Learning from Little:
Comparison of Classifiers Given Little Training

George Forman and Ira Cohen

Hewlett-Packard Research Laboratories
1501 Page Mill Rd., Palo Alto, CA 94304
{ghforman,icohen}@hpl.hp.com

Abstract. Many real-world machine learning tasks are faced with the
problem of small training sets. Additionally, the class distribution of the
training set often does not match the target distribution. In this paper
we compare the performance of many learning models on a substantial
benchmark of binary text classification tasks having small training sets.
We vary the training size and class distribution to examine the learning
surface, as opposed to the traditional learning curve. The models tested
include various feature selection methods each coupled with four learning
algorithms: Support Vector Machines (SVM), Logistic Regression, Naive
Bayes, and Multinomial Naive Bayes. Different models excel in different
regions of the learning surface, leading to meta-knowledge about which
to apply in different situations. This helps guide the researcher and prac-
titioner when facing choices of model and feature selection methods in,
for example, information retrieval settings and others.

1 Motivation and Scope

Our goal is to advance the state of meta-knowledge about selecting which learn-
ing models to apply in which situations. Consider these four motivations:

1. Information Retrieval: Suppose you are building an advanced search
interface. As the user sifts through the each page of ten search results, it trains
a classifier on the fly to provide a ranking of the remaining results based on
the user’s positive or negative indication on each result shown thus far. Which
learning model should you implement to provide greatest precision under the
conditions of little training data and a markedly skewed class distribution?

2. Semi-supervised Learning: When learning from small training sets, it is
natural to try to leverage the many unlabeled examples. A common first phase
in such algorithms is to train an initial classifier with the little data available and
apply it to select additional predicted-positive examples and predicted-negative
examples from the unlabeled data to augment the training set before learning
the final classifier (e.g. [1]). With a poor choice for the initial learning model,
the augmented examples will pollute the training set. Which learning model is
most appropriate for the initial classifier?

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 161-172, 2004.
© Springer-Verlag Berlin Heidelberg 2004

162 George Forman and Ira Cohen

Table 1. Summary of test conditions we vary.

P =1..40 Positives in training set Feature Selection Metrics:

N =1..200 Negatives in training set 1G Information Gain
FX=10..1000 Features selected BNS Bi-Normal Separation
Performance Metrics: Learning Algorithms:

TP10 True positives in top 10 NB Naive Bayes

TN100 True negatives in bottom 100 Multi Multinomial Naive Bayes

F-measure 2xprecisionxrecall+-(precision+recall) Log Logistic Regression
(harmonic avg. of precision & recall) SVM Support Vector Machine

3. Real-World Training Sets: In many real-world projects the training set
must be built up from scratch over time. The period where there are only a
few training examples is especially long if there are many classes, e.g. 30-500.
Ideally, one would like to be able train the most effective classifiers at any point.
Which methods are most effective with little training?

4. Meta-knowledge: Testing all learning models on each new classification
task at hand is an agnostic and inefficient route to building high quality clas-
sifiers. The research literature must continue to strive to give guidance to the
practitioner as to which (few) models are most appropriate in which situations.
Furthermore, in the common situation where there is a shortage of training data,
cross-validation for model selection can be inappropriate and will likely lead to
over-fitting. Instead, one may follow the a priori guidance of studies demonstrat-
ing that some learning models are superior to others over large benchmarks.

In order to provide such guidance, we compare the performance of many
learning models (4 induction algorithms x feature selection variants) on a bench-
mark of hundreds of binary text classification tasks drawn from various bench-
mark databases, e.g, Reuters, TREC, and OHSUMED.

To suit the real-world situations we have encountered in industrial practice,
we focus on tasks with small training sets and a small proportion of positives in
the test distribution. Note that in many situations, esp. information retrieval or
fault detection, the ratio of positives and negatives provided in the training set is
unlikely to match the target distribution. And so, rather than explore a learning
curve with matching distributions, we explore the entire learning surface, varying
the number of positives and negatives in the training set independently of each
other (from 1 to 40 positives and 1 to 200 negatives). This contrasts with most
machine learning research, which tests under conditions of (stratified) cross-
validation or random test/train splits, preserving the distribution.

