
Learning from Observation Using Primitives

A Thesis

Presented to

The Academic Faculty

by

Darrin C. Bentivegna

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

College of Computing

Georgia Institute of Technology

July 2004

Copyright c° 2004 by Darrin C. Bentivegna

Learning from Observation Using Primitives

Approved by:

Christopher G. Atkeson, Adviser

Tucker Balch

Gordon Cheng

Jessica Hodgins

Sven Koenig

Date Approved: 30 June 2004

I can do everything through him who gives me strength.

- Philippians 4:13 (NIV) [96]

To Him.

iii

ACKNOWLEDGEMENTS

This thesis would not be possible without the Lord’s constant guidance and encouragement. The

Lord also works through people and He has blessed me with very special people to fulfill all my

needs during this time. I met Christopher Atkeson during my first week at GA Tech and he has

encouraged me since that very first meeting to explore and learn all that is possible. Chris has had

a tremendous amount of patience and understanding during the process of transforming me into

a researcher. The freedom and support he provided for me allowed me to explore many related

research fields and interact with researchers from around the world. During this time Chris has

become much more than just an advisor to me.

I thank the other members of my research committee for their feedback and guidance and for

being extremely flexible in this unique situation of coordinating between people located in four

different locations around the world. I thank Ronald Arkin and Gregory Abowd for their guidance

during my first years at GA Tech. I thank Dr. Mitsuo Kawato for providing me with support and a

great environment in which I could interact with many senior researchers and make use of advanced

robotic research platforms.

My wife, Akiko, ensured that my education expanded beyond my thesis research and during

this time together we learned more about the Lord’s ways than we ever thought possible. I thank

my parents for supporting me in all my adventures and for providing me with the consistency of a

loving home in which to return to.

The Lord has truly blessed me by giving me a desire to learn and laying out a path full of

wonderful people to support me.

Financial support for this research was provided in part by ATR Computational Neuroscience

Laboratories, Department of Humanoid Robotics and the National Institute of Information and

Communications Technology (NiCT), Kyoto, Japan. It was also supported in part by the Japan

Science and Technology Agency, ICORP, Computational Brain Project, Kyoto, Japan, and by the

National Science Foundation Award ECS-0325383.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER I INTRODUCTION . 1

1.1 Primitives . 3

1.2 Challenges with Using Primitives . 4

1.3 Strategy for Primitive Use . 6

1.3.1 Perceiving the Primitive . 6

1.3.2 Choosing a Primitive to Use and Associated Parameters 7

1.3.3 Performing the Primitive . 7

1.3.4 Learning From Practice . 8

1.3.5 Learning From Observation Versus Coaching 8

1.4 Locally Weighted Learning . 8

1.5 Thesis Layout and Terminology . 9

CHAPTER II RELATED RESEARCH . 10

2.1 An Early Use of Primitives in Robotics . 10

2.2 The Use of Primitives in Robot Assembly Tasks 11

2.3 Using Observations . 11

2.3.1 Using Observed Information to Learn Primitive Execution Policies 12

2.3.2 Using Observation Information to Learn a Primitive Execution Sequence . 12

2.4 Mobile Robots . 13

2.4.1 Mobile Robot Architectures that Use Primitives 13

2.4.2 Learning Behavior . 14

2.5 Using Primitives in Learning Skills on Robots with Many DOFs 16

2.5.1 Learning Motor-Level Primitives . 17

2.5.2 Learning Task-Level Primitives . 18

2.5.3 Discovering and Locating Primitives in Observed Data 19

v

2.6 The Use of Primitives in Reinforcement Learning 20

2.6.1 Primitives in Larger State Space Environments 21

2.6.2 Using Observed Information . 22

2.7 The Use of Primitives in Computer Graphics . 23

CHAPTER III TESTBEDS . 25

3.1 Air Hockey . 25

3.1.1 Software Air Hockey . 25

3.1.2 Hardware Air Hockey . 26

3.1.3 Positioning the Humanoid Robot . 31

3.2 Marble Maze . 34

CHAPTER IV OBSERVING THE TASK: PRIMITIVE RECOGNITION 36

4.1 Air Hockey Primitive Recognition . 36

4.1.1 Retrieving Information from the Observed Data 39

4.1.2 Creating Primitive Observation Databases 41

4.2 Marble Maze Primitive Recognition . 43

4.2.1 Retrieving Information from the Observed Data 44

4.2.2 Creating Multiple Data Points for the Same Observed Primitive Performance 46

4.2.3 Observing the Task Performed on the Hardware Implementation 46

4.2.4 Results of Recognizing Marble Maze Primitives 47

CHAPTER V LEARNING ONLY FROM OBSERVING 51

5.0.5 Choosing a Primitive to Use and Generating Subgoals 52

5.0.6 Performing the Primitive . 53

5.1 Air Hockey . 54

5.1.1 Primitive Selection and Subgoal Generation 55

5.1.2 Generating Actions . 58

5.1.3 Making the Most of the Observed Data 59

5.2 Air Hockey Shot Action Generation . 60

5.2.1 Learning the Puck MotionModel . 61

5.2.2 Learning the ImpactModel . 62

5.2.3 The RobotModel . 63

vi

5.2.4 Model Learning in the Simulator . 64

5.2.5 Hardware Air Hockey Performance . 65

5.3 Marble Maze . 65

5.3.1 Choosing the Primitive Type . 68

5.3.2 Computing the Desired Subgoal . 70

5.3.3 Generating Actions . 70

5.3.4 Marble Maze Performance Evaluation 77

5.3.5 Results of Learning from Observation 78

5.4 The Usefulness and Limitations of Only Observing Others 85

CHAPTER VI INCREASING PERFORMANCE THROUGH PRACTICE 87

6.1 Learning to Select Primitives and Parameters . 87

6.1.1 Associating Multipliers With Data Points 89

6.1.2 Using the Multipliers When Selecting Primitives and Generating Subgoals 90

6.1.3 Updating Multiplier Values . 91

6.1.4 Encoding the Q-values in a Function Approximator 92

6.1.5 Results of Learning to Select Primitives and Parameters in the Marble

Maze . 94

6.1.6 Parameter Analysis . 109

6.2 Learning to Perform Primitives . 112

6.2.1 Action Learning in Physical Air Hockey 113

CHAPTER VII DISCUSSION . 120

7.1 Why Does the Framework Look the Way it Does? 120

7.1.1 Combining Primitive Type and Parameter Selection 120

7.1.2 Combining Subgoal Generation and Primitive Execution 121

7.2 Primitive Design Considerations . 121

7.3 Perceptual Learning . 122

7.4 Framework Limitations . 124

7.4.1 Reinforcement Learning Comparison . 124

7.4.2 Framework Discussion . 130

CHAPTER VIIISUMMARY . 132

8.1 Future Directions . 132

vii

8.2 Contributions . 135

REFERENCES . 137

viii

LIST OF TABLES

Table 1 Twenty datapoints in the primitive database. 48

Table 2 Summary of primitive type initialization and end reasons. 72

ix

LIST OF FIGURES

Figure 1 The software air hockey game on the left and playing air hockey with a humanoid

robot on the right. 2

Figure 2 The virtual marble maze game on the left modeled after the hardware version on

the right. The maze on the right has motors and sensors to control the board tilt

angles and a vision system to observe the position of the marble. 2

Figure 3 Framework for conducting research in learning from observation using primitives. 7

Figure 4 The virtual air hockey environment. The disc-shaped object near the centerline is

a puck that slides on the table and bounces off the sides, and the other two disc

shaped objects are the paddles. The virtual player controls the far paddle, and a

human player controls the closer paddle by moving the mouse. The object of the

game is to score points by making the puck hit the opposite goal (the purple/light

area at the ends of the board). 26

Figure 5 Playing air hockey with humanoid robot DB. 27

Figure 6 The head of the human robot contains two "eyes" each made up of a wide angle

and narrow angle camera on pan-tilt mechanisms. The robot uses one wide angle

camera for playing air hockey. 28

Figure 7 The view from the robot’s eyes with the tracked objects marked. The puck is

totally occluded in the right image. The right image is also blurred due to the

movement of the robot. 29

Figure 8 The left graph shows the raw vision cordinates (pixels) of four objects placed at

known locations and the moving puck. On the right is the computed position

(meters) of the puck based on the information shown on the left. The circled

segments are where the vision system lost track of the puck for several samples. 30

Figure 9 The six given configurations of the robot used to compute all enclosed configura-

tions. 32

Figure 10 An example of using four given corner configurations to compute a configuration

within the polygon. 33

Figure 11 The virtual marble maze game on the left modeled after the hardware version on

the right. The maze on the right has motors and sensors to control the board tilt

angles and a vision system to observe the position of the marble. 34

Figure 12 The primitive recognition module segments the observed data and formats it as

needed for the other modules. 37

Figure 13 The software air hockey game on the left and air hockey playing with a humanoid

robot on the right. 37

Figure 14 Three hit primitives being performed by the virtual player: right bank, straight,

and left bank. 38

x

Figure 15 Raw data collected while observing a human making shots in the air hockey en-

vironment. The left figure shows the data plotted in two dimensions (meters).

The right figure shows the data plotted against time. Collisions with the puck can

be easily seen in this figure. 39

Figure 16 Information recorded in the fast-puck database when a shot is observed. 42

Figure 17 Software and hardware marble maze environments. 43

Figure 18 Primitives being explored in the marble maze environment. 44

Figure 19 Creating Roll to Corner primitive datapoints from the observed data. 46

Figure 20 Left: Path of the marble collected while observing a human teacher. Right: The

processed path with the thick line representing a marble-wall contact. 47

Figure 21 Results of recognizing the primitives performed by a human teacher. 49

Figure 22 Three observed games played by a human teacher. 50

Figure 23 Robots use the primitive selection, subgoal generation, and action generation

modules to perform the task in the same way as observed teacher. 52

Figure 24 Actions taken by a robot while operating in the air hockey environment. 56

Figure 25 The information returned by the fast-puck database. 58

Figure 26 Bank shot and straight shot coordinate frames. 59

Figure 27 The transformations involved in action generation. 60

Figure 28 The Robot model used to control the movement of the paddle. 63

Figure 29 This graph shows the absolute error in reaching the target location during 200

straight shots made by the robot in the software air hockey environment. The

solid (top blue) line shows the result of the robot making 200 shots using the

LWPR model trained from observing 44 straight shots performed by the human.

The dotted (bottom red) line is the result of an robot making straight shots using

an exact model of the environment. The graph shows the running average of 5

shots. 64

Figure 30 The paths of the puck and paddles during three 2-second intervals of game play

with a humanoid robot (left) and a human (right). The "°" symbol denotes the

start of the path and the "¤" denotes the end of the path. 66

Figure 31 The position of objects in air hockey plotted against time. The top graph shows

the y position of all objects on the same graph. The bottom three graphs show

the x position of the objects during the same time. 67

Figure 32 Primitives recognized from observing the task performed by a teacher. 68

Figure 33 Using observed information to create a database that encodes the actions taken

while maneuvering the marble along a wall. 74

Figure 34 Using observed information to create a database that encodes the actions taken

while guiding the marble. 75

xi

Figure 35 The error of the roll along wall LWPR in obtaining the desired subgoal velocity

as it is initiallized with more training data. 77

Figure 36 The path of the marble in the hardware marble maze during 30 consecutive games

played by the robot using only observed data. Each board shows 5 paths. 79

Figure 37 Two of the four paths presented in Section 4.2.4 taken by a human while perform-

ing the hardware marble maze task. 80

Figure 38 The primitives selected by a robot while traversing the hardware marble maze.

The solid line connects the lookup point with the desired subgoal. The dotted

line is the path of the marble while the displayed primitives were selected. 82

Figure 39 The primitives selected by the robot while manuvering the marble from the start

to goal location. 83

Figure 40 Software marble maze results during five runs. Left: The total number of failures

while making 300 meter runs. Right: The average time to complete the maze

during runs of 5000 seconds. 85

Figure 41 Choosing a Roll Off Wall primitive from various nearby locations. 88

Figure 42 One dimensional example of associating multipliers with data points. The mul-

tipliers are initialized to 1.0, top figure. Then the multiplier for P1 is changed to

reflect the effect of using this point in query QP1, bottom figure. 90

Figure 43 Top: The 3 observed games played by the human teacher. Middle: Performance

on 10 games based on learning from observation using the 3 training games. The

maze was successfully completed 5 times, and the red circles mark where the

ball fell into the holes. Bottom: Performance on consecutive 10 games based on

learning from practice after 30 practice games. There were no failures. 96

Figure 44 Raw game times of a robot performing 200 trials in the software marble maze

environment using only observed information (left) and given the ability to learn

through practice (right). 97

Figure 45 Failures made by a robot performing 200 trials in the software marble maze en-

vironment using only observed information (left) and given the ability to learn

through practice (right). 98

Figure 46 The performance of the robot during five 5,000 second runs using only observed

information, solid (blue) line, and five 5,000 second runs with the ability to

change its primitive selection and sub-goal generation policy, dotted (red) line.

Left: number of goals made per second over time. Right: total number of goals

made over time. 98

Figure 47 Failures made by the robot during five runs using only observed information,

solid (blue) line, and five runs with the ability to change its primitive selection

and sub-goal generation policy, dotted (red) line. Left: number of failures made

per game over the course of 200 games. Right: total number of failures over 300

meters runs. 99

xii

Figure 48 Comparing the performance of a robot encoding the Q value in tables, dashed

(red) line, and encoding the Q value in LWPR models, solid (blue) line. Left:

failures made during 300 meter runs. Right: goal per second during 5,000 second

runs. 100

Figure 49 Observing one to five games while not learning from practice (left), learning from

practice using tables (middle), and using LWPRs (right). 101

Figure 50 Primitives chosen by a robot while performing the software marble maze task.

This robot is not learning while practicing. The gray line shows the path of the

marble during this game. The solid line connects the primitive start location, "o",

to its associated sub-goal location, "×". 103

Figure 51 Primitives chosen by a robot while performing the software marble maze task

after the robot has practiced by playing 100 games. The gray line shows the

path of the marble during this game. The solid line connects the primitive start

location, "o", to its associated sub-goal location, "×". 104

Figure 52 Testing the LWPR model associated with an observed primitive data point. . . . 105

Figure 53 Activations of an LWPR model. 106

Figure 54 The Q-values returned when quering the LWPR model in the testing area and

associated with the data point shown in Figure 52. 107

Figure 55 The multipliers computed for the Q-values shown in Figure 54. 108

Figure 56 Changing the weight on the marble position dimension. 110

Figure 57 Changing the weight on the marble velocity dimension. 110

Figure 58 Changing the weight on the board angle dimension. 110

Figure 59 Varying the value of α in the kernel function. 111

Figure 60 Changing the number of data points that are used in computing the subgoal. . . . 111

Figure 61 The models involved in action generation: puck motion, impact, and robot. . . . 112

Figure 62 This graph shows the magnitude of the error in reaching the target location during

500 straight shots made by the robot in simulated air hockey. The solid line shows

the result of the robot making 200 shots using the LWPR model trained from

observing 44 straight shots performed by the human. It then observes 100 of its

own shots while practicing and adds that information to the LWPR model. The

dotted line is the result of a robot making straight shots using an exact model of

the task. The graph shows the running average of 5 shots. 113

Figure 63 The robot model used to control the humanoid robot and errors in placing the

paddle due to exceeding the design limits of the robot. 114

Figure 64 The errors in making three similar hit maneuvers. 116

xiii

Figure 65 The lines (blue) with the boxes on them in these graphs show the path of the

paddle during shot maneuvers. The lines (red) with the circles on them are the

desired trajectories. The three graphs show the same shot maneuver being made

using a trained LWPR model. 118

Figure 66 The updated robot model with the ability to learn from observing its own behavior. 119

Figure 67 The performance of a robot using direct Q-learning. 125

Figure 68 The number of cells created by the direct Q learning robot while performing the

marble maze task. 126

Figure 69 The performance of a robot using direct Q-learning (DIRECT) with and without

observation and robots using primitives (PRIMITIVES and PRIMITIVES2). . . 127

Figure 70 A comparison of the PRIMITIVES robot with the PRIMITIVES2 robot, a PRIM-

ITIVES robot that has been modified to operate as close to the Q learning robot

as possible. 129

xiv

CHAPTER I

INTRODUCTION

For God so loved the world that he gave his one and only Son, that whoever believes

in him shall not perish but have eternal life.

- John 3:16 (NIV) [96]

This thesis presents a method for using observation data and the knowledge of primitives to

increase the learning rate of robots that operate in large and continuous environment state spaces

in simulation and in the real world. The research presented in this thesis addresses many of the

difficulties/challenges that arise when implementing real-world systems that learn from observation

and practice using primitives. How to represent the learned information, what primitive should be

performed in a given situation, and how to perform the primitive are examples of the challenges that

are addressed in this thesis. At least one possible solution is provided for each of the difficulties

presented and various alternative solutions are also discussed. The complexity of the solutions range

from the simple solution of having the human specify what is needed to the more complex solution

of having the robot learn about the information while it operates in the environment.

A significant challenge for robots operating in dynamic environments is choosing subgoals that

lead to the overall task objective. Within this research, the robots initially learn about subgoal in-

formation using a combination of specified and observed information. But because the environment

space is large and continuous, it may not be possible to learn all the information needed from only

a few observations. Therefore the robots will need to have the ability to also learn what are good

and bad subgoals as they operate in the environment. This thesis presents a novel algorithm that

combines locally weighted learning and reinforcement learning techniques that allow the robot to

change its action selection and subgoal generation behavior as it performs the task.

Virtual and hardware environments of air hockey, Figure 1, and the marble maze game, Figure

2, have been designed as testbeds in which to conduct this research. The implementations of our

learning system highlight the challenges of creating robotic systems that will learn from observation

and practice. The air hockey and marble maze domains have been chosen for a variety of reasons.

1

Figure 1: The software air hockey game on the left and playing air hockey with a humanoid robot

on the right.

Figure 2: The virtual marble maze game on the left modeled after the hardware version on the right.

The maze on the right has motors and sensors to control the board tilt angles and a vision system to

observe the position of the marble.

2

First, virtual implementations of these domains could be created that allow a human player to oper-

ate in the environment using a mouse. These virtual implementations provide a useful environment

for initial testing. Second, hardware implementations that would allow a robot to operate in the en-

vironment can be created in many ways that will fit within a lab environment. Additionally, because

the playing areas are two dimensional, sensing and moving is simplified.

The domains also provide different conditions under which to evaluate this research. Air hockey

is a very dynamic environment where the puck is almost always moving. It is fast, requiring rapid

perception, thinking, and movements. It is demanding, requiring considerable movement accu-

racy. Perceptual and movement time delays, board placement and leveling, varying board surface

conditions and friction, air flow, temperature effects, and actuator dynamics all make air hockey a

complex domain. There are disturbances, modeling errors, and an adversary, so there is much to

learn. Air hockey is closely related to racquet sports such as ping-pong and tennis, as well as other

interactive games such as playing catch. We believe that our approach to air hockey can generalize

to a wide range of intermittent dynamic tasks.

Marble maze, on the other hand, is a single player game and is therefore fairly constant from

game to game. Once a robust policy has been created, it can always be used to solve that maze. The

robot in the marble maze can also practice the task by itself without the need for an opponent. Within

the maze environment there is also the concept of a local environment state space representation.

This may be used to provide a robot with the ability to play in mazes that it has not previously seen.

The air hockey task is also being explored by Spong and colleagues [23, 97, 99]. Bishop et al.

discuss difficulties, such as table position errors and specifying a puck movement model, that our

learning and adaptation models try to overcome. Whereas the research of Spong et al. [23] provides

insight into the physical interactions of air hockey, our research seeks methods for humanoid robots

to quickly learn task strategies and environment models through observation and practice. The

marble maze task is similar to parts orientation using tray tilting [39].

1.1 Primitives

Robots typically must generate commands to all their actuators at regular intervals. The analog

controllers for our 30-degree of freedom humanoid robot are given desired torques for each joint at

3

420Hz. Thus, a task with a one second duration is parameterized with 30∗420 = 12600 parameters.

Learning in this high dimensional space can be quite slow or can fail totally. Random search in such

a space is not possible. Because robot movements take place in real time, learning approaches

that require more than hundreds of practice movements are often not feasible. Special purpose

techniques have been developed to deal with this problem, such as trajectory learning [6], learning

from observation [11, 12, 48, 70, 13, 37, 50, 56], postural primitives [132], and other techniques

that decompose complex tasks or movements into smaller parts [7, 20, 81].

This research explores the use of primitives to reduce the dimensionality of the learning prob-

lem [7, 116]. Primitives are units of behavior above the level of motor or muscle commands. There

have been many proposals for such units of behavior in neuroscience, psychology, robotics, artificial

intelligence, and machine learning [7, 116, 107, 18]. There is a great deal of evidence that biolog-

ical systems have units of behavior above the level of activating individual motor neurons, and that

the organization of the brain reflects those units of behavior. We know that in human eye movement,

for example, there are only a few types of movements including saccades, smooth pursuit, VOR,

OKN, and vergence, that more complex eye movements are generated as sequences of these be-

havioral units, and that there are distinct brain regions dedicated to generating and controlling each

type of eye movement. We know that there are discrete locomotion patterns, or gaits, for animals

with legs. Whether there are corresponding units of behavior for upper limb movement in humans

and other primates is not yet clear. There is evidence from neuroscience and brain imaging that

there are distinct areas of the brain for different types of movements. Developing a computational

theory that explains the roles of primitives in generating behavior and learning is an important step

towards understanding how biological systems generate behavior and learn. This thesis represents a

small step towards that goal by presenting implementations that must handle many of the challenges

involved when using primitives to perform a task.

1.2 Challenges with Using Primitives

This section outlines many of the challenges/difficulties involved with using primitives in systems

that learn from observation and practice and the research articles referenced in this section provide

examples of the methods by which the challenges are being handled. These challenges are further

4

explored in Chapter 2, Related Research.

A task that is to be performed using primitives must first be decomposed into a set of primitives

that includes all the actions needed to perform the task. This challenge can be dealt with by

having a human task expert define the set of primitives [108] or have the robot discover primitives

automatically after observing a performance of the task [43] or operating in the task environment

[84]. Once a set of primitives is defined, the robot must have a way to learn how to perform them.

Some research deals with this challenge by explicitly programming the primitive performance policy

into the robot [27] or having the robot learn the policy using learning techniques [1]. Information

obtained while observing an expert performer has been used to reduce the time needed by a robot

to learn the performance of a primitive [115]. Given a set of primitives and a task, the robot must

decide which primitive to perform at any given time. This selection process has been accomplished

by a human specifying the sequence of primitive types to be performed [81], using a planning system

[127], or having the robot learn the sequence from observed data [70]. Choosing a primitive from

among a small set sounds like a simple procedure. But almost all primitives have parameters such

as speed of execution and desired ending state [134]. These parameters can also have continuous

values and therefore can be difficult to select or learn through trial and error [74]. These low-level

challenges are part of a higher level question about the amount of prior knowledge that should be

provided to the robot [108].

The advantages of using primitives includes the ability for them to be used multiple times while

performing a task and to also use primitives learned in one task in the performance of similar tasks.

Therefore another challenge is how to represent primitives in a general way so that they may be

used many times in the designed task and also be able to be used in other tasks [36].

Learning can occur at many levels when learning through practice using primitives. Among

the items that can be learned while operating in the task environment are the primitive type which

should be performed [14], the parameters to use with the chosen primitive [100], and the primitive

execution policy [76]. The related research shows many methods that can be used to learn each of

these items and a challenge is how to choose a method that works best to learn this information.

If the robot learns all the information simultaneously while operating in the environment it may be

that as its primitive policy improves, the parameters that were learned no longer lead to success

5

and therefore new parameters need to be learned. Due to the increase in skill of performing this

primitive, it may now be more appropriate to use it in a situation where a different primitive type

is being used. Therefore the robot must have a method to know it should try this more skillful

primitive type even though it may have failed in the past [108].

When using observed data to learn a task other challenges are introduced. From all the infor-

mation that the robot is presented with, it must choose what is relevant for learning the task [61].

The observed data must also be segmented into primitives if it is to learn such things as primi-

tive sequence performance, primitive execution policy, or primitive parameters from the observed

data. Segmenting and learning relevant features to observe can be accomplished in many ways.

Explicitly providing only the pre-segmented information [33], specifying conditions that represent

segmentation points [87, 68], and using hidden Markov models [52] are some of the methods that

have been explored in the literature. The job of the observation processing algorithms is further

hampered due to the variability in which a person performs the actions.

1.3 Strategy for Primitive Use

Figure 3 shows the framework in which this research has been performed. The framework is briefly

presented in this section and the details of the algorithms used within each of the modules are fully

explained in Chapters 4, 5, and 6. The algorithms presented in this thesis are just one possible set

that fulfill the requirements of the modules within the framework. One of our main concerns when

choosing the algorithms was the ability of each of the algorithms to learn from observation data and

also learn through practice. Robots that use this framework are first given the ability to observe the

task.

1.3.1 Perceiving the Primitive

In the research presented in this thesis, a human, using domain knowledge, designs the candidate

primitives that are to be explored. The primitive recognition module uses the domain knowledge to

segment the observed behavior into the chosen primitives. This module extracts the context or state

in which the human has performed each primitive and formats the segmented data so that it can be

used as training data for the primitive selection, subgoal generation, and action generation modules.

6

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Figure 3: Framework for conducting research in learning from observation using primitives.

In our implementation, the observed primitive executions are stored in a way that encodes the state

of the environment at the time the primitive was performed, the primitive type that was performed,

and the outcome of performing that primitive.

1.3.2 Choosing a Primitive to Use and Associated Parameters

The primitive selection module chooses the primitive type based on the current state and prior

observations of primitives that have been executed. The desired outcome, or goal, of the primitive

to be performed is specified by the subgoal generation module. This module also uses the formatted

data from the primitive recognition module to compute the subgoal.

1.3.3 Performing the Primitive

The action generation module provides the actuator commands needed to execute the chosen prim-

itive type to move the environment to the computed subgoal state. There is a different action

generation module for each primitive type. The policy used within the action generation module

can be local and therefore can be used at multiple locations within the task domain and, if properly

formatted, can also be used in similar domains.

7

1.3.4 Learning From Practice

After the robot has obtained initial training from observing human performance, it should then

increase its skill at the task through practice. Up to this point the robot’s only high-level goal

is to perform like the teacher and it has not received any feedback on its performance. Its only

encoding of the goal is in the implicit encoding in the observed primitives performed. The learning

from execution module contains the information needed to evaluate the performance of each of

the modules toward obtaining a high-level task objective. This information is used to update the

modules and improve performance.

1.3.5 Learning From Observation Versus Coaching

In this research the player being observed is referred to by various names such as the observed

human or teacher. This research focuses on learning from normal task performances and it is

not necessarily the observed player’s responsibility to perform in a way that will make it easy for

an observer to learn the task from their performance. Therefore the player being observed may

not perform any differently because they are being observed. In other learning from observation

research, such as coaching, the teacher may perform in particular ways to provide feedback or to

stress important characteristics of the task to the student [105, 93].

1.4 Locally Weighted Learning

This research makes extensive use of locally weighted learning (LWL) techniques as described in

[10]. We have found that these techniques work very well with observed information. With these

techniques new data can be added easily and the new information is available for use immediately

without having to train the model on the new information off-line. This research also uses more

advanced locally weighted learning techniques such as Locally Weighted Projection Regression

(LWPR) [129], to represent learned models. With most locally weighted learning methods each data

point added to the model increases the time needed to compute a solution, but LWPR maintains a

reasonably constant lookup time so data may continuously be added. LWPR is a nonparametric

local learning system that uses locally linear models, spanned by a small number of univariate

regressions in selected directions in the input space. LWPR has proved its usefulness in such tasks

8

as inverse-dynamics learning [113] and inverse kinematics learning [130].

1.5 Thesis Layout and Terminology

After related research is presented in Chapter 2, the testbeds are fully described in Chapter 3. How

the information is retrieved from observing the task and formatted for use in the "Learning from

Observation using Primitives" framework is shown in Chapter 4. Chapter 5 shows how that infor-

mation is used by the framework to give robots the ability to operate in the environment. The results

of robots that have learned to perform using only the observed information are shown. Chapter 6

presents methods that the robots use to improve performance through practice. By end of Chapter 6

the reader should have a firm understanding of the framework details and challenges that the frame-

work must deal with. A discussion of the framework details is presented in Chapter 7 along with a

comparison of our learning method with a direct reinforcement learning approach. A summary and

future directions are given in Chapter 8.

Within this thesis the term goal and subgoal are used many times and sometimes interchange-

ably. The term goal refers to the desired outcome of performing a task. For example, the goal of

the marble maze task is to have the marble at the end location. But the term goal can also refer

to the desired outcome of performing a single action. For example, the goal of tilting the marble

maze board may be to move the marble to a corner location. Therefore the goal of the marble

maze task consists of many smaller goals such as moving the marble to a position closer the end

location. Within this thesis, these smaller goals are referred to as subgoals when we want to clearly

distinguish them from the goal of the task. It is assumed that when the goal of the task has been

obtained, the task ends or the environment is reset to a predetermined configuration before the task

resumes. But when a subgoal has been completed, there will be a new subgoal to work on that will

lead to the task goal.

