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Abstract—Cyber-physical systems (CPS) consist of sensors,
actuators, and controllers all communicating over a network;
if any subset becomes compromised, an attacker could cause
significant damage. With access to data logs and a model of the
CPS, the physical effects of an attack could potentially be detected
before any damage is done. Manually building a model that is
accurate enough in practice, however, is extremely difficult. In
this paper, we propose a novel approach for constructing models
of CPS automatically, by applying supervised machine learning
to data traces obtained after systematically seeding their software
components with faults (“mutants”). We demonstrate the efficacy
of this approach on the simulator of a real-world water purifica-
tion plant, presenting a framework that automatically generates
mutants, collects data traces, and learns an SVM-based model.
Using cross-validation and statistical model checking, we show
that the learnt model characterises an invariant physical property
of the system. Furthermore, we demonstrate the usefulness of
the invariant by subjecting the system to 55 network and code-
modification attacks, and showing that it can detect 85% of them
from the data logs generated at runtime.

I. INTRODUCTION

Cyber-physical systems (CPS), in which software com-

ponents and physical processes are deeply intertwined, are

found across engineering domains as diverse as aerospace,

autonomous vehicles, and medical monitoring; they are also

increasingly prevalent in public infrastructure, automating crit-

ical operations such as the management of electricity demands

in the grid, or the purification of raw water [1, 2]. In such

applications, CPS typically consist of distributed software

components engaging with physical processes via sensors

and actuators, all connected over a network. A compromised

software component, sensor, or network has the potential

to cause considerable damage by driving the actuators into

states that are incompatible with the physical conditions [3],

motivating research into practical approaches for monitoring

and attesting CPS to ensure that they are operating safely and

as intended.

Reasoning about the behaviour exhibited by a CPS, how-

ever, is very challenging, given the tight integration of algo-

rithmic control in the “cyber” part with continuous behaviour

in the “physical” part [4]. While the software components

are often simple when viewed in isolation, this simplicity

betrays the typical complexity of a CPS when taken as a

whole: even with domain-specific expertise, manually deriving

accurate models of the physical processes (e.g. ODEs, hybrid

automata) can be extremely difficult—if not impossible. This

is unfortunate, since with an accurate mathematical model,

a supervisory system could query real CPS data traces and

determine whether they represent correct or compromised

behaviour, raising the alarm for the latter.

In this work, using a high degree of automation, we aim

to overcome the challenge of constructing CPS models that

are useful for detecting attacks in practice. In particular,

we propose to apply machine learning (ML) on traces of

sensor data to construct models that characterise invariant
properties—conditions that must hold in all states amongst

the physical processes controlled by the CPS—and to make

those invariants checkable at runtime. In contrast to existing

unsupervised approaches (e.g. [5, 6]), we propose a supervised

approach to learning that trains on traces of sensor data

representing “normal” runs (the positive case, satisfying the

invariant) as well as traces representing abnormal behaviour

(the negative case), in order to learn a model that charac-

terises the border between them effectively. To systematically

generate the negative traces, we propose the novel application

of code mutation (à la mutation testing [7]) to the software

components of CPS. Motivating this approach is the idea

that small syntactic changes may correspond more closely

to an attacker attempting to be subtle and undetected. Once

a CPS model is learnt, we propose to use statistical model

checking [8] to ascertain that it is actually an invariant of the

CPS, allowing for its use in applications such as the physical

attestation of software components [9] or runtime monitoring

for attacks.

In order to evaluate this approach, we apply it to Secure

Water Treatment (SWaT) [10], a scaled-down but fully oper-

ational water treatment testbed at the Singapore University

of Technology and Design, capable of producing five gal-

lons of safe drinking water per minute. SWaT has industry-

standard control software across its six Programmable Logic

Controllers (PLCs). While the software is structurally simple,

it must interact with physical processes that are very difficult

to reason about, since they are governed by laws of physics

concerning the dynamics of water flow, the evolution of

pH values, and the various chemical processes associated

with treating raw water. In this paper, we focus on water
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flow: we learn invariants characterising how water tank levels

evolve over time, and show their usefulness in detecting both

manipulations of the control software (i.e. attestation) as well

as detecting attacks in the network that manipulate the sensor

readings and actuator signals. Our experiments take place

on a simulator of SWaT due to resource restrictions and

safety concerns, but the simulator is faithful and reasonable:

it implements the same PLC code as the testbed, and has a

cross-validated physical model for water flow.

Our Contributions. This paper proposes a novel approach

for generating models of CPS, based on the application of

supervised machine learning to traces of sensor data obtained

after systematically mutating software components. To demon-

strate the efficacy of the approach, we present a framework for

the SWaT simulator that: (1) automatically generates mutated

PLC programs; (2) automatically generates a large dataset of

normal and abnormal traces; and (3) applies Support Vector

Machines (SVM) to learn a model. We apply cross-validation

and statistical model checking to show that the model charac-

terises an invariant physical property of the system. Finally, we

demonstrate the usefulness of the invariant in two applications:

(1) code attestation, i.e. detecting modifications to the control

software through their effects on physical processes; and

(2) identifying standard network attacks, in which sensor

readings and actuator signals are manipulated.

This work follows from the ideas presented in our earlier

position paper [11], but differs significantly. In particular, the

preliminary experiment in [11] was entirely manual, used

(insufficiently expressive) linear classifiers, had a very limited

dataset, and only briefly discussed how the invariants might

be evaluated. In the present paper, we work with significantly

larger datasets that are generated automatically, learn much

more expressive classifiers using kernel methods, use a sys-

tematic approach to feature vector labelling, apply statistical

model checking to validate the model, and assess its usefulness

for detecting network and code-modification attacks.

Organisation. The remainder of the paper is organised as

follows. In Section II, we introduce the SWaT water treatment

system as our motivating case study, and present a high-

level overview of our approach. In Section III, we describe

in detail the main steps of our approach, as well as how it is

implemented for the SWaT simulator. In Section IV, we eval-

uate our approach with respect to five research questions. In

Section V, we highlight some additional related work. Finally,

in Section VI, we conclude and suggest some directions for

future work.