The learning models we evaluate are the cross product of four popular learn-
ing algorithms (Support Vector Machines, Logistic Regression, Naive Bayes,
Multinomial Naive Bayes), two highly successful feature selection metrics (In-
formation Gain, Bi-Normal Separation) and seven settings for the number of
top-ranked features to select, varying from 10 to 1000.

We examine the results from several perspectives: precision in the top-ranked
items, precision for the negative class in the bottom-ranked items, and F-mea-

Learning from Little: Comparison of Classifiers Given Little Training 163

sure, each being appropriate for different situations. For each perspective, we
determine which models consistently perform well under varying amounts of
training data. For example, Multinomial Naive Bayes coupled with feature se-
lection via Bi-Normal Separation can be closely competitive to SVMs for preci-
sion, performing significantly better when there is a scarcity of positive training
examples.

The rest of the paper is organized as follows. The remainder of this section
puts this study in context to related work. Section 2 details the experiment pro-
tocol. Section 3 gives highlights of the results with discussion. Section 4 concludes
with implications and future directions.

1.1 Related Work

There have been numerous controlled benchmark studies on the choice of feature
selection (e.g. [2]) and learning algorithms (e.g. [3]). Here, we study the cross-
product of the two together, and the results bear out that different algorithms
call for different feature selection methods in different circumstances. Further,
our study examines the results both for maximizing F-measure and for maximiz-
ing precision in the top (or bottom) ranked items — metrics used in information
retrieval and recommenders.

A great deal of research is based on 5-fold or 10-fold cross-validation, which
repeatedly trains on 80-90% of the benchmark dataset. In contrast, our work
focuses on learning from very small training sets — a phase most training sets go
through as they are being built up. Related work by [4] shows that Naive Bayes
often surpasses Logistic Regression in this region for UCI data sets. We extend
these results to the text domain and to other learning models.

We vary the number of positives and negatives in the training set as inde-
pendent variables, and examine the learning surface of the performance for each
model. This is most akin to the work by [5], in which they studied the effect
of varying the training distribution and size (an equivalent parameterization to
ours) for the C4.5 decision tree model on a benchmark of UCI data sets, which
are not in the text domain and do not require feature selection. They measured
performance via accuracy and area under the ROC curve. We measure the per-
formance at the middle (F-measure) and both extreme ends of the ROC curve
(precision in the top/bottom scoring items) — metrics better focused on practi-
cal application to information retrieval, routing, or semi-supervised learning. For
example, when examining search engine results, one cares about precision in the
top displayed items more than the ROC ranking of all items in the database.

The results of studies such as ours and [5] can be useful to guide research in
developing methods for learning under greatly unbalanced class distributions, for
which there is a great deal of work [6]. Common methods involve over-sampling
the minority class or under-sampling the majority class, thereby manipulating
the class distribution in the training set to maximize performance. Our study
elucidates the effect this can have on the learning surface for many learning
models.

164 George Forman and Ira Cohen

Table 2. Description of benchmark datasets.

Dataset Cases Features Classes|Dataset Cases Features Classes
Whizbang/Cora 1800 5171 36 |TREC/fbis 2463 2000 17
OHSUMED/Oh0 1003 3182 10 TREC/Lal 3204 31472 6
OHSUMED/Oh5 918 3012 10 |TREC/La2 3075 31472 6
OHSUMED/Oh10 1050 3238 10 TREC/trll 414 6429 9
OHSUMED/Oh15 913 3100 10 |TREC/tr12 313 5804 8
OHSUMED /ohscal 11162 11465 10 |TREC/tr21 336 7902 6
ReuterS/ReO 1504 2886 13 TREC/tr23 204 5832 6
Reuters/Rel 1657 3758 25 |TREC/tr31 927 10128 7
WebACE/wap 1560 8460 20 |TREC/tr4l 878 7454 10
TREC/tr45 690 8261 10

2 Experiment Protocol

Here we describe how the study was conducted, and as space allows, why certain
parameter choices were made. Table 1 shows the parameter settings we varied
and defines the abbreviations we use hereafter.

