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* 1

Learning From Examples Via Self-Explanations

Numerous topics are involved in the study described here: learning, problem solving, self-

explanations, the role of examples in learning, individual differences, and physics. However,

three issues are overarching in our domain of inquiry and in the task and the design we used.

namely, how one learns; what one learns; and how one uses what has been learned. This chapter

first describes the rationale for the particular design that we used; it then gives a brief description

of the procedure of our learning study. A discussion of these three overarching issues, and of

how our study can provide evidence to address them follows. In this way, we give an overview

of our current state of understanding of the three issues and the degree to which the findings

reported can or cannot elucidate our understanding.

Rationales for the Design of the Study

Two major goals guided the design of this study. The first was to study how one learns to

solve problems, rather than to study individual differences in problem solving abilities R9 se.

The latter approach, usually contrasting the problem solving successes of good and poor solvers,

or experts and novices, sheds light only on performance differences. By focusing instead on what

students have learned prior to solving problems, as well as what they learn while solving

problems, we can gain further knowledge about the transition mechanism, thus providing

insights for a model of competence in problem solving.

A second concern that guided the design of this study was to approach learning as a

constructive process. That is, in learning to solve problems, one must declaratively encode and

store new knowledge in terms of new concepts and principles, build problem schemata, and

attach procedures (or their derivations) to the problem schemata. Our interest was, thus, in the

construction of this knowledge, rather than in the proceduralization of already encoded

knowledge.

In the sections below, we elaborate on how these goals were met by the design of our study.

• Briefly, in order to study how one learns to solve problems, we examined the way students

learned from worked-out examples in the text. The constructive aspect of their learning was then

assessed via the explanations that they gave to themselves.
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Contrasts with Other Approaches to Problem Solving

A customary approach to the study of problem solving is to observe how people with

different skills (such as experts and novices) solve problems by collecting and analyzing their

protocols and formulating models to capture their solution processes. The models of performance

thus formulated constitute the knowledge of a set of procedures that each of the students

possesses and can apply for solving problems. Individual differences are then explained by the

differences in the knowledge possessed, as embodied by the sets of production rules or

programs. The intention of these models has been to see if one could derive the knowledge of the

skilled solver from the knowledge of the unskilled solver. Unfortunately, inferences about the

transition to the expert's from the novice's knowledge have not been straightforward. An

alternative approach-the one we have chosen-is to see what students acquire from studying, in

hope of being able to represent the knowledge underlying the generation of the solution

procedures for the skilled and less skilled students.

To contrast our primary interest with other researchers' contributions to the literature on

problem solving, we can describe an alternative focus: how the declarative knowledge encoded

from text or from the teacher's instruction becomes proceduralized into a skill. This conversion

process dominates, for example, Anderson's theory (1987) of skill acquisition.

In that theory, the process of conversion is achieved by using general weak methods that

can convert declarative knowledge into domain-specific procedures via the mechanism of

compilation. In Anderson's theory, compilation consists of two processes: proceduralization and

composition. Composition is analogous to chunking in that separate procedures can be

concatenated into one larger procedure. Proceduralization, by contrast, converts declarative

knowledge into a procedure. This is accomplished by applying a weak method, which takes as

the condition certain declarative knowledge that has been encoded a 1riori as important and

fundamental to the problem at hand. For instance, suppose a student is trying to solve a geometry

problem that requires proving that two triangles are congruent. He might start by applying a

0 weak method, such as means-ends analyses, in which the goal is to transform the current state

(the given) into the gal state. To do so, the weak method sets out to reduce the largest difference

between the current state and the goal state. The largest difference that the model notices is that

$"no corresponding sides have been proven congruent." Therefore, the model attempts to reduce

0 this difference. However, for the model to detect that "there are no corresponding sides that have
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been proven congruent," it must contain the declarative knowledge that if the coe

sides are congruent, then one can prove the triangles to be congruent. Thus, Anderson's theory

assumes that all relevant declarative knowledge has been properly encoded. The aspect of

problem solving that Anderson's theory focuses on is the compilation of the declarative

knowledge in the context of a derivation of the set of actions that constitute the solution.

We are not concerned with the mechanism of compilation Mrs e. In a complementary way,

our research focuses on how students can successfully solve problems as a function of whether

or not they have encoded the relevant declarative knowledge and the level to which this

declarative knowledge is "understood," as revealed by the way it relates to the procedures that

instantiate it. Thus, in our view, problem solving, in the sense of organizing the derivation of a

set of actions, does not seem to be guided by such general heuristics as means-ends analysis (at

least for the good solver). Rather, we believe that the organization of a derivation is guided by a

general domain principle, which then governs the set of actions that should be derived in order to

solve the problem. For example, in simple mechanics problems, if the solver knows the'problem

is a static one, then his set of actions (the solution) is guided by that piece of declarative

knowledge and its associated consequence, namely, that the sum of all the forces acting in the

system is zero. This knowledge is a specific rule that can be inferred from one of Newton's

principles. The rule then guides the derivation of the set of actions, which consists of finding all

the forces acting on the body, decomposing them into their respective axes, and summing the

ones in the same dimension. Thus, the derivation is an implementation of the knowledge that

"All the forces must sum to zero." With such a framework, the critical issues are how and to

what extent students understand the declarative principles that govern the derivation of a

solution.

* Learning in the Domain of Mechanics

Because we view problem solving as the organization of a derivation of a set of actions, and

this derivation is guided by a general principle, we necessarily have to choose a domain in which

there is a rich interrelation between the set of actions that are executed as the solution and the

principles that guide the selection of the set of actions. This constraint necessarily rules out

knowledge-lean puzzle-type problem. Many knowledge-rich domains, on the other hand, are

still too syntactic and algorithmic in nature. Factoring algebraic expressions or subtractions, for

* example, are too algorithmic in that the students simply have to learn a set of procedures. The

procedures can often be performed correctly only with syntactic understanding of the problems.

0L
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There are many knowledge-rich domains that have a less algorithmic character, but some require

diagnostic problem solving, such as troubleshooting, which is quite different from the traditional

classroom-type problem solving that interests us. Simple mechanics problems, however, seem to

fall in-between the two extremes. Mechanics problems satisfy our constraint in that successfuilly

solving them demands the instantiation of principles and concepts.

Our choice of the domain of mechanics was also guided by additional conideration. First

of all, mechanics problems are difficult for students to learn to solve. One major source of this

difficulty, we surmise, is the fact that a mechanics problem, even the simplest one, requires that

certain forces not explicitly described in the physical situation of the problem be added.

Funhermore, not only must these forces be recognized, but their interrlationhip must be

considered. In other words, the equations or procedures that apply should not relate the entities

explicit in the problem statement (the block on the incline, the angle of the incline, etc.). Rather,

the equations should relate the interplay of the forces at work. (In the inclined plane case, it

would be the forces that act on the block from gravity, from the string pulling on the block, and

so forth.) Whether or not the block moves depends on the sum of the total forces acting on it in a

given direction. Hence, a representation of the implicit relations among the forces must be

constructed in order to solve such problems.

To illustrate, Figure I shows a diagram of an inclined plane problem and the content of a

basic representation. We propose that some students (probably the poorer ones) have only a basic

representation of the problem. Such a representation consists mostly of explicit entities (the

block, the inclined plane), so that the relations represented are among the explicit objects (i.e.,

the block is on the inclined plane, the plane is inclined at 30 degrees). Moreover, because such a

representation contains only the explicit objects and their relations, the operators necessarily act

on these alone, as the following protocol excerpt from a poor solver confirms.

What is the mass of the block? (The question posed by the problem
statement.)