II. MOTIVATION AND OVERVIEW

In this section, we introduce SWaT, the water treatment

CPS that provides our motivation for learning and monitoring

invariants, and also forms the case study for this paper. Fol-

lowing this, we present a high-level overview of our learning

approach and how it can be applied to CPS.

Fig. 1. The Secure Water Treatment (SWaT) testbed

A. Motivational Case Study: SWaT Testbed

The CPS that forms the case study for our paper is Secure

Water Treatment (SWaT) [10], a testbed built for cyber-

security research at the Singapore University of Technology

and Design (Figure 1). SWaT is a scaled-down but fully

operational raw water purification plant, capable of producing

five gallons of safe drinking water per minute. Raw water

is treated in six distinct but co-operating stages, handling

chemical processes such as ultrafiltration, de-chlorination, and

reverse osmosis.

Each stage of SWaT consists of a dedicated programmable

logic controller (PLC), which communicates over a ring net-

work with some sensors and actuators that interact with the

physical environment. The sensors and actuators vary from

stage-to-stage, but a typical sensor in SWaT might read the

level of a water tank or the water flow rate in some pipe,

whereas a typical actuator might operate a motorised valve

(for opening an inflow pipe) or a pump (for emptying a tank).

A historian records the sensor readings and actuator signals,

facilitating large datasets for offline analyses [12].

The PLCs are responsible for algorithmic control in the

six stages, repeatedly reading sensor data and computing the

appropriate signals to send to actuators. The programs that

PLCs cycle through every 5ms are structurally simple. They

do not contain any loops, for example, and can essentially be

viewed as large, nested conditional statements for determining

the interactions with the system’s 42 sensors and actuators.

The programs can easily be viewed (in both a graphical and

textual style), modified, and re-deployed to the PLCs us-

ing Rockwell’s RSLogix 5000, an industry-standard software

suite.

In addition to the testbed itself, a SWaT simulator [13]

was also developed at the Singapore University of Technology

and Design. Built in Python, the simulator faithfully simulates

the cyber part of SWaT, as a direct translation of the PLC

programs was possible. Inevitably, the physical part (taking
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Algorithm 1: Sketch of Overall Algorithm

Input: A CPS S
Output: An invariant φ

1 Randomly simulate S for n times and collect a set of

normal traces Tr;

2 Construct a set of mutants Mu from S;

3 Collect a set of positive feature vectors Po from Tr;

4 Collect a set of negative feature vectors Ne based on

abnormal traces from Mu;

5 Learn a classifier φ;

6 Apply statistical model checking to validate φ;

7 if φ satisfies our stopping criteria then
8 return φ;

9 Restart with additional data;

advantage of Python’s scientific libraries, e.g. NumPy, SciPy)

is less accurate since the actual ODEs governing SWaT are

unknown. The simulator currently models some of the simpler

physical processes such as water flow (omitting, for example,

models of the chemical processes), the accuracy of which has

been improved over time by cross-validating data from the

simulator with real SWaT data collected by the historian [12].

As a result, the simulator is especially faithful and useful for

investigating over- and underflow attacks on the water tanks.

The SWaT testbed characterises many of the security con-

cerns that come with the increasing automation of public

infrastructure. What happens, for example, if part of the

network is compromised and packets can be manipulated;

or if a PLC itself is compromised and the control software

replaced? If undetected, the system could be driven into a

state that causes physical damage, e.g. activating the pumps

of an empty tank, or causing another one to overflow. The

problem (which this paper aims to overcome) is that detecting

an attack at runtime is very difficult, since a monitor must

be able to query live data against a model of how SWaT is

actually expected to behave, and this model must incorporate

the physical processes. As mentioned, the PLC programs in

isolation are very simple and amenable to formal analysis,

but it is impossible to reason about the system as a whole

without incorporating some knowledge of the physical effects

of actuators over time.

B. Overview of Our Approach

Our approach for constructing CPS models consists of three

main steps, as sketched in Algorithm 1: (1) simulating the

CPS under different code mutations to collect a set of normal

and abnormal system traces; (2) constructing feature vectors

based on the two sets of traces and learning a classifier; and

(3) applying statistical model checking to determine whether

the classifier is an invariant, restarting the process if it is not. In

the following we provide a high-level overview of how these

three steps are applied in general. A more detailed presentation

of the steps and their application to the SWaT simulator are

given later, in Section III.

In the first step, traces (e.g. of sensor readings) representing

normal system behaviour are obtained by randomly simulating

the CPS under normal operating conditions, i.e. with the cyber

part (PLCs) and physical part (ODEs) unaltered. To collect

traces representing abnormal behaviour, our approach proposes

simulating the CPS under small manipulations. Since we aim

for our learnt invariants to be useful in detecting PLC and

network attacks (as opposed to attackers tampering directly

with the environment), we limit our manipulations to the

cyber part, and propose a systematic method motivated by

the assumption that attackers would attempt to be subtle in

their manipulations. Our approach is inspired by mutation

testing [7], a fault-based testing technique that deliberately

seeds errors—small, syntactic transformations called muta-
tions—into multiple copies of a program. Mutation testing is

typically used to assess the quality of a test suite (i.e. good

suites should detect the mutants), but in our approach, we

generate mutants from the original PLC programs, and use

these modified instances of the CPS to collect abnormal data

traces.

In the second step, we extract positive and negative feature

vectors from the normal and abnormal data traces respectively.