Learning Algorithms: We evaluate the learning algorithms listed in Table 1
using the implementation and default parameters of the WEKA machine learning
library (version 3.4) [7].

Naive Bayes is a simple generative model in which the features are assumed
to be independent of each other given the class variable. Despite its unrealistic
independence assumptions, it has been shown to be very successful in a variety of
applications and settings (e.g. [8,9]). The multinomial variation of Naive Bayes
was found by [10] to excel in text classification.

Regularized logistic regression is a commonly used and successful discrimi-
native classifier in which a class a-posteriori probability is estimated from the
training data using the logistic function [11]. The WEKA implementation is
a multinomial logistic regression model with a ridge estimator, believed to be
suitable for small training sets.

The Support Vector Machine, based on risk minimization principles, has
proven well equipped in classifying high-dimensional data such as text [2,12, 3].
We use a linear kernel and varied the complexity constant C; all of the results
presented in this paper are for C=1 (WEKA’s default value); a discussion of the
results when we varied C is given in the discussion section. (The WEKA v3.4
implementation returns effectively boolean output for two-class problems, so we
had to modify the code slightly to return an indication of the Euclidean distance
from the separating hyperplane. This was essential to get reasonable TP10 and
TN100 performance.)

Feature Selection: Feature selection is an important and often under esti-
mated component of the learning model, as it accounts for large variations in
performance. In this study we chose to use two feature selection metrics, namely
Information Gain (IG) and Bi-Normal Separation (BNS). We chose these two
based on a comparative study of a dozen features ranking metrics indicating that

Learning from Little: Comparison of Classifiers Given Little Training 165

Table 3. Experiment procedure.

1 For each of the 19 multi-class dataset files:
2 For each of its classes C
where there are >=50 positives (C) and >=250 negatives (not C):

3 For each of 5 random split seeds:
4 Randomly select 40 positives and 200 negatives for set MaxTrain,
leaving the remaining cases in the testing set.
5 For P = 1..40:
6 For N = 1..200:
7 Select as the training set the first P positives
and the first N negatives from MaxTrain.
8 // Task established. Model parameters follow. //
9 For each feature selection metric IG, BNS:
10 Rank the features according to the feature selection metric
applied to the training set only.
11 For FX = 10,20,50,100,200,500,1000:
12 Select the top FX features.
13 For each algorithm SVM, Log, NB, Multi:
14 Train on the training set of P positives and N negatives.
15 Score all items in the testing set.
16 For each performance measure TP10, F-measure, TN10O:
17 Measure performance.

these two are top performers for SVM; classifiers learned with features selected
via IG tended to have better precision; whereas BNS proved better for recall,
overall improving F-measure substantially [2]. We expected IG to be superior
for the goal of precision in the top ten.

Benchmark Data Sets: We used the prepared benchmark datasets available
from [2, 13], which stem originally from benchmarks such as Reuters, TREC, and
OHSUMED. They comprise 19 text datasets, each case assigned to a single class.
From these we generate many binary classification tasks identifying one class as
positive vs. all other classes. Over all such binary tasks, the median percentage
of positives is ~5%. We use binary features, representing whether the (stemmed)
word appears at all in the document. The data are described briefly in Table 2.
For more details, see Appendix A of [2].