Let me see. I know F-ma. (Her operator is an algebraic
one, embodied in the equation
that F relates to m and a.)

What's m equal to? (The solver is trying to find m by
deriving it algebraically by dividing 1! by !)
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The components of her basic representation contain entites (the force, the acceleration, and the

mass of the block) that are explicitly described in the problem statement, and the operators that

the poor solver has learned (algebraic ones, such as F--ma can be converted to m=_/_) can only

be applied to the explicit entities and relations.

Insert Figure I about here

A more successful solver, however, has a physics representation that includes, in addition,

generated physics entities that are not explicitly described. For the same simple physical

situation as depicted in Figure 1, she would have, in addition, inferred implicit objects (gravity

force, normal force, etc.) and their relations (the directions of these forces, and whether they

oppose and cancel out each other). Figure 2 shows the implicit entities and relations (Items 3
and 4), as well as the explicit ones. The m Fo-pro (F's=mI n igure2)inthis

case, is really a guiding principle, and the actual proceduralized micro-overators are the

component procedures of decomposing forces, summing forces in the same dimension, and so

forth. Hence, one might even argue that the operators in the two representations (the basic and

the implicit physics) are different. The necessity of generating implicit entities under the

guidance of a domain principle is a fundamental difference between solving problems as

algebraic expressions and doing physics. That is, to solve a mechanics problem successfully, a

student must generate an implicit representation. We believe this requirement contributes largely

to physics problems' difficulties. In tracing the learning processes, we may be able to find out

how a transition from explicit (basic) to implicit (physics) representation takes place.

Insert Figure 2 about here

Another reason for studying mechanics problems is that textbooks usually use a general

problem solving procedure as a guideline for teaching problem solving. A general procedure is

not only laid out in the textbooks, but it is often taught directly by the instructor as well. It

usually encompasses some set of subprocedures, as indicated in Halliday and Resnick (1981, p.
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I 69):

91. draw a sketch of the explicit physical situation;

2. draw a free-body diagram (in other words, add the forces which are operating in
the physical situation);

3. resolve the force vectors into their components (that is, calculate their projections
onto the coordinate axes, which also requires selecting coordinate axis);

4. select the appropriate equation and substitute the components into the general
equation to produce an instantiation corresponding to each coordinate axis;

5. solve the equations.

As one can see, such a general procedure serves only the purpose of setting subgoals, such

as "draw a free-body diagram." Setting subgoals using this guideline is not very different from

using a general heuristic, such as means-ends analysis, to set up subgoals. But if the problem

were a static one, then one would set up the subgoals of seeking all the forces acting on the

system and balancing the forces so that there is no resulting net force in any direction. A

guideline that is not driven by such a domain principle can only serve the function of a syntactic

heuristic that cannot be carried out without knowing the subgoal's purpose in the context of the

principle One cannot simply draw a free-body diagram unless one knows what forces to depict.

Our conjecture that a general procedure alone is not sufficient for solution can be seen in

our protocol from a poor solver in our pilot study. The student would often prompt herself with

these subgoals. For example, she would often say to herself, "I know I'm supposed to draw a

free-body diagram here." She still, however, did not get anywhere with the solution. On the

other hand, on occasions where students do succeed in solving the problems, one can

consistently see a trace of this general procedure. This means that a successful solution

* procedure often proceeds through the steps of constructing a free-body diagram, finding and

decomposing the forces, and so forth, but these steps do not necessarily serve as a guideline for

finding the solution. Hence, if students are not learning problem solving by using this guideline

of procedural steps, how exactly are they learning to solve problems?

Simple mechanical problems are suitable in another way. They are very tractable in the

following sense: We can discriminate between procedures that are situation-specific to a

particular schema (such as procedures for solving an inclined plane problem), versus the

principle (Fma) which underlies this solution procedure. That is, all three types of problems
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that we study (inclined plane, pulley, and rope problems) are instantiations of the application of

Newton's Laws of Motion, especially Newton's second law. However, this particular law cannot

be used in a direct syntactic way (as the poor solver mentioned above did) by substituting the

mass of the block for mV the acceleration of the block for a, and the force of the block for F.

F=ma applies to the resulting net force of the whole system. Thus, we believe that mechanics

problems may be particularly suitable for teasing apart different levels of underanding, both

between students and at various stages of the learning process.

Finally, the most intriguing aspect of studying mechanics problems relates to the issue of

understanding. A strict criterion of understanding requires the depiction of the knowledge tat is

acquired that can generate the solution procedure from deep domain principles. VanlAim (in

press) refers to such knowledge as teleological understanding. Students who have teleological

understanding could derive a procedure for solving a problem. However, one could conceive of

all mechanics solution procedures as a kind of derivation. And yet, knowing (in the sense of

having studied) a specific derivatibn that constitutes the solution to a problem may not indicate

that the student understood the problem solution in a teleological sense, that is, in the sense that

it is derived from some domain principle. Hence, we clearly need to distinguish teleological

understanding from the issue of derivation. Problems in mechanics could conceivably provide

insight into this issue.

Examples as a Source of Learning

We have chosen to examine how problem solving success is mediated by what is learned

from worked-out examples. There are multiple reasons for focusing on examples. An

instructional reason is that examples seem to be the primary tool which textbook writers and

instructors rely upon to teach students how to solve problems. Furthermore, students themselves

also prefer to rely on examples as a learning tool. In classroom findings, VanLehn (1986) has

indirect evidence showing that 85% of the systematic errors collected from several thousand

arithmetic students could be explained as deriving from some type of learning from example. In

another classroom study, Zhu and Simon (1987) have shown a clear advantage (a 3-year course

can be reduced to a 2-year math curriculum) if students are given only examples and problems to

work on, as opposed to the standard instruction with a text and instructor's presentations.

In laboratory studies, there is also some scant evidence showing that students prefer to rely

on worked-out examples. Anderson, Greeno, Kline, and Neves (1981) have claimed that students

LN
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spend a considerable amount of time studying examples and that students often commit

knowledge of worked-out examples to memory. Our own informal observation of two students

solving problems after having read several chapters from a physics textbook confirm their

claims. Upon the students' first encounter with problem solving, over 62% of the time, they

either copied directly from the textbook examples or recalled a procedure from a worked-out

example and used it as an analogical base. More recently, Piroili and Anderson (1985) found that

novices rely heavily on analogies to examples in the early stages of learning to program

recursion. Eighteen of their 19 subjects used the example upon their first programming attempts.

Not only do beginning students rely on examples, but they appear not to be able to solve

problems without them. Pirolli and Anderson (1985) noted that "over the course of the four hours

of protocols obtained from subject JP writing recursive functions, we saw no indication that she

could write such functions without a lot of assistance from examples or the experimenter" (p.

* 262). Reder, Chamey, and Morgan (1986) also found that the most effective manual for

instructing students how to use a personal computer are those which contain examples. Finally,

Le Fevre and Dixon (1986) found that subjects actually preferred to use the example information

and ignored the written instruction when learning a procedural task. Hence, from an

instructional point of view, worked-out examples seem to be a primary source of information

from which students learn and acquire problem solving procedures. Thus, we thought it

necessary that we ask what is learned from examples.

Despite the fact that examples have been shown to be a necessary tool for instructors, for

textbooks, and for the students to rely upon as an instrument for learning, laboratory studies

examining the usefulness of examples found severe limitations in the way that students can

generalize what is learned from worked-out solutions. In almost all the empirical work to date,

on the role of example solutions (Eylon & Helfman, 1982; Reed, Dempster & Ettinger, 1985;

Sweller & Cooper, 1985), a student who has studied examples often cannot solve problems that

deviate slightly from the example solution.
I

Sweller and Cooper (1985) have clear-cut evidence showing that students who were given

the opportunities to study example solutions had advantages over students who were just given

- opportnities to work the problems. These problems were algebraic expressions in which they

had to isolate the unknown variable. The advantages were measured in terms of reduction in

errors and speed. It is noteworthy that the group who were given the opportunity to study

I
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examples excelled on subsequent test problems, when these test problems were similar to the

example problems. However, on dissimilar problems, there were no significant differences.