Since an attack (i.e. some modification of a PLC program or

a network attack) takes time to affect the physical processes,

our feature vectors are pairs of sensor readings taken at fixed

time intervals. While feature vectors can be extracted from the

normal traces immediately, some pre-processing is required

before they can be extracted from the abnormal ones: the

mutations in some mutant PLC programs may never have

been executed, or only executed after a certain number of

system cycles, leading to traces either totally or partially

indistinguishable from positive ones. To overcome this, we

compare abnormal traces with normal ones obtained from

the same initial states, discarding wholly indistinguishable

traces, and then extracting pairs of sensor readings only when

discrepancies are detected. With the feature vectors collected,

we apply a supervised ML algorithm, e.g. Support Vector

Machines (SVM), to learn a classifier.

In the third step, we must validate that the classifier is

actually an invariant of the CPS. After applying standard ML

cross-validation to minimise generalisation error, we apply

statistical model checking (SMC) [8] to establish whether or

not there is statistical evidence that the model is an invariant.

In SMC, additional normal traces of the CPS are observed, and

statistical estimation or hypothesis testing (e.g. the sequential

probability ratio test (SPRT) [14]) is used to estimate the

probability of the classifier’s correctness. If the probability

is high (i.e. above some predetermined threshold), we take

that classifier as our invariant. Otherwise, we repeat the whole

process with different randomly sampled data.

With a CPS invariant learnt, a supervisory system can

monitor live data from the system and query it against the

invariant, raising an alarm when it is not satisfied. This has

at least two applications in defending against attacks. First, it

can be used to detect standard network attacks, where packets

have been manipulated and actuators are shifted into states
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that are inappropriate for the current physical environment.

Second, it can be seen as a form of code attestation: if the

actual behaviour of a CPS does not satisfy our mathematical

model of it (i.e. the invariant), then it is possible that the cyber

part has been compromised and that ill-intended manipulations

are occurring. This form of attestation is known as physical
attestation [9, 15], and while weaker than typical software- and

hardware-based attestation schemes (e.g. [16–19]), it is much

more lightweight as neither the firmware nor the hardware of

the PLCs need to be modified.

III. IMPLEMENTING OUR APPROACH

In this section, we describe in detail the main steps of our

approach: (1) generating mutants and data traces; (2) collecting

positive and negative feature vectors for learning a classifier;

and (3) validating the classifier.

We illustrate each of the steps in turn by applying them

to the SWaT simulator. We remark that our choice to use the

SWaT simulator (rather than the testbed) has some important

advantages for this paper. It allows us to automate each step

in an experimental framework, with which we can easily

investigate the effects of different parameters on the accuracy

of learnt models. Furthermore, mutations can be applied and

attacks can be simulated without the risk of damage, and

the usefulness of learnt invariants can be assessed without

wasting resources (e.g. water, chemicals) or navigating the

policy restrictions of the testbed. Obtaining an invariant for

the testbed can be achieved by re-running the trace collection

phase on SWaT with optimised parameters for learning (see

Section IV), or improving the accuracy of the physical model

in the simulator to the extent that learnt classifiers can be

validated as invariants of both the simulator and the testbed.

A. First Step: Generating Mutants and Traces

The first step of our approach is collecting the traces of

raw sensor data that will subsequently be used for learning a

CPS invariant. It consists of the following sub-steps: (i) fixing

a set of initial physical configurations and a time interval

for taking sensor readings; (ii) generating data traces that

represent normal system behaviour; (iii) applying mutations

and generating the (possibly) abnormal traces they produce.

Sub-step (i): Initial Configurations. In order to collect a set

of data that captures the CPS’ behaviour across a variety of

physical contexts, a set of initial configurations should be

chosen that covers the extremities of the sensors’ ranges, as

well as randomly selected combinations of values within them.

A time interval for logging sensor readings (e.g. the historian’s

default) should also be chosen, as well as a length of time to

run the CPS from each initial configuration.

Applied to SWaT. In the case of the SWaT simulator, since

it only models physical processes concerning water flow, we

collect traces of data from sensors recording the water levels

in the five tanks. In particular, physical configurations are

expressed in terms of the water levels recorded by these

five sensors. The set of initial configurations we use in

our experiments (see Section IV) therefore includes different

combinations of water tank levels, including extreme values

(i.e. tanks being full or empty). We choose to log the sensor

values every 5ms, corresponding to the default time interval

at which the simulator logs data. We fix 30 minutes as the

length of time to run the simulator from each configuration,

as previous experimentation has shown that the simulator’s

physical model remains accurate for at least this length of

time.

Sub-step (ii): Normal Traces. To generate normal traces,

we simply launch the CPS under normal operating conditions

from each initial physical configuration, using the run length

and time interval fixed in sub-step (i). The traces of sensor

data should be extracted from the historian for processing in

a later step.

Applied to SWaT. For our case study, we built a frame-

work [13] around the SWaT simulator that can automatically

launch and run the software on each of the initial configura-

tions chosen earlier. Each run uses the original (i.e. unaltered)

PLC programs, lasts for 30 minutes, and logs the simulated

water tank levels every 5ms. These logs are stored as raw text

files from which feature vectors are extracted in a later step.

Sub-step (iii): Mutants and Abnormal Traces. Next, we

need to generate data traces representing abnormal system

behaviour. In order to learn a classifier that is as close to

the boundary of normal and abnormal behaviour as possible,

we generate these traces after subjecting the control soft-

ware to small syntactic code changes (i.e. mutations). These

code changes are the result of applying simple mutation

operators, which randomly replace some Boolean operator,

logical connector, arithmetic function symbol, constant, or

variable. To ensure a diverse enough training set, we generate

abnormal traces from multiple versions of the control software

representing a variety of different mutations.

Our approach for generating mutant PLC programs is

summarised in Algorithm 2. Given a set of co-operating

PLC programs, the algorithm makes a copy of all of them,

and applies an applicable mutation operator to a single PLC

program in the set.

Applied to SWaT. In the case of the SWaT simulator, our

framework can automatically and randomly generate multiple

mutant simulators. Note that each mutant simulator, built up

of six PLC programs, consists of one mutation only in a

PLC program chosen at random. Since the PLC programs are

syntactically simple, we need only six mutation operators (Ta-

ble I). Evidence suggests that additional mutation operators are

unlikely to increase coverage [20], so our mutant simulators

should be sufficiently varied.