Experiment Procedure: The experiment procedure is given in Table 3 as
pseudo-code. Its execution consumed ~5 years of computation time, run on
hundreds of CPUs in the HP Utility Data Center. Overall there are 153 2-class
data sets which are randomly split five times yielding 765 binary tasks for each
P and N. The condition on the second loop ensures that there are 40 positives
available for training plus at least 10 others in the test set (likewise, 200 negatives
for training and at least 50 for testing). Importantly, feature selection depends
only on the training set, and does not leak information from the test set.
Because the order of items in MaxTrain is random, later selecting the first P
or N cases amounts to random selection; this also means that the performance
for (P=3,N=8) vs. (P=4,N=8) represents the same test set, and the same train-

166 George Forman and Ira Cohen

= 7
... oNBIG

3 o NBIG NB BNS —
= o NB IG e
g 5 Multi BNS ——
£ 4 Multi IG
é 3 Log BNS ——
H Log IG ~=
E 2 [Multi IG] SVM BNS ———
é 1t i SVM IG
-9
ot 0 1 1 1 1 1 1 1

10 20 50 100 200 500 1000

FX: number of features selected

Fig. 1. Average TP10 performance for each learning model given P=5 positives and
N=200 negatives, varying the number of features selected FX. (For more readable color
graphs, see hitp://www.hpl.hp.com//techreports/2004/HPL-2004-19R1.html)

ing set with one additional positive added at random, i.e. they may be validly
interpreted as steps on a learning curve.

Performance Metrics: We analyze the results independently for each of the
following metrics:

1. The TP10 metric is the number of true positives found in the 10 test cases
that are predicted most strongly by the classifier to be positive.

2. The TN100 metric is the number of true negatives found in the 100 test
cases most predicted to be negative. Because of the rarity of positives in the
benchmark tasks, scores in the upper 90’s are common (TN10 is nearly always
10, hence the use of TN100).

3. F-measure is the harmonic average of precision and recall for the positive
class. It is superior to grading classifiers based on accuracy (or error rate) when
the class distribution is skewed.

Different performance metrics are appropriate in different circumstances. For
recommendation systems and information retrieval settings, where results are
displayed to users incrementally with the most relevant first, the metric TP10
is most appropriate. It represents the precision of the first page of results dis-
played. For information filtering or document routing, one cares about both the
precision and the recall of the individual hard classification decisions taken by
the classifier. F-measure is the metric of choice for considering both together. For
semi-supervised learning settings where additional positive (negative) cases are
sought in the unlabeled data to expand the training set, the appropriate metric
to consider is TP10 (TN100). Maximum precision is called for in this situation,
or else the heuristically extended training set will be polluted with noise labels.

3 Experiment Results

We begin by examining an example set of results for the average TP10 perfor-
mance over all benchmark tasks, where the training set has P=>5 positives and
N=200 negatives. See Fig.1. We vary the number of features selected along the
logarithmic x-axis.

Learning from Little: Comparison of Classifiers Given Little Training 167

We make several observations. First, two models rise above the others by
~15% here: Naive Bayes using IG with a few features, tied with Multinomial
Naive Bayes using BNS with several hundred features. Second, note that using
the opposite feature selection metric for each of these Bayes models hurts their
performance substantially, as does using the ‘wrong’ number of features. This
illustrates that the choices in feature selection and the induction algorithms are
interdependent and are best studied together. Third, SVM, which is known for
performing well in text classification, is consistently inferior in this situation
with positives greatly under represented in the training set, as we shall see.

Condensing FX Dimension: These results are for only a single value of
P and N. Given the high dimensionality of the results, we condense the FX
dimension hereafter, presenting only the best performance obtained over any
choice for FX. Because this maximum is chosen based on the test results, this
represents an upper bound on what could be achieved by a method that attempts
to select an optimal value of FX based on the training set alone. Condensing
the FX dimension allows us to expose the differences in performance depending
on the learning algorithm and feature selection metric. Furthermore, for the
practitioner, it is typically easy to vary the FX parameter, but harder to change
the implemented algorithm or feature selection metric.