Because this research is being performed on hardware and in simulation, the term "robot" refers

to the set of algorithms that control both the robots in the real-world and the robots in the simulation

environments.

9

CHAPTER II

RELATED RESEARCH

"Dear friends, since God so loved us, we also ought to love one another."

- 1 John 4:11 (NIV) [96]

Primitives are used in many fields. A math operator in MATLAB [82] and a grasp used by a

robot hand to manipulate an object [85, 90] are examples of primitives. This section does not seek

to present primitives used in all possible fields but instead discusses dynamic primitives used in

the research of robotics, graphics, and reinforcement learning. Research in these areas seek to use

primitives to make the overall task easier to learn or perform. The related research presented in this

section shows methods that have been used to deal with some of the challenges that are introduced

when using primitives in various domains.

2.1 An Early Use of Primitives in Robotics

In 1969 the Stanford Research Institute created a robot called Shakey to investigate the use of

logic-based problem solving [94]. Shakey’s environment consisted of various rooms and boxes

of different sizes and colors. Shakey was given the task to find a box of a given size, shape and

color and move the box to a designated position. Shakey used STRIPS to create a plan to perform

the task [42]. The actions that Shakey can take are described by the operators (primitives) of the

STRIPS system. Go to an object and push open a door are examples of operators. The operators

have preconditions and expected post conditions. For example a precondition to push open a door

would be to be near the door and the expected post condition would be that the door is open. An

improvement to the basic STRIPS system was the addition of MACROPS that provided a way to

generalize a sequence of primitives so that parts of the plan could be reused [41]. Sacerdoti created

a hierarchical framework for STRIPS called ABSTRIPS [110]. His goal was to decrease the search

space by ignoring the details in the first attempt at a solution. Criticality values were assigned to

the details and determined which details were ignored at each level. After a plan was created at

10

the top level, some details were added iteratively and a search found primitives to fill in the those

details.

2.2 The Use of Primitives in Robot Assembly Tasks

One of the major costs of assembly robots is programming the robot. In an attempt to reduce that

cost, methods such as direct teaching [8] and robot-level textual programming [47] have been ex-

plored. Although the assembly environment is generally highly structured, inaccuracies and changes

can cause errors. The increasing availability of sophisticated sensor systems has allowed for the de-

velopment of robots that can adapt to such inaccuracies.

Many frameworks have been created that break a task up into subtasks [89, 119, 126]. These

frameworks seek to map the robot actions to a symbolic level that is more intuitive and therefore

makes it easier for the human to instruct the robot. Within these frameworks a task can be specified

by a list of subtasks, also called task-level primitives. Once a subtask is learned by the robot, it

can be reused. The programming is performed at the task level and the low level actions of the

robot, once programmed or learned, can be ignored. Instructing a robot using these frameworks

can be performed by task experts with little training in robot programming. The use of vision and

force-based sensorimotor primitives has been demonstrated in assembly tasks [91]. The sequence

of skills to perform in a task and the skills themselves are defined and programmed by a human.

It is also possible to use primitives in a planning system and have the robot automatically plan the

primitive execution sequence to complete the task [125].

2.3 Using Observations

Humans can usually increase their skill after observing an expert perform a task. A flexible method

for robot programing would be to have the robot learn from observation in a similar way. Data

collected from observing a task expert can be used to decrease the learning time of the robot by

providing knowledge of how to perform a primitive and the sequence of primitives needed. Ro-

bots learning how to perform primitives using observation are typically presented with data that is

observed only during the execution of the primitive. In other words, a human segments the data

before it is used for learning. Systems that learn primitives and primitive execution sequences from

11

continuous observation data must have the ability to automatically segment the observed data into

primitives [71, 68].

2.3.1 Using Observed Information to Learn Primitive Execution Policies

The robot could be guided through the task with a teach pendant, joystick or dataglove [127], or ob-

serve the task using a vision system [21]. When learning an execution policy from the demonstration

the robot is not just learning a trajectory that it will play back, but is learning how to map its sensor

information to appropriate actions [11]. Delson and West [33] present an approach that allows a ro-

bot to learn an acceptable range of robot force and motion trajectories from human demonstrations

using a teaching gripper. The human guides the robot through the task a number of times while

introducing variations in the work space. In the case of unconstrained movement in the presence of

stationary objects, the region within the observed trajectories is considered to be obstacle free and a

smooth trajectory within this range is created [32].

The research of Kaiser et al. [62] addresses various issues in learning a single primitive execu-

tion policy from a human demonstration. They present methods to help identify the relevant per-

ception and action components and a method to remove incorrect motions from the observed data.

Their research also addresses the need for the robot to learn from practice after the initial training

phase and discusses the use of radial-basis functions and reinforcement learning as a framework

in which to achieve this [122]. Their approach was demonstrated on a robot that learned a peg

insertion and an opening door primitive from data collected when a human guided the robot.

2.3.2 Using Observation Information to Learn a Primitive Execution Sequence

Once a robot has acquired a set of primitives, it can also use the observed information to learn the

sequence of primitive types and parameters needed to complete a task. Kang [66] showed that it is

possible for a robot to use information collected using a light-stripe rangefinder and a CyberGlove

with a Polhemus device to produce a subtask description of a manipulation task and then use that

description to execute the task. Kang [67] used a grasp abstraction hierarchy as a structure to

represent and identify grasp configurations. Kuniyoshi et al. [70] present a system that learns task

performance information using only a vision system in a block assembly task.

12

2.4 Mobile Robots

Assembly robots are mostly configured to be stationary and another class of robots that can be

considered is robots that have the ability to move around autonomously in the environment. These

robots, called mobile robots, may have special sensors or manipulators on them that allow them

to interact with the environment. Robots with these abilities are quickly proving their usefulness.

The Mars Pathfinder [86] and the Mars rovers Spirit and Opportunity [78] successfully navigated

and conducted scientific samplings on the Martian surface where, due to the communications time

delay, it was difficult to teleoperate. The use of these robots in rescue missions during disasters is

being explored [92, 31] and Blackburn et al. [24] report on the lessons learned from deploying a

mobile robot in the search and rescue efforts following the 11 September 2001 terrorist attack upon

the World Trade Center in New York City.

Mobile robots obtain information from the environment through the use of their sensors. Just

like other autonomous systems, they must map the sensor reading to an action. Given that the robot

may contain many sensors and that the sensor data may be continuous, deciding on an action to

take for every possible combination of sensor readings is difficult. Providing robots with primitives

greatly aids in the programming of the robot because it limits the possible state-action pairs that

need to be considered and provides a higher-level description of the task that needs to be performed

[120].

2.4.1 Mobile Robot Architectures that Use Primitives

In the motor schema architecture, robot primitives are referred to as motor schema behaviors [7]. A

behavior maps significant sensor readings to motor actions for a specific function. Motor schemas

run in parallel and output a vector that represents the direction and speed command for the robot.

The motor schema outputs are combined to produce the motor command and can have parameters

that affect its operation. An avoid obstacle behavior, for example, contains a parameter that controls

the sphere of influence of a sensed object and a gain parameter that controls the output vector

size. By varying these parameters, the behavior a robot exhibits to sensed obstacles varies. In

this architecture there are also perceptual schemas that provide high level specific environment

information modeled as action-oriented perception [3, 16, 131].

13

Another widely used mobile robot architecture is the subsumption architecture in which robot

primitives, called behaviors, are organized in layers as augmented finite state machines (AFSM)

[27]. Each behavior has a small task and its own policy to map sensor readings to actions. An

AFSM is given only the sensor information that is needed to perform its function. The behaviors

are organized in layers and have the ability to suppress sensor readings to, and inhibit motor com-

mands from, other AFSMs. Unlike the motor schema architecture in which active schema outputs

are combined, only one behavior has control of the robot at any instant in the subsumption archi-

tecture. Neigher architectures contains a world model. Genghis is a six legged robot which walks

using the subsumption architecture [28]. Various other robots that have been programmed using the

subsumption architecture [26].

2.4.2 Learning Behavior

The parameters in motor schemas increase their flexibility. The parameter setting of the avoid ob-

stacle discussed above, for example, might determine if the robot can squeeze through two objects

or must find a way around them. Due to the wide variety of possible environments the robot may

operate in and the fact that there may be a large number of parameters which are continuous and

may affect each other, selecting a desirable set of parameters for a given environment is not an easy

task. If the environment is not fully known, the parameters chosen can only be a guess for what

is needed for the robot to succeed in the environment. Robots with the ability to adjust and learn

these parameters can adapt to variations in the environment. One way for the robot to change pa-

rameters is for it to continually evaluate its progress and make parameter adjustments based on its

self evaluation [30]. This enhancement creates more parameters, in the form of adjustment parame-

ters, which control the amount of change that should be made for an evaluation result. Research is

being conducted to store these parameters that will be recalled when the environment matches the

situation [103, 74]. Ongoing research is exploring this method on hardware robots as a fully inte-

grated component [73]. Genetic algorithms have also been used to learn parameters for a specified

environment to give robots an ”ecological niche” for similar environments [100].

The motor schema architecture offers lots of flexibility in the combining and selection of active

behaviors. An example of this flexibility can be seen in a team of robots that were given the task

14

of collecting trash, in the form of soda cans, and depositing them to a pre-specified location [15].

There were nine behaviors arranged as a finite state machine with perceptual triggers to switch

between the states. The states represent a configuration of behaviors that perform a task such as

move to trash. These groups of behaviors are known as assemblages. In the trash collecting task,

all parameters, gains, and state transition conditions were selected prior to the robot’s operation and

remained constant throughout the task. Balch presents a method that uses reinforcement learning to

learn the appropriate sequence of assemblages for a perceived situation [14].

In all of the previously discussed mobile robot research, the primitives are designed and con-

structed by a human. The work of Mahadevan and Connell is a step toward developing learning

algorithms that allow a robot to learn new behaviors in an initially unknown environment [77].

They explore the usability of reinforcement learning to learn the behaviors of a subsumption style

architecture and demonstrate the performance of the algorithms in a robot box pushing environ-

ment. Each behavioral module evaluates the state of the environment and decides if the behavior

is applicable. The behavioral modules use reinforcement learning and are given a reward function

that guides their behavior and the conditions under which each module is applicable. The priority

of each module in the overall task is also specified.

Methods are also being developed that allow mobile robots to learn primitive execution policies

from observation data. The behaviors of approach object and stop and exit by the door [54], and

a tree tending skill [46] have been learned by a mobile robot after it was guided through the task

multiple times by a human using a joystick. If the observed training data includes bad examples, it

may need to be filtered before being presented to the robot for learning. This is process tedious and

is usually conducted by a human task expert. Larson and Voyles [72] are working on methods to

automatically select acceptable training data from the available data. They collected data as a human

controls a robot via a joystick in left wall following and hallway traversal behaviors. Robots that

performed the behavior using the filtered data performed better then those that used only the raw

data.

15

2.5 Using Primitives in Learning Skills on Robots with Many DOFs

This section focuses on research on robots that have many degrees of freedom (DOFs), may be

capable of performing a large number of tasks, and are specifically targeted for non-factory en-

vironments. Robonaut is an example of a high DOF robot that is being designed to perform a

large variety of tasks in a spacecraft environment [4]. Increased interest in autonomous robots with

forms that resemble dogs [136, 17] and humans [4, 9, 21, 45, 49, 65, 124, 104] has led to increased

research in high DOF robotic systems that operate in non-factory environments and interact with

humans. Autonomous legged robotic systems are increasingly being used in competition events

such as RoboCup soccer [75, 106]; that community has the goal of having a team of humanoid

robots play a game of soccer against the 2050 Worldcup champions and win [29].

Environments outside the factory are much more difficulty to programming robots for than

the controlled environment inside the factory. The group of tasks that an assembly robot will be

required to perform is usually limited and it is constructed with those tasks in mind. On the other

hand, the range of tasks that a general ability robot, such as a humanoid robot, may be called upon to

perform is much larger. Robots in the factory environment have limited interaction with humans and

the humans that they do interact with are skilled in the operation of the robot. Outside the factory,

robots will interact with a large variety of people with various skills. These difficulties have led to a

large amount of research into teaching these robots using learning from observation methods and/or

using primitives [13, 34, 37, 69, 112].

Primitives in these robotic systems are mostly being explored at two levels; task [1] and motor

[133, 114]. Task-level primitives are specialized to the task that needs to be performed and the

underlying hardware may or may not be taken into account. Motor-level primitives provide the

robot with basic movement skills and can be more general in that the primitive can be performed in a

variety of tasks. It is possible for task-level primitives to use motor-level primitives [2]. For example

in the primitive task of balancing a pole the task-level primitive would provide the movement

needed at the bottom of the pole to keep it upright. A motor primitive could then supply the robot

joint angles that would cause the robot to perform the desired movement.

16

2.5.1 Learning Motor-Level Primitives

Wolpert and Kawato [133] and Billard [22] were inspired by biology to create models for motor con-

trol. Wolpert and Kawato propose the use of multiple paired forward and inverse models (MPFIM).

Evidence has been shown for their existence in the human brain [57]. Each MPFIM contains an in-

verse model that can provide motor commands and a forward model of the environment that predicts

the next state of the environment after observing the current state and the given motor commands.

When the next state is observed a prediction error is generated for each MPFIM. The MPFIMs

that are selected to drive the system and the ones that will learn during the current movement are

based on the MPFIM’s prediction errors. Therefore motor primitive selection and execution policy

learning occur simultaneously.

Billard’s model is inspired by the discovery of the mirror neuron system in the premotor cortex

of monkeys [35]. These neurons become active during a specific movement and also when the

monkey observes a movement that is similar to that specific movement. The modules in Billard’s

model are named after parts of the brain and provide similar functions. This research seeks to use

neural networks as much as possible and a model was shown that learns arm trajectories from joint

angle data collected from a person while performing the trajectory [22]. The data is segmented by

observing the changes in direction and velocity of the joint angles. From this segmentation, speed

and direction of movement parameters can be obtained.

The motor primitives research of Dillmann et al. [38] and Schaal et al. [114] seeks to find move-

ment policies for specific types of movements. Rapid transfer movements (open loop trajectories)

and slow accurate motion (sensor-based skills) learned from observation are being explored by Dill-

mann et al. Their research presents a method to segment observation data into trajectory primitives

of a fuzzy nature where the observed trajectory may exhibit characteristics of two primitives that

slightly overlap. Dillmann also discusses the need to smooth the observed data and to observe a

minimum number of measurements to find trends in the data.

The research of Schaal et al. [114] also investigates the learning and use of two motor primitive

policies. One movement primitive is through a discrete dynamic system that creates point-to-point

movements based on internal or external specifications. The trajectory primitives are similar to

17

those of Dillmann but the learning method is inspired by data from neurobiology. The other type

of primitive being explored is a rhythmic system that can add an additional oscillatory movement

relative to the current position of the discrete system. This research addresses the need, and provides

a structure, to couple the actuators of a multi-joint system so they remain phase-locked and to

provide parameters to specify a certain rhythmic movement.

2.5.2 Learning Task-Level Primitives

The early work of Aboaf et al. [1] explored the use of task-level commands to increase a robot’s

performance at the 3D task of juggling a tennis ball. By restricting learning to the task level,

the degrees of freedom are greatly reduced. The underlying robot control policy is held constant

and the aim points are adjusted to overcome inaccuracies in the policy. A disadvantage of this

approach is that the information learned is specific to the task and cannot easily be used in other

tasks. This research identified other issues involved with task-level learning. In the system, the

modeling errors could not be adequately compensated for by providing a constant correction to the

task-level command. The authors chose the task-level variables to be adjusted on an ad hoc basis

but indicate that the modeling errors may depend on factors which are difficult to determine.

Kamon et al. [64] use primitives for grasping and evaluate the candidate grasp before it is used.

Their system uses a single vision image from which they derive a small number of object features.

The features are used to select a candidate grip from among grips that are learned off-line and stored

in a case like representation similar to those used with motor schemas [74]. Another module then

evaluates the probability of success of the selected grip on the observed object by using previous

performance knowledge. Grips are continually selected and evaluated until a threshold is reached

at which time the grip is actually performed. The success of the selected grip is then stored in the

knowledge base. This gives a robot working within this framework the ability to learn and increase

its skill while operating in the environment.

The tasks of swing up [11] and balancing [115] using an anthropomorphic robot arm were

explored by Atkeson and Schaal. This research uses human observation information to learn a para-

metric and non-parametric model of the environment. In the swing up task, the robot first follows

the trajectory performed by the human. The robot fails to perform the task whit it merely mimics

18

the movements of the human, but data collected during this attempt is used to update the model. A

trajectory optimization technique then uses the model to create a new trajectory using the human

trajectory as an initial guess. Using a parametric model the robot succeeded on the second try and

using a non-parametric model succeeded on the third iteration. Success is defined by swinging the

pendulum up with a final velocity small enough to be captured by the balancing primitive. The

research on the balancing primitive explores methods to use observed information with reinforce-

ment learning to map appropriate actions to perceived states. The observed information is used in a

variety of methods and Schaal [115] presents the usefulness of each.

2.5.3 Discovering and Locating Primitives in Observed Data

Some of the research presented on high DOF robots uses observation information to increase the

learning rate [11, 61] and therefore the continuous observation data must be segmented if it is to

be used in these systems. The research of Jenkin et al. [58] and Mori et al. [87] seek to segment

the observation data into known primitives. Jenkin’s research is part of a larger framework aimed

at using primitives in imitation learning [79]. They used a 2D vision system to segment observed

arm movements into line, arc, and circle primitive movements. The observed data is matched to a

set of primitive descriptions that where created previously using observed supervised data. Mori’s

research seeks to provide human action descriptions, such as walking, sitting, and jumping, in a

human like way. Their approach handles the case where an observed action simultaneously appears

to belong to more than one action set and the possibility that more than one action is simultaneously

being performed. A separate module is created for each action that judges if the input action is the

assigned action and the captured data can simultaneously be presented to each module. The modules

use a rule base and a fuzzy logic type system to create an output. The outputs of the modules are

then used to vote on the classification of the observed action.

Most approaches using primitives predefine the set of primitives in the environment but there

are a few methods that automatically discover primitive types in the observed data using predefined

segmentation rules or template matching. A module in Mataric’s imitation learning framework [79]

automatically derives arm movement primitives from collected motion capture data [43]. This re-

search addresses the fragility of choosing a proper segmentation of the data. The segmented data is

19

converted to a vector format and principle component analysis (PCA) is used to obtain the signifi-

cant dimensions. The data is then clustered via a k-means clustering algorithm where each cluster

represents a primitive type. Even though the research of Iba [55] seeks to classify movements so

that latter portions of a partially observed movement can be predicted, it also has the components

needed to generate abstract arm movement primitives from the observed joint data. The created

framework represents the movement as a sequence of joint parameters stored in nodes of a tree.

When observing a movement in joint space the algorithm seeks to match the movement to a previ-

ously stored movement. If the observed movement does not closely match a stored classification, a

new node is created with a new classification.

2.6 The Use of Primitives in Reinforcement Learning

Reinforcement Learning (RL) techniques were used in some of the previously presented research

as a tool. This section discusses research that explores issues of using primitives within the RL

framework. There is a significant amount of research in this area that seeks to reduce the state

space and problem complexity through the use of primitives. Whereas a majority of the previously

described research was conducted on actual robots, research in this area is mostly characterized

by block worlds and other simulation environments. Various RL frameworks have been created

that apply the concept of a primitive. Kaelbling [60] presented an RL algorithm that creates goal

achieving robots that learn policies to reach a goal. If a goal needs to be accomplished again later, the

robot immediately knows what actions to take because policies are saved. Kaelbling [59] extended

the use of this algorithm to a hierarchical structure. This research discusses the need for closed-loop

primitives instead of open-loop macro actions with no feedback, and the issue of obtaining sub-

optimal performance by using primitives. The primitives in this case were predefined by the goal

and the algorithms were tested in a 10x10 grid world.

The research of Singh [117] also uses predefined closed loop primitives that are represented as

abstract models. This research is conducted in an 8x8 grid world and addresses the issue of how

long an abstract model should be and how often backups should be performed. The primitives,

called variable time resolution models, are in an architecture called H-DYNA which is an extension

of Sutton’s DYNA architecture [121] and backups are performed on the non-controlling policies

20

whenever time is available. This allows primitive policies to be updated even if they are not directly

controlling the plant.

Dietterich [36] clearly separates the primitive’s control policy from the RL value function in

MAXQ decomposition architecture. The subtasks can have any control policy and, similar to the

primitives in Kaelbling’s research [60], are defined by the state they terminate in. The task is

configured as a graph of subtasks and low-level actions. This research explores running a chosen

primitive until it is complete without allowing it to be interrupted. A robot in a simulated 5x5 grid

world domain was switched to the single step primitive selection method after it learned a policy.

The robot’s reward per step initially decreased significantly and then increased to a value above that

of the method that did not interrupt the primitives.

2.6.1 Primitives in Larger State Space Environments

The architecture of Parr and Russell [98] is similar to that of Dietterich in separating the RL value

function from the primitive’s control policy and is conducted in an environment containing ap-

proximately 3600 states. The primitives, called machines, are predefined and operate with limited

actions and a partial description of the environment. Their approach uses RL to learn which ma-

chine should be chosen at predefined observation states, called choice points. A machine policy runs

until a choice point is observed at which time the reward and state value is observed and a backup

is performed. Huber’s research [53] seeks to create a hierarchal RL architecture for a continuous

state space. The research is conducted on a four legged robot that learned a policy for turning.

The policy was then reused in a higher-level, goal-seeking task conducted in simulation. The robot

in simulation outperformed other robots in simulation that did not contain prior knowledge of the

turning behavior.

The research of Sutton et al. [123] rigorously addresses many of the issues related to using

primitives in RL. Their framework contains temporally abstract primitives called options that allow a

robot operating in the environment to use an option policy or a low-level action. Because primitives

can lead to a suboptimal solution, this research evaluates the observed state after each action taken

by an option to determine if the option policy should be interrupted This approach is similar to that

of Dietterich [36] but the robot also has the ability to not use any option policy and instead resort to

21

using only low-level commands with the strict RL framework. They also explore the possibility of

improving the primitive policy by specifying subgoals and having the robot increase its performance

at obtaining those subgoals. The options presented are not general and can only be used in the state

space they were learned. The option’s policy and low-level actions are tightly coupled to the value

function in pure RL techniques and the learning progresses entirely unsupervised with no prior

information given to the robot.

Methods to automatically find primitives, called macro-actions, within the continuous state

space of a robot learning using RL is being explored by McGovern [83]. Instead of searching for

the primitives themselves, this research searches for subgoals in the state space that are then used

to create subgoal-seeking primitive policies. Subgoal states are identified by observing a peak in

the reward history and because the state space is continuous, k-means clustering is used to classify

the subgoals. McGovern and Barto [84] continued this research in the options framework discussed

above. They explore other methods to find subgoals and the need to have a system to add and delete

options.

2.6.2 Using Observed Information

The research of Schaal [115] presents a method in which data obtained from observing a pole

balancing task performance is used to create a model that can be used in the RL framework. In

this research, the movements of the robot directly affect the control of the pole and determine the

reward received. In similar research being conducted by Price and Boutilier [102, 101], the robots

are mobile robots given the task of moving to a goal location. In this domain, rewards are given

as a function of the state of the robot instead of the state of an external controlled object such as

the pole. This research is conducted in the context of homogeneous [102] and heterogeneous [101]

robots. The robots can only observe the resulting state of an action taken by another robot; they do

not know the action that was taken to produce that outcome. Price and Boutilier present methods

in which this information can be used to learn a value function or guide the robot towards relevant

areas of the state space. In the case of robots with similar abilities, the robot knows that it can also

make the observed state transition. But if the robots do not have the same abilities, the observing

robot must have a way to know if it is capable of making such a transition.

22

Ryan and Pendrith’s architecture combines RL and teleo-operators [19], based on Nilsson’s

teleo-reactive formalism [95], and makes use of both domain knowledge and observed information

[109]. The architecture is used by a robot that learns to fly an airplane in simulation [108]. Knowl-

edge from task experts is used to decompose the flying task into maneuvers that are composed of

simple behaviors. Because the primitives are defined by preconditions and post conditions, appro-

priate rewards are assigned based on whether the conditions are met. Data obtained from observing

expert pilots is also used to increase the learning rate of the defined behaviors.

2.7 The Use of Primitives in Computer Graphics

The use of virtual characters in computer animation, games, and virtual environments is increasing.

If the character is humanoid, it must also have realistic and believable movements and for virtual

environments and games the movements must be produced in real time. Some of the research in

this area uses primitives to accomplish these goals.

The research of Mataric et al. [81, 80] explores the use of three different control strategies to

give a virtual humanoid a set of predefined primitive behaviors. The three approaches are PD servo

control, torque-field control, and impedance control. Their research presents some of the pros and

cons of using each implementation. A sequence of subtasks of dancing the Macarena is defined

and the primitives needed to accomplish those subtasks are specified so that the humanoid can

perform the dance. Multiple primitives can run simultaneously and the outputs can be combined to

produce the desired trajectories. For example, the go-to-point and avoid-collisions primitives can

run concurrently to ensure a movement to the desired point without colliding with objects that may

be in the way. The primitives can also have parameters that specify how it is to be performed or the

desired outcome.

Hodgins et al. [51] have also used primitives, in the form of control algorithms, in their research

in animating virtual humanoids in the performance of various dynamic athletic behaviors. Wooten

and Hodgins [134] presented difficulties of transitions between primitives with dissimilar behavior

and provided a solution in the domain of animated humans that have the primitive behavior of

leaping, tumbling, landing, and balancing. The primitives within their framework, referred to

as basis behaviors, also have parameters that control their performance. The primitives types are

23

selected in such a way that the outcome of one primitive can be used as the input to another. For

example a leaping primitive can be followed by landing and then balancing. The parameters

provide the ability to adjust the behavior of the primitives and ensure the resulting state will be

sufficient for the next primitive to be successful.

Faloutsos et al. [40] present a framework for controlling animated characters using primitives

that are pose-controllers. Their research also addresses the need for primitives to end in a state that

is acceptable to the next primitive to be performed and stresses that the preconditions that will allow

a primitive to be successful must be known. They present a learning approach that can be used to

learn the possible preconditions but the preconditions can also be specified manually.

24

CHAPTER III

TESTBEDS

Search me, O God, and know my heart;

test me and know my anxious thoughts.

- Psalm 139:23 (NIV) [96]

Do not conform any longer to the pattern of this world, but be transformed by the

renewing of your mind. Then you will be able to test and approve what God’s will is–his

good, pleasing and perfect will.

- Romans 12:2 (NIV) [96]

In this thesis we present various approaches to challenges involved in having robots learn from

observation and from practice. We have tested our ideas on robots that operate in an air hockey

and marble maze environment. We have also created software robots that perform these tasks. This

chapter describes the construction of the testing environments.

3.1 Air Hockey

Air hockey is a game played by two people. They use round paddles to hit a flat round puck across

a table. Air is forced up through many tiny holes in the table’s surface which creates a cushion of

air so that the puck slides with relatively little friction. The table has an edge around it that prevents

the puck from going off the table, and the puck bounces off this edge with little loss of velocity. At

each end of the table there is a goal area. The objective of the game is to hit the puck so that it goes

into the opponent’s goal area while also preventing it from going into your own goal area.

3.1.1 Software Air Hockey

Figure 4 shows the virtual air hockey game created that can be played on a computer. The game

consists of two paddles, a puck and a board to play on. A human player uses a mouse to control

one paddle. At the other end is a simulated or virtual player who uses his arm and hand to position

the paddle. For a given desired paddle location, the arm and hand are placed to position the paddle

in the appropriate location, and any redundancies are resolved so as to make the virtual player look

25

Figure 4: The virtual air hockey environment. The disc-shaped object near the centerline is a puck

that slides on the table and bounces off the sides, and the other two disc shaped objects are the

paddles. The virtual player controls the far paddle, and a human player controls the closer paddle

by moving the mouse. The object of the game is to score points by making the puck hit the opposite

goal (the purple/light area at the ends of the board).

“human-like.” If the target is not within the limits of the board and the reach of the virtual player the

location is adjusted to the nearest reachable point. The torso is currently fixed in space but could

be programmed to move in a realistic manner. The virtual player’s head moves so that it is always

pointing in the direction of its hand, but is irrelevant to the task in this implementation except in that

it makes the motion appear more natural.

The paddles and the puck are constrained to stay on the board. There is a small amount of

friction between the puck and the board’s surface and there is also energy loss in collisions between

the puck and the walls of the board and the paddles. Spin of the puck is ignored in the simulation.

The position of the two paddles and the puck, and any collisions are recorded.

3.1.2 Hardware Air Hockey

The hardware implementation of air hockey, Figure 5, consists of the humanoid robot DB [9], a

small air hockey table, and a camera-based tracking system. The robot observes the position of

the puck using its on-board cameras, Figure 6, and a vision processing system designed to find the

26

Figure 5: Playing air hockey with humanoid robot DB.

position of colored objects in the image. Because the humanoid’s torso is moved during play to

extend the reach of the robot, the head and eyes are moved so that the playing field is always within

view.