These data suggest that example solutions tend to provide an algorithm for students to use and

follow on similar problems; but they really have not acquired any deep understanding of the

example. Similarly, in the Reed et al., study (1985), students were able to solve only 6% of

simple algebra word problems (such as mixture problems) that required a slight transformation

of the original equation. For example, the mixture problem required the use of the formula:

(Percentage, x Quantity,) + (Percentage 2 x Quantity 2) = Percentage 3 x Quantity3 .

In the solution that the student studied, the application of this formula required that the third

quantity (Quantity3) be derived from the second quantity plus 2 (Quantity2 + 2). Thus, Quantity3

can be represented as the sum of Quantity2 and 2 quarts. In the similar test problem that the

students had a great deal of difficulty solving, Quantity, had to be expressed in terms of 16

quarts minus Quantity 2. The point of this example is simply to show the trivial transformation

that had to be derived from the example solution in order to solve the similar problem. The only

conclusion from such findings is that the students must have learned a very syntactic structure in

which they could only substitute numerical values into the unknown of the formula directly,

", because they had difficulty making even a slight transformation of the formula.

The pessimistic outcomes of empirical studies examining the role of examples and what can

be derived from them direct our attention to the possible limitations of examples Mr M. One

*limitation seems to be that examples are inadequate at providing the rationales for the application

of each of the procedural steps. That is, the solution procedure depicts a sequence of actions,

without providing the specifications of the inputs that will produce such a sequence of actions

(VanLehn, 1986). Simon (1980) noted that "the actions of the productions needed to solve

problems in the domain of the textbooks are laid out systematically, but they are not securely

connected with the conditions that should evoke them" (p. 92). We can provide a concrete

6i example of the lack of specification of the explicit conditions under which actions should be

executed by examining a worked-out solution taken from a physics textbook (Halliday and

Resnick, 1981), as shown in Figure 3. This is an exact solution example that we have used in our

study. We can see clearly that explication of the rationale underlying the sequence of actions is

often not given. It is not clear, in Statement 2, why one should "consider the knot at the junction

A.

"A,
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of the three strings to be the body." This is a critical piece of infomiation, because it implies that,

at this location (as opposed to the block, for example), the sum of the forces is zero. Statement 2

also does not explain why and how other locations can be ruled out (such as the points of contact

between the strings and the ceiling, etc). Such lack of specification of the explicit conditions for

actions occurs throughout the example solution. In Statement 6, for example, how does the

student know that FA, E , and FC are all the forces acting on the body and that there are no

others? Statement 7 is essentially a restatement of Newton's first law, but it requires chaining

several inferences together, and translating them into an equation (for example, that because the

body is at rest, there are no external forces; therefore the sum of the forces on the body must be

equal to zero). Statement 8 is totally unexplained; why are the axes chosen as such? And in

Statement 9, why is the vector equation translated into the scalars? (The reason is that one wants

to resolve the forces so that they can be added after they are all aligned in the same x- and y-

directions.) Our analysis of the example presented above strongly suggests that learning from

* examples is diminished if the statements in the example solution procedure are not explicit about

the conditions under which the actions apply.

Insert Figure 3 about here

If students have learned only a sequence of actions, then they have basically acquired an

algorithmic procedure, which is not readily amenable to transformation. This would explain why

students in the empirical studies referred to earlier cannot transfer what they have learned from

examples, primarily because what they have learned we syntactic or algorithmic rules, much in

the way Neves's program (1981) learns. Neves (1981) constructed a program that could learn

how to solve simple algebraic problems by deducing rules from consecutive statements. To

illustrate, in the example solution, suppose the following steps were given:

1) 3X +4=0

2) 3X = -4

3)x = -4/3.

Neves's program can detect or compute the differences between one line and the next line, and

61 1 1 1 1P l , I 1 1111 11 11 f r O 1,1



deduce the rule (for the differences between lines I and 2): IF there is a number on the left hand

side of an equation, THEN subtract it from both sides. Such a rule does not explain why or

under what conditions one would subtract a number from both sides of the equal sign. The rule is

syntactic in that it applies if the structure of the given equation matches the condition of the rule

exactly. Thus, in the cases where the given structure of the equation has to be derived or

tasformed in order for the condition of the rule to be satisfied and the action taken, students

will fail, because they have not understood how the conditions of the rule can be derived from

other variations of a given equation.

In sum, instructionally, the basic observation is that examples are preferred by both teachers

and students as an instrument from which to learn, and yet examples are often poorly constructed

(in that the rationales are often not provided for their action sequences). Perhaps because of their

poor construction, students sometimes gain very little undesading from examples, other than

acquiring syntactic rules, so that the knowledge gained is not transferrable to related problems,

as reported in the empirical studies.

Besides the value of identifying instructional dilemmas in the use of examples, there are

serious theoretical reasons for studying how one learns and what is learned from exaples. The

important theoretical issue that is addressed by the Al. literature concerns the ease with which a

generalization ca be induced from a single example or whether multiple examples are

necessary. A similarity-based approach claims that generalizations are developed by inducing a
Sprinciple (or a set of common features) from multiple examples. Such a principle would embody

the essential features shared by all the examples. Thus, it is necessary to provide more than one

example in order for such induction to take place. On the other hand, an explanation-based

* approach (Lewis, 1988; Mitchell, Keller & Kedar-Cabelli, 1986) claims that generalizations can

be obtained from a single example. To do so, the system must possess knowledge of both the

domain from which to construct an explanation, as well as a definition of the concept which the

example instantiates. That is, the induction is the construction of an explanation that justifies

* why the example is an instance of the concept. Thus, the method of induction in the two kinds of

systems are quite different. Although the majority of psychological theories, including

Anderson's ACT*, had assumed a similarity-based approach to leaming, empirically, students

can often generalize from single examples (Elio & Anderson, 1983; Kieras & Bovair, 1986).

This theoretical debate in the A.I. literature about the mechanism of generalization aside,

0'
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we conceive of human learning in quite different terms. Students clearly are not leaming

principles of mechanics, such as Newton's second law, by generalizing from multiple examples,

because not only might the students not know a Diori the set of critical features to look for

across a set of examples but further, the generality that does emerge from a set of examples must

necessarily be syntactic. Suppose we mentally simulate what may be similar across a set of

worked-out solutions. The kind of features that are similar may be specific procedures such as

decomposing forces, imposing a reference frame, summing the forces, and so forth. The

summation of these procedural components may not necessarily constitute an understanding of

the principle of the second law, even though understanding it does imply that it will generate a

solution that embodies these procedural components. Neither can students learn strictly via

explanations in the sense of Mitchell et al.'s, model (1986) because this would require that

students have, by the time they encounter an example, a complete understanding of the principle

or concept it instantiates. Yet empirical evidence suggests that many students can learn to solve

problems by studying worked-out examples only, without any background text or lectures on the

principles and concepts (Zhu & Simon, 1987). Clearly, a combined similarity-based and

explanation-based approach seems necessary in order to learn from examples. (An alternative

view is to propose that in some domains, such as algebra, learning can be accomplished through

similarity-based generalization, whereas in less syntactic domains such as mechanics, a more

explanation-based approach is necessary.)

