . , xn〉; elseh(x′) = ⊥.

It is easy to see that a programM ′ that learns the function space induced by{AND, NOT
,≡} overG can be used to simulate a learnerM for the Boolean function spaceF . The
target functiony ∈ F is mapped tog(y) by instantiatingG with specific gates as described
above. WheneverM ′ requests a training example, we generate a training example forM ,
and if it receives〈xi, yi〉 as an example, we provide〈r(xi), yi〉 to M ′. By the way we
defined the mappingg, yi = y(xi) = g(y)(r(xi)). Any membership queriesx′ asked by
M ′ will be answered with a0 if h(x′) = ⊥, and otherwise by asking a membership query
onh(x′) toM ’s MEMBER oracle. Note thatg(y) mapsx′ to 0 wheneverh(x′) = ⊥, i.e.,
the circuitG outputs0 on all “illegal” inputs. To predict the output of the target function
on a random examplex, x is transformed tor(x) and the value of the learned function on
r(x) is returned. IfM can learn an approximation ofg(y), then our simulation can learn
an approximation toy, since the probability weights of their error regions are exactly the
same.

The proof forH with fan-out = 3 and fan-in = 2 issimilar.2

Notes

1. This assumption is fairly natural. It corresponds to assuming that each attribute in the domain is determined
by at mostk other attributes.

2. It should be noted that the read-once property depends on what “basis” functions (primitives) one is allowed to
use.AB+AB is not read-once, but is trivially read-once if one is allowed to use exclusive-or as a primitive.

3. We thank Lisa Hellerstein for providing a counter-example for the projection case.

4. Note that the projection of a function fixes the irrelevant inputs to0, while the restriction of an assignment sets
the irrelevant inputs to∗.

5. The experiment needs to be done on a large group of patients rather than a single one in the medical domain
to offset the effects of large variations among the different patients and study their aggregate behavior.

6. One obvious lemma is needed to use the example oracle in establishing learnability, namely, that if the original
example distribution is stationary then the oracle for the subtree also has a stationary distribution.

7. Notice that here, as in determination trees, we assume that such graphs (or trees) to be nonredundant, in that
determinations that are implied by other determinations are not explicitly represented in the graphs (or trees).
For example, ifP andQ determineR, which in turn determinesS, P andQ are not connected toS, even
though they do determineS by implication.

8. SinceNeither’s performance without the theory was similar to that of ID3, we only showed the results of
comparisons with ID3 in Section 7.
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