To illustrate, consider the code in Listing 1, a small extract

from the PLC program controlling ultrafiltration in SWaT. If

the guard conditions are met, line 5 will change the state of

the PLC to “19”. This number identifies a branch in a case

statement (not listed) that triggers the signals that should be

sent to actuators. Now consider Listing 2: this PLC program
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Listing 1
SNIPPET OF UNMODIFIED CONTROL CODE FROM PLC #3

1 if Sec P:
2 MI.Cy P3.CIP CLEANING SEC=HMI.Cy P3.

CIP CLEANING SEC+1
3 if HMI.Cy P3.CIP CLEANING SEC>HMI.

Cy P3.CIP CLEANING SEC SP or self
.Mid NEXT:

4 self.Mid NEXT=0
5 HMI.P3.State=19
6 break

Listing 2
A POSSIBLE MUTANT OBTAINED FROM LISTING 1

1 if Sec P:
2 MI.Cy P3.CIP CLEANING SEC=HMI.Cy P3.

CIP CLEANING SEC+1
3 if HMI.Cy P3.CIP CLEANING SEC>HMI.

Cy P3.CIP CLEANING SEC SP or self
.Mid NEXT:

4 self.Mid NEXT=0
5 HMI.P3.State=14
6 break

Algorithm 2: Generating Mutant PLC Code

Input: A set of PLC programs S
Output: A mutant set of PLC programs SM

1 Let Ops be the set of mutation operators;

2 Make a copy SM of the PLC programs S;

3 applied := false;

4 while ¬applied do
5 Randomly choose a PLC P from SM ;

6 Randomly choose a line number i from P ;

7 if some operator in Ops is applicable to line i then
8 Apply an applicable operator to line i;
9 applied := true;

10 return SM ;

TABLE I
MUTATION OPERATORS

Mutation Operator Example

Scalar Variable Replacement x = a � x = b

Arithmetic Operator Replacement a+ b � a− b

Relational Operator Replacement a > b � a ≥ b

Guard Valuation Replacement if(c) � if(false)

Logical Connector Replacement a and b � a or b

Assignment Operator Replacement x = a � x += a

is identical to Listing 1, except for the result of a scalar

mutation on line 5 that means the PLC would be set to state

“14” instead. If executed, different signals will be sent to the

actuators, potentially causing abnormal effects on the physical

state—as might be the goal of an attacker.

Once we have our mutant simulators, we discard any that

cannot be compiled. Of the mutants remaining, we run them

with respect to each initial state for 30 minutes, logging the

levels of all the water tanks every 5ms.

The current implementation of our mutant simulator gener-

ator for SWaT is available online [13], consisting of just over

200 lines of Python code. It applies mutations to the PLC

programs by reading them as text files, randomly choosing

a line, and then randomly applying an applicable mutation

operator (Table I) by matching and substituting. This takes a

negligible amount of time, so hundreds of mutant simulators

can be generated very quickly (i.e. in seconds).

B. Second Step: Collecting Feature Vectors, Learning

At this point, we have a collection of raw data traces gener-

ated by normal PLC programs as well as by multiple mutant

PLC programs. The second step is to extract positive and

negative feature vectors from this data to perform supervised

learning. It consists of the following sub-steps: (i) fixing a

feature vector type; (ii) collecting feature vectors from the

data, undersampling the abnormal data to maintain balance;

(iii) applying a supervised learning algorithm.

Sub-step (i): Feature Vector Type. A feature vector type must

be defined that appropriately represents objects of the data. For

traces of sensor data, a simple feature vector would consist of

the sensor values at any given time point. For typical CPS

however, such a feature vector is far too simple, since it does

not encapsulate any information about how the values evolve

over the time series—an intrinsic part of the physical model.

A more useful feature vector would record the values at fixed

time intervals, making it possible to learn patterns about how

the levels of tanks change over the time series.

Applied to SWaT. In the case of the SWaT simulator, we

define our feature vectors to be of the form (π, π′), where π
denotes the water tank levels at a certain time and π′ denotes

the values of the same tanks after d time units, where d is

some fixed time interval that is a multiple of the interval

at which data is logged (we compare the effects of different

values of d in Section IV-B). Our feature vectors are based on

the sliding window method that is commonly used for time

series data [21].

Sub-step (ii): Collecting Feature Vectors. Next, the raw

normal and abnormal data traces must be organised into

positive and negative feature vectors of the type chosen in sub-

step (i). Extracting positive feature vectors from the normal

data is straightforward, but for negative feature vectors, we

have the additional difficulty that mutants are not guaranteed

to be effective, i.e. able to produce data traces distinguishable

from normal ones. Furthermore, even effective mutants may
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Algorithm 3: Collecting Feature Vectors

Input: Set of normal traces TN and abnormal traces TA,

each trace of uniform size N
Output: Set of positive feature vectors Po; set of

negative feature vectors Ne
1 Let S be the unmodified simulator;

2 Let t be the time interval for logging data in traces;

3 Let d be the time interval for feature vectors;

4 x := 0; Po := ∅; Ne := ∅;
5 foreach Tr ∈ TN do
6 while x+ (d/t) < N do
7 π := 〈s0, s1, . . . 〉 for all sensor values si at row

x of Tr;

8 π′ := 〈s′0, s′1, . . . 〉 for all sensor values s′i at row

x+ (d/t) of Tr;

9 Po := Po ∪ {(π, π′)}
10 x := x+ 1;

11 x := 0;

12 foreach Tr ∈ TA do
13 while x+ (d/t) < N do
14 π := 〈s0, s1, . . . 〉 for all sensor values si at row

x of Tr;

15 π′ := 〈s′0, s′1, . . . 〉 for all sensor values s′i at row

x+ (d/t) of Tr;

16 Run simulator S on configuration π for d time

units to yield trace Tr′;
17 π′′ := 〈s′′0 , s′′1 , . . . 〉 for all sensor values s′′i at row

d/t of Tr′;
18 if π′ �= π′′ then
19 Ne := Ne ∪ {(π, π′)}
20 x := x+ 1;

21 return Po, Ne;

not cause an immediate change. It is crucial not to mislabel

normal data as abnormal—additional filtering is required.