Although our research is not addressed directly to whether generalizations can be induced

from a single or multiple examples, our data can provide evidence on whether and how

generilizations can emerge from learning from a single or a few examples.

Role of Self-Explanations

• We have painted a fairly pessimistic picture of the role and characteristics of textbook

examples. We have noted that examples are poorly constructed, in that rationales for each of the

actions required are seldom spelled out. This omission results in poor generalization and

transfer, as shown in laboratory studies. But then students often prefer to rely on examples, to

the exclusion of using textual elaboration of the relevant procedures and principles.

Furthermore, there is also evidence showing that students often tend to ignore rationales that are

given, as noted in algebra tutoring experiments (VanLehn, personal communication, December,

1987). It is also the case that some elaborations actually can disrupt students' u standing

(Reder et aL, 1986).

0
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The only mediating factor that can account for these discrepant findings, we postulate, is

self-explanations; which can play a significant role in effecting what can be learned from an

example. We view examples as an essential instrument from which to learn because they

instantiate the principles that the text aims to introduce. In other words, an example of a worked-

out solution presents an interpretation of the principled knowledge presented in the text in terms

of the procedural application. An example cannot be more complete without becoming

redundant with the text of the chapter. When students fail to generalize from examples, perhaps

we should attribute the failures not to the characteristic of the examples, but rather, to the

disposition of the learners. In order to optimize learning, the students must actively construct an

interpretation of each action in the context of the principles introduced in the text.

The role played by self-explanations can also explain why students sometimes ignore

rationales that are provided, and why some rationales actually confuse and hurt the students'

* understanding. It seems likely that the explanations provided for the examples do not fit with the

students' understanding. Self-generated explanations, by contrast are necessarily consistent with

the students' own level's of understanding. Of course, then, the usefulness of self-generated

explanations depends on the students' initial understanding of the text or principles. In any case,

we can analyze students' self-explanations and the degree to which they are adequate in relating

to the principles in the text. We should be able to see a relation between the adequacy of the

self-explanations and successes at problem solving and transfer.

Thus, we view self-explanation as a mode of studying that can mediate learning. The degree

to which self-generated explanations foster learning is a function of the accuracy and

completeness of the self-explanations in interpreting the examples in terms of the principles

introduced in the text.

A Brief Description of the Learning Study

The study that we conducted, which examined how students learn to solve problems by

studying worked-out examples in the domain of physics, analyzed two major components:

* knowledge acquisition and problem solving (see Figure 4 for a diagram of the expeImenal

procedure). During the first part of the knowledge acquisition phase, students studied the

necessary background subject matter, covering the topics of measuren vectors, and motion in

one dimension. These materials are covered in the first three chapters of Halliday and Resick

(1981), a text that is adopted by many universities as a fundamental introduction to mechanics.

j
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With each of these chapters, students studied until they reached a criterion, which was defined as

the ability to correctly solve a set of declarative, qualitative, and quantitative problems.

Insert Figure 4 about here

During the second part of this phase, students studied chapter 5, the target chapter on

particle dynamics. Chapter 4 was skipped because it was not essential to understanding chapter

5. We stopped at chapter 5 because the examples there elicited interesting problem solving

behavior. That is, problem solving of those materials required some und-estanding of physics,

rather than merely applying algorihmic procedures. (The term understanding here is used in a

general sense.) The major focus of the acquisition phase in their studying of chapter 5 was how

students studied 3 worked-out examples taken directly from the text (see Figure 3 for an example

of a worked-out solution). Each worked-out solution represented a type of problem. There were

three types, which we defined to correspond to the physical situation descrnbefd a string problem,

an inclined plane problem, and a pulley problem. These are depicted in Figure 5. Students talked

aloud while they studied each example, and their protocols were taped. That is, they were asked

to utter whatever they were thinking about as they read each statement of the example solution.

Insert Figure 5 about here

At the problem solving stage, students solved two main sets of problems. The first set

consisted of 12 isomorphic problems, with four problems cozesponding to each type of example.

These problems were specifically designed so that they had different degrees of similarity to the

example solutions. For example, the first level of difference (the first set of isomorph ) was a

*qQ problem that had fundamentally the sawe description and wording, except a different variable

was required for the solution. To solve such a problem, one could basically follow the solution

exemplified in the wodred-out example, and compute the answer for a diffiern variable thn the

one calculated in the worked-out example. The second level isomo)h varied only in the values

of some of the variables stated in the problem statements. For example, the angle of the incline

might be 60 degrees rther thain 30. The third level isomoiph had sone disuniarity in the

I
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surface features. For example, the orientation of the forces could be changed. The fourth level

isomorphs had a completely different surface structure. For example, in the case of the strings

example, instead of having two of the strings attached to the ceiling, the two strings might be

attached to the floor.

The second set of problems to be solved by the students was seven problems that were

taken directly from the end of chapter 5. These problems are considerably more difficult than the

isomorphic problems that we designed. Protocols were taken at all problem solving sessions. A

variety of pre- and posttests were also administered, the former before the knowledge acquisition

stage and the latter at the very end of the problem solving stage.

How One Learns from Studying Examples

In spite of the fact that all of our students successfully completed the declarative knowledge

test that tapped the information presented in the text, we found substantial individual differences

in their subsequent problem solving success, ranging from 28% to 100% correct. These could

have resulted from differences in how students studied the examples of wodred out problems and

differences in the mechanisms and techniques they used to learn the procedural instantiatin of

that declarative knowledge.

Our methodological approach to the study of what and how students learn from examples

was to ask them to comnmnt on each of the statements that they read in the examce. All the

comments that the students made can be described by the generic term "elaborations." However,

there are distinct differences between the kinds of elaborations that students generated: About a

third of them related to the content of the example they were studying, and we refer to these as

sesy-explanations. Another third were monitoring statements. A final third were classified as

miscellaneous and these contained paraphrases and mathematical elaborations, primarily.

We now discuss students' self-explanations as a mechanism of learning by which students

generated tacit knowledge that links pieces of explicitly stated knowledge. In the second section

we then discuss the role of cognitive monitoring, that is, how students became aware of their

failure or success at undestanding, and how awareness of misunderstanding led to new attmpts

at understanding.
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The Function of Self-Explanations

Explanations are remarks that students make after reading one or several statements from

the worked-out solution example. In particular, these are remarks that have some relevance to the

physics content under study. We reasoned that because example-exercises, as we have analyzed,

are so incomplete in providing explanations for the action sequences, the students must

necessarily construct their own explanations for the sequence of actions in order to understand

the material. This idea is not new. Bruner (1966) mentioned it two decades ago and Wickelgren

(1974) reiterated it. Indeed, we found that good students (i.e., those who had greater success at

solving problems with an average of 82% correct) generated a significantly greater number of

elaboration ideas (51 ideas per example) than the poor students (18 ideas). Although the good

and poor students both had a similar distribution of types of elaborations generated

(explanations, monitoring statements, and miscellaneous others), the good students still

generated an average of 15.9 explanations per example, whereas the poor students generated

only 4.3 explanations per example. Thus, generating self-explanations seems to be an important

mechanism of learning from examples, because it correlated with problem solving successes.

Besides the quantitative difference, a second important finding was that the explanations

generated by the good students tended to be qualitatively better than those generated by the poor

students. That is, the good students' explanations tended to infer additional tacit knowledge,

whereas the poor students' explanation were often paraphrasings of the diagram, with no new

information generated.

To give a flavor of what we mean by better explanations, we quote one good and one poor

student's explanation of the diagram of the strings example presented in Figure 4. The good

student's explanation qualified the nature of the forces involved and their interrelations: They'd

just be the force, the rest mass of the thing holding it up would be the force. It could, well,

actually it'd be the force of weight. Cause being upheld by...it's the resistance to weight W. The

poor student's explanation, on the other hand, basically translated into words the surface

information presented in the diagram: Okay, so three forces are on the two strings and from the

string going down to the object.2 (Further discussions of the nature and the quality of self-

explanations is presented in the section dealing with what is learned from studying examples.)