3.1.2.1 Vision

Because air hockey is played on a flat surface, we can model the image plane to hockey board

mapping as a perspective mapping between two planes. It is well known that such a mapping can

be modeled by a 3x3 homography, which is defined up to a scale factor and thus has 8 degrees of

freedom [135]. This mapping is invertible, so the information from one eye (camera) suffices to

uniquely determine the position of the puck on the board. However, we must be able to update this

mapping at every measurement time because the robot’s head moves during the game. In theory we

could accomplish this task by calibrating the camera at a preferred configuration and use forward

kinematics to calculate the current image-to-board mapping, but this is impractical because the

humanoid robot motion involves many degrees of freedom and is highly nonlinear. Instead the

system is recalibrate at every time step. Because every homography has eight degrees of freedom,

we must know the position of at least four points in the plane of the table and in the image to

27

Figure 6: The head of the human robot contains two "eyes" each made up of a wide angle and

narrow angle camera on pan-tilt mechanisms. The robot uses one wide angle camera for playing air

hockey.

recalibrate the camera. Thus the number of objects that we need to track is at least seven; four fixed

points on the board for calibration, puck, and both paddles. To make the recalibration more accurate

and the tracking process more robust, the system makes use of more than four points to recalibrate

the system.

A homography describing the perspective mapping between the image plane and the hockey

board is given by

sxi(t) =H(t)ui(t), i = 1, . . . ,N, N ≥ 4, (1)

where xi(t) = [xi(t), yi(t), 1]
T are the known positions of the markers on the hockey board (we

measure them by hand before starting the game) and ui(t) = [ui(t), vi(t), 1]
T are the positions of

the detected markers in the image. Let h1(t), h2(t) and h3(t) be the columns of H(t). Writing

z(t) = [h1(t)
T ,h2(t)

T ,h3(t)
T]T , Eq. (1) can be rewritten as

ui(t)

T 0 −xi(t)ui(t)
T

0 ui(t)
T −yi(t)ui(t)

T

z(t) = 0. (2)

28

Figure 7: The view from the robot’s eyes with the tracked objects marked. The puck is totally

occluded in the right image. The right image is also blurred due to the movement of the robot.

Writing Eq. (2) in a matrix form results in a matrix equation A(t)z(t) = 0, where A(t) is a

2N × 9 matrix. As H(t) is defined only up to a scaling factor, the solution is well known to

be the eigenvector associated with the smallest eigenvalue of the 9 × 9 matrix AT (t)A(t) [135].

Alternatively, one could solve Eq. (2) directly by setting one of the parameters, typically h3,3(t), to

1.

Strategy for Error Recovery Typically, a game of air hockey goes on for several minutes and the

vision system is expected to provide locations of the objects of interest during this period without

failure. Because it may not be possible to completely avoid tracking failures, we designed a special-

ized error recovery scheme that ensures the successful operation of the vision system over longer

periods of time.

Most of the blobs never come close to each other in the air hockey game. There are three groups:

the blobs fixed at the edge of the board, the two blobs associated with the paddles used for hitting the

puck and the puck itself. The color tracking system [21] uses shape-related probability distributions

and assigns larger values to the neighboring pixels, so there is no need for blobs from within these

groups to have different colors. We can thus in principle use only three different colors to identify

the objects of interest, although in practice it might be advantageous to use more colors.

Recovering from Occlusions There are a few situations when our tracker might fail. The most

common problem is that a robot arm occludes the puck, Figure 7. Such cases are detected by

29

100 150 200 250 300 350 400 450 500 550
100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8: The left graph shows the raw vision cordinates (pixels) of four objects placed at known

locations and the moving puck. On the right is the computed position (meters) of the puck based on

the information shown on the left. The circled segments are where the vision system lost track of

the puck for several samples.

calculating the sum of probabilities normalized by a number of pixels considered in the calculations.

If this sum is less than 10% of the expected area covered by the puck within the region of interest,

the calculation of the corresponding blob location becomes unstable and the tracker is assumed to

have failed. When this happens, the tracker keeps looking for a puck for 0.5 seconds by starting the

EM iterations using the latest detected location as an initial value.

After 0.5 seconds it is considered unlikely that the puck would still be near the last detected

position and the tracker starts two new search processes: one in front of the opponent’s paddle

where we can assume that there will be a contact with the puck in the future and the other one in the

region near the robot where the puck might still be located in the case of an occlusion. The second

process randomly generates initial puck positions within the search region and thus ensures that the

puck will eventually be found regardless of its current position within this region. The system does

not embark on an exhaustive search covering the whole board, that could not be carried out at 60

Hz. The success of one of the search processes terminates them both.

Figure 8 shows the results of the visual tracking system using four fixed markers during 4.2

30

seconds of game play. During this interval the fixed markers are always being tracked, but on

several occasions the puck was lost and then reacquired. The puck was lost just after the robot hit

it. This is not a critical time since the robot’s hit motions are fully planned and begin more than

100msec before the puck is hit.

Recovering from Tracking Errors Occasionally one of the side blobs used for recalibration is

lost by the tracker. This problem is most often caused by a very fast motion of the robot’s head when

the robot performs a shot, which results in low-quality images and huge image motions. If the robot

can’t see at least four side blobs, the recalibration cannot be carried out and the robot cannot play

the game. But fortunately this problem is not too serious because the robot calculates the motion

trajectory before it starts executing the shot. After executing the shot, the robot returns to a preferred

configuration and because the position of the board remains constant, the stored positions of the side

blobs can be used to restart the tracking.

Although problems with paddle tracking are rare, we have implemented an error recovery

scheme. Because the motion of both paddles is confined to a region along their respective ends

of the hockey board we can start a search process in a region along the appropriate end of the board.

The paddle positions are randomly generated in this region and used as initial values for an EM

iteration until the paddle is found. This process is similar to the search when looking for a puck.

3.1.3 Positioning the Humanoid Robot

At first it may appear that the robot only needs to use one arm to play air hockey. Using only the arm

simplifies the system in that there is less movement of the head and therefore of the cameras. It also

eliminates many degrees of freedom. Our first implementation used this scheme and we found it to

be impractical because it limited the moves the robot could make and the area that can be reached on

the board. Moving the torso extends the robot’s reach and abilities. But the movement of the torso

causes the head to move in ways that are unnatural looking and may cause the air hockey board

to not always be fully within view. Therefore the head and eyes must also be controlled to ensure

the board is always within the field of view of the robot. The total degrees of freedom needed for

this task is 17. The following joints are used in this approach: shoulder (2 joints), arm rotation,

elbow, wrist rotation, hand (2 joints), waist (3 joints), head (3 joints), and eyes (2 joints each eye,

31

Figure 9: The six given configurations of the robot used to compute all enclosed configurations.

pan and tilt). Using all the joints except for the head and eyes, the robot must be positioned so that

the paddle is flat on the board and moves smoothly from one location to another. The joints in the

head and eyes are used to keep the entire board is in view at all times.

We have manually positioned the robot in several positions on the board while maintaining

these constraints, figure 9. To get joint angles for any desired puck position, we interpolate using

the four surrounding training positions and use an algorithm similar to that used in graphics for

texture mapping [25]. This approach allows us to solve the inverse kinematics of the robot with

redundancy in a simple way.

Figure 10 shows an example of using the four training positions B1, B2, T1, and T2 to compute

the configuration needed to place the paddle at the desired position of P (x, y). The four set posi-

tions, B1, B2, T1, and T2, surrounding the desired position P (x, y) define a polygon with Y up and

X to the right. A vertical line is drawn at P (x) and points are defined at the locations where this

32

P(x,y)
Compute

joint angles

0.7
0.3

0.20.8

B1
B2

TT1

T2

B
+Y

+X

+Y

+X

Figure 10: An example of using four given corner configurations to compute a configuration within

the polygon.

line intersects the top and bottom of the polygon, points T and B. The joint angles are computed

for the bottom-intersect location, B, by using the two joint configurations associated with the two

bottom set locations, B1 and B2. B1 and B2 configurations are averaged with a weighting computed

from the percentage of the point B from B1 and B2. As shown in the example in figure 10, the joint

angles computed at point B will be 0.8 times the angles specified by point B2 plus 0.2 times the

angles specified at point B1. The configuration for the top point, T, is computed in the same way

using the top two corners of the polygon, T1 and T2. The configuration required to place the paddle

at the locations B and T now exist and are used to compute the configuration needed to place the

paddle the location P (x, y). The percentage of the distance that P (y) is from the bottom intersect

point to the top intersect point is computed and is used as a weight to average the computed joint

configurations of B and T.

The robot configuration needed to place the paddle at any location within the training examples

can be computed using this algorithm. The robot is moved by specifying a desired board location

along with a desired movement speed. A straight line trajectory is then computed from the present

33

Figure 11: The virtual marble maze game on the left modeled after the hardware version on the

right. The maze on the right has motors and sensors to control the board tilt angles and a vision

system to observe the position of the marble.

location to the desired location. The robot is commanded to a position 420 times per second and

therefore there must be a point on the trajectory at each 1/420 second interval. The trajectory points

that the paddle will move through are computed using a fifth order polynomial equation with initial

and final velocities and accelerations equal to zero. The robot is moved through the trajectory points

and a robot configuration is computed for each point.

A new movement is only initiated when the robot is not moving and the desired end velocity

and acceleration of a move are set to zero. With this strategy, the maximum velocity of the robot’s

move, and therefore the paddle movement, occurs at the halfway point of a straight line trajectory.

3.2 Marble Maze

In the marble maze game a player controls a marble through a maze by tilting the board that the

marble is rolling on. We created two versions of this game that are shown in Figure 11. In these

mazes the player must move the marble from the start, top center location, to the goal location at

the bottom center of the maze. There are obstacles, in the form of holes, that the marble may fall

into, and walls. The marble has a radius (rm) of 0.7cm, the holes have a radius of 0.75cm, and the

walls are 0.6cm thick. In the software version the human controls the board using a mouse. The

simulator models the movement of the marble and noise is introduced into the simulator to make

the outcome of actions less deterministic.

The human controls the board on the hardware version by using knobs connected to encoders.

34

The motor commands generated by the encoder system is read by the computer and sent to the

motors. The position of the marble is obtained using a color tracking system [128]. The computer

can also generate its own commands and send them to the motors. In both versions the time and the

board and marble positions can be recorded as the game is played.

35

CHAPTER IV

OBSERVING THE TASK: PRIMITIVE RECOGNITION

"Now you have closely observed and diligently followed my teaching, conduct, pur-

pose in life, faith, patience, love, steadfastness,"

- 2 Timothy 3:10 (AMP) [5]

To learn from observation, the robots must first have the ability to obtain information while a

teacher performs the task. Chapter 3 describes the data that is collected while observing players in

the air hockey and marble maze environments. This data consists of object positions and the time

at which the observations were made. The simulation environments provide other information such

as velocities and status of objects that are in contact. The data from both environments must be

processed before it can be used.

The primitive recognition module of the framework uses definitions of the primitive types to seg-

ment and extract information from the observed data, Figure 12. This module finds the beginning

and end of each observed primitive performed by the teacher. It then extracts details and formats

the information as needed by other modules in the framework. This chapter shows the methods

used to segment and format the information for use by the primitive selection and subgoal gener-

ation modules. The next chapter shows how the information is formatted for the action generation

modules.

4.1 Air Hockey Primitive Recognition

We used human domain knowledge to define a set of primitives to work with in the air hockey

environments, Figure 13. Three hit primitives are shown in Figure 14. The full list of primitives in

air hockey is

� Straight Shot: A player hits the puck and the puck goes toward the opponent’s goal without

hitting a wall.

� Bank Shot: A player hits the puck and the puck hits the left or right wall and then goes toward

36

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Figure 12: The primitive recognition module segments the observed data and formats it as needed

for the other modules.

Figure 13: The software air hockey game on the left and air hockey playing with a humanoid robot

on the right.

37

Figure 14: Three hit primitives being performed by the virtual player: right bank, straight, and left

bank.

the opponent’s goal.

� Defend Goal: A player moves to a position to prevent the puck from entering their goal area.

� Slow Puck: A player hits a slow moving puck that is within their reach.

� Idle : A player rests their paddle while the puck is on the opponent’s side.

When the puck is moving quickly towards the player from the opponent’s side the player can

perform one of the shot primitives, Straight Shot or Bank Shot, or the Defend Goal primitive.

When a shot primitive is selected for the fast moving puck, the player does not have time to move

the paddle to an optimal setup position. Therefore the paddle begins in the idle position for these

types of shots. Also, because the puck is moving quickly toward the player and time is limited, the

player may not have time to move the paddle a large amount during the shot which means that hits

must be made closer to the player’s idle position.

The shot primitives can also be performed if the puck is moving slowly, or stopped, within reach

of the player. When the puck is in this situation the player has time to first move the paddle to a

more advantageous setup position before making the hit. The setup position will allow the player

to hit the puck when it is farther from the player’s idle position. The Slow Puck primitive encodes

the action to be taken when the puck is in this slow moving situation.

38

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shots made

by human

Human paddle
movement

Puck

movement

+x

+y
P

a
d
d

le
 Y

P
a
d

d
le

 X
P

u
c
k
 X

P
u

c
k
 Y

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shots made

by human

Human paddle
movement

Puck

movement

+x

+y

+x

+y
P

a
d
d

le
 Y

P
a
d

d
le

 X
P

u
c
k
 X

P
u

c
k
 Y

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shots made

by human

Human paddle
movement

Puck

movement

+x

+y

+x

+y
P

a
d
d

le
 Y

P
a
d

d
le

 X
P

u
c
k
 X

P
u

c
k
 Y

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shots made

by human

Human paddle
movement

Puck

movement

+x

+y

+x

+y
P

a
d
d

le
 Y

P
a
d

d
le

 X
P

u
c
k
 X

P
u

c
k
 Y

Figure 15: Raw data collected while observing a human making shots in the air hockey environ-

ment. The left figure shows the data plotted in two dimensions (meters). The right figure shows

the data plotted against time. Collisions with the puck can be easily seen in this figure.

4.1.1 Retrieving Information from the Observed Data

This section describes what, and how, information is obtained from the data collected while observ-

ing air hockey. As the robot observes a task it looks for critical events. Critical events are large

changes or discontinuities that can easily be recognized. A puck hitting a wall or a paddle is an

example of a critical event. Figure 15 shows data collected from observing the hardware air hockey

environment. The x and y displacement of the puck plotted against time in this figure shows that

collisions cause an obvious change in the puck’s movement trajectory.

The hit primitives describe the type of shot, straight or bank, that was made and the outcome,

or subgoal, of making that shot. The subgoal of a shot is to have the puck hit a point on the back

wall. Because the puck can be hit toward this point at various velocities, the absolute post-hit puck

velocity is also included as an element of the subgoal. To learn the shot behavior from observing a

player the robot follows these steps:

39

1. Look for when the puck is close enough to a paddle that it could be in contact with it. If the

puck undergoes a discontinuous change in velocity, a hit is assumed at this location. If the

puck has a large velocity toward the opponent’s side, the position and velocity of the puck

and paddle are recorded as the hit state.

2. Observe the puck’s movements until it gets near the opponent’s goal area while looking for

collisions with the side walls. If a collision with a wall is observed, which side, left or right,

is recorded. We are currently only considering shots with a single wall bounce.

3. Look for a collision of the puck with the opponent’s wall or goal. If the puck reaches the

opponent’s wall or goal, the location is recorded as the target position.

4. Look for a collision with the opponent’s paddle. If the puck is hit by the opponent before it

reaches the opponent’s wall, the location that the puck would go to if it was not blocked is

predicted using a simple learned model and recorded as the target position.

From these observation steps the following information can be collected each time a shot is

observed:

� The position of the puck when it is hit.

� The velocity of the puck just before it is hit; magnitude and direction.

� The angle between the puck and the paddle when the puck is hit.

� The velocity of the paddle when it hits the puck; magnitude and direction.

� The puck’s velocity just after it is hit; magnitude and direction.

� The position on the back wall that the puck will go to if it is not blocked by the opponent.

� If the puck traveled towards the player from the opposite side of the board, the state of the

puck before it crossed the center line heading towards the player.

The model used in step 4 enables the learning robot to estimate the target being attempted without

40

the shot having to be completed. The accuracy of the model can be critical in producing useful train-

ing data. Other methods can be used to reduce the reliance on the model, such as only considering

shots that have actually hit the back wall without having hit the opponent’s paddle.

4.1.2 Creating Primitive Observation Databases

Databases are created from the observed data that are used by the primitive selection and subgoal

generation modules. This section describes the information that is recorded in the databases used in

air hockey. Section 4.2 describes the databases used in the marble maze and the next chapter shows

how the databases are used by robots operating in these environments.

A database has been created to encode the actions taken by an observed player when the puck

crosses a pre-specified line heading towards the player. The actions contained in the database are

the Straight Shot, Bank Shot, and Defend Goal primitives. The pre-specified line, called the

decision line, is on the opponent’s side and is just out of reach of the opponent, Figure 16. This

means that the puck can no longer be influenced by the opponent’s actions and future puck positions

can be predicted. If, after the puck crosses the decision line, a collision with the player’s paddle is

observed and the puck goes toward the opposite side, it is classified as a shot primitive. In all

other situations where the puck does not enter the player’s goal, it is classified as a Defend Goal

primitive.

If the Defend Goal primitive is observed, the position and velocity of the puck when it crosses

the decision line and the location the paddle is moved to defend the goal is recorded. If a shot

primitive is observed, the following information is recorded, Figure 16:

� The position and velocity of the puck when it crosses the decision line.

� The line the puck is hit at.

� The type of shot that was taken.

� The absolute velocity of the puck after it is hit.

� The target location on the back wall that the puck moved to after being hit.

41

Hit

Location
Target

Location Path of the

incoming puck

Absolute

Post-hit

Velocity

Target

Line

Decision Line

Hit Line

Figure 16: Information recorded in the fast-puck database when a shot is observed.

It is important to remember that this database will be used by the robot to decide actions it will

take while operating in the environment. Because this is a continuous and dynamic environment

it will not make sense to record the exact location where the puck is hit because the puck will not

have exactly the same parameters while the robot is operating in the environment. Therefore the

line where the puck is hit is recorded instead of the exact hit location. The hit line encodes the

behavior of the player hitting the puck closer to themselves or closer to the center-line. The next

chapter shows how a robot operating in the environment combines the hit line information with the

incoming puck path to compute a hit location. The situation is also similar for the post-hit velocity

vector. The direction of this vector only applies to a puck in the observed state. The absolute

post-hit velocity gives an indication of how fast the player wants the puck to travel to the target

location.

The puck is often moving very slowly within hitting range of the player. This situation occurs

when the puck returns very slowly from the opposite side, after a failed shot attempt, or a Defend

Goal primitive. The Slow Puck primitive is used in this situation and a slow-puck database is

created to encode the required actions. A data point is created for the Slow Puck primitive data-

base whenever a hit is observed and the incoming puck velocity is less then 0.5m/s. The follow

42

Figure 17: Software and hardware marble maze environments.

information is recorded in the database:

� The position of the puck when it is hit.

� The type of shot that was taken.

� The absolute velocity of the puck after it is hit.

� The target location on the back wall that the puck moved to after being hit.

Because the velocity of the puck is small, it is not included as a parameter in the database.

The Idle primitive is performed whenever the puck is on the side opposite the player and will

continue until a shot is to be attempted or the goal is to be defended. A data point is created for

the idle database by observing the puck’s state when it is on the opposite side of the board and the

position of the player’s paddle. This database contains the position and velocity of the puck when

it is on the opponent’s side and the position of the observed player’s paddle.

4.2 Marble Maze Primitive Recognition

The primitives for the marble maze game, Figure 17, are designed to give the robot the skills it will

need to perform the task. The following primitives have been explored and are shown in Figure 18:

� Roll To Corner: The marble rolls along a wall and stops when it arrives at a corner.

� Roll Off Wall: The marble rolls along a wall and then rolls off the end of the wall.

43

Roll Off WallRoll To Corner

Free Roll Roll From Wall

Corner

Figure 18: Primitives being explored in the marble maze environment.

� Guide: The marble is rolled from one location to another without touching a wall.

� Roll From Wall: The marble rolls along a wall and is then maneuvered off it.

� Corner: The marble is captured in a corner and then the board is positioned in preparation to

move the marble from the corner location.

4.2.1 Retrieving Information from the Observed Data

The data collected in the simulator includes the status of marble-wall contacts. This status provides

information on the side of the wall (top, bottom, left, right) that the marble is currently in contact

with. The primitive definition is then used to create a sequence of critical events that allow the

primitive to be observed in the data. The Roll to Corner primitive, for example, begins just before

the marble makes contact with a wall that contains a corner and then rolls along that wall into the

corner. An easy way to find an occurrence of this primitive is to look at each observed data point

and find one where the status indicates that the marble is in contact with two connecting walls, such

as the bottom and right walls, Figure 19. This is the location of the end of the primitive and the

state of the environment, Se, is recorded for this point. The velocity of the marble in the corner is

obviously zero and therefore the velocity recorded as the goal velocity is the velocity of the marble

44

just before it hits the corner.

From this ending data point, the primitive recognition algorithm backs up through the data

points and observes which wall the marble is rolling along. For the example shown in Figure

19, the marble is rolling along the bottom wall. The algorithm continues to backup through the

data searching for the first occurrence of when the marble is no longer on the wall. This point is

the start of the primitive and the environment state, Ss, is recorded. The parameters recorded for

all environment states in the marble maze domain are the marble’s position (Mx,My), velocity

(Ṁx, Ṁy) and board tilt angles (Bx,By).

Using the above obtained information a primitive data point can be created that represents an

action, PT (one of the specified primitive types), taken by the human while they were operating in

the environment. This data point contains the following information:

� Ss - the state of the environment when the primitive was started.

� PT - the primitive type that was performed by the observed player.

� Se - the state of the environment after the primitive is performed.

The goal of performing this primitive can be determined from Se, the state of the environment

at the completion of the primitive performance. This data point encodes what occurred during the

observed performance in the following way: When the environment was in the state Ss, the human

performed the primitive PT , and at the completion of that action the environment was in the state

Se.

A robot can use this information while operating in the environment in the following way. If

the robot observes the state Ss, it should perform the primitive PT in such a way as to obtain the

goal state of Se. Because this domain has a continuous environment state space, it is unlikely that

the robot will find itself in the exact state Ss. It makes sense to choose this same action, PT , for

observed states in the vicinity of Ss but it is not known how far the marble can be from this state, Ss,

and still allow the primitive to be successfully performed. The research of Faloutsos [40] presents

the difficulties and a possible method of finding how far from Ss the environment state can be and

this action still lead to success. Chapter 6.1.5 shows how this range of states where this primitive

will succeed is learned by the robot as it operates in the marble maze environment.

45

Start of the

Roll to Corner

Primitive
End of the

Roll to Corner

Primitive

Other recorded

starts of this

Roll to Corner

Primitive

1.5 x Marble

Diameter Width

Incoming

Velocity Vector

Figure 19: Creating Roll to Corner primitive datapoints from the observed data.

4.2.2 Creating Multiple Data Points for the Same Observed Primitive Performance

The marble moves from Ss to Se while the primitive is performed. Therefore the primitive could

also be started in any environment state between these two states. Because of this, other data points

can be created with various starting states and the same end state. One method would be to create

a new primitive data point for each observation occurrence. Since data is collected at 60Hz, there

would be 60× (time to complete the primitive) data points. Because the marble is may be moving

very slowly during parts of the primitive, many of the data points will be redundant. Having too

much redundant data in the database makes it difficult for the robot to select actions as explained in

Section 5.0.5 and makes it difficult for the robot to learn from practice as explained in Chapter 6. In

this implementation, a data point is saved at a position interval 1.5×dm, from Ss to (Se−(1.5×dm))

as shown in Figure 19 (dm is the diameter of the marble). This scheme is used for all the primitives

with the exception of the Corner primitive because the the marble moves only small amount, or not

at all, during the execution of the Corner primitive.

4.2.3 Observing the Task Performed on the Hardware Implementation

The data collected from the hardware version of the marble maze is noisy and does not include the

wall contact status and velocity information provided by the simulator. To remove the noise in

the data it is filtered forward and backward through a butterworth filter. The velocities are then

46

Figure 20: Left: Path of the marble collected while observing a human teacher. Right: The

processed path with the thick line representing a marble-wall contact.

computed using the frame rate of 60Hz. The wall contacts must be inferred from the collected data

and this is done in two ways. One way is to look at the position of the marble and if it is very close

to a wall for which positions are known, set the status to the appropriate wall contact. The other

way is to observe the tilt of the board and the velocity of the marble. If the board is tilted in such a

way to cause the marble to roll, but the marble velocity is zero, it may be held in position by a wall.

In the hardware implementation the marble’s initial momentum often prevents it from rolling until

there is a significant amount of board tilt. Therefore if only board tilt and marble velocity were

considered, it would appear that a wall is preventing the marble from rolling. For this reason the

knowledge of wall positions and board tilt and marble velocity information are combined to process

the hardware data and set the wall contact flags appropriately. After the observed hardware data is

processed and the appropriate status flags set, it is applied to the recognition algorithms described

in the previous sections. Figure 20 shows the raw collected data, left, of an observed game played

by a human teacher. The right side of Figure 20 shows the processed data.

4.2.4 Results of Recognizing Marble Maze Primitives

The information shown in Figure 20 was used as the input data to the primitive recognition module

as described in the previous section. The primitives recognized in this data are shown in Figure 21.

The "×" symbol shows the end, or goal, position of each recognized primitive. The "o" symbol

marks the recorded start positions for each recognized and recorded primitive. The line connecting

47

Table 1: Twenty datapoints in the primitive database.

Type SMx SMy SṀx SṀy SBx SBy EMx EMy EṀx EṀy EBx EBy

CORNERTL 1.00 11.00 0.00 0.00 -0.09 0.11 1.00 11.00 0.00 -7.04 -0.10 0.11

CORNERBL 1.00 4.50 0.00 0.00 0.15 0.11 1.00 4.50 7.77 0.00 0.15 -0.09

CORNERTR 25.83 20.70 29.25 0.00 -0.07 -0.11 27.00 20.70 0.00 -13.69 0.11 -0.12

CORNERBR 27.00 17.00 0.00 0.00 0.14 -0.11 27.00 17.00 -4.66 0.00 0.16 0.07

GUIDE 4.02 5.41 8.62 7.59 -0.05 -0.12 4.75 5.87 13.60 4.8 -0.05 -0.12

GUIDE 12.78 20.30 2.55 0.00 0.05 0.02 12.85 19.47 -4.22 -11.97 0.09 0.04

GUIDE 20.02 18.31 3.80 10.53 -0.07 -0.06 21.25 20.36 9.00 10.03 -0.08 -0.06

GUIDE 20.94 14.10 -12.11 0.00 0.16 0.10 20.07 13.59 -15.78 16.27 0.16 0.10

RTCT 9.04 22.5 -17.93 0.00 -0.02 0.07 5.40 22.5 -18.71 0.00 -0.01 0.07

RTCT 21.25 20.36 9.00 10.03 -0.08 -0.06 27.00 20.07 9.54 0.00 -0.07 -0.11

RTCB 13.43 4.20 13.71 0.00 0.08 -0.11 17.60 4.20 21.16 0.00 0.07 -0.11

RTCB 18.21 1.00 -8.71 0.00 0.15 0.05 10.20 1.00 -14.17 0.00 0.15 0.05

RTCR 27.00 19.21 0.00 -1504 0.13 -0.12 27.00 17.00 0.00 -13.80 0.14 -0.11

RTCL 1.00 7.97 0.00 -15.47 0.15 0.11 1.00 4.5 0.00 -26.35 0.15 0.11

RFWL 14.10 8.51 -3.52 9.42 -0.03 0.04 13.97 11.11 -0.56 11.09 -0.02 0.04

RFWT 10.78 20.30 -0.35 0.00 0.00 -0.01 12.91 20.10 0.70 -7.18 0.07 0.05

ROWR 11.80 7.29 0.00 -10.95 0.07 -0.12 11.80 5.86 0.00 -14.96 0.08 -0.12

ROWB 4.71 15.70 -0.07 0.00 0.13 0.06 6.31 15.70 9.06 0.00 0.15 -0.05

ROWB 14.06 18.50 7.66 0.00 0.11 -0.05 16.09 18.50 10.40 0.00 0.12 -0.05

these points is the processed path of the marble. 116 primitives were recognized and recorded in

the primitive database for this observed game as follows: Roll To Corner-34, Roll Off Wall-16,

Guide-34, Roll From Wall-2, Corner-30.

The lower right graph in Figure 21 shows all the recognized primitives. This graph shows that

there are small parts of the path that have not been classified by any of the primitive types. This

omission is not a big concern because of environment dynamics and multiple task completions will

be observed. In most areas where the path has not been classified, the dynamics of the environment

has the marble in a state where it is moving toward the starting point of the next classified primitive.

Therefore if the next primitive is chosen from this location, or if no action is taken during this

time, the marble should continue to make progress through the maze. Also, because multiple task

performances will be observed to create the primitive database, it is likely that there will exist a set

of primitives in the database that will create a full path from the start to the end location.