Applied to SWaT. Algorithm 3 summarises how feature

vectors are collected from the SWaT simulator and its mutants.

Collecting positive feature vectors is very simple: all possible

pairs of physical states (π, π′) are extracted from the normal

traces. For each pair (π, π′) extracted from the abnormal

traces, the unmodified simulator is run on π for d time units:

if the unmodified simulator leads to a state distinguishable

from π′, the original pair is collected as a negative feature

vector; if it leads to a state that is indistinguishable from

π′, it is discarded (since the mutation had no effect). In the

case of SWaT, its simulator is deterministic, allowing for this

judgement to be made easily. (For data from the testbed, some

acceptable level of tolerance would need to be defined.)

Sub-step (iii): Learning. Once the feature vectors are col-

lected, a supervised ML algorithm can be applied to learn a

model.

Applied to SWaT. For the SWaT simulator, we choose to

apply SVM as our supervised ML approach since it is fully

automatic, with well-developed active learning strategies, and

good library support (we use LIBSVM [22]). Furthermore,

SVM has expressive kernels and has often been successfully

applied to time series prediction [23]. Based on the training

data, SVM attempts to learn the (unknown) boundary that sep-

arates it. Different classification functions exist for expressing

this boundary, ranging from ones that attempt to find a simple

linear separation between the data, to non-linear solutions

based on RBF (we compare different classification functions

for SWaT in Section IV-A). For the purpose of validating the

classifier and assessing its generalisability, it is important to

train it on only a portion of the feature vectors, reserving a

portion of the data for testing. We randomly select 70% of the

feature vectors to use as the training set, reserving the rest for

evaluation.

We remark that SVM can struggle to learn a reasonable

classifier if the data is very unbalanced. This is the case for the

SWaT simulator: we have just one simulator for normal data,

but potentially infinite mutant simulators for generating ab-

normal data. To ensure balance, we undersample the negative

feature vectors. Let NPo denote the number of positive feature

vectors and NNe the number of negative feature vectors we

collected. We partition the negative feature vectors into subsets

of size NNe/NPo (rounded up to the nearest integer), and

randomly select a feature vector from each one. This leads to

an undersampled set of negative feature vectors that is roughly

the same size as the positive feature vector set.

C. Third Step: Validating the Classifier

At this point, we have collected normal and abnormal data,

processed it into positive and negative feature vectors, and

learnt a classifier by applying a supervised ML approach. This

final step is to determine whether or not there is evidence

that the learnt model can be considered a physical invariant

of the CPS. It consists of the following two sub-steps: (i)

applying standard ML cross-validation to assess how well the

classifier generalises; and (ii) apply SMC to determine whether

or not there is statistical evidence that the classifier does indeed

characterise an invariant property of the system.

Sub-step (i): Cross-Validation. Our first validation method is

to apply standard ML k-fold cross validation (with e.g. k = 5)

to assess how well the classifier generalises. This technique

computes the average accuracy of k different classifiers, each

obtained by partitioning the training set into k segments,

training on k − 1, and validating on the segment remaining

(repeating with respect to different validation partitions).

Sub-step (ii): Statistical Model Checking. The second valida-

tion method applies SMC, a standard technique for verifying

general stochastic systems [8]. The variant we use observes

executions of the system (i.e. traces of sensor data), and applies

hypothesis testing to determine whether or not the executions
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provide statistical evidence of the learnt model being an invari-

ant of the system. SMC estimates the probability of correctness

rather than guaranteeing it outright. It is simple to apply, since

it only requires that we can execute the (unmodified) system

and collect data traces. It treats the system as a black box, and

thus does not require a model [24].

Given some classifier φ for a system S, we apply SMC

to determine whether or not φ is an invariant of S with a

probability greater or equal to some threshold θ, i.e. whether φ
correctly classifies the traces of S as normal with a probability

greater than θ. Note that the usefulness of invariants is a

separate question, addressed in Section IV-E. A classifier

that always labels normal and abnormal data as normal, for

example, is an invariant, but not a useful one for detecting

attacks.

Applied to SWaT. In the case of the SWaT simulator, we

generate a normal data trace from a new, distinct initial config-

uration, and collect the positive feature vectors from it. Next,

we randomly sample feature vectors from this set, evaluate

them with our classifier, and apply SPRT as our hypothesis test

to determine whether or not there is statistical evidence that

the classifier labels them correctly (setting the error bounds at

a standard level of 0.05) with accuracy greater than some θ. If

further data is required, we sample additional positive feature

vectors from another distinct initial configuration. We remark

that we choose θ to be the accuracy of the best classifier

we train in our evaluation (Section IV-D). These steps are

repeated several times, each with data from additional new

initial configurations.

IV. EVALUATION

We evaluate our approach through experiments intended to

answer the following research questions (RQs):

• RQ1: What kind of classification function do we need?

• RQ2: How large should the time interval in feature

vectors be?

• RQ3: How many mutants do we need?

• RQ4: Is our model a physical invariant of the system?

• RQ5: Is our model useful for detecting attacks?

RQ1–3 consider the effects of different parameters on the

performance of our learnt models, in particular, the classi-

fication function (linear, polynomial, or RBF), the different

time intervals for constructing feature vectors, and the number

of mutants to collect abnormal traces from. We take the

best classifier from these experiments, and assess for RQ4

whether or not there is statistical evidence that the model

characterises an invariant of the system. Finally, for RQ5, we

investigate whether or not the model is useful for detecting

various different attacks that manipulate the network and PLC

programs.