We would like to interpret the more elaborated explanation statements generated by the

good students as an overt manifestation of their active processing during learning (as opposed to

* 1'0%
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taking it as evidence of their articulateness). Our interpretation is consistent with the

assumptions made with other types of protocol analyses, in which the verbal protocols are

supposed to reflect what is being processed in working memory. Thus, longer protocols should

simply indicate a greater degree of processing. This assumption is consistent, as well, with those

made in analyses of eye movement protocols, in which longer fixations are taken to mean that

the student is processing a particular stimulus for a longer period. Although thinking-aloud is

not quite the same as elaborating on a statement presented in an example solution, many studies

of this variety have shown no differences in performance between those students who were

instructed to think aloud and those who were not (Thomas, 1974; Klinger, 1974). Ericsson and

Simon (1984) interpreted these findings to suggest that, in response to the instruction to think-

aloud or verbalize, the subjects did not change the structure of their processing, but merely

expressed overtly what they otherwise would have thought covertly. Thus, we view the greater

amount of elaborations produced by the good students to be the manifestations of their internal

processes in trying to understand the example solution better.

Our interpretation also discounts the possibility that the good students, by taking our

instruction more seriously, engaged more fully in the activities of verbalizing explanations, and

so achieved better understanding and thus more successful problem solving. This causality was

not apparent when we analyzed the quality of the explanations. Our intet atwion that

explanations reflect active construction was further supported by the fact that the good students

did not generate a greater number of explanations than the poor students during the problem

solving phase of the study (that is, during problem solving, many students re-read several lines of

' the examples, and they thus had additional opportunities to provide explanations of what they did

not understand). Although they were encouraged to elaborate during problem solving as well,

the good students probably did not need to. Hence, it does not seem to be the case that the good

students were simply more motivated to generate explanations in order to please us.

The major support for our claim that the overt explanations reflect natural constructive

* processing, rather than cause more extensive processing, comes from the fact that the quality of

the good students' explanations was better than the poor students'. It doesn't seem that one could

obtain quality explanations by simply encouraging the poor students to generate them. The

"'C' importance of the quality of the explanations generated is consistent with the results of a study

by Stein and Bransford (1979). These authors asked subjects to generate their own elaborations

• *
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in order to help them memorize some sentences. They found that students who generated their

own elaborations, on the whole, did remember better than the control students (who were not

told to elaborate), but worse than the group of students for whom the experimenter provided very

precise elaborations. However, if the students were divided into those who generated precise

elaborations (which is analogous to our better quality explanations) and those who generated

imprecise elaborations, then those who generated precise elaborations remembered the sentences

even better than the group of students who were given experimenter-generated elaborations.

This result is especially consistent with our interpretation because it implies that asking students

to generate elaborations per se does not necessarily produce better memory. Rather, elaborations

generated were helpful only if they were precise.

There are other studies, however, that indicate that the very act of verbalization or

providing justifications for solution steps while problem solving can lead to better problem

* solving. Gagn and Smith (1962), for example, found that by asking students to verbalize the

reason for each move they made to the 2-, 3-, 4- and 5-disk Tower of Hanoi task, they improved

their performance on a subsequent 6-disk Tower of Hanoi task. However, the difference Gagfie

and Smith reported was a group difference: that is, the group with the instruction to verbalize

performed better on the whole than the group not told to do so. They did not analyze the

explanations as a function of how successful the solvers were. If we look at the content of their

explanations, as did Gage and Smith, we see that there were four types of explanations given (p.

15):

1. Those that were oriented toward single moves in the solution of the problems, with
explanations such as:

"only possible move"
"jus to try it"
"don't know"

2. Those that anticipated to the extent of two moves, with comnents such as:

"to get at the larger disk"
"to free up a space"

3. Reasons that anticipated sequences of moves, such as:

"move as with a three-disk sequence"
"if disk is odd-numbered, move to circle B"

4. Reasons that identified the principles underlying the solution, such as:



* •19

"move odd-numbered disk in the clockwise direction"
"move even-numbered disks in the counterclockwise direction"

It is possible that the good solvers in the Gage and Smith study tended to give explanations that

had the same characteristics as those generated by our good students, as those illustrated in Type

2 (stated subgoals), Type 3 (induced a goal from a sequence of actions), and Type 4 (relating the

solution to the principle). If indeed there were such individual differences in the relation

between successes at solving problems and the type of explanations given, then Gaglie and

Smith's result would be consistent with Stein and Bransford's and with ours. That is, giving

explanations or elaborations does facilitate both problem solving and remembering in general

A(perhaps because it forces a person to process the material more extensively). However,

individual differences in problem solving and remembering will remain as a function of the

* quality of the explanations and elaborations.

Students' Accuracy at Cognitive Monitoring

An important difference that was found between the good and the poor solvers was their

ability to monitor their own comprehension and misunderstanding. Because a large portion of

the students' elaborations (39% for the good and 42% for the poor) were monitoring statements,

it seems that these statements must serve an important purpose. Even though both the good and

poor students had proportionately tne same amount of monitoring statements, there was a

significant difference between the good and poor students in the relative proportion of statements

indicating comprehension failure versus understanding. Monitoring statements that indicate

comprehension failure are questions raised, usually about an example line, such as, "Why is

mgsin6 negative?" An example of a monitoring statement that indicates u

* "Okay," or " can see now how they did it."

In general, the good students generated a large number of statements that reflected their

failure to comprehend (9.3 such statements per example), whereas the poor students claimed that

* they did not understand with only 1.1 statements per example. Moreover, the poor students not

'. only did not realize that they did not und.-stand, in fact, they thought more often that they did

understand. Thus, they generated on average of 6.2 statements per example indicating that they

did understand (in contrast to the 1.1 statements indicating that they did not understand). Good

students, by contrast, generated an equivalent number of statements indicating that they
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understood (10.8 statements) and that they misunderstood (9.3 statements). Basically, this

suggests that the poor students do not accurately monitor their own comprehension. Not only do

they not realize that they have misunderstood, they in fact think that they do understand.

We do not yet have a clear conception of the underlying causes of these different

monitoring accuracies between the good and the poor students. If we assume that understanding

is the instantiation of cognitive structures, then, we could speculate that, when a student has

barely any structures at all to correspond to the example exercise, then they might falsely believe

that they understand. However, for good students who have some incomplete structure of the

example exercise as derived from having read the text, they can monitor their understanding

more accurately by assessing the degree to which parts of their cognitive structures are

instantiated, revised, and completed. In fact, we can support this interpretation somewhat by

looking at the content of what these monitoring statements say. For the good students, their

monitoring statements, when referring to misunderstandings, are specific, for example: "I'm

wondering whether there would be acceleration due to gravity?", or "Why does the force have to

change?" Such specific queries imply that the good student has a specific schema in mind and is

trying to instantiate that schema by asking a specific question that pertains to a part of the

schema. Poor students, on the other hand, may not have any kind of structures in memory at all.

This would predict that they cannot ask specific questions. In fact, they do ask very general

questions such as: "Well, what should you do here?".

The advantage of having an accurate monitoring of one's understanding is that the

realization that one does not understand should elicit attempts to understand. That is exactly what

we found in both our good and poor students. That is, in the majority of the cases (85% of the

time for the good students and 60% of the time for the poor students), realizations of

comprehension failures triggered episodes of self-explanations. Hence, because one is more

likely to resolve one's misunderstanding by engaging in self-explanations, accurate monitoring

of one's understanding is crucial for learning.