Visualization: With this simplification, we can vary the number of positives P
and negatives N in the training set to derive a learning surface for each of the 8
combinations of algorithm and feature selection metric. We begin by illustrating
a 3-D perspective in Fig.2a showing the learning surfaces for just three learning
models: Multinomial Naive Bayes, SVM and Logistic Regression, each with BNS
feature selection. The performance measure here is the average number of true
positives identified in the top 10 (TP10). From this visualization we see that
Log-BNS is dominated over the entire region, and that between the remaining
two models, there are consistent regions where each performs best. In particular,
the SVM model substantially under performs the Mulinomial Naive Bayes when
there are very few positives. The two are competitive with many positives and
negatives.

This 3-D perspective visualization becomes difficult if we display the surfaces
for each of the eight learning models. To resolve this, we plot all surfaces together
and then view the plot from directly above, yielding the topo-map visualization
shown in Fig.2b. This reveals only the best performing model in each region.
The visualization also indicates the absolute performance (z-axis) via isoclines,
like a geographical topo-map.

While a topo-map shows the model that performed best for each region, it
does not make clear by how much it beat competing models. For this, we show
two z-axis cross-sections of the map near its left and right edges. Figures 2c—d
fix the number of negatives at N=10 and N=200, comparing the performance of
all eight models as we vary the number of positives P. Recall that by design the
test set for each benchmark task is fixed as we vary P and N, so that we may
view these as learning curves as we add random positive training examples.

168 George Forman and Ira Cohen

TP10 SVM BNS
75,

T,

Pos

i | | | 1 8} SVM BNS (fat line)
Multi BNS +— % —F ¢
= Multi IG s : A
& B : & P _.____.Iiogi
6 ol _
4 LL — .

Fig. 2. TP10 performance. (a) Learning surfaces for three models (SVM-BNS, Multi-
BNS and Log-BNS) as we vary the number of positives and negatives in the training
set. (b) Topo-map of best models — 3D surfaces of all models viewed from above. Iso-
clines show identical TP10 performance. (¢) Cross-section at N=10 negatives, varying P
positives. (d) Cross-section at N=200 negatives, varying P positives. (Legend in Fig.1.)

TP10 Results: Our initial impetus for this study was to determine which
learning models yield the best precision in the top 10 given little training data.
We find that the answer varies as we vary the number of positives and negatives,
but that there are consistent regions where certain models excel. This yields
meta-knowledge about when to apply different classifiers. See Fig.2b. We observe
that BNS is generally the stronger feature selection metric, except roughly where
the number of positives exceeds the number of negatives in the training set along
the y-axis, where Multi-IG dominates.

Recall that the test distribution has only a few percent positives, as is com-
mon in many tasks. So, a random sample would fall in the region near the x-axis
having <10% positives where Multi-BNS dominates. Observe by the horizontal
isoclines in most of this region that there is little to no performance improve-
ment for increasing the number of negatives. In this region, the best action one
can take to rapidly improve performance is to provide more positive training
examples (and similarly near the y-axis).

The isoclines show that the best TP10 performance overall can be had by
providing a training set that has an over representation of positives, say P>30

Learning from Little: Comparison of Classifiers Given Little Training 169

100 " T " T " T

25 50 75 200
#Neg

Fig. 3. TN100 performance. (a) Topo-map of best models for TN100. (b) Cross-section
given N=200 negatives, varying P positives. (Legend in Fig.1.)

and N>100. Here, NB-BNS dominates, but we can see by the mottling of col-
ors in this region that Multi-BNS is closely competitive. More generally, the
cross-section views in Figs.2c—d allow us to see how competitive the remaining
learning models are. In Fig.2c, we can now see that with enough positives, Multi-
BNS, SVM-BNS and NB-BNS are all competitive, but in the region with <=15
positives, Multi-BNS stands out substantially.

TIN100 Results: We also determined which learning model yields the most
true negatives in the bottom-ranked list of 100 test items. Although no model
is dominant everywhere, NB-IG is a consistent performer, as shown in Fig.3a,
especially with many negatives. In the N=200 cross-section shown in Fig.3b,
we see that it and SVM-IG substantially outperform the other models. Overall,
performance is very high (over 98% precision) — a fact that is not surprising
considering that there are many more negatives than positives in the test sets.
Unfortunately, no further performance improvement is attained after ~20 posi-
tives (though one may speculate for P>40).