Table 1 shows 20 of the 116 data points that were created from the observed data shown in Fig-

ure 20. The primitive type information specifies the primitive type that was observed and, if needed,

the orientation of the primitive. The primitive type is specified by the following abbreviations: Roll

48

0 5 10 15 20 25
0

5

10

15

20

Roll From Wall

0 5 10 15 20 25
0

5

10

15

20

Guide

0 5 10 15 20 25
0

5

10

15

20

Roll to Corner

0 5 10 15 20 25
0

5

10

15

20

Roll Off Wall

0 5 10 15 20 25
0

5

10

15

20

Corner

0 5 10 15 20 25
0

5

10

15

20

All Primitives

+Y

+X

+Y

+X

Figure 21: Results of recognizing the primitives performed by a human teacher.

49

Figure 22: Three observed games played by a human teacher.

To Corner-RTC, Roll Off Wall-ROW, Guide-GUIDE, Roll From Wall-RFW, Corner-CORNER.

The orientation is specified by T, B, L, and R (top, bottom, left and right respectfully). The orien-

tation information is in reference to the (0, 0) position, the bottom-left corner, with positive y going

up and positive x going to the right as shown in Figure 21. SMx, SMy, SMx, SMy, SBx, and SBy

specifies the state of the environment, (Mx,My, Ṁx, Ṁy,Bx,By), at the start of the primitive.

EMx, EMy, EṀx, EṀy, EBx, and EBy specifies the state of the environment at the end of the

primitive. Distances are in centimeters, velocities are in centimeters per second, and rotations are

in radians.

To create a primitive database four games performed by a human teacher were observed. During

these observed games the teacher continues to make progress toward the goal location and never

falls into a hole. The observed game shown in Figure 20 plus the three observed games with the

paths shown in Figure 22 were used to create a primitive database. The database consists of 483

primitives data points; Roll To Corner-139, Roll Off Wall-69, Guide-147, Roll From Wall-13,

Corner-115.

50

CHAPTER V

LEARNING ONLY FROM OBSERVING

I applied my heart to what I observed

and learned a lesson from what I saw:

- Proverbs 24:32 (NIV) [96]

and observe what the LORD your God requires: Walk in his ways, and keep his

decrees and commands, his laws and requirements, as written in the Law of Moses, so

that you may prosper in all you do and wherever you go,

- 1 Kings 2:3 (NIV) [96]

When robots use the "Learning from Observation using Primitives" framework they are told

what actions are possible and have the ability to learn where, when, and how those actions are per-

formed from observing the task being performed by a human. The robots then use this information

to operate in the task environment. The robots presented in this chapter use the three modules of the

framework, Figure 23, to attempt to perform the task as the observed teacher did in the following

manner:

1. Primitive Selection: Observe the state of the environment and select a primitive type to use.

2. Subgoal Generation: Compute a subgoal for the selected primitive type.

3. Action Generation: Perform the appropriate actions in an attempt to reach the computed

subgoal. When the action ends, the environment will be in a new state.

4. Return to step 1.

This chapter shows how the modules in this part of the framework can be instantiated to perform

the air hockey and marble maze tasks. These modules use information obtained from observing

the task as presented in the previous chapter. The operations of the primitive selection, subgoal

generation, and action generation modules are explained. The algorithms used in these modules are

designed to take advantage of data obtained from observing others and from the robot observing its

own performance. This chapter does not include the use of the learning from execution module and

51

Primitive

Selection

Subgoal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Figure 23: Robots use the primitive selection, subgoal generation, and action generation modules

to perform the task in the same way as observed teacher.

therefore the robots described in this chapter learn only from the observed data and do not receive

further gain by operating in the environment. The next chapter will present methods that are used

by these robots to improve their performance as they perform the tasks.

5.0.5 Choosing a Primitive to Use and Generating Subgoals

In both the air hockey and marble maze environments, primitives are selected and subgoals gener-

ated in a similar way. This section presents the basic algorithms used in the primitive selection and

subgoal generation modules. The following sections give specific details of how these algorithms

are used by robots that operate in the testing environments.

robots that perform tasks using the "Learning from Observation using Primitives" framework

must first select a primitive to use. The primitive selection module accomplishes this by first finding

the data points in the primitive database that are closest to the observed environment state. By

comparing the distance of each data point from the observed environment state, or query point, the

distance is d (x,q) =
qP

j wj · (xj − qj)2, where x and q are the locations of the data point and

the query point in state space, and w allows each dimension to be weighted differently. When only

trying to act like the teacher, w is a global parameter and remains constant. Section 6.1.5 shows

52

how the robot learns through practice to compensate for errors in these weights.

The primitive type (a discrete choice) can be chosen by selecting the primitive indicated by the

closest data point returned from the nearest neighbor lookup. An alternate approach is to use several

nearby points, and implement a voting scheme such as selecting the primitive type that occurs most

often within the closest data points. We have found that using the single closest point to determine

the primitive type is the easiest and most efficient method.

Once the primitive type has been chosen the subgoal can be computed. It is important to first

choose the primitive type because the subgoals of different primitive types may not be compatible.

For example, in the marble maze, it would not make sense to use the subgoal of the Roll Off Wall

primitive with the Roll Into Corner primitive. The Roll Into Corner primitive will be expecting

a corner for the marble to land in as a subgoal location and the Roll Off Wall primitive will be

specifying a subgoal location at the end of a wall.

The algorithm used in the primitive selection module identifies multiple data points that are

in the vicinity of the current state and their distance to the query point. These data point also

contains the observed outcome of the human’s performance of that primitive. The closest data

point information can be used as the desired subgoal. A more robust approach is to use the N

closest points that indicate the selected primitive type to compute the subgoal. The outcomes of the

returned points are used to compute the subgoal using a locally weighted learning (LWL) approach

[10]:

ŷ(q) =

PN
i=1 yi ·K(d(xi,q))PN
i=1K(d(xi,q))

K(d) is a kernel function and is typically e−d
2/α. The estimate for ŷ depends on the location of

the query point, q. If N is chosen as 1, it will have the effect of performing the action indicated by

the data point closest to the query point. [10] discusses the effect of other kernel functions on the

weighting of the data points.

5.0.6 Performing the Primitive

The action generation modules contain a policy to control the robot. There is a separate action

generation module for each type of primitive. These modules can use any algorithm that provides the

53

needed actuator commands to obtain the desired subgoal. We explored the use of various methods

including idealized models based on physics, neural networks, and kernel regression techniques

[10].

The model based on idealized physics contains a simulation algorithm and computes the re-

quired movements to hit the puck or control the marble to a desired location with the desired output

velocity. The computed movement is the minimum movement needed to obtain the correct out-

put. In air hockey, paddle velocity that is perpendicular to the normal of the paddle-puck collision

does not affect the puck’s movement. This method ignores puck spin. Using this model produces

extremely accurate results but does not take into account the information obtained from the obser-

vation. The accuracy of the model largely determines the results of this method. If a model based on

domain knowledge is not available, some other method must be used. For the neural network and

kernel regression methods information is extracted from the captured data so as to have the virtual

player move the way that the human moved to produce a desired outcome.

The policy used within the action generation module can be locally referenced and generaliz-

able. This will allow the module to be used at multiple locations within the task domain and, if

properly formatted, can also be used in similar domains. The state and the policy’s specified actions

must be transformed as needed. Information needed by the action generation modules is broken into

small units that encode state or action outcome information. This chapter shows how this method

of breaking the policy into small pieces increases the reuse of learned information.

5.1 Air Hockey

This section shows how robots operate in the air hockey environment using the primitive selection,

subgoal generation and action generation modules of the "Learning from Observation Using Primi-

tives" framework. These modules are supplied with training data as described in Section 4.1. The

Bank Shot and Straight Shot primitives are the most difficult. These primitives require future state

predictions, precise timing, and accurate movements. The details of the action generation models

for shot primitives are described in the next section.

54

5.1.1 Primitive Selection and Subgoal Generation

Section 4.1.2 described how primitive databases are created from observing a human player. These

databases encode the actions taken by the human player when the puck is quickly moving toward

the player, the puck is moving slowly within reach, and when the puck is on the side of the board

opposite of the player. robots operating in the air hockey environment must use these databases at

the appropriate time to select primitives and generate subgoals. This section describes how each of

these databases are used by the robot while operating in the air hockey environment. Queries are

made to these databases and information is retrieved from them as described above in section 5.0.5.

Figure 24 shows an overview of the actions that a robot takes while playing air hockey. When

the puck is on the opposite side and has not yet crossed the decision line, the robot uses the idle

database to choose a subgoal location for resting the paddle. The defend and shot primitives are

selected in a manner to give the robot time to move its paddle to the shot or defence position at

the proper time. After the puck is hit by the opponent, it will take some time for the puck to

come within reach of the robot. Having the robot select an action shortly after the puck is hit by

the opponent gives the robot time to plan and then take the action. The decision line, Figure 25,

specifies one of the times that a shot primitive is considered. If the puck quickly crosses the decision

line heading toward the robot, the robot will select a shot type or a blocking maneuver using the

fast-shot database. A shot primitive is also selected when the puck is moving slowly on the robot’s

side. In this situation the robot will choose a shot type using the slow-shot database. Since the puck

is moving slowly, the robot will have plenty of time to set up and make a shot.

The simplest behavior is that of the Idle primitive. This primitive gives the robot an indication

of where it should rest its paddle when the puck is on the other side of the board and no other action

is being taken. The database contains the following information:

� Input: The position and velocity of the puck.

� Output: The position of the player’s paddle.

A query to this database is made when the robot observes the puck on the opposite side and no other

action is taking place. The subgoal information returned from the query is where the robot should

move its paddle to.

55

Puck is on the

opposite side

Puck has

crossed the

decision line,

moving toward

robot

Puck is moving

toward the robot

at greater than

0.5m/s

Choose sub-goal
Choose sub-goal

Total puck

velocity is less

then 0.5m/s

Yes
No

Yes

Yes

Action Complete

No Yes

No No

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from
Execution

Select a shot or a

block.
Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Select a shot type.

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Fast-shot Slow-shotIdle

Take action.
Primitive

Selection

Sub-goal
Generation

Action

Generation

Primitive

Recognition

Training

Learning from

Execution

Choose sub-goal

Primitive

Selection

Sub-goal

Generation

Action

Generation

Primitive

Recognition

Training

Learning from
Execution

Figure 24: Actions taken by a robot while operating in the air hockey environment.

56

When the puck is observed crossing the decision line the robot uses a database to select an

action. The puck’s position and velocity when it crosses the decision line is used as the index for

a lookup. This database encodes the primitive type and subgoals for defence and shot primitives.

These primitives have different subgoal definitions and therefore the output varies depending on the

primitive type selected. The database contains the following information, Figure 25:

� Input:

– The position and velocity of the puck when it crosses the decision line.

� Output (Shot):

– The line where the puck will be hit.

– The absolute post-hit puck velocity.

– The target location that the puck should go to.

� Output (Block):

– The position the paddle should be to block the puck.

The slow-shot database is queried when the puck is moving slowly within reach of the robot.

This database will tell the robot the type of shot it should take for the observed situation. This

database contains the following information:

� Input:

– Position and velocity of the puck.

� Output:

– The absolute post-hit puck velocity.

– The target location that the puck should go to.

57

Hit

Location
Target

Location Path of the

incoming puck

Absolute

Post-hit

Velocity

Target

Line

Decision Line

Hit Line

Figure 25: The information returned by the fast-puck database.

5.1.2 Generating Actions

There are four action generation modules that encode the actions needed for each type of primitive;

Idle, Block, Bank Shot, and Straight Shot. This section describes how the subgoal information is

used by these modules to have the robot make the needed movements.

When a shot primitive is chosen by the primitive selection module, the subgoal generation mod-

ule, using the previously observed information, will specify a line at which the hit should take place,

the target location to shoot the puck at, and the absolute desired post-hit puck velocity (Figure 25).

The line at which the hit should take place tells the action generation modulewhere the action should

occur. Because the puck is moving and will only be at the hit line for an instant, it also provides

an indication of when the action should occur. The target location tells what the desired outcome

of performing this action is. The target location is not fixed at the center of the opponent’s goal but

can vary along a line across the back wall as shown in Figure 25. Shooting the puck to a target lo-

cation can be done at a variety of velocities. How fast (post-hit puck velocity) a player makes shots

will have a large effect on their performance at the game. Therefore the absolute desired post-hit

58

(0,0)

+x

+y

Hit

Locations
Target

Locations
Paths of the

outgoing pucks

Bank Shot

Reference

Point

(0,0)

+x

+y

Straight Shot

Reference Point

Figure 26: Bank shot and straight shot coordinate frames.

puck velocity is supplied by the subgoal generation module and gives further information of what

the desired outcome of performing this action is. This information is then input to the appropriate

shot primitive action generation module that will control the robot to perform the primitive. The

next section shows how we have structured the learning system to take advantage of the observed

information as much as possible.

5.1.3 Making the Most of the Observed Data

To increase the usefulness of the observed information, the hockey shot data used for the Bank

Shot and Straight Shot primitives are represented in a local coordinate frame. Using a local rep-

resentation allows a single Bank Shot model to be created from observing both left and right bank

shots. The action generation module encodes the robot commands needed to make a specified bank

shot in the local coordinate frame. The local coordinate frame for the Bank Shot action generation

module uses the wall that the puck will hit as the x reference. The reference point (0, 0), shown in

Figure 26, is where the puck hit location lines up with the side wall. The x coordinate is positive

in the direction from the wall toward the puck and the y coordinate is positive in the direction of

the opponent’s goal. When a left or right bank shot is observed, puck and paddle parameters are

59

Puck

Motion
Impact Robot

Target

Location

Outgoing

Puck Velocity

Incoming

Paddle Velocity

Robot

Trajectory

Puck

Motion
Impact Robot

Target

Location

Outgoing

Puck Velocity

Incoming

Paddle Velocity

Robot

Trajectory

Figure 27: The transformations involved in action generation.

transformed into the local coordinate frame within the action generation module.

In the action generation module for the Straight Shot primitive the observed information is

transformed to a local coordinate system that is centered on the position at which the puck is hit,

also shown in Figure 26. Positive y is toward the opponent’s goal and positive x is to the right. This

will generalize shots that have approximately the same incoming velocity vector and a similar target

displacement and post-hit puck velocity.

5.2 Air Hockey Shot Action Generation

A shot is made by moving the paddle so that it makes contact with the puck. The puck’s movement

will be influenced at this point of contact [99] and can therefore be controlled by the paddle. A

robot trajectory leads to the paddle hitting the puck, and subsequent puck motion that causes the

puck to go to the target location. An action generation module must invert this process, and find

a robot trajectory that causes the puck to hit the target location (Figure 27). Methods to learn the

Puck Motion and Impact models for the Straight Shot and Bank Shot primitive action generation

modules are presented in this section. The construction of the Robot model is also described.

We use a locally weighted learning technique, Locally Weighted Projection Regression (LWPR)

[129], to represent these learned models. The Puck Motion and Impact models are implemented as

LWPR models that are trained from the observed information. These models are used during action

generation in the Straight Shot and Bank Shot primitives.

60

5.2.1 Learning the Puck MotionModel

Section 5.1.2 and Figure 25 describe the information supplied by the subgoal generation module

when a shot primitive has been selected. This information provides a line at which the puck hit

should occur, but the point at which the puck will be hit must be computed using the puck’s incoming

trajectory. The puck’s state shortly after it is hit by the opponent is observed and the location of the

puck when it crosses the hit line is predicted (the Puck Motion model described in this section does

not refer to this prediction). With the addition of this predicted information, the location of the

puck when it is to be hit (hit location), the desired absolute post-hit velocity, and the location on the

back wall (target location) that the puck should hit is known. What is needed is the direction of

the puck’s outgoing velocity vector that will accomplish this action. To obtain this information we

used the data obtained from observation to train one LWPR model for the Straight Shot primitive

and another for the Bank Shot primitive. The inputs to these models are as follows:

� Straight Shot Puck Motion model:

– Target x position.

– Target y position.

– Absolute desired post hit velocity of the puck.

� Bank Shot Puck Motion model:

– Target x position.

– Target y position.

– Puck x position at the time it is hit.

– Absolute desired post hit velocity of the puck.

The specified locations are in the local coordinate frames of the primitives as discussed in Sec-

tion 5.1.3. Therefore the puck for the straight shot always starts at the origin and the target is the

desired x and y displacement. For the bank shot the puck always starts at the line y = 0 and the

y value in the target is the desired y displacement of the puck. The output of both models is the

61

direction in which the puck should travel to reach the given target point from the location the puck

will be hit at. This information, along with the desired absolute post-hit velocity provided by the

subgoal generation module, is then used by the impact model to generate the paddle parameters

needed to hit the puck to cause it to have the correct post hit velocity (magnitude and direction).

5.2.2 Learning the ImpactModel

The puck motion model supplies the needed post-hit velocity direction for the puck to reach the

target location from the hit location. The impact model must specify where the paddle should be

relative to the puck and the paddle’s velocity at the time of the hit. One way to compute the needed

paddle state at the hit time is to use a pre-specified model of the interaction such as the one presented

by Partridge and Spong [99]. If the model parameters cannot be precisely defined and determined,

the model will not be accurate. Partridge and Spong assume that the mass of the paddle is much

higher than that of the puck and therefore the paddle’s velocity is unchanged by the collision. This

does not seem to be the case in our hardware air hockey environment where small changes in the

paddle’s trajectory can sometimes be observed at the point where it hits the puck. Therefore, in our

implementation, the stiffness of the robot is an additional item that has an effect on the outgoing

puck’s velocity. Defining an accurate parametric model for our humanoid robot that includes all

the items that have an effect on the puck’s outgoing velocity would be difficult, as is evaluating the

significance of each item to determine which items can be ignored. For these reasons we would

like to have the robot learn the impact model in the same way it learns the puck motion model.

The input and outputs of the impact LWPR model are as follows:

� Input:

The x velocity of the puck when it is hit.

The y velocity of the puck when it is hit.

The desired puck’s absolute velocity after it is hit.

The desired movement direction of the puck.

� Output:

The angle between the puck and the paddle at the hit time.

The movement direction of the paddle when it hits the puck.

62

Desired state

of the puck at

hit time.

Robot

trajectory

(x, y, t)

Compute the

movement

command

Pre-set

time delay

Generate

robot

trajectory

(x, y, t)
(x, y, t)

Compute the

movement

command

Pre-set

time delay

Generate

robot

trajectory

(x, y, t)

Figure 28: The Robot model used to control the movement of the paddle.

The velocity of the paddle when it hits the puck.

The output of the Impact model along with the puck’s hit position is used to compute the needed

state of the paddle at hit time. The position of the paddle at hit time is computed using the puck’s

hit position and the angle returned from the Impact model. The paddle movement direction and

velocity returned from the Impact model specifies how the paddle should be moving at the time of

the hit. The paddle must then be moved at the proper time so that it is at the correct hit position

with the correct velocity at the correct time. It is the function of the Robot model to achieve this

state.

5.2.3 The RobotModel

The previous sections shows how the puck state for the desired shot is computed. The paddle is

moved by specifying a trajectory from a starting position to an end position and the time to make the

movement. The paddle has zero velocity and acceleration at the beginning and end of the trajectory.

This trajectory definition gives the paddle a maximum velocity at the center of the trajectory and

this is where the hit should occur. In the software environment the paddle is controlled directly and

the rendered robot moves as needed to appear natural. But in the hardware implementation the robot

must be moved to position the paddle. Section 3.1.3 describes how the humanoid robot makes the

needed movements within the air hockey environment using six set configurations.

Figure 28 shows the robot model that is used to control the movement of the paddle. Using the

desired state of the paddle at hit time and current paddle position, a paddle movement command is

computed. The paddle must be moved at the proper time to be in the hit state when the puck reaches

63

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

Figure 29: This graph shows the absolute error in reaching the target location during 200 straight

shots made by the robot in the software air hockey environment. The solid (top blue) line shows

the result of the robot making 200 shots using the LWPR model trained from observing 44 straight

shots performed by the human. The dotted (bottom red) line is the result of an robot making straight

shots using an exact model of the environment. The graph shows the running average of 5 shots.

the hit position. The robot model also computes this time using knowledge of the trajectory and

puck prediction information. With the robot hardware, there are delays in sensing the puck position,

computing the puck state, and sending commands to the robot. The total delay is approximately

80 − 110ms and the command is sent to the robot earlier to make up for this delay. This delay is

not present in the software environment.

5.2.4 Model Learning in the Simulator

The robot in simulation observed 44 straight shots and 108 bank shots while watching a human play

simulated air hockey for approximately ten minutes. This information was used to create impact and

puck motion models that are used by the action generation modules of the Bank Shot and Straight

Shot software air hockey playing robot.

The solid (top) line in Figure 29 shows the result of the robot making 200 straight shots in

the simulator using models created from observing the human’s shots. Figure 29 plots the average

64

absolute error in hitting the target location, the distance between the target location and the location

where the puck actually hit the back wall. The values plotted are the running average of 5 shots.

The dotted line at the bottom of the graph shows the results of the robot performing the action using

an exact model of the simulator. The error in the exact model is due to the noise introduced into the

simulator and this is effectively the best the robot can perform.

The width of the goal is 20cm and from Figure 29 it can be seen that if the robot was targeting

the center of the goal it would be in range to enter the goal most of the time. But by comparing these

LWPR results with the results of performing the action using an exact model of the simulator, we

see that it could perform better. Section 6.2.1 describes methods that are used to allow the robots to

increase performance as they operate in the environment.

5.2.5 Hardware Air Hockey Performance

Figures 30 and 31 show the performance of the humanoid robot while playing air hockey. Figure 30

shows the path of the puck and the paddles during three intervals of two seconds of game play. The

humanoid robot is on the left and the human player is on the right. Figure 31 shows the position of

the puck and paddles plotted against time for 10 seconds of game play. The top graph plots the y

position of the object on the same graph and most puck-paddle collisions can easily be seen on this

graph. The bottom three graphs in Figure 31 show the x position of the paddles and puck during

the same time period. The level of performance in Figures 30 and 31 is based on 20 minutes of

observed human play and 10 minutes of practice. The regression parameters for selecting primitives

and computing subgoals are as follows: the number of data points used in the regression (N) = 5,

the dimensions are scaled to ±1.0 and the weight of each dimension is 1.0, and the kernel function

is e−d
2/α where α = 1.0.

5.3 Marble Maze

This section shows how robots operate in the marble maze environment using the primitive selec-

tion, subgoal generation, and action generation modules of the "Learning from Observation Using

Primitives" framework. These modules are supplied with training data as described in Section 4.2.

65

Figure 30: The paths of the puck and paddles during three 2-second intervals of game play with a

humanoid robot (left) and a human (right). The "°" symbol denotes the start of the path and the

"¤" denotes the end of the path.

66

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

R
ob

o
t
X

(m
)

0

0.1

0.2

0.3

0.4

P
uc

k
 X

(m
)

0

0.1

0.2

0.3

0.4

H
um

a
n

X
(m

)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Y
 a

x
is

 (
m

)
Human’s Paddle

Robot’s Paddle

Puck

Time (s)

Time (s)

Figure 31: The position of objects in air hockey plotted against time. The top graph shows the

y position of all objects on the same graph. The bottom three graphs show the x position of the

objects during the same time.

67

0 5 10 15 20 25
0

5

10

15

20

All Primitives

+Y

+X

o – Primitive start location. x – Primitive end location.

Data points on

the other side

of the wall are

closest.

Only a few

data points

are available.

Figure 32: Primitives recognized from observing the task performed by a teacher.

5.3.1 Choosing the Primitive Type

The primitive database for the marble maze consists of the actions that an observed teacher per-

formed while operating in the task environment. This information indexed by the state of the en-

vironment at the start of the action; marble’s position (Mx,My) and velocity (Ṁx, Ṁy), and

board tilt angles (Bx,By). This database is used by the primitive selection and subgoal generation

modules to compute the information needed by the robot to perform the task (Figure 23).

In the marble maze task, we consider only actions that the observed teacher performed in the

area near the marble’s current location. When selecting the closest data points, those that are farther

then 4cm from the lookup position, (Mx,My), are ignored. Figure 32 shows the primitives found

while observing a single game. The number of data points available within a 4cm range varies

throughout the board. If the robot does not perform the task in the same way as the teacher, the

marble may go to locations that are far from the actions performed by the teacher. The location

(23, 8) is an example of this problem. If the marble is in this location, the robot has only one or

two data points to choose from. In some locations the closest data points are on the other side of

68

the wall from the marble (location (7, 20)). In this situation, the robot will choose actions that were

performed in an unrelated part of the maze and the performance will likely not be good.

Multiple task performances are observed to give the robots more information to choose from.

The natural variability in the task performances of the human help to provide the robot with a variety

of possible actions. The next section describes the rules used by the robot for selecting primitives

while performing the task.

5.3.1.1 Primitive Selection rules.

The primitive selection module selects which primitive type to perform for the observed state using

the primitive database. Section 5.0.5 showed how Euclidean distance can be computed for each

of the data points and how the primitive type to be used can be selected using this information. If

only this simple selection scheme is used, the robot can get into trouble. For example, the selection

scheme may pick the Corner primitive even though this primitive has just been performed resulting

in no progress. The robot may also choose actions that were performed in areas that the marble has

already passed through. The marble will go backwards through the maze or fall into a hole.

How much information about the task should be given to the robot to help it make intelligent

selections? Some possible pieces of information include: Do not choose actions that have occurred

on the opposite side of a wall. Only choose actions that make progress through the maze. Do not

choose actions in which the subgoal has already been reached. Additional context information will

be needed such as the direction in which the marble should travel to make progress and knowledge

of the spatial relationship between the query point, walls, and relevant data points.

The primitive selection module for the marble maze uses only two pieces of information to help

it select which primitive type to use. One piece comes from the description of the Corner primitive

which states "the marble is captured in a corner and then the board is positioned in preparation to

move the marble from the corner location." This description specifies that a different action should

be performed after the Corner primitive has been performed. Therefore at the completion of a

Corner primitive, the primitive selection module must choose some other type of action. The

other piece of information used is encoded in the data points. The data points have a start and end

location. This information can be used in many ways to help decide if the selected action should

69

be performed. The robot’s objective is to try to obtain the goal state, or end location, specified by

the chosen data points. The robot uses the marble’s current location along with the data point’s

end location information to compute how far the marble is from completing the primitive being

considered. The primitive selection module will not choose actions in which the marble is already

very close to the end location (less then one half the marble radius). Using the computed distance

and the primitive selection rules, the primitive selection module provides a list of possible data

points that can be used to select the primitive type and compute the subgoal as described in the next

section.

5.3.2 Computing the Desired Subgoal

As described in section 5.0.5, N closest points of the same primitive type are used to compute the

subgoal using a locally weighted learning (LWL) model[10]. N should be constant because there

may be only a few data points available for the robot to choose from. If N is set too high it will

greatly limit the actions that are available to be selected because it cannot select actions that have

been observed less than N times. It may also be that the correct action to perform for the observed

environment state may have only been performed once by the observed teacher. Therefore only one

or two data points may be available to the robot. For this implementation, N specifies the maximum

number of data points to use. The number of data points used will therefore vary between 1 and N ,

where N has been set to the number of games observed.

5.3.3 Generating Actions

We now know the primitive and desired subgoal. The robot must now perform the primitive to move

the environment from the current state to the desired subgoal state. These actions are performed by

the action generation modules which are specific to each primitive type. They are created using the

primitive definitions and other provided domain knowledge. This section will describe the creation

and operation of these modules for the marble maze primitives. It is important to note that these

are independent control policies. The primitive selection process does not take into consideration

all the conditions that may cause a primitive to fail. It is also not fully aware of the capabilities

of the action generation modules. Therefore the primitive type selected or subgoals generated may

not actually be able to be performed by the action generation module and the next chapter presents

70

methods the robot uses to handle this situation.

5.3.3.1 Action Generation Rules

The function of the action generation modules is to take the environment from one state to another

for a constrained context. For example the Roll Off Wall primitive can only be used if there is a

wall present for the marble to roll off of. Therefore rules have been created that determine when

these primitives can be initiated and when they should end. This section discusses the primitive

initialization and ending rules summarized in Table 2. For the Roll Into Corner, Roll Off Wall, and

Roll from Wall primitives to begin the marble must be within 1.5× dm(diameter of the marble) of

the wall. The wall’s position is known by a combination of the orientation of the selected primitive

type and the subgoal location.

The marble must be within a distance of 2.0 × dm of the subgoal location for the Corner

primitive to be initialized. The Guide primitive uses the desired subgoal velocity to decide if it

should be performed. The subgoal velocity information is compared with the movement vector, the

vector from the current marble position to the subgoal position. If there is more then 45◦ between

them, the Guide primitive will not be initialized.

All the primitives, with the exception of the Corner primitive, move the marble through the

maze. The chosen data points show the general direction that the marble moved when the primitive

was performed by the observed teacher. This direction can be compared with the desired direction

of movement computed using the current and subgoal locations. If these directions are not within

60◦ of each other, the primitive cannot be initialized. This check helps to ensure that the robot does

not choose primitives that will cause the marble to move to subgoals that have already been passed.