What One Learns While Studying Examples

As mentioned, good students generated a significantly greater amount of self-explanations,

and their explanations were qualitatively better. We decided upon two ways to further examine

2 the nature of self-explanations that were particularly suited to those generated by the good

4~Mae
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students. First, we found that the structure of explanations often took the form of specifying the

conditions of applicability for the actions, stating the consequences of actions, as well as

imposing subgoals on a sequence of actions. For instance, in response to an example line that

stated that: "It is convenient to choose the x-axis of our reference frame to be along the incline

and the y-axis to be normal to the incline," (Halliday & Resnick, 1981, p. 71), a good student

explained the conditions of the choice by saying: "and it is very, umm, wise to choose a

reference frame that's parallel to the incline, parallel and normal to the incline, because that

way, you'll have to split up mg, the other forces are already, component vectors for you." Thus,

we can generalize that, when students explain the example actions to themselves, they basically

justify the actions by inferring the additional tacit information that is not explicated in the

example statements.

What is the content and the source of this tacit knowledge evident in the self- explanations?

We found that the good students try to understand the example by relating the example

statements to explanations and principles stated in the text. The response to Line 3 of Figure 3,

"So that means that they have to cancel out, only the body wouldn't be at rest," for instance, was

guided by Newton's first law, that if there is no motion, then the sum of the forces must be zero.

Relating the example statement to the principles previously presented in the text served the

purpose of providing the rationale for the procedural steps of the example solution. Moreover,

we found that through such explanations, students increased their understanding of the

fundamental physics principles introduced in the text (Newton's three laws), as well as the

meaning and extension of the various concepts involved (such as the relation between weight

and force). It seems then, that students are able to learn a great deal from studying even a few

examples. To state in a nutshell what students learned from example-exercises (these results are

described in detail in Chi, Bassok, Lewis, Reimann & Glaser, in press), we can say that in their

explanations, by adding many linkages between the explicit statements made in the examples, as

well as between the example statements and the principles in the text, they understood the

rationale of the solution procedure better. That is, by specifying the conditions and

consequences of various actions and inducing the goals for a set of actions, they probably

constructed a more coherent representation of the entire solution procedure. The ultimate

outcome of a more coherent representation was that the good students increased their

* understanding of the fundamental physics principles presented in the text. (This increased

understanding was assessed by pre- and posttests of the physics principles, administered prior to
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and subsequent to the example-studying phase of the study.)

There seems to be a discrepancy between our findings, the fact that students can learn from

examples and do seem to transfer their knowledge to end-of-chapter problems, and others in the

literature that show that examples are of limited use and the acquired procedures seem to be

rather syntactic in nature. However, there are three key differences between our study and others

that seem to be responsible for this discrepancy. First, our students studied several pages of text,

much as they would in a regular classroom, whereas the students in many of these other studies

were not supplied with the background material (e.g., Reed, Dempster, & Ettinger, 1985). The

text part of the chapters actually supplies knowledge of concepts and principles, which may lead

to learning with understanding rather than to simply learning a syntactic procedure. The second,

and perhaps the most important difference is that our students were encouraged to give

explanations, and it is possible that those students who did generate self-explanations may have

* induced greater understanding. Finally, the successful learning we have described was

characteristic only of our good students. Poor students generated very few and very
impoverished explanations and were subsequently unsuccessful in their problem solving.

Because we analyzed individual differences, at least differences between the good and the poor

solvers, we were able to uncover differences that may have been masked in the other studies.

What students learned depended on the kind of explanations they provided.

How One Uses What is Learned

So far, we have addressed the issues of how one learns from studying examples and what

one learns. Once the learning is completed, presumably the knowledge gained is used in solving

* problems. We have done some preliminary analyses that characterize how examples are used in

solving problems. For example, we found that in general, all students liked to rely on examples

in their initial attempts to solve problems, as is consistent with the findings cited earlier (e.g.,

Pirolli & Anderson, 1985). For example, for the 12 isomorphic problems, the good students

referred to the examples in 9 out of the 12 problems, and the poor students referred to the

examples in 10 out of the 12 problems. Within each problem solving protocol, however, there

were pronounced individual differences in the frequency with which students used examples.

Poor students used examples more often than the good students. That is, within each problem

that the students had to solve, the poor solver would refer to the example about 6.6 times per

problem, whereas the good solver would refer to the example only 2.7 times.
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The most interesting differences between the good and poor solvers lie in the characteristics

of their example-using behavior. The poor solvers, when reviewing the examples, basically

reread them. Therefore, we examined the purpose of each episode of reference to an example to

see how the example was being used. There were three kinds of behavior: The students could be

rereading the example; they could be mapping something from the example to the problem that

they were working on, such as looking to see how the frame of reference was drawn; or they

could be checking for the accuracy of an equation, by looking to see what the units of weight

were, for instance. The poor students predominantly spent their example-reference episodes in

rereading the example. Thus, 4.1 out of their 6.6 example-referencing episodes were spent

rereading, whereas only 0.6 out of the good solvers' 2.7 episodes were spent rereading.

We surmise that the poor students were rereading the examples basically because they had

not gotten much out of the examples when they studied them initially. We can substantiate this

interpretation by looking at the number of lines in the example that were reread, as well as the

location of the line where the student began rereading. The poor students, reread, on the average,

13.0 lines for each example-referencing episode, whereas the Good students reread an average of

1.6 lines. Furthermore, all the poor students, upon their first encounters with problem solving (in

the first set of isomorphic problems), started rereading the examples from the very first line,

whereas none of the good students did. We have thus characterized the poor students' use of

examples as searching for a solution or a template from which they could map the to-be-solved

problem so that they could generate a solution.

Good students, on the other hand, use examples for other purposes. The best

characterization is to say that the good students used examples truly as a reference. This can be

substantiated by two additional pieces of evidence. First, when they used the examples, they read

only anaverage of 1.6 lines for eachepisode ofuse, and the 1.6 lines tendedtocontaina

Sparticular equation or free-body diagram that they were checking on or mapping from. This

suggests that they were using the example to retrieve a particular piece of information. Thus, the

good students must already have had a plan for a solution in mind. A second piece of evidence

in support of this interpretation was that good students often prefaced their example-referencing

episodes with the announcement of a specific goal, such as "I'm looking at the formula here,

trying to see how you solve for Force1 , given the angle."

The kind of analyses that have been completed so far characterize, to some extent, the

0
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different ways good and poor students use examples. The kind of analyses that we need to pursue

now are those that pinpoint exactly how the examples are used by each individual student. That

is, in what analogical ways are examples used by the good and poor students? Do the poor

students tend to notice only surface similarities, and the good students notice deeper similarities?

An example of a surface similarity might be that both the example and the to-be-solved problem

involve inclined planes. A deeper similarity might be noticing that both the example and the

to-be-solved problem involve acceleration rather than static situations (or that the two situations

are different, one involving a static situation and the other involving a dynamic case).

Likewise, we can also ask at what level is the mapping achieved. Mapping can be done at a

superficial surface level. For example, a poor student might map and use an equation from the

example simply because the equation contains all the variables that are stated in the to-be-solved

problem. On the other hand, a good student might map a procedure fiom an example in a more

global but deeper way. For example, a good student might know that the mapped procedure will

achieve a particular result, such as decomposing the forces. Such analyses of how examples are

used can also reveal the kind of understanding students have of the examples, so that the findings

can validate the analyses of students' understanding as extrapolated from their explanations and

their monitoring statements while studying.