F-Measure Results: Next we compare the learning models by F-measure. Fig-
ure 4a shows the topo-map of the best performing models over various regions.
Observing the isoclines, the greatest performance achieved is by SVM-BNS, with
appropriate oversampling of positives. If random sampling from the test distri-
bution, most labels found will be negative, and put us in the region of poor
F-measure performance along the x-axis, where NB-IG dominates. We see in
the cross-section in Fig.4b with P=5 fixed and varying the number of negatives
N, that NB-IG dominates all other models by a wide margin and that its per-
formance plateaus for N>=30 whereas most other models experience declining
performance with increasing negatives. Likewise, in Fig.4c with N=10 fixed, the
performance of all models declines as we increase the number of positives. Fi-
nally, in Fig.4d with N=200 fixed, we see that substantial gains are had by SVM
with either feature selection metric as we obtain many positive training exam-
ples. With few positives, such as obtained by random sampling, SVM becomes
greatly inferior to NB-IG or Multi-BNS.

170 George Forman and Ira Cohen

F-Measure

60
SVM BNS r Multi BNS

T NB IG)

Gotootodeafodoonetiodolgoendoconnd

40 o Oos:tmovunﬂoo-m-
i-.':':::-:::::‘:' o
30 (7 Multi IG T
20 1 1 1
0 50 100 150 200
N

F-Measure F-Measure

60 1 60

50 + 4 50
SVM peak
AR

lﬂgb:?__th:ih__‘:ﬂ-t._— .

T

40 1 40

30

= P
E T :_M . e
20 . £ M l.l . .,
20 30 1

Fig. 4. F-measure performance. (a) Topo-map of best models for F-measure. (b) Cross-
section at P=5 positives, varying N negatives. (c) Cross-section at N=10 negatives,
varying P positives. (d) Cross-section at N=200 negatives, varying P positives. (Legend
in Fig.1.)

Observing the isoclines in Fig.4a, the best approach for maximizing F-mea-
sure at all times while building a training set incrementally from scratch is to
use SVM (-BNS or else -IG) and keep the class distribution of the training set
at roughly 20% positives by some non-random sampling method.

3.1 Discussion

Generalizing from the notion of a learning curve to a learning surface proves to
be a useful tool for gaining insightful meta-knowledge about regions of classifier
performance. We saw that particular classifiers excel in different regions; this
may be constructive advice to practitioners who know in which region they are
operating. The learning surface results also highlight that performance can be
greatly improved by non-random sampling that somewhat favors the minority
class on tasks with skewed class distributions (however, balancing P=N is unfa-
vorable). This is practical for many real-world situations, and may substantially
reduce training costs to obtain satisfactory performance.

Because of the ubiquitous research practices of random sampling and cross-
validation, however, researchers routinely work with a training set that matches
the distribution of the test set. This can mask the full potential of classifiers
under study. Furthermore, it hides from view the research opportunity to develop

Learning from Little: Comparison of Classifiers Given Little Training 171

classifiers that are less sensitive to the training distribution. This would be useful
practically since in industrial classification problems the class distribution of the
training set is often varied, unknown in advance, and does not match the testing
or target distributions, which may vary over time.

Naive Bayes models have an explicit parameter reflecting the class distribu-
tion, which is ususally set to the distribution of the training set. Hence, these
models are frequently said to be sensitive to the training distribution. The em-
pirical evidence for TP10, TN100 and F-measure shows that Naive Bayes models
are often relatively insensitive to a shift in training distribution (consistent with
the theoretical results by Elkan [14]), and surpass SVM when there is a shortage
of positives or negatives.

Although the results showed that SVM excels overall for TP10 and F-measure
if the training class distribution is ideal, SVM proves to be highly sensitive to the
training distribution. This is surprising given that SVM is popularly believed to
be resilient to variations in class distribution by its discriminative nature rather
than being density-based.