With the exception of the Corner primitive, all the primitives will end when the marble is within

0.5× rm of the subgoal location or will reach the subgoal location within the next time cycle. The

Corner primitive must also have the board in the subgoal orientation to end. When a primitive is

initialized, the marble’s current location and the subgoal location are used to create a bounding box

and the primitive is terminated if the marble goes outside this box more than rm. The objective

of the Roll from Wall primitive is to guide the marble along a wall and guide it off the wall at the

specified subgoal location. Therefore this primitive will end if the marble leaves the wall, even if

71

Table 2: Summary of primitive type initialization and end reasons.

Primitive Type

Roll to

Corner

Roll Off

Wall

Guide Roll

from

Wall

Leave

Corner

Initialize Conditions

Marble is near a wall X X X

Marble is near the corner X

Movement vector is

close to the sub-goal

velocity vector

X

Movement vector is

close to the teacher’s

movement vector

X X X X

End Reason

Marble at sub-goal posi-

tion

X X X X

Out of bounding box X X X X X

Marble and board in sub-

goal position

X

Marble has left the wall X

the marble has not reached the subgoal location.

The information needed to compute the initial conditions and end reasons can quickly be com-

puted using the current environment state and the desired primitive type and subgoal information. It

is important that this calculation occur quickly because if a lot of time is used, there will be less time

available to compute the actions needed. If a primitive cannot be initialized, or the end conditions

have been met, the action generation module will return NULL (no action will be taken) and the

action generation process will end.

5.3.3.2 Obtaining and Formatting Observed Information for Use by the Action Generation

Modules

As discussed in Chapter 2, many methods can be used to create action generation modules. This

research seeks to obtain and use information from observing task performances to increase the

learning rate of the robot. Section 4.2 shows how the observed data is segmented into the defined

primitive types and how information is retrieved from the segmented data and formatted for use

72

by the primitive selection and subgoal generation modules. This segmented data is also used to

provide information about how to learn to perform actions in the environment. The actions the

human performed and the environment state can be computed from the raw data collected during

the observation. By observing the changes in the environment state and the corresponding actions

taken by the human, the robot can learn how to make desired environment state changes.

The segmented data identifies the state of the environment when the primitive is started, Ss, and

when it is completed, Se. The observed actions taken during the performance of these primitives

moved the marble from the initial state, Ss, to the end state, Se. Data points are created to encode

the actions that were taken by the observed player during this time. The Roll Into Corner, Roll

Off Wall, and Roll From Wall primitives all control the marble while it rolls along a wall. Rolling

along a wall should be a local activity that has the wall that the marble is rolling along as a reference.

In this local reference frame, these primitives move the marble from one location on the wall to

another location. They also change the velocity of the marble along the wall. The data points

created for a policy for rolling the marble along a wall uses the end location as the reference point,

Figure 33. A data point is created for each observation occurrence and contains the velocity of the

marble along the wall, the board orientation, the distance to the end point, the velocity of the marble

when it reached the end point, and the change in the board rotation that occurs between this and the

next observation. Only the board rotation that affects the marble’s velocity along the wall is saved.

This ignores the small changes in rolling friction against the wall due to the angle of the board that

causes the marble to stay on the wall. This scheme also assumes that all walls are approximately

the same and rolling the marble in all directions is approximately the same. Using this scheme

allows data points to be created whenever the Roll Into Corner, Roll Off Wall, or Roll From Wall

primitive is observed.

Data points are created for a policy that is used by the Guide primitive in a similar way. The

reference point for the Guide primitive, Figure 34, is again the end location. For this primitive it

is assumed that rolling the marble in the x direction is the same as rolling it in the y direction and

that rolling the marble in a positive direction is the same as rolling it in a negative direction. Using

these assumptions a policy can be created for displacing the marble in one dimension perpendicular

to the rotation axis. For the situation shown in Figure 34, two data points can be created for each

73

Reference

Point

Observed

environment

states

Dist to

the end.

Figure 33: Using observed information to create a database that encodes the actions taken while

maneuvering the marble along a wall.

observation occurrence from the start of the primitive to the end. The Guide database contains

the following information of the marble along a single axis; the velocity of the marble, the board

orientation, the distance to the end point, the velocity of the marble when it reached the end point,

and the change in the board rotation that occurs between this and the next observation. This method

also assumes that the marble rolling in the x (y) direction has no effect on the velocity in the y (x)

direction.

The Roll Off Wall and Roll from Wall primitives must also control the board orientation to

cause the marble to roll off the wall with the proper velocity or roll from the wall at the desired

location. A database is created for each of these actions in the same way that the guide and roll

along wall databases were created. These databases contain the following information; the velocity

of the marble along the wall, the board orientation against the wall, the distance to the end point,

the velocity of the marble when it leaves the wall, and the change in the board rotation that occurs

between this and the next observation.

5.3.3.3 Creating Action Generation Modules

To make the desired changes to the environment, the action generation modules must compute the

commands needed to control the robot. Each action generation module, a separate module for each

primitive type, contains one or more policies to move the environment from the current state to the

74

Reference

Point

Observed

environment

states

Dist to

the end

+Y

+X

+Y

+X

Dist to

the end

Figure 34: Using observed information to create a database that encodes the actions taken while

guiding the marble.

desired subgoal state. These modules perform the following steps:

1. Transform the observed environment state to the local reference frame.

2. If this is the first call of this action generation module, verify that the initialization conditions

are met.

3. Check for reasons to end this action.

4. Compute the needed actions in the local reference frame.

5. Transform the action from the local to the global reference frame.

6. Control the robot.

If the module cannot be initialized or any of the end conditions are met, the action generation

process will end, NULL will be returned, and no action will be taken. The modules use a variety of

methods to compute the needed actions. The Corner primitive uses a simple specified policy. The

board is given a large tilt to cause the marble to be trapped in the corner. Once the marble is stable

in the corner the board is moved close to level and the primitive ends. The other primitives make

use of policies created from the observed information to compute the needed actions.

75

A policy that controls a marble rolling along a wall is created from the database described in

the previous section. This policy is used by the Roll Into Corner, Roll Off Wall, and Roll from

Wall primitives. This database is used to train an LWPR model to control the robot. The input and

outputs to this module are as follows:

� Input:

The velocity of the marble parallel to the wall.

The distance to the end of the primitive.

The tilt of the board perpendicular to the wall.

The desired velocity of the marble at the end of the primitive.

� Output:

The perpendicular board movement that should occur during the next time cycle.

Figure 35 shows the performance this LWPR model as it exposed to various amounts of training

data. The figure plots the error in obtaining the desired subgoal velocity when the primitive ends

and shows how the model’s performance increases as it is initialized with more observation data.

Each bar represents 30 trials where the robot makes 100 random roll along wall actions with starting

conditions and subgoals typical of what is observed when a human operates in the environment. At

the beginning of each trial the LWPR model is initialized with data from random observed games.

The LWPR model will provide an output if the its activation level is greater than 0.05. If the

activation is not greater than 0.05, model cannot be used and the primitive uses a set policy. If the

marble is moving toward the subgoal location with a velocity less than 1.0cm/sec, the set policy

will change the tilt the board slightly (0.001rads) to cause the marble to increase its velocity toward

the subgoal location. If the marble is moving toward the subgoal location with a velocity of greater

then 1.0cm/sec, no action will be taken. The results of using only the set policy can be seen in the

left most bar in Figure 35.

An LWPR model for guiding the marble, used by the Guide primitive, is also created in a similar

manner. Models are also created to control the parallel board rotation during the execution of the

Roll Off Wall, and Roll from Wall primitives. The Roll Into Corner primitive uses a set parallel

wall rotation of 0.02 radians to keep the marble against the wall during the primitive.

76

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Number of seconds observed (30 trials)

A
ve

ra
g

e
 E

rr
o

r
in

 O
b

ta
in

in
g
 t
h
e

 S
u
b
-g

o
a

l V
e

lo
c
it
y

Figure 35: The error of the roll along wall LWPR in obtaining the desired subgoal velocity as it is

initiallized with more training data.

5.3.4 Marble Maze Performance Evaluation

Performance evaluation criterion can be used in the marble maze task to compare the performance

of different players. Progress through the maze from the start position to the end position is one

metric that can be used but this would only evaluate the section of the maze until the marble falls

into a hole. Instead we test by placing the marble on the board ahead of the last failure until the

board is completed. The players in the software marble maze are given a 10 second penalty for each

failure. There are 16 holes on the board but it is possible to fall into the same hole from different

locations on the maze so a player has 21 opportunities to fall into a hole. If the marble does not

make progress for 15 seconds the player is also penalized by 10 seconds. Using this technique, a

player’s performance can be evaluated over the entire maze using such metrics as the time it takes

to move the marble to the end point or the number of failures that occur during a game.

77

5.3.5 Results of Learning from Observation

Robots using only the primitive selection, subgoal generation, and action generation modules, along

with the training data obtained from the primitive recognition module, have the ability to operate in

the observed environment. The results of robots operating in the marble maze environment using

these modules are presented in this section. These robots do not use the learning from execution

module in the performance of the task. Therefore they do not learn beyond what was observed from

the human and the policy used by each module remains fixed. These robots followed four basic

steps:

1. Observe the state of the environment.

2. Decide what primitive type to perform; primitive selection.

3. Compute the parameters to use with the selected primitive type; subgoal generation.

4. Perform the primitive until it has terminated; action generation.

The robot’s intention is to act as the human did, or as the human would, for the observed state.

But if the robot incorrectly predicts the human’s action, or cannot correctly perform the chosen

action, it has no way of knowing if the outcome is desirable for completing the task.

We programmed a robot to operate in the hardware marble maze using the four observed games

shown in Section 4.2. Figure 36 shows the path of the marble while the robot played 30 consecutive

games. In each game the robot has 45 seconds to maneuver the marble from the start location to the

goal position. The play ends when the time has expired, the marble falls into a hole, or the marble

reaches the goal location. Figure 36 shows six graphs each showing five consecutive games, the

locations where the marble falls into a hole, and the locations where the marble got stuck. The

marble is considered stuck when time runs out. The board is leveled at the start of each game.

Because the policy remains fixed, each game can be considered the robot’s first attempt at the

game. In other words, the robot has never operated in the environment and has no experience of the

effect its actions will have on the environment when it first plays the game. Therefore the difference

in the performance from one game to the next is due to the noise within the environment.

78

-Marble fell into a hole.

-Marble got stuck at this location.

-Marble fell into a hole.

-Marble got stuck at this location.

Figure 36: The path of the marble in the hardware marble maze during 30 consecutive games

played by the robot using only observed data. Each board shows 5 paths.

79

Figure 37: Two of the four paths presented in Section 4.2.4 taken by a human while performing the

hardware marble maze task.

The paths shown in Figure 36 show the robot can complete the maze about 3 out of 10 attempts

and often falls into the same hole or gets stuck in the same location. By comparing the paths the

robot has taken to that of the observed human in Figure 37, we see that the robot has the most trouble

when it deviates from the path taken by the human. In these areas the observed actions are all far

from the marble’s observed position. The robot will only choose the actions that were observed

closest to the state the marble is in, but in this situation the chosen actions are not sufficient to get

the marble back on track and lead to failure.

The robot has also found a new path that allows the maze to be completed. When the human

plays the game they always guide the marble below hole 14 (Figure 37). The robot, on the other

hand, only makes progress past this hole by guiding the marble around the top of this hole. Before

we observed this action taken by the agent, we did not know this path was possible. In this situation

imperfect control has lead to an unexpected discovery.

The robot may deviate from the observed human’s path for many reasons. The walls in the

environment provide a constraint that helps the robot to maintain the desired path. When the walls

are not followed the robot has more difficulty in performing the actions in precisely the same way

as the human. The marble may go off the path and into environment states that have not been

observed in the teacher’s performance. The marble may also deviate due to the differences in the

marble’s state at the beginning of the primitive. Errors can also occur because the robot may not

80

be skilled enough to move the marble from its current state to the desired subgoal state. This in

turn may leave the marble in a deviated state for the next chosen action. This cycle will continue

until the marble falls into a hole or returns to the area of the state space that has been covered by the

observed teacher.

We conducted closer analysis of the actions selected by the robot to provide a more in-depth

understanding of the inner workings of the learning algorithms. Figure 38 shows the actions and

corresponding subgoal locations chosen by the robot during one game in which the marble reached

the goal location. The "o" symbol is the lookup or query location. The solid line connects the query

point with the associated desired subgoal location indicated by the "×" symbol. The dotted line is

the observed path that the marble takes while the primitive was active. Looking at the top left graph

of Figure 38 for example, the robot chooses the Roll to Corner primitive at the location (16.6, 1.0)

and has a computed subgoal position of (5.4, 1.0). During the performance of this primitive the

robot observes the movement of the marble from the location (16.7, 0.5) to (6.9, 0.5). The lookup

position and the starting position of the marble may not be the same because a predicted future

marble state is used for the lookup. The predicted state of the marble three vision cycles into the

future is computed using a model of the maze to compensate for the delays in the vision system.

By following the path of the marble through the maze in the graphs in Figure 38 for the individual

primitives, the sequence of chosen primitives can be seen. For example, from the starting location,

the first ten actions chosen by the robot are Roll to Corner, Roll Off Wall, Guide, Guide, Corner,

Guide, Roll to Corner, Corner, Roll Off Wall, and then Guide. The bottom right graph shows

all the chosen primitives combined. This graph is also shown in Figure 39 so the details can more

easily be seen.

Figure 39 shows the trouble the robot has in the area of (9, 16) where it usually falls into the

hole. The robot is constantly choosing primitives for which the initialization conditions cannot be

satisfied. The primitives fail to initialize mostly due to the marble being too far from the wall or

having a desired subgoal velocity vector that cannot be obtained from the lookup location. There-

fore no actions are taken during this time because the selected action generation modules return

NULL when the initialization conditions are not met. As the robot continues to try to find a usable

action, the marble is moving in the environment. In the game shown in Figure 39, the marble finally

81

0 5 10 15 20 25
0

5

10

15

20

Guide

0 5 10 15 20 25
0

5

10

15

20

All Primitives

0 5 10 15 20 25
0

5

10

15

20

Roll to Corner

0 5 10 15 20 25
0

5

10

15

20

Roll Off Wall

0 5 10 15 20 25
0

5

10

15

20

Roll From Wall

0 5 10 15 20 25
0

5

10

15

20

Corner

O – Lookup location. X – computed sub-goal

Figure 38: The primitives selected by a robot while traversing the hardware marble maze. The

solid line connects the lookup point with the desired subgoal. The dotted line is the path of the

marble while the displayed primitives were selected.

82

0 5 10 15 20 25
0

5

10

15

20

All Primitives

Figure 39: The primitives selected by the robot while manuvering the marble from the start to goal

location.

83

reaches a location from which a usable action can take control. Figure 38 shows that during many

of the games the marble reaches the hole before a primitive can be selected to maneuver the marble

as needed to make progress in the maze.

A similar situation occurs in the area of the hole at position (10, 11). Before it reaches this area

the robot has control of the marble and, during this trial, performs the Roll From Wall primitive.

The Guide primitive then takes over but soon ends because the marble rolls outside the initialized

bounding box. The Guide primitive failure is mostly due the failure of the previous Roll From

Wall primitive action to put the environment into the proper state when it completed. As a result, the

marble has too high a velocity in the x direction when the Guide primitive is initialized. The robot

then has problems finding a usable action as the marble again enters states that the observed human

was not in. Once again the marble is not controlled as it moves through the maze until a usable

action can be selected. The ability of the marble to make it past this area is mostly determined by

the state the marble was in when it was last controlled. If the marble has enough velocity in the

positive x direction, it has a good chance of making it past this area. However in some games, the

marble makes contact with the edge of the hole and is deflected in the negative y direction.

During these trials the marble got stuck four times, Figure 36. The robot fails to make progress

past these areas because the chosen primitive action cannot be initialized. In the areas discussed

above, when the primitive could not be initialized the marble continues to move and therefore the

environment state changes as the robot continues to try to find a usable action. But in these stuck

locations the environment state remains the same and the robot continues to select the same primitive

and fails to initialize it.

In the software maze environment we can easily conduct many trials. Figure 40 shows the result

of a robot playing in simulation after observing three games played by a human in the software

environment. The graph on the left shows the number of failures made by the robot during 300

meter runs. A failure is when the marble falls into a hole or does not make progress for 15 seconds.

When a failure occurs the marble is placed on the board past the failure location and 10 seconds are

added to the time it takes to complete the maze. The run then continues from the new location. The

graph on the right shows the overall average time to complete the maze during 5000 second runs.

During the observed games the human did not have any failures and had an average completion time

84

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

1100

Distance Traveled (meters)

T
o

ta
l N

u
m

b
e

r
o

f
F

a
ilu

re
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

Running Time (seconds)

A
ve

ra
g

e
 T

im
e

 t
o

 R
e

a
c
h
 t
h
e

 G
o
a

l (
s
e

c
.)

Figure 40: Software marble maze results during five runs. Left: The total number of failures while

making 300 meter runs. Right: The average time to complete the maze during runs of 5000 seconds.

of 25.0 seconds (25.0, 25.0, 25.1).

5.4 The Usefulness and Limitations of Only Observing Others

The combination of the domain knowledge and information obtained from observing the task speeds

up learning, but also gives the robot clues about when and where to use particular primitives. Due

to the physical limitations of air hockey and marble maze, there is a limited set of shots or moves

which can actually be made. In air hockey, if the puck arrives in the hit area very close to the right

wall for example, a left bank shot would not be possible. Similarly, in the marble maze task the

performance of a Roll to Corner primitive would fail if there is no corner available to roll into.

Because the robots presented in this chapter do not use the learning from execution module,

they do not receive feedback on their performance. But the information provided to the robot up

to this point guides it to perform actions and obtain subgoals in the way the observed teacher did.

If the teacher performed actions and subgoals that lead to the overall task objective, the robot will

attempt to do the same even though, at this point, it has no explicit knowledge of the overall task

objectives. In this regard the robot is similar to a child that imitates the actions of others but may

not know what the overall goal of performing those actions are.

The result of this limitation in the approach described so far can be seen. The robots quickly

85

learned how to perform in many parts of the maze from only observing the human and have ap-

proximately the same performance from one trial to the next. Differences between trials are due

to the noise that is inherent in the physical environment, or introduced into virtual environment. A

common error made by the robot playing marble maze is choosing a primitive that it cannot perform

from the current state of the environment. This creates a subgoal location that cannot be obtained

from the current environment state. The state of the marble evolves without explicit control and

the marble would usually just sits in a corner or falls into a nearby hole. The robots playing air

hockey have difficulty making good shots because their knowledge of interactions in the environ-

ment is limited by the small number of observations. The humanoid robot’s ability to accurately

place the paddle is affected by many things such as the friction between the paddle and the board

and the physical limitations of its mechanical system. Because the robot cannot determine these

parameters from observing others, it cannot always produce the desired trajectory.

The results presented in this chapter show that the robots can perform adequately at tasks after

only observing a teacher perform the task for a short time. But the robot’s performance does not

match that of the human and the robots could perform better if they had the ability to change their

policy while playing the game. The marble maze playing robots allow the marble to fall into holes

more often than the teacher and only rarely complete the maze in a time close to that of the teacher.

Comparing the performance of the robot using only observed information and that of the robot

using a model of the air hockey environment shows that the robot using learning from observation

should be capable of better performance (Figure 29). But to change policies, the robots must have

knowledge of the overall task objectives, a way to evaluate its performance with respect to those

objectives, and the ability to change its behavior. The next chapter presents methods that give the

robots the ability to improve their performance while practicing the tasks.

86

CHAPTER VI

INCREASING PERFORMANCE THROUGH PRACTICE

"Therefore everyone who hears these words of mine and puts them into practice is

like a wise man who built his house on the rock. The rain came down, the streams rose,

and the winds blew and beat against that house; yet it did not fall, because it had its

foundation on the rock. But everyone who hears these words of mine and does not put

them into practice is like a foolish man who built his house on sand. The rain came

down, the streams rose, and the winds blew and beat against that house, and it fell with

a great crash."

- Matthew 7:24-27 (NIV) [96]

There are many ways that the robots can learn to increase their performance while operating

in the task environments. They can become more proficient at performing the primitives. Some

examples of robots that learn to increase their performance of primitives through practice include

a robot that learns to balance a pole [11] and a robot that learns to grasp objects [64] through

practice. The robots can also learn to select more appropriate primitives and primitive parameters

for the observed environment state. This chapter presents methods that have been implemented for

improving primitive selection, subgoal generation, and action generation through practice.

6.1 Learning to Select Primitives and Parameters

Chapter 5 shows the performance of robots operating in the air hockey and marble maze environ-

ments. Using only observed information to create a set policy, these robots often fail at the task

because they choose the wrong primitive or generate bad subgoals for the current state of the envi-

ronment. If these robots had the ability to change their primitive selection and subgoal generation

policy while practicing the task, they could learn to select actions that result in improved perfor-

mance. In this section we present a method that can be used by robots that encode the observed

primitive actions in a database as described in Chapter 4, select data points from this database

using nearest neighbor techniques, and generate subgoals using locally weighted learning (LWL)

techniques. The marble maze task will be used as a test domain to explain the operation of this

algorithm.

87

Observed Roll Off

Wall Primitive

= Marble positions when the Roll

Off Wall primitive is performed

32

1

Figure 41: Choosing a Roll Off Wall primitive from various nearby locations.

Figure 41 shows an example of choosing a primitive action to perform from various locations

nearby an observed data point. The line along the wall shows an observed Roll Off Wall primitive

action that is recorded in the database. The small circles are various marble positions and the

large black circle is a hole. For location 2, choosing this primitive will have a high probability of

successfully moving the marble to the subgoal location (the location at the end of the wall). But if

this same action is chosen for the two marble locations 1 and 3, the marble is unlikely to make it to

the subgoal location. If this primitive is chosen for the marble at location 3, the marble will almost

certainly fall into the hole. The Roll Off Wall primitive shown expects that there is a wall on the

bottom to roll off of. Therefore if this primitive is chosen at location 1 there is no wall to catch the

marble and it will move backwards through the maze. The basic primitive selection scheme shown

in Chapter 5 cannot discriminate between these situations based solely on the computed distance

between the data point and the query points. If the robot had the ability to encode this information

into its primitive selection method, when chosen action leads to a failure, a different action can be

chosen in the future from this same state.

To obtain this functionality, we combined the LWL algorithm with a reinforcement learning

algorithm [122] to give the robot an indication of the value of using data points from an observed

88

state. The basics of the algorithm are to incorporate a multiplier into the distance function d(xi,q).

Incorporating a multiplier into d(xi,q) has the effect of moving the data point in relation to the

query point. A multiplier greater than 1.0 will have the effect of moving the data point further away

from the query point and a multiplier less than 1.0 will have the effect of moving the data point

closer to the query point. For example, if the marble falls into a hole after a selected primitive is

performed, the multipliers associated with the set of data points that were used to decide on that

primitive can be increased. The next time the robot finds itself in the same state, those data points

will appear farther away and will therefore have less or no effect on the newly chosen action.

6.1.1 Associating Multipliers With Data Points

The naive approach of only associating one multiplier to each data point has a problem because

although the chosen data points may be inappropriate for one query point, they may not work very

well for another of equal distance (Figure 41). If the same multiplier is used for all query points,

the system will not be able to distinguish between the success and failure situations. For example,

from query point 1 the robot may choose a more desirable action, but from query point 2, the robot

may now choose a less desirable action.

To overcome this limitation our algorithm provides the ability to use a different multiplier for

different query points around the data point’s origin. Obviously there cannot be an infinite number

of multipliers so there must be some way to encode the multipliers. This section presents a simple

example to explain the use of these multipliers and an encoding scheme and Section 6.1.4 describes

function approximator approaches that have been investigated to encode the multipliers.

Figure 42 shows a simple one-dimensional example where multipliers are associated with two

stored data points, P1 and P2. The numbers above the data points are the multipliers that are

initialized to 1.0 in the top figure. For each data point, the number to the right (left) of the data

point is used when the query point is to the right (left) of the data point. For the two query points

shown the distance QP2-P1 is 1.0 ∗ 5 = 5, QP2-P2 is 1.0 ∗ 20 = 20, QP1-P1 is 1.0 ∗ 5 = 5, and

QP1-P2 is 1.0∗10 = 10. For the situation shown, the data point P1 would be selected for both query

points. Assume a robot makes the query QP1 and chooses data point P1 and performs the primitive

with the parameters specified by P1. The robot’s progress is then evaluated when the primitive

89

5 10
P1 QP1 P2

1.0 1.0 1.0 1.0

QP2
5

5 10
P1 QP1 P2

1.0 4.0 1.0 1.0

QP2
5

Figure 42: One dimensional example of associating multipliers with data points. The multipliers

are initialized to 1.0, top figure. Then the multiplier for P1 is changed to reflect the effect of using

this point in query QP1, bottom figure.

ends. If the robot has performed poorly, the multiplier can be changed as shown in the bottom of

Figure 42. For this new situation the distance QP2-P1 is 1.0 ∗ 5 = 5, QP2-P2 is 1.0 ∗ 20 = 20,

QP1-P1 is 4.0 ∗ 5 = 20, and QP1-P2 is 1.0 ∗ 10 = 10. The distance between QP1 and P1 now

appears much larger and P2 will now be chosen for this query. However, a query at QP2 will remain

unchanged. The next section describes how the multipliers are used and updated and Section 6.1.4

shows methods for associating multipliers with a data point.

6.1.2 Using the Multipliers When Selecting Primitives and Generating Subgoals

The multipliers provide an indication of the value of using that data point for the given query.

Multipliers that are greater than 1.0 indicate that the robot failed when that action was chosen, and

there is a low value, or chance of success, if that data point is used for the state the environment is

currently in. Multipliers less than one, on the other hand, indicate that the chosen action worked

well for the current environment state. In our implementation the multipliers have been replaced

with a number that represents the value of using that data point for the current environment state.

A multiplier is then computed using the stored number.

90

We now use the following equation to compute the distance between the data point xi and the

query point q: d̂ = d(xi,q) · f(xi,q). The function f(xi,q) retrieves the value of using data point

xi associated with the query point q and uses that number to compute a multiplier. As the cell value

is increased, f(xi,q) must decrease so that the data point’s apparent distance is reduced. We tried

using C/V where C is the value that the cells are initialized to and V is the current value in the

cell. V must then be prevented from going to 0. To eliminate this restriction, we also explored the

function e(C−V)/β . Within this function β controls the amount of discrimination between different

values. If C is chosen as 0, the function reduces to e−V/β .

As seen in the example in Figure 42 above, the multiplier returned by the function f(xi,q) has

a direct impact on the apparent distance of that data point in relation to the query point. Section

5.3.2 showed how multiple data points of the same type could be combined to compute the subgoal

parameters using the following equation:

ŷ(q) =

PN
i=1 yi ·K(d(xi,q))PN
i=1K(d(xi,q))

The new distance d̂ is now used to compute the parameters in place of d(xi,q).

6.1.3 Updating Multiplier Values

When the results of performing a primitive are observed, the values associated with the data points

used to select the primitive type and subgoal must be adjusted to reflect the performance. If the

values are set in isolation for each primitive performed, the robot will not consider longer term

effects - three consecutive primitives that lead to a hole, for example. For the marble at location 3 in

Figure 41 there may be no action that can prevent the marble from going into the hole. Therefore

the actions that led the marble to this state are at fault and there must be some way to propagate this

information back to these primitive selections so they are no longer performed.

The Q-learning algorithm [122] lends itself very well to updating the values while taking into

account the results of subsequent actions. The state-action values, or Q values, in the Q-learning

algorithm, Q(s, a), provide the expected future reward that can be obtained by taking action a from

state s. The results are observed when an action is taken and the values are updated. Rewards

are given to guide the values to provide the desired outcome. In our implementation, the Q values,

91

Q(q,xm), are stored with each data point and provide an indication of the expected reward that

can be obtained by selecting data point xm for query the point q. The value V , described in the

previous section, becomes the Q value. Since the selected data points and their distance from the

query point determine the action that is taken, the primitive type to perform and the desired subgoal,

the Q values have a direct impact on manipulating the action that is chosen from query point q.

We initialized the Q values with a constant, C, and update them using a modified version of the

Q-learning function. Because there are N data points selected by the nearest neighbor search, N Q

values must be updated at each time step. For each data point chosen, xm, m = 1,N , the Q values

at time t, Qt(qt,xm), are updated as follows:

Q(qt,xm)← Q(qt,xm) + α · [rt+1 +Q(q̂, x̂)−Q(qt,xm)]

� α is the learning rate. Since multiple points are used, the weighting given by
K(d(xi,qt))
N
j=1K(d(xj ,qt))

is used as the learning rate. This weighting has the effect of giving points that contributed

the most toward selecting the primitive the highest learning rate.

� rt+1 is the reward observed after the primitive has been performed.