Instructional Implications

Constructing Instructional Materials: Limited Potentials

Our analyses of the limitations of example exercises, coupled with our research results, at

first glance indicate that one constructive approach to improving learning might be to invest

efforts in designing better example exercises. An obvious approach is to design exercises that

fill in all the gaps or leaps in the current kinds of example exercises, that were pointed out

*earlier. For example, our results seem to indictate that example exercises should be designed to

provide conditions for the actions, specify the consequences, supply goals for a sequence of

0 actions, and relate the actions to the principles introduced in the text. Our results can further

enhance the design of examples because they provide evidence about the locations of

misunderstandings, as well as the kind of inferences that are needed in order to understand a

particular sequence of actions in an example. In fact, we can utilize the explanations provided by

the best students as a guide for constructing the justifications that are implicitly embedded
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between the statement lines.

Upon closer scrutiny, however, it becomes apparent that there are several reasons for the

limited potential of such an approach to improving learning. First of all, it is not possible to

supply all the rationales and justifications. Each example will always have some idiosyncracies

that might be perceived as inherent to the solution, and thus should not be elaborated upon, and

each finite set of examples will be but a specific sample of the possible set of problems. But a

more important limitation is that the justifications and explanations added have to be tailored to

the individual student's understanding. For a good student who can generate his own

explanations, these additional comments will be redundant. For the poor student who has little

understanding, such explanations may actually confuse rather than clarify, and perhaps undercut

rather than enhance performance, as the Reder et al. (1986) results imply. And finally, as noted

by VanLebn (personal communication), students can often choose to ignore the explanations

provided, especially if these explanations are not tailored to their level of understanding.

Teaching Constructive Learning

Given that there are limits to the approach of improving learning by designing better--more

explanatory--instructional materials, and given that students are continually encountering new

domains to learn, a more sensible approach seems to be to focus on the learner, and teach the

learner better learning strategies, so that he can use it in a variety of domains and learning

situations. On the basis of our results, what kind of learning strategies might be good

candidates? One possibility that comes immediately to mind is to teach students to monitor their

comprehension more sensitively and accurately. This seems particularly important, at first sight,

especially in light of our finding that for both the good and the poor students, when they do

detect that they misunderstand, such misunderstanding triggers episodes of explanations. Thus,

- it seems important for the students to know when they do not understand, because such

awareness potentially leads to further processing which may result in understanding. However, it

is not clear that we can easily teach students to monitor their own states of comprehension. Our

data show clearly that only the good students can monitor their states of comprehension

accurately. The poor students are very inaccurate at monitoring their comprehension states. In

order to describe what causes good students to know that they understand and poor students not

to know, we need to have a better account of the mechanism underlying understanding, which

we as yet know little about. One possibility is that accurate monitoring of comprehension can

occur only if the statements presented in the example exercises deviate only to a small degree
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from the students' existing schema (the schema to which they are trying to fit the information in

the example).

Regardless of what the mechanism of monitoring is, one promising instructional approach

might be simply to alert the poor students to locations that the designer of the exanmle knows

might be problematic. A simple probe (such as an asterisk) at critical locations might be

sufficient to serve as a prompt for students to engage in explanations. Such a prompt might be

useful in eliciting relevant explanations, although not necessarily. As we noted in our results,

although the poor students made very few explanation-type remarks, for the few that they did

make, their contents were qualitatively poorer as compared to the explanations of the good

students. However, because the poor students generated only a few explanations, the finding

regarding the quality of their explanations is still tenuous. Thus, whether or not poor Mudents

can be encouraged to generate good explanations remains an open empirical question.

Besides teaching students to monitor their own und ersading, and/or prodding them to

generate explanations, a more promising approach might be to shape students' explanations.

Given that we have identified the characteristics of good students' expantion, we can use these

characteristics to develop a set of pmpt that can shape students' e; Ilawtio . For exmnple, at

critical problematic locations, probes can take the form of asking such questions : "Under what

condition is this action to be taken?"; or "what else may be true if this is truer; or "what is the

goal of this set of actions?"; or "how does this action relate to a principle inroduced in the text,

and which principle does it relate to?" These kinds of more specific prbe might succeed in

producing explanations that are qualitatively more like those good students generate.

Conclusions

Our research on learning from examples has uncovered several interestig phenmens.

Most prominently, it has found that students who are successful at solving ptoblens ae ths

who learned the materials in a different way than those students who were less mcceusM at
I

solving problems. More specifically, the good students' learning fram examples was

characterized by the generation of self-explanations. Their self-e aations had the

characteristic of adding tacit knowledge about the actions of the exmue-solution. Moreover,

these self-explanations induced greater unde rs I ding of the principles introduced in the text. h

was also fomd that the production of these self-explanations seemed to be guided by the

4s



27

accuracey with which studenits monitored the states of cr n hen1sion. Thi owing tha they

misudersoodgenerally elicited explanations. Furtemore, die good students' efmntrn

yielded specific inme through which *mey could search for an answer. whereas dhe poor

studets' self-inuidries; were general undirected questions.

Ther are important implicatis to be derived film this reseairch. FPhu and So Pn lr- in

tamni of theories of learning from. examples, our data suggest tha studeris can lean, with

v Psanig from a single or a few exampiles conury to the odor, avalabl empirical

evidenc. (That is, students can learn more tha just syntactic rules and can -rm- fir what they

have learned to dissimilar tumsfer-type problems.) Howeme, only dwose sudnts who provide

adequate expianatiore during studying an able to see the degree to which they can guieralize

their problem soving ulls. Hence, not only does our study resolve some of die dIcrP I

findings in the empirical literature but it also poimt to limitations in d's assmztione of dhe

existing theories of learning from examples. For instance, P -mth da Pe. hold dha explanations

serve the pspe of justifying an exaiplie aan Ins-anc of a principle. assuming that the

student would have complete knowledge about the principle. Our results sugget, by conast,

that explanations can serve te additional, Inyq uw nction of mmai and completing

students'a unerstndngofthe principles.

Our research raises mopequestions thanit inwens Some aritlcd onsthtwe need so

address me: What does at mewi to understand an example while studying it? How does

understan di eat to cognitive Ionioring? How does undIrstandn a to die way that

examples mre used? Deeper analyses of our results binge on ou posentiul explication of whet

miders ti entails, how it can be represe ved and how it dould be assesed.

0A



* 28

References

Anderson J. ft. (1987). Skill acquisitioa Compoiio of wa-eodproblm uoludtons.

Psych.Iqical Review, 94, 192-2 10.

Anderso, J. R., Greeno, J. G., Klin, P. J., a Nova, D. a~ (1961). Acquisition of problem-

solving slL In J. It. Anderon (Ed. COululv akWa aud #Aei MfpiMe (pp. 191-230).

Hiliudale, NJ: Eribsum

Bnine, J. S. (1966). Twwd a teary g Iinswcfie. Cambridge, MAA: Harvad Univerity

press.

Chi, M. T. H., Bass*k K, Lewis, ft., Rein.., P., & Olasr ft. (in paes).Sefapstiu:

* ~~How students study and use exmples in leaning to solve problem Cqinklv Sdeuce.

Elio. Rt., & Anderson, J. R. (1983). Effects of cateor genPralizotimn and irusee siMilarit On

schem aburraction. Jewwueo qp E pei..u Psyekeg- Lewaft, Memorey, eud

Cqrski.., 113, 541-555.

Eficsson K., & Simon, H. A. (1 04). Prowe muaysixa: VeraW owpwi s md. Canbold,

MA: NIT Press.

Eylon B., & Helfmnui, J. (1962, Februar). Aambgkal mod dedmv F .l~f in

pkpiks. Paper presented at the AERA meetig, New York, NY.