All the experiments in the following were performed on the

SWaT simulator [13]. The mutation and learning framework

we built for this simulator (as described in Section III) is avail-

able to download [13], and uses version 3.22 of LIBSVM [22]

to apply SVM to our feature vectors.

A. RQ1: What kind of classification function do we need?

Our first experiment is to determine which of the main

SVM-based classification functions—linear, polynomial (de-

gree 3), or RBF—we should use in order to learn models

with an acceptable level of accuracy. Intuitively, a simple

model is more useful for human interpretation, but it may not

be expressive enough to achieve high classification accuracy.

First, we generate 700 mutant simulators, of which 91 are

effective (i.e. led to some abnormal behaviour). From 20

initial configurations of the SWaT simulator, as described in

Section III-A, we generate 30 minute traces (at 5ms intervals)

of normal and abnormal data from the original simulator and

mutant simulators respectively. From these data traces, we

collect 1.68 ∗ 106 feature vectors with a 250ms time interval

type, using undersampling to account for the larger quantity

of abnormal data (see Section III-B). These vectors are then

randomly divided into two parts: 70% for training, and 30%
for testing. SVM is applied to the training vectors to learn

three separate linear, polynomial, and RBF classifiers.

Table II presents a comparison between the three classifiers

learnt in the experiment. We report two types of accuracy. The

accuracy column reports how many of the held-out feature

vectors (i.e. the 30% of the collected feature vectors held

out for testing) are labelled correctly by the classifier. The

cross-validation accuracy is the result of applying k-fold

cross-validation (with k = 5) to the training set: this is the

average accuracy of five different classifiers, each obtained

by partitioning the training set into five, training on four

partitions, and validating on the fifth (then repeating with a

different validation partition). This measure helps to assess

how well our classifier generalises. Sensitivity expresses the

proportion of positives that are correctly classified as such;

specificity is the same but for negatives. Across all four

measures, a higher percentage is better.

From our results, it is clear that the RBF-based classifier far

outperforms the other two options. While RBF scores highly

across all measures, the other classification functions lag far

behind at around 60 to 70%; they are much too simple for

the datasets we are considering. Intuitively, we believe linear

or polynomial classifiers are insufficient because readings

of different sensors in SWaT are correlated in complicated

ways which are beyond the expressiveness of these kinds

of classifiers. Given this outcome, we choose RBF as our

classification function.

B. RQ2: How large should the time interval in feature vectors
be?

Our second experiment assesses the effect on accuracy

of using different time intervals in the feature vectors. As

discussed before, a feature vector is of the form (π, π′) where

π denotes the water tank levels at a certain time and π′ denotes

the levels after d time units. Intuitively, using these feature

vectors, the learnt model characterises the effects of mutants

after d time units. On the one hand, an abnormal system

behaviour is more observable if this interval d is larger (as the

modified PLC control program has more time to take effect).
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TABLE II
COMPARISON OF CLASSIFICATION FUNCTIONS

type accuracy cross-validation accuracy sensitivity specificity

SVM-linear 63.34% 64.12% 66.44% 60.23%

SVM-polynomial 67.10% 68.32% 74.92% 51.67%

SVM-RBF 91.05% 90.99% 99.28% 82.82%

On the other hand, having an interval that is too large runs

the risk of reporting abnormal behaviours too late and thus

potentially resulting in some safety violation.

Table III presents the results of a comparison of accuracy
and cross-validation accuracy (both defined as for RQ1) across

classifiers based on 100, 150, . . . 300 ms time intervals. SVM-

RBF was used as the classification function, and abnormal data

was generated from 700 mutants.

The results match the intuition mentioned earlier, although

the accuracy stabilises much more quickly than we initially

expected (at around 150ms time intervals). The time interval

of 250ms has, very slightly, the best accuracy, so we continue

to use it in the remaining experiments.

C. RQ3: How many mutants do we need?

Our third experiment assesses the effect on accuracy from

using different numbers of mutant simulators to generate

abnormal data. We are motivated to find the point at which

accuracy stabilises, in order to avoid the unnecessary compu-

tational overhead associated with larger numbers of mutants.

Table IV presents a comparison of accuracy and cross-
validation accuracy (both defined as for RQ1) across classi-

fiers learnt from the data generated by 300, 400, 500, 600, and

700 mutants. Our mutant sets are inclusive, i.e. the set of 700

mutants includes all the mutants in the set of 600 in addition

to 100 distinct ones. We also list how many of the generated

mutants are effective, in the sense that they can be compiled,

run, and cause some abnormal physical effect with respect to

at least one of the initial configurations. We used SVM-RBF

as the classification function, collecting feature vectors (see

Section III-B) with a time interval of 250ms.

The results indicate that both accuracy and cross-validation

accuracy start to stabilise in the 90s from 500 mutants (62

effective mutants) onwards. It also shows that with fewer

mutants (e.g. 300 mutants / 23 effective mutants) it is difficult

to learn a classifier with acceptable accuracy. Given the results,

we choose 600 as our standard number of mutants to generate.

D. RQ4: Is our model a physical invariant of the system?

Our fourth experiment is to establish whether or not there

is statistical evidence supporting that the learnt model is a

(physical) invariant of the system, i.e. it correctly classifies

the data in normal traces as normal with accuracy greater or

equal to some threshold θ. We perform SMC as described in

Section III-C, sampling positive feature vectors derived from

a new and distinct initial configuration, setting the acceptable

error bounds at a standard level of 0.05, and setting the

threshold as θ = 91.04% (i.e. the accuracy of the classifier

learnt from 600 mutants and a feature vector interval of

250ms). Our implementation performs hypothesis testing using

SPRT, randomly sampling feature vectors and applying the

classifier until SPRT’s stopping criteria are met. If the sampled

data is not enough, we sample additional feature vectors from

the traces of additional new initial configurations.

Our SMC implementation repeated the overall steps above

five times, each with normal data derived from a different

distinct initial configuration (falling within normal operational

ranges). In each run, our classifier passed, without requiring

data to be sampled from traces of additional configurations.