� Q(q̂, x̂) is the future reward that can be expected from the new state q̂ and selecting the data

points x̂ at the next time step. This value is given by:

NX

i=1

"

Q(q̂, x̂i) ·
K(d(x̂i, q̂))PN
j=1K(d(x̂j, q̂))

#

6.1.4 Encoding the Q-values in a Function Approximator

The research of Santamaria et al. [111], Smart and Kaelbling [118], and Forbes and Andre [44] give

some insight on various methods that can be used to encode the Q value in a function approximator.

Their research also proves the usefulness of using function approximators for the Q value in various

domains. We explored the use of two function approximation methods: tables and LWPR models.

We created a table for each data point by quantizing the state space in a small area in the vicinity

of the data point. In the marble maze environment, for example, the state space has six dimensions,

92

the marble’s position (Mx,My) and velocity (Ṁx, Ṁy) and the board rotation (Bx, By). We quan-

tized each dimension into five cells and therefore each data point in the database has a table of size

56. For any query point in the state space, its position relative to the data point is used to find the cell

that is associated with that query point. Since only a small fraction of the cells are visited, the tables

are stored as sparse arrays and only when the value in a cell is initially updated is the cell actually

created. For example, if a set of chosen data points provides a good result, those data points will be

chosen every time for that environment state. Other data points in the area will not be visited and

therefore all the cells that are associated with those data points will not be created.

In order to achieve satisfactory performance increases, effort must be invested into selecting the

size of the cells in each dimension. We chose the size of the cells associated with a data point

manually through trial and error with the cells near the center being smaller than those further away.

For example the difference in x and y position between the query point and the data point is divided

into the following areas: less than -0.4cm, -0.4cm to -0.1cm, -0.1cm to 0.1cm, 0.1cm to 0.4cm, and

greater than 0.4cm. This system assumes that the data points will be chosen close to their origin

in the state space and that making the closer cells smaller will allow a finer distinction of the data

point’s effect on the outcome. But if the data point is chosen far, in state space, from its origin,

it will not be possible to discriminate its effectiveness. Therefore choosing the most effective

discretization for each of the dimensions that will work in all areas of the environment may not be

possible. To overcome these limitations we also explored another method that encodes the Q value

in an LWPR model. The table for each data point is replaced with an LWPR model. As the robot

operates in the environment and adds information to the LWPR, the LWPR adjusts to discriminate

between query points as needed. The characteristics of the LWPR models allow data points to be

added continuously. The LWPR parameters that control the initial size of the receptive fields can

more easily be chosen and adjusted. Unlike the fixed cell sizes in the table, the receptive fields

within the LWPR will adjust their sizes as necessary to conform to the training data.

Lookups and updates to the tables and LWPR models are performed in the same manner. There

are six inputs; the difference between the query point and data point in position, velocity, and board

orientation. Using this lookup scheme, values can be retrieved or new values can be input to the

function approximators. If there are no receptive fields within the LWPR with an activation of at

93

least 0.1, the default Q value is used for this environment state.

The Q values for the environment states can change greatly during learning. Therefore the

initial and final forgetting factors are set to cause the model to maintain a high weight on the most

current data. To further help shape the model more quickly, when updates are performed on the

models the new data is fed to the model multiple times, up to 30. The next section shows the

performance and inner workings of robots using tables and LWPRs to encode the learned Q values.

6.1.5 Results of Learning to Select Primitives and Parameters in the Marble Maze

We programmed a robot to play the hardware marble maze game using the "Learning from Obser-

vation using Primitives" framework. The top picture in Figure 43 shows the training data that was

provided to the robot. The robot first performs the task without using the learning from execution

module. The middle picture shows ten consecutive paths taken by the robot while performing the

task. During this time the robot completes the maze five times and falls into a hole five times. The

robot is then given the ability to change the primitive selection and subgoal generation behavior as

described in the previous section. In this implementation, the initial cell value, C, is 100,000 and

the robot uses the function C/Q to compute the multiplier. The reward strategy is as follows:

� Moving through the maze: 100× the distance in meters from the beginning of the primitive to

the end location. Movement along the path toward the goal is positive distance and movement

away from the goal is negative distance.

� Taking up time: −10× the amount of time in seconds from the time the primitive started to

the time it ended.

� Not making any progress during the execution of the primitive: −50,000.

� Not completing the execution of the primitive within the given time of 4 seconds: −20,000.

� Rolling into, and being stable in, a corner: 30,000. When a corner is reached, learning stops

and restarts from the corner location. The robot only gets a reward the first time it goes to

a corner. Subsequent visits to the same corner will also reset learning, but will result in no

reward. This prevents the robot from returning to corners just to get high rewards.

94

� Falling into a hole: −50,000.

� Reaching the goal location in the maze: 10,000.

The bottom picture in Figure 43 shows the path of the marble for ten games played by the hard-

ware robot after it has practiced for 30 games. This robot has completed the maze ten consecutive

times without falling into a hole.

We also tested robots in the simulator with and without the use of the learning from execution

module to update the primitive and parameter selection policy. This implementation was used to

obtain a more thorough look into the performance of our algorithm because it is much easier to run

multiple trials. This section first presents the results of using this strategy with the Q values stored

in LWPR models. The performance of the table method is then compared with the LWPR function

approximator method. Both methods use the same initial cell value, C = 0, and f(xi,q) = e−Q/β

where β =20,000. The reward strategy is as follows:

� Moving forward through the maze: 200× (distance in meters).

� Moving backward through the maze: −1,000× (the distance in meters).

� Taking up time: −1,000× the amount of time in seconds from the time the primitive started

to the time it ended.

� Not being able to initialize the primitive: −30,000.

� Not completing the execution of the primitive within the given time of 4 seconds: −30,000.

� Rolling into, and being stable in, a corner: 0. When a corner is reached, learning stops and

restarts from the corner location.

� Falling into a hole: −50,000. When the marble falls into a hole, learning is stopped and

restarted from the location the marble is placed at when the game begins again.

� Reaching the goal location in the maze: 10,000.

This reward strategy leads the robot to choose actions that make large forward progress in the

least amount of time and to not choose actions that cannot be initialized or cause the marble to fall

95

Figure 43: Top: The 3 observed games played by the human teacher. Middle: Performance on 10

games based on learning from observation using the 3 training games. The maze was successfully

completed 5 times, and the red circles mark where the ball fell into the holes. Bottom: Performance

on consecutive 10 games based on learning from practice after 30 practice games. There were no

failures.

96

0 20 40 60 80 100 120 140 160 180 200
20

25

30

35

0 20 40 60 80 100 120 140 160 180 200
20

25

30

35

M
az

e
C

o
m

p
le

ti
o
n

 T
im

e
(s

ec
.)

M
az

e
C

o
m

p
le

ti
o

n
 T

im
e

(s
ec

.)

Number of Games Played Number of Games Played

Figure 44: Raw game times of a robot performing 200 trials in the software marble maze environ-

ment using only observed information (left) and given the ability to learn through practice (right).

into a hole. The robot was initialized with three observed games played by the human. During the

observed games the human did not make any failures and had an average completion time of 25.0

seconds (25.0, 25.0, 25.1). Figure 44 shows the raw game times of a robot performing 200 trials in

the software marble maze environment using only observed information (left) and given the ability

to learn through practice (right). Figure 45 shows number of failures made by a robot performing

200 trials in the software marble maze environment using only observed information (left) and given

the ability to learn through practice (right). A failure is an instance of the marble falling into a hole

or not making progress through the maze. These robots use the evaluation strategy described in

Chapter 5.3.4 and are placed back on the board after a failure.

To obtain a more comprehensive evaluation of the algorithms, multiple trials have been run with

a robot using only observed information and given the additional ability to learn from execution.

Figures 46 and 47 show the performance of the robot during five runs using only observed infor-

mation, solid (blue) line, and five runs with the ability to change its primitive selection and subgoal

generation policy, dotted (red) line. This robot follows the evaluation policy described in Chapter

5.3.4 and the marble is replaced on the board after a failure. Figure 46 shows the robot’s perfor-

mance during ten 5, 000 second runs. The left graph shows the number of goals made per second

over time. The right graph shows the total number of goals made over time.

97

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2
F

ai
lu

re
s

p
er

 G
am

e

F
ai

lu
re

s
p

er
 G

am
e

Number of Games Played Number of Games Played

Figure 45: Failures made by a robot performing 200 trials in the software marble maze environment

using only observed information (left) and given the ability to learn through practice (right).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

200

220

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

G
o

al
s

p
er

 S
ec

o
n
d

T
o

ta
l

N
u
m

b
e
r

o
f

G
o

al
s

Number of Games Played Number of Games Played

Figure 46: The performance of the robot during five 5,000 second runs using only observed infor-

mation, solid (blue) line, and five 5,000 second runs with the ability to change its primitive selection

and sub-goal generation policy, dotted (red) line. Left: number of goals made per second over time.

Right: total number of goals made over time.

98

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ai

lu
re

s
p

er
 G

am
e

(r
u
n

n
in

g
 a

v
er

a
g
e
)

T
o
ta

l
N

u
m

b
er

 o
f

F
ai

lu
re

s

Number of Games Played Distance Traveled by the Marble

Figure 47: Failures made by the robot during five runs using only observed information, solid (blue)

line, and five runs with the ability to change its primitive selection and sub-goal generation policy,

dotted (red) line. Left: number of failures made per game over the course of 200 games. Right:

total number of failures over 300 meters runs.

Figure 47 shows the failures made by the robot. The left graph shows the number of failures

made per game over the course of making runs of 200 games each. For the right graph, the robot

makes runs of 300 meters and the graph shows the total number of failures made during each trial.

When the marble reaches the goal location it is placed at the start location and the run continues.

The LWPR models used by the above robots are replaced with tables to encode the Q values

and the same tests have been performed. Figure 48 shows the performance of the robot using tables

compared to a robot that uses LWPR models. The right graph shows the goals per second during

5000 second runs. The left graph shows the number of failures the robot makes during runs of

300 meters each. The parameters for each of the function approximators were chosen manually

through trial and error to obtain the best performance for each system encoding scheme and the

three observed games.

We also analyzed the performance of the robots in simulation as a function of the amount of

observed data. We created a database of 50 observed games. The games were performed by a

human and the time to complete the maze varies from 20.1 to 25.6 seconds. Only games that

do not include failures are included in the database. Figure 49 shows the result of providing this

information to the robot. Thirty runs of 320 games each were performed by the robot after observing

one to five games. At the beginning of each run the robot chooses observed games randomly from

99

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.032

0.034

0.036

0.038

0.04

0.042

0.044

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

110

Number of Games Played Number of Games Played

T
o
ta

l
N

u
m

b
er

 o
f

F
ai

lu
re

s

G
o
al

s
p
er

 S
e
co

n
d

Figure 48: Comparing the performance of a robot encoding the Q value in tables, dashed (red) line,

and encoding the Q value in LWPR models, solid (blue) line. Left: failures made during 300 meter

runs. Right: goal per second during 5,000 second runs.

the entire database. The robot uses this information under three situations; 1) no learning from

practice (Observation Only), 2) learning with Q values encoded in tables (TABLE), and 3) learning

with Q values encoded in LWPR models (LWPR). This figure shows the average performance of

the robot during games 301 to 320. The average and standard deviation is shown for the 30 runs.

Figure 49 shows that when the robot is not learning from practice, the bars marked "Observation

Only," its performance varies more than when it is given the ability to learn from practice. Both

encoding schemes, table and LWPR, used the hand-tuned parameters that were designed for the

three games provided to the robot with the performance shown in Figures 46 and 47 above. The

performance of the learning systems are approximately the same. The encoding system using tables

is more consistent as would be expected since the cell sizes remain fixed. The LWPRs, on the other

hand, are formed by the observed Q values and will vary depending on the ordering of the observed

values.

The observed games that are include in the database were not performed consecutively by the

human, but were chosen from among many performance attempts with games that include failures

removed. The average of a run of 20 consecutive games, including games that have failures, played

by the observe human was 29.6 seconds with a standard deviation of 7.4 seconds. The robots

learning from practice exceed that performance after three observed games.

100

1 2 3 4 5
0

10

20

30

40

50

60

Number of games observed

A
ve

ra
g
e

 T
im

e
 t
o

 R
e

a
c
h

th
e
 G

oa
l
(s

e
c
.)

Observation Only
Table
LWPR

Figure 49: Observing one to five games while not learning from practice (left), learning from

practice using tables (middle), and using LWPRs (right).

101

6.1.5.1 Looking Inside the Operation of the Algorithms

The previous graphs show that giving the robot the ability to learn while practicing improves per-

formance in many ways. This section looks more deeply into the changes that are taking place

in the algorithms. Figure 50 shows all the primitives selected by a robot during a game using the

initial policy created from observation. This graph is similar to Figure 39 described in Chapter

5.3.5. The graph shows that in some parts of the maze, shaded areas, the robot is having difficulty

choosing a primitive and generating subgoals that can be used. As described in Chapter 5.3.5, if

an action cannot be performed another action can be selected on the next time cycle. Since the

environment changes only slightly during this time, the robot may select a similar action that cannot

be performed. During this time, the marble is moving in the environment but the board orientation

is not being controlled by the robot. The robot cannot take control of the board until the marble

moves to a position where a usable action is selected.

Figure 51 shows the primitives chosen by the robot after it has practiced for 100 trials. The

graph shows that this robot makes fewer selections during the game and that, overall, a single

primitive is active longer. Therefore the robot has learned which primitives are useful for completing

the task and is in control of the board throughout most of the task performance. When not learning

from practice it is possible for the robot to get stuck if the environment is not changing and a usable

primitive cannot be selected. But when learning through practice, even when the environment is not

changing, the robot will change its selection behavior reducing the chance of getting stuck.

After the robot has practiced the task many times the learned Q value function models con-

tain information on the usefulness of choosing data points at various locations. We then take an

individual model and query it to observe the data point’s Q values when trying to select this data

point at various locations in the state space. But the models cover six dimensions and only contain

information about areas of the state space that have previously been visited. The following graphs

show what has been learned by a typical LWPR model associated with a data point in the marble

maze environment. The graphs are created by holding the board orientation and marble velocities

constant and querying the model at different board positions. The model being tested is associated

with the Roll Off Wall primitive action shown in Figure 52. This primitive was observed when the

102

0 5 10 15 20 25
0

5

10

15

20

- Areas where the agent is having difficulty selecting a usable action.

Figure 50: Primitives chosen by a robot while performing the software marble maze task. This

robot is not learning while practicing. The gray line shows the path of the marble during this game.

The solid line connects the primitive start location, "o", to its associated sub-goal location, "×".

103

0 5 10 15 20 25
0

5

10

15

20

Figure 51: Primitives chosen by a robot while performing the software marble maze task after the

robot has practiced by playing 100 games. The gray line shows the path of the marble during this

game. The solid line connects the primitive start location, "o", to its associated sub-goal location,

"×".

104

Incoming

Velocity Vector

Observed Roll Off

Wall Primitive

= Two marble positions with the incoming

velocity as shown when the LWPR model associated

with the Roll Off Wall primitive shown is queried.

Testing area

+Y

+X

+Y

+X

(12.9,18.8)

Hole 14

Figure 52: Testing the LWPR model associated with an observed primitive data point.

marble was at the location (12.9, 18.8). The shaded area shows the approximate area being tested.

Two possible marble positions along with a vector that represents the incoming velocity are also

shown. Intuition says that choosing the shown action for the marble position near the origin of the

observed primitive, (12.9, 18.8), should lead to successfully maneuvering the marble to the subgoal

location. But if this same action is chosen for the location near hole 14, the marble will fall into the

hole with a high probability. If the LWPR has been exposed to this situation it should encode the

knowledge that this should be used at one of these locations but not the other for the given marble

velocity.

We created model for this data point by having the robot practice 400 games in the simulator.

We first tested the model to see what the activation levels were in the testing area. The activation

levels give an indication of the query point’s distance from the center of the receptive fields within

the model. If the maximum activation is not greater than 0.1, the model does not have information

for the query point and the initial Q value is assumed. Figure 53 shows the model activations for the

testing area. The graph shows that there is no activation in the area that overlaps the top wall. This

105

L
W

P
R

 A
ct

iv
at

io
n

 L
ev

el

+Y
+X

Marble’s Position

Figure 53: Activations of an LWPR model.

is to be expected because the robot should never have been in that environment state. The activation

also drops off as it is queried further to the left of the data point origin. This may be that this

primitive has never been tried from those locations. But remember that this is a six-dimensional

space and this graph is only showing two dimensions. So the model may know about the area to

the left, but not for the given velocities and board angles. Because the activations are greater than

0.1 in a large part of the testing area, it can be assumed the model has knowledge about using this

data point in this area for the given velocities and board positions.

Figure 54 shows the Q values returned from querying this model. If the LWPR model does not

return an activation of greater than 0.1 the initial Q value is used and this can be seen in the graph

in the flat area at the 70, 000 level. The graph in Figure 54 shows that this action has a low Q value

when the marble is close to the hole. But if the marble is a little farther from the hole, it is very good

to use this data point and high rewards are received that have increased the Q value. The Q values

near the data point’s origin are also above the initial value. But in the testing area closest to the

106

Q
 V

al
u
e

+Y
+X

Marble’s Position

Figure 54: The Q-values returned when quering the LWPR model in the testing area and associated

with the data point shown in Figure 52.

data point’s subgoal location the model does not have information for the given velocity and board

orientation. For the given environment state, this primitive has been selected in the area where the

activations are greater than 0.1 and the marble either makes it to the subgoal location or falls into

the hole. Therefore this primitive was not initialized in the area near the subgoal location.

The Q values are then used to compute a multiplier that is used in the regression as shown in

Section 6.1.2. For this implementation the equation e−(C−V)2/α is used to convert the Q-value

to a multiplier where C is the initial Q value of 70, 000 and α is 10, 000. Figure 55 shows the

multipliers that would be computed for the situation shown in Figure 54. Again the flat area at the

1.0 level represents areas of the environment state where the model does not have knowledge and

the initial Q value is used.

107

C
o

m
p

u
te

d
 M

u
lt

ip
li

er

+Y
+X

Marble’s Position

Figure 55: The multipliers computed for the Q-values shown in Figure 54.

108

6.1.6 Parameter Analysis

Our learning system has various parameters that were hand tuned. This section looks at the effect

of those on the performance of the robot. The parameters that will be changed and their values for

the creation of the graph in Figure 49 are as follows:

� Weights on the individual scaled dimensions in the regression (w).

– Marble position (Mx,My):100.0

– Marble velocity (Ṁx, Ṁy):1.0

– Board rotation (Bx, By):1.0.

� The value of α in the kernel function K(d) = e−d
2/α:10.

� The number of data points used during the regression to compute the subgoal:4.

Each test is performed using five random observed games from the database. 30 trials are run for

each situation and the bar graphs show the average of 20 games after the robot practices for 300

games.

The weights on the dimensions in the regression (w) control the significance of the individual

dimensions on the result of the regression, after scaling each dimension to ±1.0. Figures 56, 57,

and 58 show the result of changing these weights. The graphs on the left show the performance of

the robot after it has practiced for 300 games and the graph on the right shows the performance of

the robot while practicing (using tables to encode the Q values) for three different weight values

during the first 100 games. From these graphs it can be seen that board position has the most effect

on the performance of the robot.

The value of α in the kernel function K(d) = e−d
2/α controls how much points close to the

query point have an effect on the regression results. If α is very low, the closest data point will have

the most say in what outcome of the regression is. If α is large, all points that are included in the

regression will have an almost equal vote. Figure 59 shows the performance of the robot as α is

changed.

109

0.01 0.1 1 10 100 1000 10000 100000
0

10

20

30

40

50

60

70

80

90

100

Position Weight

A
ve

ra
ge

 T
im

e
 t
o
 R

e
a

c
h

th
e
 G

o
a
l

(s
e
c
.)

Observation Only
Table
LWPR

0 20 40 60 80 100
20

25

30

35

40

45

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v
e

ra
g

e
(5

 g
a

m
e
s

)
T

im
e
(s

e
c

.)
 t

o
 G

o
a

l W=0.1

W=100

W=100000

Figure 56: Changing the weight on the marble position dimension.

0.01 0.1 1 10 100 1000 10000 100000
0

20

40

60

80

100

120

Velocity Weight

A
ve

ra
ge

 T
im

e
 t
o
 R

e
a

c
h
 t

h
e
 G

o
a
l

(s
e
c
.)

Observation Only
Table
LWPR

0 20 40 60 80 100
20

25

30

35

40

45

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v
e

ra
g

e
(5

 g
a

m
e

s
)

T
im

e
(s

e
c

.)
 t

o
 G

o
a
l W=0.01

W=10

W=10000

Figure 57: Changing the weight on the marble velocity dimension.

0.01 0.1 1 10 100 1000 10000 100000
0

20

40

60

80

100

120

140

Board Position Weight

A
ve

ra
ge

 T
im

e
 t
o
 R

e
a

c
h

th
e
 G

o
a
l

(s
e
c
.)

Observation Only
Table
LWPR

0 20 40 60 80 100
20

25

30

35

40

45

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v
e

ra
g

e
(5

 g
a
m

e
s
)

T
im

e
(s

e
c

.)
 t

o
 G

o
a
l W=0.01

W=10

W=10000

Figure 58: Changing the weight on the board angle dimension.

110

0.001 0.01 0.1 1 10 100 1000
0

5

10

15

20

25

30

35

40

The value of α

A
ve

ra
ge

 T
im

e
 t
o

 R
e

a
ch

 t
h
e

G
o
a

l
(s

e
c.

)

Observation Only
Table
LWPR

0 20 40 60 80 100
20

21

22

23

24

25

26

27

28

29

30

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v
e

ra
g

e
(5

 g
a
m

e
s

)
T

im
e
(s

e
c

.)
 t

o
 G

o
a

l α=0.1

α=10

α=1000

Figure 59: Varying the value of α in the kernel function.

0 20 40 60 80 100
20

25

30

35

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v
e

ra
g

e
(5

 g
a
m

e
s
)

T
im

e
(s

e
c

.)
 t

o
 G

o
a
l k=1

k=4

k=7

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Number of data points use to compute the subgoal (k)

A
ve

ra
g
e

 T
im

e
 t
o

 R
e

a
ch

 t
h
e

G
oa

l
(s

e
c.

)

Observation Only
Table
LWPR

Figure 60: Changing the number of data points that are used in computing the subgoal.

The primitive type to use for a query point is decided upon by the closest data point. The

subgoal specified by this single data point can also be used as the desired subgoal. The regression

allows multiple data points to contribute towards the desired subgoal. Figure 60 shows the result of

changing the number of nearby data points that are used in the regression.

From these graphs it can be seen that varying the parameters has the most effect on the robots

that do not learn from practice. All the robots, when given the ability to learn from practice, signif-

icantly improve their performance. Our learning from practice system is very robust and in most

situations the robots obtain approximately the same performance after practicing for 300 games.

111

Puck

Motion
Impact Robot

Target

Location

Outgoing

Puck Velocity

Incoming

Paddle Velocity

Robot

Trajectory

Puck

Motion
Impact Robot

Target

Location

Outgoing

Puck Velocity

Incoming

Paddle Velocity

Robot

Trajectory

Figure 61: The models involved in action generation: puck motion, impact, and robot.

6.2 Learning to Perform Primitives

There is an extensive amount or research in having robots learn to perform a single primitive through

practice as discussed in Chapter 2. This section presents methods that are being used by our air

hockey learning robots to increase their performance of the shot primitives through practice. Chapter

5.2 describes how the shots are made in air hockey using the models shown in Figure 61.

The puck motion and impact models were initialized with data from observing a human as

described in Chapter 5.2.4. The solid line in Figure 62 shows the result of the robot making 500

straight shots in the simulator. For the first 200 shots the robot is using models created from

observing the human’s shots and the graph plots the average absolute error in hitting the target

location, the distance between the target location and the location where the puck actually hit the

back wall. The values plotted are the running average of 5 shots. The dotted line at the bottom of

the graph shows the results of the robot performing the action using an exact model of the simulator.

The error in the exact model is due to the noise introduced into the simulator and this is effectively

the best the robot can perform.

Based on this comparison, it appears there is room for improvement. One way to increase

performance is to have it observe the human making more shots. But this can be time consuming

as it took over ten minutes to see only 152 shots. A more practical alternative is to have the robot

observe its own behavior and add that information to the models.

After making 200 straight shots using the models learned from observing the human, the robot

then observed 100 of its own shots while practicing (shots 201 to 300 in Figure 62). Whenever the

robot observes its own shot it calculates the parameters in the same way as if it were observing a

human. This information is then immediately given to the models. Figure 62 shows the result of

112

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

Number of Shots Taken

T
a

rg
e
t

E
rr

o
r

(m
)

LWPR Model
Exact Model

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

Number of Shots Taken

T
a

rg
e
t

E
rr

o
r

(m
)

LWPR Model
Exact ModelPractice

100 Shots

Figure 62: This graph shows the magnitude of the error in reaching the target location during 500

straight shots made by the robot in simulated air hockey. The solid line shows the result of the robot

making 200 shots using the LWPR model trained from observing 44 straight shots performed by

the human. It then observes 100 of its own shots while practicing and adds that information to the

LWPR model. The dotted line is the result of a robot making straight shots using an exact model of

the task. The graph shows the running average of 5 shots.

using these newly trained models for the shots from 301 to 500.

6.2.1 Action Learning in Physical Air Hockey

Learning on hardware provides a set of challenges that are not present in the simulator. The simu-

lator can start in, or be set to, any given configuration. The movement of the items in the simulator

can also be accurately controlled and sensed. This section presents a method that is used by the

humanoid robot in the hardware air hockey environment to adapt to paddle movement and table

placement errors. This method also allows the robot to learn the timing of the paddle movements.

The humanoid robot positions the paddle on the table using an interpolation method described

in Chapter 3. This system is used to generate the robot trajectory in the robot model shown in

Figure 63. The input to this system is the desired position of the paddle and the time in which it

should make the movement. The movement is started after a fixed delay that represents the time

delays in initializing the command and the time it will take for the paddle to reach the hit location.

This is a simple and useful method for positioning the paddle, but if the table is not accurately

placed, or moved during the task, there will be an error in positioning the paddle on the table. We

have found that paddle placement accuracy is also affected by the desired movement velocity. The

113

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

Observed trajectory

of the paddle

+x

+y

+x

+y

Starting location

Desired state

of the puck at

hit time

Robot

trajectory

(Desired)
(x, y, t)

Compute the

movement

command

Pre-set

time delay

Generate

robot

trajectory

(x, y, t)

Observed location

of highest paddle

velocity

Figure 63: The robot model used to control the humanoid robot and errors in placing the paddle

due to exceeding the design limits of the robot.

114

accuracy is much higher during slow shot maneuvers than during fast shot maneuvers. A reason

for this is due to the design of the robot and the fact that some of the degrees-of-freedom (DOFs)

are stronger and/or faster than others. One way to reduce the effect of this problem is to ensure

that we keep the desired movement velocity lower then the slowest DOF. But this would severely

limit the robot’s performance. The robot is capable of moving the paddle at velocities close to those

observed by a human player. The problem is that the paddle does not always correctly follow the

specified trajectory at these high velocities. Figure 63 shows the deviation of the paddle from the

desired trajectory during a hit maneuver.

For the task of making shots in the air hockey environment, there is only one important instant,

and that is when the puck and paddle collide. It is at this instant that the paddle affects the movement

of the puck. Therefore it is not the entire trajectory that is important, but the state of the paddle at

the instant it hits the puck. If the robot can repeatedly control the paddle to be in the correct state

at the correct time, it can make accurate shots in the air hockey environment irrespective of the path

the paddle takes to arrive at that hit point. Figure 63 also shows the difference between the desired

hit location and the location where the highest paddle velocity is observed during the hit maneuver.

6.2.1.1 Learning the Robot Model

The robot model must generate a trajectory which has the paddle arrive at the hit location at the

correct time with the correct velocity. The robot command consists of a desired location and a time

in which to reach that location. The movement follows a fifth order polynomial with zero start and

end velocities and accelerations. It therefore should have its highest velocity in the middle of the

movement and this is where the puck-paddle collision should occur. The graph in Figure 64 shows

the path, the lines (blue) with the boxes on them, of three hit maneuvers. The lines (red) with the

circles on them are the desired trajectories. The robot’s initial position for the three maneuvers

is approximately (0.235, 0.05). The robot is commanded to move to the position (0.31, 0.16) in

14.3ms. The graph shows where the paddle-puck collision is expected to occur and where in the

actual trajectory of the paddle the highest velocity is observed. From this graph it can be seen that

there is a repeatable error for this given command and there may exist a set of commands that would

place the puck at the desired hit location with the desired velocity vector.

115

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Desired

trajectory

Observed path

of the paddle.

Desired hit location –

Location of highest

paddle velocity -

+x

+y

Starting location

Figure 64: The errors in making three similar hit maneuvers.

116

It is the function of the robot model to learn the robot commands that will correctly place the

paddle at the time of the hit. The robot learns this model when the board is placed in the environment

and play is about to begin. At this time the robot makes a set sequence of 100 paddle movements that

would be typical for making hockey shots. When a movement is commanded, the starting location

of the paddle as seen by the robot, the desired movement command, and the time the command is

sent to the robot are recorded. The movement of the paddle is then observed and the paddle velocity

is computed whenever new vision data arrives (60Hz). The paddle’s position and velocities, and

the time of the observation, are recorded. When the paddle velocity returns to zero, a data point is

created with the following information:

� Input:

– Starting position of the paddle.