This raises the question of varying SVM’s C parameter to try to reduce
its sensitivity to the training class distribution. To study this, we replicated
the entire experiment protocol for eight values of C ranging from 0.001 to 5.0.
For F-measure, other values of C substantially hurt SVM’s performance in the
regions in Fig.4a along the x- and y-axes where SVM was surpassed by other
models. In the large region where SVM already dominates, however, some values
of C increased performance — at the cost of making the learning surface more
sensitive to the training distribution. For P=40 and N=200, F-measure can be
increased by as much as ~5% when C=0.1, but then its performance declines
drastically if the number of positives is reduced below 20.

The additional results were similar for TP10. Refer to the topo-map in Fig.2b.
No value of C made SVM surpass the performance of Multi-BNS in the region
along the x-axis. At the upper right, performance could be increased by fortunate
choices for C (by as much as ~3% for P=40 and N=200, which exceeds the
performance of NB-BNS slightly). This boost comes at the cost of very poor
performance in the lower region along the x-axis. Finally, some values of C made
SVM competitive with Multi-IG in the top left, but again made performance
much worse as we decrease the number of positives.

Overall, varying C does not lead to fundamentally different conclusions about
the regions of performance. It does not address the issue of making the choice
of classifier insensitive to the operating region. Furthermore, in regions where
performance can be improved, it remains to be seen whether the optimal C
value can be determined automatically via cross-validation. With small training
sets, such cross-validation may only lead to over fitting the training set, without
practical improvement.

4 Summary

This paper compared the performance of different classifiers with settings often
encountered in real situations: small training sets especially scarce in positive

172 George Forman and Ira Cohen

examples, different test and train class distributions, and skewed distributions
of positive and negative examples. Visualizing the performance of the different
classifiers using the learning surfaces provides meta-information about which
models are consistent performers under which conditions. The results showed
that feature selection should not be decoupled from the model selection task, as
different combinations are best for different regions of the learning surface.

Future work potentially includes expanding the parameters, classifiers and
datasets studied, and validating that the meta-knowledge successfully transfers
to other text (or non-text) classification tasks.

References

1. Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive
and unlabeled examples. In: Intl. Conf. on Data Mining. (2003) 179-186

2. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research 3 (2003) 1289-1305

3. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: ACM
SIGIR Conf. on Research and Development in Information Retrieval. (1999) 42-49

4. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. In: Neural Information Processing Systems:
Natural and Synthetic. (2001) 841-848

5. Weiss, G.M., Provost, F.: Learning when training data are costly: The effect of
class distribution on tree induction. Journal of Artificial Intelligence Research 19
(2003) 315-354

6. Japkowicz, N., Holte, R.C., Ling, C.X., Matwin, S., eds.: AAAI Workshop: Learn-
ing from Imbalanced Datasets, TR WS-00-05, AAAT Press (2000)

7. Witten, LLH., Frank, E.: Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco (2000)

8. Duda, R.O., E.Hart, P.: Pattern Classification and Scene Analysis. John Wiley
and Sons (1973)

9. Domingos, P., Pazzani, M.: Beyond independence: conditions for the optimality of
the simple Bayesian classifier. In: Proc. 13th International Conference on Machine
Learning. (1996) 105-112

10. McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text
classification. In: AAAI-98 Workshop on Learning for Text Categorization. (1998)

11. le Cessie, S., van Houwelingen, J.: Ridge estimators in logistic regression. Applied
Statistics 41 (1992) 191201

12. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: European Conf. on Machine Learning. (1998) 137-142

13. Han, E., Karypis, G.: Centroid-based document classification: Analysis & ex-
perimental results. In: Conference on Principles of Data Mining and Knowledge
Discovery. (2000) 424-431

14. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Con-
ference on Artificial Intelligence. (2001) 973-978

	1 Motivation and Scope
	1.1 Related Work

	2 Experiment Protocol
	3 Experiment Results
	3.1 Discussion

	4 Summary
	References