This provides some evidence that the classifier is an invariant

of the SWaT simulator. This is not surprising: in Section IV-A

we found that the sensitivity of the classifier was very high

(99.28%), i.e. the proportion of positive feature vectors that

it classified as such was very high. Our SMC implementation

evaluates for the same property but seeks statistical evidence.

E. RQ5: Is our model useful for detecting attacks?

Our final experiment assesses whether our learnt invariant

is effective at detecting different kinds of attacks, i.e. whether

it classifies feature vectors as negative once an attack has

been launched. First, we investigate network attacks, in which

an attacker is assumed to be able to manipulate network

packets containing sensor readings (read by PLCs) and signals

(read by actuators). Second, we investigate code-modification

attacks (i.e. manipulations of the PLC programs), by randomly

modifying the different PLC programs in the simulator and de-

termining whether any resulting physical effects are detected.

If able to detect the latter kind of attacks, the invariant can be

seen as physically attesting the integrity of the PLC code.

Network attacks. Table V presents a list of network attacks

that we implemented in the SWaT simulator, and the results

of our invariant’s attempts at classifying them. Our attacks

are from a benchmark of attacks that were performed on the

SWaT testbed for the purpose of data collection [12]. These

attacks cover a variety of attack points, and were designed

to comprehensively evaluate the robustness of SWaT under

different network attacks. Of the 36 attacks, we implemented

the 15 that could be supported by the ODEs of (and thus had

an effect on) the SWaT simulator. The attacks are all achieved

by (simulating) the manipulation of the communication taking

place over the network, i.e. hijacking data packets and chang-

ing sensor readings before they reach the PLC, and actuator

signals before they reach the valves and pumps. The attacks

cover a variety of attack points in the SWaT simulator: these

are documented online [10], but intuitively represent motorised
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TABLE III
EFFECT OF INCREASING THE TIME INTERVAL ON STABILITY OF SVN-RBF FUNCTION

#time interval accuracy cross-validation accuracy

100 90.98% 88.68%

150 90.04% 90.01%

200 90.12% 90.08%

250 91.05% 90.99%

300 90.05% 90.99%

TABLE IV
EFFECT OF INCREASING THE NUMBER OF MUTANTS ON STABILITY OF SVN-RBF FUNCTION

#mutants #effective mutants accuracy cross-validation accuracy

300 23 63.01% 81.91%

400 31 83.01% 89.01%

500 62 90.07% 89.08%

600 76 91.04% 90.89%

700 91 91.05% 90.99%

TABLE V
RESULTS: DETECTING NETWORK ATTACKS INVOLVING MOTORISED VALVES (MV), PUMPS (P), AND LEVEL INDICATOR TRANSMITTERS (LIT)

attack # attack point start state attack detected accuracy

1 MV101 MV101 is closed Open MV101 yes 89.67%

2 P102 P101 is on whereas P102 is off Turn on P102 yes 90.01%

3 LIT101 Water level between L and H Increase by 1mm every second eventually 63.11%

4 LIT301 Water level between L and H Water level increased above HH yes 99.86%

5 MV504 MV504 is closed Open MV504 yes 92.11%

6 MV304 MV304 is open Close MV304 yes 88.01%

7 LIT301 Water level between L and H Decrease water level by 1mm each second eventually 56.97%

8 MV304 MV304 is open Close MV304 yes 90.16%

9 LIT401 Water level between L and H Set LIT401 to less than L yes 89.36%

10 LIT301 Water level between L and H Set LIT301 to above HH yes 99.07%

11 LIT101 Water level between L and H Set LIT101 to above H yes 91.12%

12 P101 P101 is on Turn P101 off yes 92.06%

13 P101; P102 P101 is on; P102 is off Turn P101 off; keep P102 off yes 91.62%

14 P302 P302 is on Close P302 yes 90.91%

15 LIT101 Water level between L and H Set LIT101 to less than LL yes 89.37%

valves (MV), pumps (P), and level indicator transmitters

(LIT). The table indicates whether or not the invariant was

able to detect each attack, and the accuracy with which it

labels the feature vectors (here, this reflects the percentage of

feature vectors labelled as negative after the attack has been

launched). If the accuracy is high (above a threshold of 85%),

we deem the attack to have been detected. Note that for attacks

manipulating the sensor readings (LITs) read by PLCs, we

assume that the correct levels are logged by the historian.

As can be seen, all of the attacks were successfully detected.

For all the attacks except #3 and #7, this is with very high

accuracy (around 90% and above). This is likely because these

attacks all trigger an immediate state change in an actuator

(opening/closing a valve; switching on/off a pump), either

by directly manipulating a control signal to it, or indirectly,

by reporting an incorrect tank level and causing the PLC to

send an inappropriate signal instead (e.g. attack #4 causes the

PLC to switch on a pump to drain the tank, even though the

water level is not actually high). Attacks #3 and #7 are not

detected initially, hence the lower accuracy (approx. 60%),

because the sensor for the tank level is manipulated slowly,

by 1mm per second. As a result, it takes more time to reach

the threshold when the PLC opens a valve or switches on

a pump, at which point the attack has a physical effect. If

measuring from this moment onwards, Attack #3 would have

an accuracy of 99.83% and #7 an accuracy of 99.72%—hence

our judgements of detected eventually.

Overall, the results suggest that our invariant is successful at

detecting network attacks when they lead to unusual physical

behaviour, and thus might be useful in monitoring a sys-

tem in combination with complementary defence mechanisms

(e.g. for ensuring the integrity of the communication links).
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Code modification attacks. Table VI presents the results of

some code modification attacks, and our invariant’s ability to

detect them. Unlike for network attacks, there is no benchmark

of code modification attacks to use for SWaT. In lieu of

this, we randomly generated 40 effective mutants (distinct

from those in our learning phase), each consisting of a

single mutation to a PLC program controlling some stage of

the SWaT simulator. We generated data from these mutants

with respect to our 20 initial configurations, collected feature

vectors, and applied our invariant. The table reports how

many of the mutants were detected and with what accuracy
(we determine whether a feature vector should be positive

or negative analogously to how we labelled feature vectors

derived from mutant traces). After grouping the attacks with

respect to the PLC program they affect, we report both the

average accuracy for all attacks as well as for only those that

were detected.