– The state of the paddle, position and velocity, at the highest velocity location.

� Output:

– The position and time command given to the robot.

– The time from when the command is given to the time the paddle is observed at the

highest velocity location.

These data points are used to train an LWPR model that is used in the robot model.

6.2.1.2 Using the Robot Model

The paddle’s position and velocity needed at the time it hits the puck are computed using the puck’s

hit position and the information returned by the impactmodel. This information, along with the pad-

dle’s current location are used as inputs to the robot model. The model then provides the command

that will place the paddle as desired.

The three graphs in Figure 65 show the results of using this trained LWPR model to make the

same maneuver as the one shown in the graph on the left. Each graph shows one hit maneuver

and the robot starts in approximately the same initial state. The initial paddle position and desired

paddle hit state are input to the LWPR model and the values returned from the model are used as

117

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Figure 65: The lines (blue) with the boxes on them in these graphs show the path of the paddle

during shot maneuvers. The lines (red) with the circles on them are the desired trajectories. The

three graphs show the same shot maneuver being made using a trained LWPR model.

the movement command. The graphs show that the model has learned to more accurately place the

paddle at the desired hit location with the velocity vector pointing in the correct direction and the

location at which the highest paddle velocity is seen is now much closer to desired hit position.

6.2.1.3 Using the Timing Information

The robot model also learns the time that it will take for the vision system to observe the paddle at

the desired hit location. In the hardware environment there are delays in observing the items in the

environment and in commanding the robot. Because of the high velocities of the puck, a delay in

sensing and computing the puck position means that the puck’s position as reported by the vision

system is not the real-time position of the puck. If the real-time position is required, a model of the

environment must be used to predict the position of the puck into the future by an amount of time

equal to the sensing delay.

The timing information provided by the robot model removes the need to know the vision and

command delays. This timing information tells the time, from when the command is given, that the

paddle will be observed at the desired hit location. This means that the robot can now work entirely

in the vision system’s frame of reference when computing the time that the movement command

118

Desired state

of the puck at

hit time

Robot

trajectory

Robot

Movement

LWPR

(x, y, t)

Time delay

from LWPR

Generate

robot

trajectory

(x, y, t)
Timing

information

Figure 66: The updated robot model with the ability to learn from observing its own behavior.

should be given. When the puck’s position and velocity are observed shortly after being hit by

the opponent, the action generation module, using the hit line supplied by the subgoal generation

module, predicts the time it will take, in the time frame of the vision system, for the puck to reach

the hit line. In other words, this is the time the puck should be observed crossing the hit line. This

predicted time, along with the timing information returned from the robot model, can now be used

for determining when the hit should be commanded. For example, if the predicted time for the

puck to cross the hit line is computed as 300ms and the time for the paddle to be observed at the

hit position, returned from the robot model, is 250ms, the robot’s movement should be initiated in

50ms. 250ms after the movement command is given, the vision system should observe the puck

and paddle in the proper hit positions. Figure 66 shows the new robot model that has the ability to

improve its performance from observing its own movements.

119

CHAPTER VII

DISCUSSION

Then Jesus came to them and said, "All authority in heaven and on earth has been

given to me. Therefore go and make disciples of all nations, baptizing them in the

name of the Father and of the Son and of the Holy Spirit, and teaching them to obey

everything I have commanded you. And surely I am with you always, to the very end of

the age."

- Matthew 28:18-20 (NIV) [96]

This Chapter explains the decisions that were made about the structure of the framework and

discusses some of the issues related to this research. It also presents a comparison of the learning

system presented in this thesis with a reinforcement learning system. The comparison highlights

characteristics of the framework which are also discussed in this chapter.

7.1 Why Does the Framework Look the Way it Does?

While a framework offers structure and can help to modularize the problem, it also limits what

can be done to only things provided for by the framework. Many decisions must go into creating a

framework that affords an appropriate trade-off between modularization and flexibility. This section

discusses some of the design decisions that went into creating the framework presented in this thesis.

The ability to use observed data in a systematic way and to learn while practicing were two of the

main concerns while creating the framework. The ability to generalize within the environment and

across to other environments was also considered.

7.1.1 Combining Primitive Type and Parameter Selection

The presented framework first selects the primitive type. The selected primitive type then narrows

down the search for subgoals. What if we do away with the primitive selection module and just

have the subgoal generation module provide the next subgoal? To use that subgoal information

there must be a higher level process that can select the primitive type that needs to be performed to

use that subgoal in the robot’s current state. We are now back to the original problem of selecting a

120

primitive type to use, but have different information in which to select it. For this situation it would

be useful if a primitive could tell us if it is capable of taking the system from the current state to

the goal state. The research of Faloutsos et al. [40] provides an example of a method to find the

set of preconditions under which a policy will operate correctly and also shows how difficult this is.

It is our belief that by first committing to a primitive type we are simplifying the learning problem

by only having to learn the set of parameters appropriate to that primitive type. By separating

these modules the method used to provide the needed information can be unique for each decision

providing extra flexibility.

7.1.2 Combining Subgoal Generation and Primitive Execution

It may be considered that once a primitive type was selected the primitive execution policy can

decide on the needed parameters thereby eliminating the subgoal generation module. By doing

this there will be a loss in generality and flexibility. The primitive execution module contains the

policy to bring the system from the current state to a new state within the constraints of the primitive

type. The primitive execution policy maps the sensor readings to an action for each time step and

is designed to operate under constraints of a local environment. This means that this same policy

may be used in different parts of the state space. A policy for a primitive type, for example, can be

performed in any location where the configuration matches that needed for that primitive type. The

selected subgoal provides the arguments needed to communicate to the policy the desired outcome.

This method also allows the subgoals to be generated using any type of algorithm and information

needed. By separating these modules the subgoals can be generated using a coarse discretization

of the environment state space and the policy can then use any method appropriate to control the

system as seen in the research of Morimoto and Doya [88].

7.2 Primitive Design Considerations

Within this research a domain expert designed the primitives that would be explored in each task. It

may be asked, "Are these the best sets of primitives for conducting these tasks?" One can certainly

think of other possible primitives for these tasks. This research does not seek to find the optimal

set of primitives or prove that we have created an optimal set. This research seeks methods that

121

robots can use to learn tasks quickly from observation and practice using a given, fixed, set of

primitives. It also highlights some issues and challenges about using a fixed set of primitives in

dynamic environments.

The set of primitives should provide the robot with an action for any possible state it may be in.

This becomes more challenging in the hardware implementations. In the software implementations

the simulator can perturb the environment if there is no movement. But in the hardware implemen-

tations, if the robot gets stuck, the human will need to intervene to allow the robot to continue the

task. Within our marble maze environment we have found that the robot can take actions for all

observed conditions. But this is not the case within the air hockey environment. In air hockey, the

puck can be within reach of the robot, but not in a position where it can be properly hit. This is

seen when the puck is very close to the back wall or when it is close to the center line and at the

end of the robot’s reach. In the simulator the puck is almost always moving and in most cases soon

moves to a position where an action can be taken. The simulator will also reset the environment if

no movement is occurring. On the hardware table the puck often stops in these locations and the

provided set of primitives cannot be initialized. In our implementation we have given the robot set

behaviors such as moving the paddle to the side to move the puck from near the robot and to push

the puck to the opponent’s side when the puck is near the center line. These behaviors can also be

considered primitives but within this research they are not learned from observation or practice and

their performance is not explored.

7.3 Perceptual Learning

Within dynamic environments, such as air hockey, the robot must initiate movements before the

objects are at the intended interaction location. This is due to the fact that movements cannot be

made at arbitrarily fast speeds and there are delays in sensing the objects in the environment. It is

also important to note that the object will only be within a range of interaction for a brief period of

time. If the robot’s movements are not initiated quickly enough, the chance to interact will be lost.

Therefore it is important for the robot to have the ability to predict the interaction location as soon

and as accurately as possible, based on its perception of the object’s current motion.

In our relatively small version of air hockey, the robot observes the puck when it crosses a line

122

that is just beyond the center-line from the robot and about 0.35m from where the puck will be hit.

At this point the puck should be out of reach of the opponent and can no longer be influenced by

the opponent’s movements. The delay in the vision system can be up to approximately 35ms and a

puck traveling toward the robot at 2.5m/s can be up to 0.0875m closer to the robot than where it

is last seen. Since the robot needs to accurately predict the future location of the puck, it also filters

the puck locations to more accurately compute the puck’s velocity. This filtering process adds more

delay to the puck’s estimated state.

We currently use a parametric model with learned parameters to predict the future state of the

puck. The accuracy of the future predicted puck state is determined by the accuracy at which the

vision delays and environment parameters are known. Chapter 6.2.1 shows how we are initiating

movements in air hockey irrespective of the vision delays. But if our model parameters are not

correct, the puck will not be at the predicted hit position when the paddle arrives there. The model

parameters that are currently being used are global and remain constant. It is likely that the fric-

tion is not constant across the playing surface and changes over time due to factors such as the

fan motor wearing out. For these reasons the robot should have the ability to learn and update a

model of the puck’s movements from observing the environment. The next paragraph describes an

implementation that we are currently exploring.

As mentioned in Chapter 6.2.1, the most important instant is when the paddle and puck collide.

This collision occurs within a small range near the robot. Our continuing research is exploring a

method in which the robot observes the position of the puck just beyond the center line for three

to five vision cycles. The state of the puck when it crosses the desired hit line is then observed. It

is our hope that this information can be used to train an LWPR model that will provide the robot

with the ability to accurately predict the puck’s state at the hit time. The research of Park et al. [97]

shows that a neural net can be trained to provide this prediction on a larger air hockey table given

the puck’s position and velocity as input. But to accurately compute the puck’s velocity, more than

two observations will be needed. The increased size of the table used by Park provides them with

more opportunities to observe the puck in locations that are out of reach of the players. Their model

is also trained with 3,000 observations. We would like the humanoid robot player to learn from

much less data and have the ability to update the model while it is operating in the environment.

123

7.4 Framework Limitations

This section discusses some of the limits of our learning system and task characteristics that support

our framework and those that work against it. First a comparison of our learning system with a

straight forward reinforcement learning implementation will be presented. This comparison will

serve two purposes. First is to show how our learning system compares with a different numerical

learning system that is well studied. The second purpose is to highlight some of the framework

discussion items that will follow the comparison.

7.4.1 Reinforcement Learning Comparison

Another method that can be used by robots to learn the marble maze task is reinforcement learning

(RL) [122]. We programmed a robot to play the marble maze game using a tabular Q learn-

ing approach. The most common method of encoding the Q values in a continuous state space

is to discretized the state space into cells. The size of the cells are as follows; (Mx,My) dis-

tance: 1.0cm, (Ṁx, Ṁy) velocity: 10cm/sec, (Bx, By) board rotation: 0.01rads. The action is to

change the rotation angle of the board and is limited to three possible changes in each direction;

(−0.01rads, 0, 0.01rads). With cells of this size and a board of size 28cm× 23.5cm, a maximum

velocity of 50cm/sec and maximum board rotation of 0.14 radians there are (28 ∗ 24) ∗ (10 ∗ 10) ∗

(28 ∗ 28) = 52, 684, 800 states. This results in 52, 684, 800 ∗ (3 ∗ 3) = 474, 163, 200 state-action

pairs or Q values. Since many parts of the board are inaccessible due to walls and holes the actual

number of possible Q values is smaller than this number. The robot, referred to as the DIRECT

robot, uses the Q learning algorithm as described in Section 6.5 of [122]. The Q values are updated

as follows:

Q(st, at)← Q(st, at) + α ·
h
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

i

α, the step-size parameter, is set to 0.2 and γ, the discount rate, is set to 0.999. rt+1 is the reward

received by the robot when it moves from st to st+1. The reward function is distTrav ∗ 10 − 1,

where distTrav is the distance in centimeters the marble traveled toward the goal. If the marble

moves away from the goal, distTrav will be negative. The robot receives a reward of −1000 if

the marble falls into a hole and learning ends when the goal state is reached. The initial Q values,

124

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

200

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v
e
ra

g
e

(2
0
 g

a
m

e
s

)
T

im
e

(s
e
c

.)
 t

o
 G

o
a

l Practice Only

Figure 67: The performance of a robot using direct Q-learning.

Qinit, are set to −500.

The action-update cycle occurs at 60 times per second. The robot uses the soft-max function

e(Qt(a)−Qinit)/τ

n
b=1 e

(Qt(b)−Qinit)/τ , where τ is set to 10.0, to select actions. The robot operates under the same

conditions described previously. If the marble falls into a hole or does not make progress for

15 seconds it is moved forward in the maze and given a 10 second penalty. Figure 67 shows the

performance of the DIRECT robot during 30 trials of 20, 000 games each. The graph shows the

running average of the time to reach the goal for 20 games. The 30 trials are averaged together and

the standard deviation is also shown. In our implementation the Q values are created as they are

updated. Figure 68 shows the number of Q values created as the robot operates in the environment

and it can be seen that the robot visits significantly less than the possible 474, 163, 200 cells. The

initial Q values are set to a pessimistic number. This means that as the robot operates in the

environment and receives rewards the Q values tend to increase above the initial value. This results

in the robot having less of a chance of visiting cells that have the initial value.

This robot is then given the ability to refine the Q values with observed games from the same

125

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12
x 10

5

Number of games played (30 trials averaged together)

R
u

n
n

in
g

 A
v

e
ra

g
e

(2
0

 g
a

m
e

s
)

Q
-v

a
lu

e
s
 C

re
a

te
d

Figure 68: The number of cells created by the direct Q learning robot while performing the marble

maze task.

126

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

Number of games played (30 trials averaged together)

R
u
n
n

in
g
 A

ve
ra

g
e

(2
0
 g

am
es

)
T

im
e

(s
e
c
.)

 t
o

 G
o

al

DIRECT: Observed 5 games

DIRECT

PRIMITIVES2

PRIMITIVES

Figure 69: The performance of a robot using direct Q-learning (DIRECT) with and without obser-

vation and robots using primitives (PRIMITIVES and PRIMITIVES2).

game database described in the previous chapter. Figure 69 shows the performance after observing

5 random games from the database. The 5 randomly chosen games are fed to the system consecu-

tively, 1 through 5, 100 times and the Q values are updated just as if the robot was playing the game.

This figure shows how this robot learns a better policy sooner than the robot that does not use the

observed data.

Figure 69 also shows the result of a robot learning using primitives, referred to as the PRIM-

ITIVES robot, as described in this thesis and also using 5 random training games from the same

database. The PRIMITIVES robot immediately performs better than the DIRECT robots. But

given enough time to practice, the DIRECT robots can match the performance of this robot.

We then modified our PRIMITIVES robot to make it as close to the Q learning robot as possible.

The cells that encode the Q values are the same size as the ones used by the DIRECT robot and the

127

reward is also the same; 10x(distance (cm) traveled toward the goal) − 60x(time in seconds) and

-1000 for falling into a hole. The new PRIMITIVES robot, referred to as PRIMITIVES2, no longer

stops and restarts learning when a Corner primitive is performed but continues and the action

receives a reward accordingly. The PRIMITIVES2 robot also uses a soft-max function to choose

the primitive to perform.

The Q value is updated using the maximum value that could be expected from the current state

using the following function:

Q(st,xm)← Q(st,xm) + α ·
K(d(xi, st))PN
j=1K(d(xj , st))

·

·
rt+1 + γmax

x̂
Q(st+1, x̂)−Q(st,xm)

¸

Just like the DIRECT robot’s update, α, the step-size parameter, is set to 0.2, γ, the discount rate,

is set to 0.999 and rt+1 is the reward received by the robot when it moves from st to st+1. In the

previous implementation of the PRIMITIVES robot α was set to
K(d(xi,st))
N
j=1K(d(xj ,st))

. This value is still

used for the update with an additional step-size parameter that is set to 0.2. Q(st+1, x̂) is the future

reward that can be expected from the new state st+1 and selecting the data points x̂ at the next time

step. The maximum value over the available data points is used in the update. Previously the

robot would take the maximum value action, but now, since the robot is using a soft-max selection

scheme, this is not guaranteed. The initial cell value, C = −500, and f(xi,q) = e−Q/β where

β = 40. Figure 69 also shows the performance of the PRIMITIVES2 robot and Figure 70 shows

how this robot compares with the original PRIMITIVES robot.

When the PRIMITIVES robot finds actions that make progress toward the goal it receives a

positive reward and continues to use the same action under the same conditions and does not explore

other actions. But the PRIMITIVES2 robot has two opportunities to explore. One is explicitly due

to the soft-max selection scheme and the other is due to the reward structure. For the PRIMITIVES2

robot to receive a positive reward it will have to make progress during the primitives at a rate greater

than 6cm/second. But this is often not the case and the robot receives negative rewards. This will

cause the robot to try to find other actions in the database that will allow it to make progress faster

than 6cm/second. But in many parts of the maze the human did not perform actions that made

progress at that rate. Therefore these negative rewards cause the robot to try many actions that may

128

0 50 100 150 200 250 300
15

20

25

30

35

Number of games played (30 trials averaged together)

R
u

n
n
in

g
 A

ve
ra

g
e
(2

0
 g

a
m

e
s
)

T
im

e
(s

e
c.

)
to

 G
o
a

l

PRIMITIVES2
PRIMITIVES

Figure 70: A comparison of the PRIMITIVES robot with the PRIMITIVES2 robot, a PRIMITIVES

robot that has been modified to operate as close to the Q learning robot as possible.

not be as good as the one it has originally chosen. On the other hand, it may find an action better

than the originally selected one.

The PRIMITIVES robot receives large negative rewards if a selected action could not be ini-

tialized and immediately the data points that determined that action are moved far from the query

point. But the PRIMITIVES2 robot only receives the reward according to the time and distance

traveled. Therefore since the PRIMITIVES2 robot will only make one selection per time cycle

of 1/60 seconds, if the environment is not changing, the robot would receive a reward of −1.0 for

choosing an action that cannot be performed. The robot may now need to make this bad selection

many times to move the data points sufficiently far from the query point.

A robot using our learning system but given no prior observed information cannot take any

actions in the environment and therefore there are no results shown this type of robot in this section.

This is a drawback of our system but from Figure 69 it can be seen that if this was a hardware

implementation and the robot had to operate in real time, it would be unrealistic to learn this task

using the direct Q learning algorithm.

129

7.4.2 Framework Discussion

The chosen testing domains were very effective in demonstrating the operation and benefits of our

learning system. This section focuses on the characteristics of the testing domains that allowed them

to work well with our learning system. This section will also discuss other domains that may work

well and domains that may not work so well with our learning system. The title of the framework,

"Learning from Observation Using Primitives," contains two key words that help to immediately

identify tasks that will work well with the framework.

The first key word is "observation." The learning system must first be able to observe the actions

that occur within a task to have the ability to learn those actions. If the robot cannot observe the

actions of a task prior to performing the task, our framework is useless. The comparison of our

learning system with a direct RL system highlights the value of providing the robots with observed

information. Within our air hockey environment it is easy to observe the objects using a vision

system. From these observations the dynamics such as object position and velocity can be com-

puted. But from this information we cannot observe the force that is applied to the objects or the

muscle activations that cause the arm to make the correct movements. Therefore in our framework

the robot must have other methods to learn these unobservable items. Section 6.2.1 shows how the

humanoid robot learned to position its arm and learned the timing of its movements while practicing

the task. To fully perform a task the robot must also have previously observed the task in a majority

of the possible task configurations. Chapter 6.1.5.1 shows how the marble maze playing robot has

trouble when it goes to states that are not covered by previous observations.

The other key word is "primitives." Our framework is designed for tasks that can be broken

down into smaller definable units. Tasks such as tennis, ping-pong, and soccer have been extensively

studied and a variety of primitives have been defined such as back hand and dribble. Continuous

tasks such as walking or riding a bicycle may contain primitives but it is not yet clear how these tasks

can easily be divided into smaller units. Other tasks such as cleaning dishes and folding cloths have

not been extensively studied but may contain primitives such as clean a pot and fold a shirt. The

large variety of item configurations that a robot can be exposed to within these tasks will increase

the difficulty of learning the primitives and stresses the importance of having the ability to encode

130

the primitive in a general way so that it will work even for objects that have not been seen prior

to performing the task. Our learning framework requires the set of primitives for the task to be

predefined. Our primitives were defined by a task expert. It is important that the primitives cover

enough of the possible situations the robot may find itself in during the performance of the task to

allow the robot to complete the task.

Our framework encodes actions in a database that is queried by the state. Therefore an observ-

able task state representation is needed. A task such as folding cloths may have states such as "a

shirt is observed" or "socks are observed". But if action selection is determined at a lower level,

such as by the configuration of the item, it not clear how such a state space representation can be

created. The actions in our framework are selected by comparing previously observed situations

with the situation the robot is currently in. Therefore the state representation must support qualita-

tive comparison so that it can be determined which of two previously observed situations is closest

to the currently observed situation.

The performance of the learner is dependent on the performance of the teacher. The goal of this

research is not to create robots that operate optimally in the environment, but to create robots that

can learn to perform proficiently in a short time. Even though the robot’s first attempt is to perform

the same actions as the teacher, it is not a requirement to do so. If the robot, while practicing,

performs an action that was not previously observed, but makes progress towards the goal, the robot

will try to perform the same action in the future. This can be seen in the performance of the marble

maze robot shown in Figure 43. In the three observed games the human maneuvers the marble

below hole 14. During practice the marble falls into hole 14 and the robot learns that it can more

easily maneuver the marble around the top of hole 14. The human player did not even know this

action was possible until the player observed the action discovered by the robot.

131

CHAPTER VIII

SUMMARY

Surely goodness and love will follow me all the days of my life,

and I will dwell in the house of the LORD forever.

- Psalm 23:6 (NIV) [96]

This research presents an integrated system that combines a variety of learning and robot control

methods. This thesis presented a framework for having robots learn from observation and practice

using primitives. It showed how various learning mechanisms within the framework give our robots

the abilities needed to operate in the testing domains. This chapter offers some suggestions of further

research directions that can improve upon our learning system and presents the contributions of this

research.

8.1 Future Directions

How to structure learning: Chapter 1 explains our motivation in using primitives in robot learning.

This motivation leads us to seek out a structure for robot learning that supports fast learning from

observation and practice and has the ability to quickly adapt to environment changes. This thesis

uses the air hockey task as a case study in which we show how action generation has been structured

to make the most use of the observed information, Section 5.1.3. The action generation module

contains models that allow the robot to learn specific skills that may generalize to other tasks. This

research presents the results of training these models from information obtained whenever a shot is

observed. By structuring the problem in the manner that we have, the robot can learn and improve

the performance of the models even when only a partial shot sequence is observed. The impact

model, for example, can learn about the impact interaction whenever a paddle-puck collision is

observed. The ultimate outcome of the shot is irrelevant to this model. The same is true for the puck

motion and robot models. These models can be trained whenever the puck is seen moving from the

hit area to the goal area or the robot attempts to make a shot.

Further subdivision of the models might be possible. There are two puck motion models that

132

provide the desired velocity vector; one for straight shots and one for bank shots. The straight shot

puck motion model provides the velocity direction to reach a point without hitting a wall. The bank

shot model includes the interaction of the puck with one wall. The bank shot has at least three

clear segments: 1) the puck moves from the hit point to the wall, 2) undergoes a change in velocity

during the wall-puck collision, and 3) travels to the target position. Segments 1 and 3 are the same

as the straight shot model. Therefore it may be possible to have the system learn faster and be

more accurate by structuring the problem to have a no-collision puck motionmodel and a wall-puck

collision model that coordinate to provide the needed information for a bank shot.

Our structure is also organized so that the models are not specifically tied to a single task.

It is absolutely necessary for humanoid robots to have the ability to collect and organize learned

information in a way in which it can be reused. The impact model, for example, provides the robot

with a lot of basic information on the effect a large moving object has on a smaller one. Perhaps

this model could be used as a starting point for learning similar interactions such as the effect that a

swinging bat has on a ball that is being hit.

When and What to generalize? Combining the left and right bank shots into one learning

module provides the robot with more training data for bank shots. But should this be done? Can a

left bank shot and a right bank shot be transformed to a standard shot? If the board is symmetric,

this approach is successful as shown in Chapter 5.2.4. But what if the board is not symmetric or is

tilted to the side? The robot should have methods to detect when information can be combined and

when it cannot.

One such method would be for the robot to observe its own performance in the environment and

evaluate the effectiveness of using information in all situations. In the air hockey environment, for

example, it can compare the results of using the combined information for left and right bank shots

verses using the information for left and right shots separately.

When To Forget: This research discusses and presents various items that robots can learn while

they are operating in dynamic environments. We decided when information was added to models

and when data is to be forgotten and replaced with new data. A more appealing approach would be

for the robot to have control over its own learning and decide when models need to be trained further

or replaced. If the robot has the ability to continually evaluate its movements and the outcome of its

133

actions, it can use this information to decide if previously learned models are no longer accurate and

should be updated or replaced. In air hockey, for example, if the board is moved during the game,

the robot should immediately notice an error in its paddle movements. It can then attempt to add

new data to the robot model in an effort to have the model adapt to the new board position. When

data is added to the current robot model, the data can also be use to train an entirely new, off-line,

robot model. If the current model is not adapting to the changed environment, it can be replaced by

the new model.

Automatically discovering primitives: In many research fields there is interest in methods

robots can use to automatically define a library of primitives or actions from observing the perfor-

mance of a task [43, 55, 84]. We have manually defined the library of primitives in this research but

we also have a strong interest in automating this process. The implantations presented in this thesis

gives insight into the type of information that a robot would need to know about and search for. Our

method of breaking the learning problem into small independent models can assist in automatically

discovering primitives. Wolpert and Kawato’s [133] research of models that have the ability to learn

forward and inverse models of the environment provides insight into how the models can be config-

ured to predict the events occurring in the environment. Figure 27 showed how a primitive can be

composed of a sequence of model activations. The environment state can be observed and recorded

at the beginning and end of this sequence to provide all the information needed for a robot using our

framework.

These forward models can be used is to describe which events are occurring in the environment

as they are fed the observed data. The sequence of model activations can be recorded as the task

is observed. The research of Kaminka et al. [63] on learning the sequential behavior of teams from

observation gives some ideas into how the sequential list can be represented and used to discover

primitives in the environment. For example, a sequence of model activations that are seen reoccur-

ring many times may be an appropriate primitive. By structuring the models to be general, they

may also be observing other environments. This has the effect that as the robot learns more models,

it has an increased ability to discover new primitives.

Creating a Planner: The databases created from observing the task provide information about

the outcome of actions performed during the task. Within our framework this information is used by

134

the robot to select an action for the current observed situation. But if the robot has confidence about

performing the actions and obtaining the subgoals presented by the observed data, the robot can use

this information to plan a sequence of actions. Since our robots operate in dynamic environments,

they must make decisions quickly. Having the ability to plan ahead allows them to plan while a

primitive is being performed and increases the time they have available for making decisions.

Manipulating the database: The size of the primitive databases used within this research

was controlled by the amount of observed information. If the robots are presented continuously

with data, their databases will continue to grow. Our primitive selection and subgoal generation

methods require that this information is stored, so the robot will soon have difficulty computing

actions due to the large number of data points that must be processed. Therefore the robots need

methods for adding new data to the database. Many observations may be redundant and the robot

can safely ignore them. There may be data points in the database that encode actions that are no

longer appropriate or have proven in the past to be ineffective and are therefore no longer used. The

robot also needs methods to remove information such as this.

Create local representations: The robots presented in this thesis compute actions based on the

global state of the environment. This design decision restricts their learned primitive selection and

subgoal generation knowledge to a single task configuration. A robot learning to select primitives

in a maze, for example, cannot use that information when presented with a maze with a different

configuration. But if the robot could represent the task space in a way that allows mapping situations

from one location to another, it would have the ability to reuse learned primitive selection knowledge

in various locations. In the marble maze for example, the state of the environment could be that

there are walls on both sides of the marble and there is a corner in front of the marble. If the

robot knows that it should roll into the corner when presented with this configuration, the robot

now knows what action to perform whenever it observes this local situation, regardless of the global

maze configuration.

8.2 Contributions

This thesis addresses many of the challenges of using primitives that were presented in Chapter

2. Much of the research that uses primitives on actual robots is being performed in the context of

135

assembly and mobile robots. In these environments the primitive sequence is usually predefined and

the robots have sufficient time to switch between them. The environments presented in this thesis

are very dynamic and have continuous state spaces. Due to adversaries and random environment

conditions, the primitive performance sequence cannot be fully predefined and the robot must decide

very quickly on a primitive type to use. The algorithms presented in this thesis provide a method in

which a primitive type and subgoal can be selected based on the state of the environment and data

collected from observing a human perform in the environment.

This thesis explored learning methods that can make effective use of observed information and

have the ability to learn through practice. The types of information that can be learned from observ-

ing others and that which cannot has been highlighted. This research presents a method of breaking

the learning problem into small learning models. The individual models have more opportunities to

learn and can therefore more quickly become experts. The use of the small models is also a step

toward creating models that can be learned in one task and used in other similar tasks.