GagI R. M.* Smjith E. C., Jr. (1962). A study of t effects of vesbalization on problem

solving. Jeunua of -zef~uu Psyck~legy 63, 12-18S.

0 O~~laser, ft. (1967). Some imPlicatons of previous work on leaning aud individual d&Meones

In ft. M. Gagn (Ed.), Lewiag IsIini hunifrli Apaerc (pp. 1-18). Colubus, OH:

Hailidy, D., & Rtemick, Rt. (1981).J Faiawel O1pkpla. New York, NY: Wiley.



29

Kieras, D. E, & Bovair, S. (1986) Thm acqisition of proceures frm t= A production systm

analysis of transfer of training. Jeual efMemey and Language, 25,507-524.

Klinger, E. (1974). Utterances to evaluate and control attention disIItinguimh operin from

respondent thought while thinking out loud. Bulle&i of th Psch 1-i Seckly, 4,

44-45.

LeFevre, J., & Dixon, P. (1986). Do writte insrutons need exnpl? Ceg. M. and

InmbctoIenI, 3, 1-30.

Lewis, C. (1988). Why and how to learn why: Analysis-based generaliztion of procedure.

Coauiv Science, 2, 211-256.

Mitchell, T. M., Keller, R. M., & Kedar-Cabeili, S. T. (1986). ExIlnaio-sd gmrlization

A unifyling view. Machine Lemmkin, 1,4840

Neves, D. M. (1981). Learing pceduwa Jtwm exampks. UW~blied doctoral dissetation,

Carnegie-Mellon University, Pitts"rh PA.

Pirolli, P. L, & Anderson, 1. Rt. (1985). The role of learing from ezmpe im dke acquisklon of

recursive prormlnning skills. Cmamia Jes'.d of Psyrcebgy 32, 240-M7.

Reder, L M., Charney, D. H., & Morga K. 1. (1986). The role of elaborations in learning a kil

fronm instructional text. Memwy & Ceg. We. 14,64-78.

Reed, S. K., Dempster, A., & Ettinger, M. (1985). UseftanesIIs of analogous solutioue for solving

algebra word ptoblem. Jewual of Phefueb Ps. by L~rwuA, Mewmm &

* Coglm.o, 11, 106-125.

Sitnon, H. A. (1980). Problem solving and education. In D. Ta & P. Reif (Eds.), Prmbem

salvin .34 edaaes: lusan in tachind3 reswmh (pp. 81-86). Hilidule, NJ:

ESam



* 30

Stein, B. S., & Bransford, J. D. (1979). Constrahas on effective elabormion: Effect ofprcso

and subject genertion Jewul of VOW~a Leann a.d Verud BeheWer, 18, 769-777.

Sweller, J., & Cooper, 0. A. (1965). The mse of worked ezinnphs s a subste for problem

solving in learning algebra Cqultiea and Ixsbucdmeu 2,59".9

Thomas, J. C. (1974). An analysis of behavior in the Hobbits-Orci pmobm Cegatv

Psycklqy 6, 257-269.

VdAmli, K. (1986). Arithmetic procedures ate induced from examples. in . Hiebei (Ud.

CoxcepOna and pred wwkwdge Mh can df wmes (pp. 133-179).

Hillsdale, MJ: Erlbaum

* VanLehn, K. (in paess). Cesxie pomedures: T7e .epi~e ad oep eu . ff bask

m~em~ca1 alt. CAmbridge, MA. MIUT Press.

Wickeigrn, W. A. (1974). Now to aele pwbema: Elemk of a &seery *f pobismmad

prebim ael'vin. Son Prancsco: Preemm

Zhu, X., & Shno., H. A. (1967). Leaning man ics fo wnplks ad by doing. Cegafti

and InauctiN0, 4,137-166.



* 31

Notes
IWe view this paper as an interm report of ongoing wock on whic Bob Gaser has been a

collaborator since 1978. Hence, in describing this wosk we ame describing a part of Bob's

research. In the firstuhaf of our decade of colbrainRob and I had been investigating the

nature of expertise in complex problem solving. Our Interes- hashdified because it has b e com-e

clear that we canno understand the acquisiio of expertise without first Ind,u-sadin bp
learns, even the beginning novice. Most iniportunly, we need to undeuutand how individuals

differ in t way they learn. Any differences tha we migi etc could conuribte to our

knowledge of what enables a Fprson- to become an expet. Although the study of learning and

- . individual differences represent a new direction for me, these topics have been, a long-enatding

interest of Bob's (see Glaser, 1967).

21n subsequent analyses, we have discounted pera'wplas of a diagras an explanation

(see Chi et. al., in pres), and instead, categorized them in the mueinocatesouy

EM.

MM.

ON

Mg.
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FgreCaption

Figuui 1: Comgof a basi rpuim .

Figure 2: Co.emg of a physics IeprsemI -- I

Fgur 3: A Mrka ozaty, takin diecdy from HaI1~ay mi Remick (1961).

Fgure 4: A diagram depictig Urn delig of this omy.

Fgur 3: Dialrm of drn dare woekad-ow ezanks uiseid in dU mAId



Basic Representation

(1) EXPLICIT CONCRETE OBJECTS (INCLINED PLANE BLOCK)

- (2) EXPLICIT RELATIONS AMONG CONCRETE OBJECTS (BLOCK

IS ON TOP OF THE PLANE; PLANE SLOPES AT 300 ANGLE)

(3) OPERATORS THAT RELATE EXPLICIT ENTITIES (F-MA)

(4) GOAL (FIND THE MASS)

- Figure 1



Physics Representation

.\j

(1) EXPLICIT CONCRETE OBJECTS (SUCH AS THE INCLINED

PLANE AND THE BLOCK)

(2) EXPLICIT RELATIONS AMONG THE EXPLICIT OBJECTS (THE

BLOCK IS ON TOP OF THE PLANE)

* (3) IMPLICIT ABSTRP CT OBJECTS THAT MUST BE INFERRED

(GRAVITY FORCE, NORMAL FORCE)

(4) RELATIONS AMONG THE IMPLICIT OBJECTS (A COMPONENT

OF THE GRAVITY FORCE OPPOSING THE NORMAL FORCE)

* (5) OPERATORS THAT ARE INSTANTIATED ON THE INFERRED

OBJECTS AND RELATIONS (ZF=MA)

S (6) GOAL (FIND THE MASS)

Figure 2



Figure 3

3 ,0 45'

Plows. 14 EoMOMu S. (W/ A Mock of weigt WV is u ieus m
byV sirW. 1b) A freeodyf di-,a show i g all tMe forces
using on the ko. The string we swimed to be weoils

1. Figure S-4& shows as object of weight W hung by masss strimp.

". Consider the knot at the junction of the three string to be ash* bodye.

3. The body remain as rest under %be action of the thme forms shown

4. Suppose we are gives the magnitude of on* of these ferrcs.

L. Now ean we find the magnitude of the other ferme?

L. FAO re, ad FC ane .1 the forces acting us the body.

1. Shnce the body is umaccelerated. F A +r 7 **C -

9. Cheesiug the x. ad p~ase as shows, we earn wite this vecter equatioa

aW three tema equatiour

S. IF An+F r e .

IL r7 j By +,rFCYi

31. uuing "q S-2. ?he third scalar equation, for the s-axis is simply.

t 2. rFs aaFBS aa CS 0

13. That is. the vettors all lie in the x-y plane so that they have sosi

compomests.

14. From the figure we see that

a
Is. rA. - *A cos 30 .... 9I6F A'

Is Ay aaFA si 4 43FA'
ll. ad

it. IF as F w r o# 45 - .MOi7F

is F B W, - sin 45 AM .01 F
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