Our invariant was able to detect 32 of the 40 mutants. Upon

manual investigation, we believe the reason it was unable

to detect the remaining mutants was because they generated

data traces that were too similar to the normal behaviour

of the system. Similar to our network attacks, when a code

modification attack led to an unexpected change in the states of

valves and pumps, the attack was detected. The results suggest

that the invariant could be effective for physically attesting the

PLCs, i.e. by monitoring the physical state of the system for

any unexpected behaviours that could be caused by modified

control code. Of course, an intelligent attacker may manipulate

the code in a way that is not sufficiently captured by random

modifications: seeking a more realistic attestation benchmark

set is thus an important item of future work.

F. Threats to Validity

Finally, we remark on some threats to the validity of our

evaluation:

(1) Our dataset is limited to a single system: the SWaT

simulator;

(2) Data traces were generated with respect to a fixed set of

initial configurations;

(3) We used randomly generated code modification attacks,

rather than code modifications injected by an intelligent

attacker.

Due to (1), it is possible that our results do no generalise to

other CPSs. Because of (2), it is possible that normal but rarely

occurring behaviours may have been missed in the training

phase, and thus may be classified incorrectly by our invariant.

These behaviours may also have been missed from the data

traces used in the validation phase (SMC). Because of (3), it

could be possible that our results do not apply to real code

modification attacks designed by attackers with knowledge of

the system.

V. RELATED WORK

Anomaly detection has been widely applied to CPS in

order to detect unusual behaviours (e.g. possible attacks)

from their data [25–33]. Many of these approaches, however,

require prior knowledge about the internals of the system—

our technique avoids this and attempts to construct a model

systematically and automatically.

The idea of detecting attacks by monitoring physical invari-

ants has been applied to a number of CPS [34, 35]. Typically,

however, the invariants are manually derived using the laws

of physics and domain-specific knowledge. Moreover, they are

derived for specific, expected physical relationships, and may

not capture other important patterns hiding in the sensor data.

Manual invariants have also been derived for stages of the

SWaT testbed itself [36, 37].

Apart from monitoring physical invariants, the SWaT

testbed has also been used to evaluate other attack detection

mechanisms, such as a hierarchical intrusion detection system

for monitoring network traffic [38], and anomaly detection

approaches based on unsupervised machine learning [5, 6].

The latter approaches were trained and evaluated using an

attack log [12] from the testbed itself. As our approach was

evaluated on the SWaT simulator, an immediate and direct

comparison with our results is not possible. However, we

believe that our supervised approach would lead to higher

sensitivity, and plan to do a proper comparison to confirm

or refute this.

Mutations are applied by Brandl et al. [39], but to specifi-

cations of hybrid systems (rather than to the PLC programs

themselves) in order to derive distinguishing model-based test

cases that can be seen as classifiers. A discrete view of

the system is used for generating test cases, with qualitative

reasoning applied to represent the continuous part.

It is possible to obtain strong guarantees about the behaviour

of a CPS by applying formal verification, but only with

accurate enough models of the controllers and ODEs. With

these, the CPS can be modelled as a hybrid system and a

variety of established techniques can be applied (e.g. model

checking [40], SMT solving [41], non-standard analysis [42],

concolic testing [43], runtime model validation [44], or theo-

rem proving [45, 46]). With discretised models of the phys-

ical part, classical modelling and verification techniques can

also be applied, e.g. as demonstrated for some properties of

SWaT [47, 48].

VI. CONCLUSION

We proposed a novel approach for automatically construct-

ing invariants of CPS, in which supervised ML is applied to

traces of data obtained from PLC programs that have been

systematically mutated. We implemented it for a simulator of

the SWaT raw water purification plant, presenting a framework

that can generate large quantities of mutant PLC programs,

data traces, and feature vectors. We used SVM-RBF to learn

an expressive model, and validated it as characterising an

invariant property of the system by applying cross-validation

and statistical model checking. Finally, we subjected the

simulator to 55 network and code modification attacks and

found that the invariant was able to detect 47 of them (missing

only 8 code modification attacks that had a limited effect on
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TABLE VI
RESULTS: DETECTING CODE MODIFICATION ATTACKS

attack stage # effective mutants # detected accuracy (detected) accuracy (all)

PLC 1 8 5 99.82% 71.54%

PLC 3 20 17 99.89% 92.12%

PLC 4 4 4 99.29% 99.29%

PLC 5 5 3 99.43% 81.20%

PLC 6 3 3 99.87% 99.87%

summary 40 32 99.84% 88.20%

the water tank levels), suggesting its efficacy for monitoring

attacks and physically attesting the PLCs at runtime.

Future work should seek to address the current complexity

of the learnt invariants without reducing their effectiveness

at detecting attacks, in order to bring them within reach

of stronger validation approaches than SMC, e.g. symbolic

execution [11]. It should also seek to make the approach

more practical for real CPS such as the SWaT testbed (not

just its simulator), by finding ways of reducing the amount of

data that must be collected. One way we could achieve this is

by applying mutations more effectively, reducing the amount

of abnormal data we reject for being indistinguishable from

normal traces. For example, we could use domain knowledge

to focus the application of mutation operators to parts of the

PLC code more likely to lead to useful abnormal traces. In

future work we would also like to assess the generalisability

of our approach by implementing it for other testbeds

or simulators, especially those for applications other than

water treatment. Finally, we would like to compare our

supervised learning approach against some recently proposed

unsupervised ones for SWaT [5, 6], in order to clarify whether

or not the overhead of collecting abnormal data pays off in

terms of the accuracy of the invariant and its ability to detect

attacks.
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