This thesis provides many insights into the use of primitives and observation data to increase

the learning rate of robots. The framework presented in this thesis has proven to be a useful tool in

which to conduct learning from observation research. The learning methods represent a significant

step towards building robots that learn and interact with humans in a human-like way.

136

REFERENCES

[1] ABOAF, E., DRUCKER, S., and ATKESON, C., “Task-level robot learning: Juggling a ten-

nis ball more accurately,” in IEEE International Conference on Robotics and Automation,

(Scottsdale, AZ), pp. 1290–1295, 1989.

[2] ALDRIDGE, H., BLUETHMANN, W., AMBROSE, R., and DIFTLER, M., “Control archi-

tecture for the robonaut space humanoid,” in First IEEE-RAS International Conference on

Humanoid Robotics (Humanoids-2000), 2000.

[3] ALOIMONOS, Y., “Active vision revisited,” in Active Perception, pp. 1–18, Lawrence Erl-

baum Associates, 1993.

[4] AMBROSE, R., ALDRIDGE, H., ASKEW, R., BURRIDGE, R., BLUETHMANN, W.,

DIFTLER, M., LOVCHIK, C., MAGRUDER, D., and REHNMARK, F., “Robonaut: Nasa’s

space humanoid,” IEEE Intelligent Systems, vol. 15, pp. 57–63, July / Aug 2000.

[5] “Amplified Bible.” http://www.Lockman.org, 2004.

[6] AN, C. H., ATKESON, C. G., and HOLLERBACH, J. M., Model-Based Control of a Robot

Manipulator. Cambridge, MA: MIT Press, 1988.

[7] ARKIN, R. C., Behavior-Based Robotics. Cambridge, MA: MIT Press, 1998.

[8] ASADA, H. and ASARI, Y., “The direct teaching of tool manipulation skills via the im-

pedance identification of human motions,” in IEEE Int’l Conf. on Robotics and Automation,

pp. 1269–1274, 1988.

[9] ATKESON, C. G., HALE, J. G., POLLICK, F., RILEY, M., KOTOSAKA, S., SCHAAL, S.,

SHIBATA, T., TEVATIA, G., UDE, A., VIJAYKUMAR, S., and KAWATO, M., “Using hu-

manoid robots to study human behavior,” IEEE Intelligent Systems, vol. 15, no. 4, pp. 46–55,

2000.

[10] ATKESON, C. G., MOORE, A. W., and SCHAAL, S., “Locally weighted learning,” Artificial

Intelligence Review, vol. 11, pp. 11–73, 1997.

[11] ATKESON, C. G. and SCHAAL, S., “Robot learning from demonstration,” in Proc. 14th

International Conference on Machine Learning, pp. 12–20, Morgan Kaufmann, 1997.

[12] ATKESON, C. G. and SCHAAL, S., “Robot learning from demonstration,” in Proceedings

of the 1997 International Conference on Machine Learning (ICML97) (FISHER, JR., D. H.,

ed.), pp. 12–20, Morgan Kaufmann, 1997.

[13] BAKKER, P. and KUNIYOSHI, Y., “Robot see, robot do: An overview of robot imitation,” in

AISB96 Workshop on Learning in Robots and Animals, pp. 3–11, 1996.

[14] BALCH, T., “Clay: Integrating motor schemas and reinforcement learning,” Tech. Rep. GIT-

CC-97-11, College of Computing, Georgia Institute of Technology, Atlanta, Georgia, March

1997.

137

[15] BALCH, T., BOONE, G., COLLINS, T., FORBES, H., MACKENZIE, D., and SANTAMARIA,

J., “Io Ganymede and Callisto: A multiagent robot trash-collecting team,” AI Magazine,

vol. 16, pp. 39–51, Summer 1995.

[16] BALLARD, D., “Animate vision,” Artificial Intelligence, vol. 48, pp. 57–86, 1991.

[17] “Banryu homepage.” http://www.banryu.jp/.

[18] BARTO, A. and MAHADEVAN, S., “Recent advances in hierarchical reinforcement learning,”

Discrete Event Systems, vol. 13, pp. 41–77, 2003.

[19] BENSON, S. and NILSSON, N., “Reacting, planning, and learning in an autonomous agent,”

inMachine Intelligence, 14, 1995.

[20] BENTIVEGNA, D. C. and ATKESON, C. G., “Using primitives in learning from obser-

vation,” in First IEEE-RAS International Conference on Humanoid Robotics (Humanoids-

2000), 2000.

[21] BENTIVEGNA, D. C., UDE, A., ATKESON, C. G., and CHENG, G., “Humanoid robot learn-

ing and game playing using PC-based vision,” in Proceedings of the 2002 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems., (Switzerland), 2002.

[22] BILLARD, A. and SCHAAL, S., “Robust learning of arm trajectories through human demon-

stration,” in Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Ro-

bots and Systems, (Maui, HI, USA), pp. 734–739, 2001.

[23] BISHOP, B., SHIRKEY, P., and SPONG, M., “An experimental testbed for intelligent control,”

in American Control Conference, Seattle, 1995.

[24] BLACKBURN, M., EVERETT, H., and LAIRD, R., “After action report to the joint program

office: Center for the robotic assisted search and rescue (crasar) related efforts at the world

trade center,” Tech. Rep. 3141, Space and Naval Warfare Systems Center, San Diego, CA,

August 2002.

[25] BLINN, J. F. and NEWELL, M. E., “Texture and reflection in computer generated images,”

Communications of the ACM, vol. 19, pp. 542–547, Oct. 1976.

[26] BROOKS, R. and FLYNN, A., “Fast, cheap, and out of control; a robot invasion of the solar

system,” Journal of the British Interplanetary Society, vol. 42, no. 10, pp. 478–485, 1989.

[27] BROOKS, R. A., “A robust layered control system for a mobile robot,” IEEE Journal of

Robotics and Automation, vol. RA-2, no. 1, pp. 14–23, 1986.

[28] BROOKS, R. A., “A robot that walks: Emergent behaviors from a carefully evolved network,”

in Artificial Intelligence at MIT, Expanding Frontiers (WINSTON, P. H. and SHELLARD,

S. A., eds.), pp. 28–39, MIT Press, Cambridge, MA, USA, 1990.

[29] BURKHARD, H. D., DUHAUT, D., FUJITA, M., LIMA, P., MURPHY, R., and ROJAS, R.,

“The road to robocup 2050,” IEEE Robotics & Automation Magazine, vol. 9, pp. 31–38, June

2002.

[30] CLARK, R. J., ARKIN, R. C., and RAM, A., “Learning momentum: On-line performance

enhancement for reactive systems,” in IEEE Int’l Conf. on Robotics and Automation, (Nice,

France), pp. 111–116, 1991.

138

[31] DAVIDS, A., “Urban search and rescue robots: from tragedy to technology,” IEEE Robotics

& Automation Magazine, vol. 17, pp. 81–83, Mar/Apr 2002.

[32] DELSON, N. and WEST, H., “The use of human inconsistency in improving 3d robot trajec-

tories,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, (Munchen),

pp. 1248–1255, 1994.

[33] DELSON, N. and WEST, H., “Robot programming by human demonstration: adaptation and

inconsistency in constrained motion,” in IEEE International Conference on Robotics and

Automation, vol. 1, pp. 30 –36, 1996.

[34] DEMIRIS, J. and HAYES, G., “Imitation as a dual-route process featuring predictive and

learning components: a biologically-plausible computational model,” in Imitation in Animals

and Artifacts (DAUTENHAHN, K. and NEHANIV, C., eds.), ch. 13, MIT Press, 2001.

[35] DI PELLEGRINO, G., FADIGA, L., FOGASSI, L., GALLESE, V., and RIZZOLATI, G., “Un-

derstanding motor events: a neurophysiological study,” in Experimental Brain Research,

91:176-180, 1992.

[36] DIETTERICH, T. G., “The MAXQ method for hierarchical reinforcement learning,” in Proc.

15th International Conf. on Machine Learning, pp. 118–126, Morgan Kaufmann, San Fran-

cisco, CA, 1998.

[37] DILLMANN, R., FRIEDRICH, H., KAISER, M., and UDE, A., “Integration of symbolic and

subsymbolic learning to support robot programming by human demonstration,” in Robotics

Research: The Seventh International Symposium (GIRALT, G. and HIRZINGER, G., eds.),

pp. 296–307, Springer, NY, 1996.

[38] DILLMANN, R., KAISER, M., and UDE, A., “Acquisition of elementary robot skills from

human demonstration,” in International Symposium on Intelligent Robotics Systems, (Pisa,

Italy), 1995.

[39] ERDMANN, M. A. and MASON, M. T., “An exploration of sensorless manipulation,” IEEE

Journal of Robotics and Automation, vol. 4, pp. 369–379, 1988.

[40] FALOUTSOS, P., VAN DE PANNE, M., and TERZOPOULOS, D., “Composable controllers for

physics-based character animation,” in Proceedings of SIGGRAPH 2001, (Los Angeles, CA,

USA), pp. 251–260, 2001.

[41] FIKES, R., HART, P., and NILSSON, N., “Learning and executing generalized robot plans,”

in Artificial Intelligence Vol. 3, 1972.

[42] FIKES, R. E. and NILSSON, N. J., “STRIPS: A new approach to the application for theorem

proving to problem solving,” in Advance Papers of the Second International Joint Conference

on Artificial Intelligence, (Edinburgh, Scotland), pp. 608–620, 1971.

[43] FOD, A., MATARIC, M., and JENKINS, O., “Automated derivation of primitives for move-

ment classification,” in First IEEE-RAS International Conference on Humanoid Robotics

(Humanoids-2000), (MIT, Cambridge, MA), 2000.

[44] FORBES, J. and ANDRE, D., “Representations for learning control policies,” in ICML-2002

Workshop on Development of Representations, 2002.

139

[45] FUJITA, M., KUROKI, Y., ISHIDA, T., and DOI, T. T., “A small humanoid robot SDR-

4X for entertainment applications,” in IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (AIM 2003), vol. 2, pp. 938–943, July 2003.

[46] GRUDIC, G. and LAWRENCE, P., “Human-to-robot skill transfer using the spore approxi-

mation,” in Proceedings of the IEEE International Conference on Robotics and Automation,

pp. 2962–2967, 1996.

[47] GRUVER, W., SOROKA, B., CRAIG, J., and TURNER, T., “Evaluation of commercially

available robot programming languages,” in 13th Int’l Symp. on Industrial Robots, pp. 12–

58, 1983.

[48] HAYES, G. and DEMIRIS, J., “A robot controller using learning by imitation,” in A.

Borkowski and J. L. Crowley (Eds.), Proceedings of the 2nd International Symposium on

Intelligent Robotic Systems, pp. 198–204, 1994.

[49] HIRAI, K., HIROSE, M., HAIKAWA, Y., and TAKENAKA, T., “The development of Honda

humanoid robot,” in IEEE International Conference on Robotics and Automation, vol. 2,

pp. 1321–1326, May 1998.

[50] HIRZINGER, G., “Learning and skill acquisition,” in Robotics Research: The Seventh Inter-

national Symposium (GIRALT, G. and HIRZINGER, G., eds.), pp. 277–278, Springer, NY,

1996.

[51] HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., and O’BRIEN, J. F., “Animating

human athletics,” in Proceedings of Siggraph ’95, pp. 71–78, 1995.

[52] HOVLAND, G., SIKKA, P., and MCCARRAGHER, B., “Skill acquisition from human demon-

stration using a hidden markov model,” in Proceedings of IEEE International Conference on

Robotics and Automation, (Minneapolis, MN), pp. 2706–2711, 1996.

[53] HUBER, M., “A hybrid architecture for hierarchical reinforcement learning,” in Proceedings

of the IEEE International Conference on Robotics and Automation, pp. 3290–3295, 2000.

[54] HUGUES, L. and DROGOUL, A., “Shaping of robot behaviors by demonstration,” in First

International Workshop on Epigenetic Robotics, 2001.

[55] IBA, W., “Learning to classify observed motor behavior,” in Proceedings of the International

Joint Conference on Artificial Intelligence, pp. 732–738, 1991.

[56] IKEUCHI, K., MIURA, J., SUEHIRO, T., and CONANTO, S., “Designing skills with visual

feedback for APO,” in Robotics Research: The Seventh International Symposium (GIRALT,

G. and HIRZINGER, G., eds.), pp. 308–320, Springer, NY, 1996.

[57] IMAMIZU, H., MIYAUCHI, S., TAMADA, T., SASAKI, Y., TAKINO, R., PUETZ, B., YOSH-

IOKA, T., and KAWATO, M., “Human cerebellar activity reflecting an acquired internal

model of a novel tool,” Nature, vol. 403, pp. 192–195, 2000.

[58] JENKINS, O., MATARIC, M., and WEBER, S., “Primitive-based movement classification for

humanoid imitation,” in First IEEE-RAS International Conference on Humanoid Robotics

(Humanoids-2000), (MIT, Cambridge, MA), 2000.

140

[59] KAELBLING, L. P., “Hierarchical learning in stochastic domains: Preliminary results,” in

International Conference on Machine Learning, pp. 167–173, 1993.

[60] KAELBLING, L. P., “Learning to achieve goals,” in International Joint Conference on Artifi-

cial Intelligence (IJCAI), pp. 1094–1099, 1993.

[61] KAISER, M. and DILLMANN, R., “Building elementary skills from human demonstration,”

in Proceedings of the IEE International Conference on Robotics and Automation, pp. 2700–

2705, 1996.

[62] KAISER, M., RETEY, A., and DILLMANN, R., “Robot skill acquisition via human demon-

stration,” in Proceedings of the International Conference on Advanced Robotics (ICAR ’95),

1995.

[63] KAMINKA, G., FIDANBOYLU, M., CHANG, A., and M.VELOSO, “Learning the sequential

coordinated behavior of teams from observation,” in Proceedings of the 2002 International

RoboCup Symposium, 2002.

[64] KAMON, I., FLASH, T., and EDELMAN, S., “Learning visually guided grasping: A test case

in sensorimotor learning,” in IEEE Transactions on System, Man and Cybernetics, vol. 28(3),

pp. 266–276, May 1998.

[65] KANEKO, K., KANEHIRO, F., KAJITA, S., YOKOYAMA, K., AKACHI, K., KAWASAKI, T.,

OTA, S., and ISOZUMI, T., “Design of prototype humanoid robotics platform for HRP,” in

IEEE/RSJ International Conference on Intelligent Robots and System, vol. 3, pp. 2431–2436,

September 2002.

[66] KANG, S., Robot instruction by human demonstration. PhD thesis, Robotics Institute,

Carnegie Mellon University, 1994.

[67] KANG, S. and IKEUCHI, K., “A grasp abstraction hierarchy for recognition of grasping tasks

from observation,” in IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, (Yokohama,

Japan), pp. 621–628, July 1993.

[68] KANG, S. B. and IKEUCHI, K., “Toward automatic robot instruction from perception:

Recognizing a grasp from observation,” IEEE International Journal of Robotics and Au-

tomation, vol. 9, no. 4, pp. 432–443, 1993.

[69] KUNIYOSHI, Y., “The science of imitation – towards physically and socially grounded intel-

ligence.” RWC Technical Report, TR-94001, Special Issue, 1994.

[70] KUNIYOSHI, Y., INABA, M., and INOUE, H., “Learning by watching: Extracting reusable

task knowledge from visual observation of human performance,” IEEE Transactions on Ro-

botics and Automation, vol. 10, no. 6, pp. 799–822, 1994.

[71] KUNIYOSHI, Y. and INOUE, H., “Qualitative recognition of ongoing human action se-

quences,” in International Joint Conference on Artificial Intelligence (IJCAI), pp. 1600–1609,

1993.

[72] LARSON, A. and VOYLES, R., “Automatic training data selection for sensorimotor primi-

tives,” in Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots

and Systems, (Maui, HI, USA), pp. 871–876, 2001.

141

[73] LEE, J. B. and ARKIN, R. C., “Learning momentum: Integration and experimentation,” in

Proceedings of the 2001 IEEE International Conference on Robotics and Automation, (Seoul,

Korea), pp. 1975–1980, 2001.

[74] LIKHACHEV, M. and ARKIN, R. C., “Spatio-temporal case-based reasoning for behavioral

selection,” in Proceedings of the 2001 IEEE International Conference on Robotics and Au-

tomation, (Seoul, Korea), pp. 1627–1634, 2001.

[75] LIMA, P., BALCH, T., FUJITA, M., ROJAS, R., VELOSO, M., and YANCO, H. A., “Robocup

2001,” IEEE Robotics and Automation Magazine, vol. 9, pp. 20–30, June 2002.

[76] LIN, L. J., “Hierarchical learning of robot skills by reinforcement,” in Proceedings of the

1993 International Joint Conference on Neural Networks, pp. 181–186, 1993.

[77] MAHADEVAN, S. and CONNELL, J., “Automatic programming of behavior-based robots

using reinforcement learning,” in AAAI, Vol. 2, pp. 768–773, 1991.

[78] “Mars exploration rover mission homepage.” http://marsrovers.jpl.nasa.gov/.

[79] MATARIC, M., “Sensory-motor primitives as a basis for imitation: Linking perception to

action and biology to robotics,” in Imitation in Animals and Artifacts, MIT Press, 2000.

[80] MATARIC, M., ZORDAN, V., and WILLIAMSON, M., “Making complex articulated agents

dance,” Autonomous Agents and Multi-Agent Systems, vol. 2, no. 1, pp. 23–43, 1999.

[81] MATARIC, M. J., WILLIAMSON, M., DEMIRIS, J., and MOHAN, A., “Behavior-based prim-

itives for articulated control,” in Fifth International Conference on Simulation of Adaptive

Behavior (SAB-98), pp. 165–170, MIT Press, 1998.

[82] “Matlab homepage.” http://www.mathworks.com/.

[83] MCGOVERN, A., “acQuire-macros: An algorithm for automatically learning macro-actions,”

in NIPS’98 Workshop on Abstraction and Hierarchy in Reinforcement Learning, 1998.

[84] MCGOVERN, A. and BARTO, A. G., “Automatic discovery of subgoals in reinforcement

learning using diverse density,” in Proceedings of the 18th International Conference on Ma-

chine Learning, pp. 361–368, Morgan Kaufmann, San Francisco, CA, 2001.

[85] MICHELMAN, P. and ALLEN, P., “Forming complex dextrous manipulations from task prim-

itives,” in Proceedings of the IEEE International Conference on Robotics and Automation,

pp. 3383–3388, 1994.

[86] MISHKIN, A., MORRISON, J., NGUYEN, T., STONE, H., COOPER, B., and WILCOX, B.,

“Experiences with operations and autonomy of the Mars pathfinder microrover,” in IEEE

Aerospace Conference, 1998.

[87] MORI, T., TSUJIOKA, K., and SATO, T., “Human-like action recognition system on whole

body motion-captured file,” in Proceedings of the 2001 IEEE/RSJ International Conference

on Intelligent Robots and Systems, (Maui, Hawaii, USA), 2001.

[88] MORIMOTO, J. and DOYA, K., “Hierarchical reinforcement learning of low-dimensional

subgoals and high-dimensional trajectories,” in Proceedings of the 5th International Confer-

ence on Neural Information Processing, vol. 2, pp. 850–853, 1998.

142

[89] MORROW, J., Programming Robotic Assembly Skills. PhD thesis, Carnagie Mellon Uni-

vesity, May 1997.

[90] MORROW, J. and KHOSLA, P., “Manipulation task primitives for composing robot skills,”

in IEEE International Conference on Robotics and Automation, (Albuquerque, NM, USA),

pp. 3354–9, 1997.

[91] MORROW, J., NELSON, B., and KHOSLA, P., “Vision and force driven sensorimotor prim-

itives for robotic assembly skills,” in Proceedings of the IEEE International Workshop on

Intelligent Robots and Systems (IROS-95), vol. 3, (Pittsburg, PA), pp. 234–240, 1995.

[92] MURPHY, R. R., CASPER, J., and MICIRE, M., “Potential tasks and research issues of

mobile robots in RoboCup,” RoboCup-2000: Robot Soccer World Cup IV, vol. 9, no. 4,

pp. 339–344, 2001.

[93] NAKAWAKI, D., JOO, S., and MIYAZAKI, F., “Dynamic modeling approach to gymnas-

tic coaching,” in Proceedings of the 1998 IEEE International Conference on Robotics and

Automation (ICRA98), 1998.

[94] NILSSON, N. J., “A mobile automaton: An application of artificial intelligence techniques,”

in Proceedings of the International Joint Conference on Artificial Intelligence, (Washington,

D. C.), pp. 509–520, 1969.

[95] NILSSON, N. J., “Teleo-reactive programs for agent control,” Journal of Artificial Intelli-

gence Research, vol. 1, pp. 139–158, 1994.

[96] “New International Version Bible.” http://www.ibs.org, 2004.

[97] PARK, J., PARTRIDGE, C. B., and SPONG, M. W., “Neural network based state prediction

for strategy planning of an air hockey robot,” Journal of Robotic Systems, vol. 18, pp. 187–

196, April 2001.

[98] PARR, R. and RUSSELL, S., “Reinforcement learning with hierarchies of machines,” in Ad-

vances in Neural Information Processing Systems (JORDAN, M. I., KEARNS, M. J., and

SOLLA, S. A., eds.), vol. 10, The MIT Press, 1998.

[99] PARTRIDGE, C. B. and SPONG, M. W., “Control of planar rigid body sliding with impacts

and friction,” in International Journal of Robotics Research, pp. 336–348, April 2000.

[100] PEARCE, M., ARKIN, R. C., and RAM, A., “The learning of reactive control parameters

through genetic algorithms,” in Proceedings of the 1992 IEEE/RSJ International Conference

on Intelligent Robots and Systems, (Raleigh, NC, USA), pp. 130–137, 1992.

[101] PRICE, B. and BOUTILIER, C., “Imitation and reinforcement learning in agents with hetero-

geneous actions,” in Proceedings of the Seventeenth International Conference on Machine

Learning (ICML-2000), 2000.

[102] PRICE, B. and BOUTILIER, C., “Implicit imitation in multiagent reinforcement learning,” in

Proc. 16th International Conf. on Machine Learning, pp. 325–334, Morgan Kaufmann, San

Francisco, CA, 1999.

143

[103] RAM, A. and SANTAMARIA, J., “A multistrategy case-based and reinforcement learning

approach to self-improving reactive control systems for autonomous robotic navigation,”

in Proceedings of the Second International Workshop on Multistrategy Learning, (Harpers

Ferry, WV), 1993.

[104] RIEZENMAN, M. J., “Robots stand on own two feet,” IEEE Spectrum, vol. 39, pp. 24–25,

Aug 2002.

[105] RILEY, P., VELOSO, M., and KAMINKA, G., “An empirical study of coaching,” Distributed

Autonomous Robotic Systems, vol. 5, pp. 215–224, 2004.

[106] “RoboCup homepage.” http://www.robocup.org/.

[107] RUSSELL, S. J. and NORVIG, P., Artificial Intelligence: A Modern Approach. PrenticeHall,

1995.

[108] RYAN, M. and REID, M., “Learning to fly: An application of hierarchical reinforcement

learning,” in Proc. 17th International Conf. on Machine Learning, pp. 807–814, Morgan

Kaufmann, San Francisco, CA, 2000.

[109] RYAN, M. R. K. and PENDRITH, M. D., “RL-TOPs: an architecture for modularity and

re-use in reinforcement learning,” in Proc. 15th International Conf. on Machine Learning,

pp. 481–487, Morgan Kaufmann, San Francisco, CA, 1998.

[110] SACERDOTI, E., “Planning in a hierarchy of abstraction,” Artificial Intelligence, vol. 5, no. 2,

pp. 115–135, 1974.

[111] SANTAMARIA, J., SUTTON, R., and RAM, A., “Experiments with reinforcement learning in

problems with continuous state and action spaces,” Adaptive Behavior, vol. 6, no. 2, 1998.

[112] SCHAAL, S., “Is imitation learning the route to humanoid robots?,” Trends in Cognitive

Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[113] SCHAAL, S., ATKESON, C., and VIJAYAKUMAR, S., “Scalable locally weighted statistical

techniques for real time robot learning,” Applied Intelligence - Special issue on Scalable

Robotic Applications of Neural Networks, vol. 17, no. 1, pp. 49–60, 2002.

[114] SCHAAL, S., KOTOSAKA, S., and STERNAD, D., “Nonlinear dynamical systems as move-

ment primitives,” in International Conference on Humanoid Robotics, (Cambridge, MA),

2000.

[115] SCHAAL, S., “Learning from demonstration,” in Advances in Neural Information Processing

Systems (MOZER, M. C., JORDAN, M. I., and PETSCHE, T., eds.), vol. 9, p. 1040, The MIT

Press, 1997.

[116] SCHMIDT, R. A.,Motor Learning and Control. Champaign, IL: Human Kinetics Publishers,

1988.

[117] SINGH, S. P., “Reinforcement learning with a hierarchy of abstract models,” in National

Conference on Artificial Intelligence, pp. 202–207, 1992.

[118] SMART, W. D. and KAELBLING, L. P., “Practical reinforcement learning in continuous

spaces,” in Proc. 17th International Conf. on Machine Learning, pp. 903–910, Morgan Kauf-

mann, San Francisco, CA, 2000.

144

[119] SMITHERS, T. and MALCOLM, C., “Programming robotics assembly in terms of task achiev-

ing behavioural modules,” in International Advanced Robotics Programme, Second Work-

shop on Manipulators, Sensors, and Steps towards Mobility, pp. 15.1–15.16, 1988.

[120] STONE, P. and VELOSO, M., “Layered learning,” in European Conference on Machine

Learning, pp. 369–381, 2000.

[121] SUTTON, R., “Integrating architectures for learning, planning, and reacting based on approx-

imating dynamic programming,” in Proceedings of the Seventh International Conference on

Machine Learning (ML-90), (Austin, TX, USA), pp. 216–224, 1990.

[122] SUTTON, R. and BARTO, A., Reinforcment Learning: An Introduction. MIT Press, 1998.

[123] SUTTON, R. S., PRECUP, D., and SINGH, S. P., “Between MDPs and semi-MDPs: A frame-

work for temporal abstraction in reinforcement learning,” Artificial Intelligence, vol. 112,

no. 1-2, pp. 181–211, 1999.

[124] TANIE, T., “Humanoid robot and its application possibility,” in Proceedings of IEEE Inter-

national Conference Multisensor Fusion and Integration for Intelligent Systems, July 2003.

[125] THOMAS, U. and WAHL, F. M., “A system for automatic planning, evaluation and execution

of assembly sequences for industrial robots,” in Proceedings of the 2001 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, (Maui, Hawaii, USA), 2001.

[126] TROXELL, W., “A robotic assembly description language derived from task-achieving be-

haviors,” in Proceedings of Manufacturing International ‘90, (Atlanta, GA), March 1990.

[127] TUNG, C. and KAK, A., “Automatic learning of assembly tasks using a dataglove system,”

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

vol. 1, 1995.

[128] UDE, A. and ATKESON, C. G., “Real-time visual system for interaction with a humanoid

robot,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, (Maui, Hawaii), pp. 746–

751, October/November 2001.

[129] VIJAYAKUMAR, S. and SCHAAL, S., “Locally weighted projection regression: An O(n)

algorithm for incremental real time learning in high dimensional spaces,” in Proceedings

of the Seventeenth International Conference on Machine Learning (ICML 2000), (Stanford,

CA), 2000.

[130] VIJAYAKUMAR, S., D’SOUZA, A., SHIBATA, T., CONRADT, J., and SCHAAL, S., “Statis-

tical learning for humanoid robots,” Autonomous Robot, vol. 12, no. 1, pp. 55–69, 2002.

[131] WASSON, G., KORTENKAMP, D., and HUBER, E., “Integrating active perception with an

autonomous robot architecture,” in Proceedings of the 2nd International Conference on Au-

tonomous Agents (Agents’98) (SYCARA, K. P. and WOOLDRIDGE, M., eds.), (New York),

pp. 325–331, ACM Press, 1998.

[132] WILLIAMSON, M., “Postural primitives: Interactive behavior for a humanoid robot arm,”

in Fourth International Conference on Simulation of Adaptive Behavior, (Cape Cod, MA),

pp. 124–131, MIT Press, 1996.

145

[133] WOLPERT, D. M. and KAWATO, M., “Multiple paired forward and inverse models for motor

control,” Neural Networks, vol. 11, no. 7-8, pp. 1317–1329, 1998.

[134] WOOTEN, W. L. and HODGINS, J. K., “Simulating leaping, tumbling, landing and balancing

humans,” in IEEE International Conference on Robotics and Automation, vol. 1, pp. 656–

662, 2000.

[135] ZHANG, Z., “A flexible new technique for camera calibration,” Tech. Rep. MSR-TR-98-71,

Microsoft Research, Microsoft Corporation, Redmond, Washington, December 1998.

[136] ZONFRILLI, F., ORIOLO, G., and NARDI, D., “A biped locomotion strategy for the

quadruped robot Sony ERS-210,” in 2774 International Conference on Robotics and Au-

tomation, vol. 3, pp. 2678–662, 2002.

146

